
The Functional Web

90 	 Published by the IEEE Computer Society	 1089-7801/11/$26.00 © 2011 IEEE� IEEE INTERNET COMPUTING

T he modestly named Yaws — “Yet Another
Web Server” — is an open source Erlang Web
server known for its reliability, stability,

and scalability. It started roughly a decade ago as
the brainchild of legendary Erlang programmer
Claes “Klacke” Wikström, who also invented sev-
eral important Erlang features, including Erlang
term storage (ets), Distributed Erlang, the Mnesia
database, and the Erlang bit syntax. Yaws is a
general-purpose HTTP 1.1 Web server consisting
of a relatively simple core surrounded by imple-
mentations of various features, such as response
streaming, AJAX support, websockets support,
Common Gateway Interface (CGI) and Fast CGI
(FCGI) support, and application embedding.
While it’s perfectly capable of performing regu-
lar file serving, Yaws is most useful for applica-
tions that generate and serve dynamic content.

Configure, Make, Install
To get started with Yaws, you can either obtain
an official release from its primary website,
http://yaws.hyber.org, or you can retrieve the
latest sources from the Yaws github.com source
repository:

git clone git://github.com/klacke/yaws.git

You can build Yaws in two different ways:
either using GNU autotools and make, or via the
rebar Erlang build tool (see https://github.com/
basho/rebar). To use the autotools approach:

autoconf
./configure
make && sudo make install

This will build Yaws and by default install
it into /usr/local/bin/yaws, with Erlang beam

bytecode files and other parts of the Yaws sys-
tem installed elsewhere under /usr/local.
Command-line options for the generated config-
ure script let you choose alternative installation
locations. This approach is suitable for running
Yaws as a stand-alone Web server. Alternatively,
you can build Yaws using rebar:

rebar compile

The result of this approach, which builds
Yaws and installs it within its own build area,
can also run stand-alone but is best-suited for
applications that embed Yaws as an internal
Web server.

Runtime Configuration
Yaws configuration controls details such as
where it looks for files being served, what ports
it listens on, and what applications it loads to
handle requests. Two configuration portions
exist. Server configurations apply to individual
virtual servers. A single Yaws instance can
host multiple virtual servers on the same or
different IP addresses. Server configuration
controls features such as on which port and IP
address the server listens for requests, the root
path in the filesystem from which Yaws serves
files, the types of scripts the server can execute,
and the application modules, or appmods, that
are assigned to various URI paths. Appmods are
very useful for dynamic Yaws Web applications,
so I’ll present more details about them later.

Global configuration applies to the running
Yaws instance as a whole. It specifies directo-
ries where logs are deposited, from which Erlang
bytecode is loaded, and from which include files
are retrieved for use in dynamically compiled
application code. It also sets size and timeout

Yaws: Yet Another
Web Server

Steve Vinoski • Verivue

IC-15-04-funw.indd 90 6/7/11 3:08 PM

Yaws: Yet Another Web Server

JULY/AUGUST 2011� 91

limits for the Yaws internal file
cache.

The default configuration, which
Yaws reads from a file at startup, sets
up a regular HTTP server listening
on port 8000 and a Secure Sockets
Layer (SSL) server listening on port
4443. No changes to the default
configuration are needed to have a
working system, but of course you’re
free to edit the configuration to your
liking. Extensive documentation is
available for all global and server
configuration settings.

Internally, Yaws represents global
configuration using an Erlang record
named gconf and server configura-
tions using Erlang sconf records.
These records are defined in a public
include file for use by Yaws appli-
cations, especially those that start
Yaws as an embedded Web server.
Embedded applications can’t rely on
Yaws reading its configuration from
a file and must instead feed a valid
configuration via gconf and sconf
record instances to Yaws when start-
ing it as an embedded server.

File Serving
Yaws primarily targets applications
that generate dynamic content, but
we couldn’t consider it a general-
purpose Web server if it couldn’t
serve files. Each server configura-
tion tells Yaws where to find the doc-
ument root for that server, and Yaws
then uses request URI paths to find
requested files relative to that root.
There’s nothing special about Yaws’s
file serving capabilities except that
it’s alone among Erlang Web serv-
ers in using the sendfile operating
system system call where available
to make file delivery as efficient as
possible. However, it likely won’t hold
this distinction forever, given that at
the time of this writing, the send-
file capability was being extracted
from Yaws and refactored for inclu-
sion in a future release of Erlang
and its accompanying Open Telecom
Platform (OTP) utility framework.

Once it appears there, it will be gen-
erally available to all Erlang Web
servers and other applications.

Dynamic Applications
Because Yaws primarily targets
dynamic applications, it provides sev-
eral useful features for them. One such
feature is “ehtml,” which is regular
HTML represented as Erlang terms.
For example, here’s some simple
HTML:

<head><title>Hello World
</title></head>

<body><p>Hello, World!</p>
</body>

And here is the same content repre-
sented in ehtml:

{ehtml,
 [{head, [],
 [{title, [], "Hello World"}]},
 {body, [],
 [{p, [], "Hello, World!"}]}]}

As the example shows, ehtml
constructs are quite similar to their
HTML counterparts but, assuming
familiarity with Erlang syntax, are
easier to read. Each HTML tag is
represented as an Erlang atom, and
each construct is generally a 3-tuple

comprising a tag, a list of attributes,
and a body list. The head tag shown
here, for example, has an empty
attribute list and a body list consist-
ing of the title 3-tuple, which itself
also has an empty attribute list and
a body list which is the title string
(in Erlang, strings are just lists of
characters). Applications can create
ehtml constructs more easily than
strings of HTML, and ehtml is less
error-prone because the Erlang com-
piler enforces syntactical correct-
ness of the tuples and lists.

A related dynamic application
feature is the ability to embed Erlang
code within HTML. When a request
arrives for a file with a “.yaws” suf-
fix, Yaws processes any Erlang code
it finds within the file between <erl>
and </erl> tags, replacing the tags
and the code between them with the
result of executing the code. Such
code, which is expected to reside
within a function named out/1
(where the “/1” indicates the function
arity, or number of arguments), is
compiled and also cached for future
invocations.

For example, consider the some-
what contrived example.yaws file in
Figure 1. If a client requests this
resource from the Yaws server, the
actual document served depends on

<html>
<erl>
out(Arg) ->
 {ok, Title} = yaws_api:queryvar(Arg, "title"),
 {ok, Name} = yaws_api:queryvar(Arg, "name"),
 {ehtml,
 [{head, [],
 [{title, [], Title}]},
 {body, [],
 [{p, [], ["Hello, ", Name]}]}]}.
</erl>
</html>

Figure 1. The example.yaws file. This file shows a Yaws out/1 Erlang function
embedded between <erl> and </erl> tags. When a client requests the
example.yaws page, Yaws invokes the out/1 function, compiling it first if
necessary, and substitutes its return value in place of the <erl> and </erl>
tags and everything between them. Yaws then returns the resulting HTML
page to the client.

IC-15-04-funw.indd 91 6/7/11 3:08 PM

The Functional Web

92	 www.computer.org/internet/� IEEE INTERNET COMPUTING

values of the query parameters “title”
and “name” appearing within the URI
used to access the resource. Within
the code, the two calls to the yaws_
api:queryvar/2 function return the
values of the two query parameters,
which are then used to complete the
ehtml returned from the out/1 func-
tion. Accessing the resource via the
URI http://example.org/example.
yaws?title=Example&name=Joe
substitutes the text “Example” for
the title and the name “Joe” for the
variable part of the paragraph text.
This example, though contrived (and
potentially unsafe, given that the
query parameter values are used
unescaped), shows how an applica-
tion can call any Erlang functions
to dynamically create any content it
wants to return to its clients.

Arg Data
You probably noticed the parameter
called Arg passed to the out/1 func-
tion. This is an instance of the Yaws
arg record, a structure that encapsu-
lates everything Yaws knows about
the current request, including

•	 the client connection socket,
•	 the client IP address and port,
•	 request headers,

•	 various sections of the path por-
tion of the request URI,

•	 the request body (such as for
HTTP POST, PUT, and PATCH), if
any, and

•	 query parameters, if any.

The arg instance is key to pro-
gramming Yaws applications. Once
Yaws passes it to your code, the code
can then pass it back to various Yaws
functions to extract information from
it to help fulfill the request.

Appmods
Not all Web resources can be repre-
sented only in HTML, of course, so
not all applications can use ehtml
or “.yaws” pages. Yaws applications
wanting to deal with common for-
mats such as XML and JSON can do
so via appmods. An appmod is con-
ceptually quite simple: it’s an Erlang
module that exports an out/1 func-
tion. You configure Yaws to associate
the module with a portion of a URI
path. When the configured server
receives a request containing that
path, Yaws invokes the appmod’s
out/1 function, passing it an arg
instance representing the request.
For example, registering an appmod
in a given server under the path “/”

means that it will receive all requests
sent to that server.

The result of the out/1 function
typically supplies the status, head-
ers, and body for the client response.
For example, the appmod in Figure 2
returns a response suitable for a POST
request creating a new resource.

This out/1 function creates a new
resource and a URI to identify it. It
first extracts the target URI from the
request Arg, which returns a Yaws
url record instance. It then calls the
create_new_id/0 function to gener-
ate a new identifier to use in the new
URI (the details of create_new_id/0
are unimportant here). It then copies
the target URI record but sets its path
component to that of the new URI
path string. To create the response
body, it uses the Yaws json2 module
to create a JSON object whose “loca-
tion” key contains the URI string for
the new resource. Finally, it returns
a list of tuples specifying the HTTP
response: a 201 status code indicat-
ing the creation of a new resource,
a Location HTTP header specifying
the URI for the new resource, and the
content body as a JSON string speci-
fied with the “application/json” media
type. Before writing the response
to the client connection socket, Yaws
augments this with other typical
headers, such as Date, Server, and
Content-Length.

Appmods are infinitely flexible. To
handle requests and form responses,
they can call into databases, invoke
backend services, implement caches,
or communicate with replicas on
other Erlang nodes. You can imple-
ment them as regular functions or
as calls into instances of standard
Erlang behaviors such as gen_server
and gen_fsm.

Yapps
A single drawback to appmods,
though, is that to be deployed, they
require configuration changes to
associate the appmod with a URI
path. If an application is developed

out(Arg) ->
 Uri = yaws_api:request_url(Arg),
 NewId = create_new_id(),
 Segs = [Uri#url.path, NewId],
 NewPath = string:join(Segs, "/"),
 NewUri = Uri#url{path = NewPath},
 NewLoc = yaws_api:format_url(NewUri),
 Json = json2:encode(
 {struct, [{"location", NewLoc}]}),
 [{status, 201},
 {header, {"Location", NewLoc}},
 {content, "application/json", Json}].

Figure 2. Application module. This appmod out/1 function returns a response
suitable for a POST request creating a new resource. It first obtains the target
URI and augments a copy of it with an identifier for the new resource. It then
creates a JSON object with a “location” key to store the new resource URI,
and also returns the new URI as the value of the response Location header.
The result specifies HTTP status and the Location header, and includes the
JSON object string as the response body.

IC-15-04-funw.indd 92 6/7/11 3:08 PM

Yaws: Yet Another Web Server

JULY/AUGUST 2011� 93

by a single developer or small team,
this isn’t a big problem. However,
consider the fact that Erlang/OTP is
equipped with a modular application
packaging and deployment system
that allows applications from inde-
pendent developers to be deployed
together within a single Erlang
node. Under this system, it would
be nice if Web applications could be
stitched together from independently
developed component applications and
could be deployed into already-running
Yaws instances without requiring
configuration file changes.

A yapp, short for “Yaws applica-
tion,” is similar to an appmod but
encompasses a whole Erlang applica-
tion rather than just a single module.
This means the way the application
starts, its supervision tree, and the
way it’s upgraded at runtime are
all independent of Yaws. To enable
yapp registration, Yaws provides a
yapp module that allows registra-
tion under URI paths via a webpage
without the need for configuration
file changes. But consistent with
appmods, each yapp simply provides
one or more out/1 functions that
Yaws calls when it decides to dis-
patch a request to the yapp.

But Wait! There’s More!
Features like file serving, ehtml,
“.yaws” pages, appmods, and yapps
aren’t all that Yaws provides. It also
offers various other features that
this column space doesn’t allow me
to describe in detail, including but
not limited to

•	 Arg rewriting. Applications can
register modules that can exam-
ine and modify the request arg
record instances before Yaws dis-
patches requests for them, which
allows applications to affect how
that dispatching occurs.

•	 CGI and FCGI support. This lets
Yaws fulfill client requests via
calls to external programs and
scripting languages, such as PHP

and Perl, that support these
protocols.

•	 Websockets. Yaws clients can
send an HTTP upgrade request to
ask Yaws to switch the protocol
over to websockets, which allows
HTTP-independent bidirectional
communication between client
and server. At the time of this
writing, the websockets specifi-
cation was still in draft form and
not finalized, so Yaws support is
currently considered experimen-
tal and subject to change. Once
the specification is completed,
we’ll update Yaws to conform
to it.

•	 Response streaming. This allows
Yaws applications to essentially
take over the client connection
from Yaws to stream responses
to the client, which is useful, for
example, for long-polling appli-
cations (Comet applications) or for
serving video streams. The appli-
cation out/1 function returns an
indication to Yaws that it wants
to stream a response to the cli-
ent from a given Erlang process
(which is like a very lightweight
thread), after which Yaws sends a
message to that process to tell it
that it now owns the client socket.
Once the application’s process is
finished with the socket, it sends
a message back to Yaws to return
socket ownership.

•	 JSON-RPC and SOAP. These two
protocols are tunneled through
HTTP, letting clients interact with
remote resources in a fashion dif-
ferent than what HTTP allows.
JSON-RPC and SOAP both allow
remote procedure calls (RPCs) to
remote resources, and SOAP also
allows interaction with remote
resources via non-RPC XML mes-
sage exchange. Both approaches
are fundamentally f lawed in
that they treat HTTP as a trans-
port protocol rather than the
application protocol that it actu-
ally is, thereby bypassing and

eliminating many of the decou-
pling, evolvability, and scalabil-
ity benefits it provides. Despite
these flaws, some Yaws users still
see these protocols as useful, so
Yaws supports them.

•	 Reverse proxy. This experimental
code allows Yaws to be configured
to proxy requests from clients
and send them to entirely sepa-
rate Web origin servers that Yaws
effectively hides from clients.

•	 Embedding. As mentioned earlier,
applications can embed Yaws as
an internal Web server rather
than just being appmods or other
components that a stand-alone
Yaws controls.

A number of these features were
donated by users who required the
functionality for their production
systems, and they’ve been present in
the Yaws source code repository for
several years.

Performance
At this point, most articles like this
one would provide graphs and charts
showing the results of executing
benchmarks against whatever Web
server the article describes. Despite
their popularity, such benchmarks
are never as generally useful as they
might seem. They’re typically con-
trived, rarely represent real-world
loads, are often nearly impossible
to reproduce, depend highly on the
tuning of the underlying platform,
and are sometimes even rigged to
make the subject Web server appear
superior. While there’s no doubt
that benchmarks are a very useful
tool for developers of servers and
frameworks to measure, assess, and
improve the throughput and latency
of their own code, too many users
misinterpret such benchmarks by
mistakenly equating the fastest with
being the best.

Writing a simple Web server in
Erlang isn’t difficult because the
support for HTTP header parsing is

IC-15-04-funw.indd 93 6/7/11 3:08 PM

The Functional Web

94	 www.computer.org/internet/� IEEE INTERNET COMPUTING

built into the Erlang runtime and
is activated by setting a flag on a
socket representing a client connec-
tion. The Erlang runtime also pro-
vides socket event handling. While
this is quite convenient for applica-
tions, it also means that well-written
Erlang Web servers don’t greatly dif-
fer from each other as far as perfor-
mance goes because they’re all using
these same facilities. At first glance,
this might seem problematic, but it
really isn’t, for at least the following
reasons:

•	 Developers tend to choose Erlang
for its reliability, stability, con-
currency support, and ease of
development. Naturally, they
want reasonable performance,
but they’re not necessarily seek-
ing to give up these other impor-
tant characteristics to maximize
performance.

•	 Developers normally don’t choose
an Erlang Web server for static file
serving, but rather, as mentioned
earlier, for dynamic applications.

For such applications, the server-
side application itself, and not
the underlying Web server, is
often the bottleneck in terms of
throughput and latency because
of calls it makes into databases
or backend services to obtain
response data.

•	 Let’s face it — while everyone likes
to think their applications require
the utmost in performance and
scalability, few actually do. Most
dynamic applications will never
even approach the performance
limits of Yaws or any other Erlang
Web server.

That being said, my observations
of production systems show Yaws
performance and scalability to be
quite good, especially considering the
number of features it provides. It holds
up well against other Erlang Web
frameworks that advertise themselves
as being lightweight, including some
that lack robust support for HTTP 1.1
or fail to provide important opera-
tional features such as access logging.

But don’t take my word for it; if you’re
interested in using Yaws and want to
be sure it performs well, I advise you
to benchmark it yourself, as only you
know best what your application will
look like and what sorts of systems
it will need to deploy on, integrate
with, and depend on for data. I also
advise you to follow the sage advice
of Mark Nottingham of Yahoo as far
as HTTP load testing goes; on his blog
he provides an excellent set of rules
for how to best obtain useful and
meaningful results from such testing
(see www.mnot.net/blog/2011/05/18/
http_benchmark_rules).

Yaws Going Forward
Klacke and I actively maintain
and enhance Yaws, occasionally
accepting patches for fixes and new
features from users. We watch devel-
opments in areas such as websockets
and work to keep Yaws up-to-date
and also keep an eye out for problem
areas in the code or documentation
that need attention. Klacke typically
creates two or three official releases
per year, and users are always wel-
come to obtain the Yaws source code
from github.com and build it them-
selves. Users communicate with
Klacke, other users, and me using
the Yaws mailing list (see https://
lists.sourceforge.net/lists/listinfo/
erlyaws-list).

O ur ultimate goal is to keep Yaws
as reliable, stable, well-performing,

and feature-rich as its long-time
users have come to expect.�

Steve Vinoski is a member of the technical

staff at Verivue in Westford, Mass. He’s a

senior member of IEEE and a member of

the ACM. You can read Vinoski’s blog at

http://steve.vinoski.net/blog/ and contact

him at vinoski@ieee.org.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Advertising Personnel
Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 821 8380 | Fax: +1 714 821 4010

Sandy Brown: Sr. Business Development Mgr.
Email: sbrown@computer.org
Phone: +1 714 821 8380 | Fax: +1 714 821 4010

Advertising Sales Representatives (Display)
Western US/Pacific/Far East: Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Eastern US/Europe/Middle East: Ann & David Schissler
Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026; Fax: +1 508 394 4926

Advertising Sales Representatives (Classified Line/Jobs Board)

Greg Barbash
Email: g.barbash@computer.org
Phone: +1 914 944 0940

AdvertiSer informAtion • july/AuguSt 2011

IC-15-04-funw.indd 94 6/7/11 3:08 PM

