
The Functional Web

90 	 Published by the IEEE Computer Society	 1089-7801/12/$31.00 © 2012 IEEE� IEEE INTERNET COMPUTING

I n the March/April 2010 issue of this column,1
Justin Sheehy and I evaluated Webmachine,
a unique Web toolkit, against a RESTful Web

services development checklist. Webmachine is
unique because it codifies the HTTP flow diagram
originally created by Alan Dean, currently of Adap­
tavis, and later enhanced by Dean and Sheehy
(see http://webmachine.basho.com/diagram.html).
Webmachine systematically applies HTTP seman­
tics to Web resources, unlike most Web frame­
works, which tend to focus on how to make
HTTP conveniently accessible from a particu­
lar programming language. Because of its strict
conformance to how HTTP works, it’s unsurpris­
ing that Sheehy and I found that Webmachine
fulfilled the RESTful development checklist
with ease.

In this column, I explore a Webmachine
wiki application called Wriaki. I show that the
wiki is pretty easy to implement given every­
thing Webmachine handles on its behalf at the
Web interface. Both Wriaki and Webmachine
are implemented in Erlang, which is what this
discussion focuses on, but Webmachine has
also been ported to Python, Ruby, Clojure, and
Agda, so the ideas presented here are applicable
beyond Erlang.

Running Wriaki
Bryan Fink of Basho Technologies originally
wrote Wriaki as a sample application for Riak,
an open source key-value database also from
Basho. You can get the source code for Wriaki
from github.com by cloning git://github.com/
basho/wriaki.git. As its documentation explains,
Wriaki relies on several other packages:

•	 The Erlang programming language, which
you can obtain from www.erlang.org.

•	 Riak, which you can get from http://downloads.
basho.com/riak/ or directly from github.com by
cloning git://github.com/basho/riak.git.

•	 Genshi, a Python library for generating Web
output. You can obtain it by running “easy_
install Genshi” in your shell or by visiting
http://genshi.edgewall.org.

•	 Creoleparser, a Python library for convert­
ing Creole wiki markup to Web output. You
can obtain it by running “easy_install
Creoleparser” in your shell or by visiting
ht tp://code.google.com/p/creoleparser/.
Creoleparser depends on Genshi.

As you might guess from the nature of these
packages, Wriaki is largely an integration proj­
ect. It relies on Webmachine to make its wiki
pages act as proper Web resources, Creoleparser
for wiki markup support, and Riak for persistent
storage.

Once you’ve obtained and installed these
packages, you can download and build Wriaki by
running the following commands in your shell:

git clone\
  git://github.com/basho/wriaki.git
cd wriaki
make rel

These commands create an operational Wriaki
wiki under a directory named rel/wriaki.
By default, Wriaki’s Web server listens on all
network interfaces on port 8000, but you can
change these and other configuration options
in the file rel/wriaki/etc/app.config. The
default configuration works without changes for
most users.

To run Wriaki, first make sure Riak is running
(see http://wiki.basho.com/Basic-Cluster-Setup.html)

Wriaki, a Webmachine
Application

Steve Vinoski • Basho Technologies

IC-16-01-Funw.indd 90 12/8/11 2:17 PM

Wriaki, a Webmachine Application

JANUARY/FEBRUARY 2012� 91

and then execute the following shell
command:

./rel/wriaki/bin/wriaki start

This runs Wriaki in the background.
If you’re familiar with Erlang and
would prefer to start Wriaki with
an Erlang shell attached, substitute
“console” for “start” in this shell
command.

Resources and Dispatching
A wiki is, of course, a collection of ver­
sioned user-editable pages. The Wriaki
Web interface comprises several Web
resources that implement the wiki:

•	 User resources represent wiki users.
•	 Articles represent wiki pages.
•	 Archives represent individual ver­

sions of wiki pages.
•	 A history object contains an entire

set of versions for a wiki page.
•	 Sessions track user logins.

These resources are tied into Web­
machine through a dispatch map,
which is an Erlang list consisting of
one or more {pathspec, resource,
args} tuples. When a request arrives,
Webmachine consults its dispatch
map and dispatches the request to
the first resource whose pathspec
matches the request URL. If it finds
no match, Webmachine returns HTTP
status code 404 indicating that the
resource wasn’t found.

A pathspec indicates the URL
path for the resource; it’s composed
of a list of pathterms that are either
strings, atoms, or the special atom
‘*’. Webmachine performs pathspec
matching by splitting the URL path
at its “/” characters to produce a list
of path components. As Webmachine
walks the dispatch map, it attempts
to match each URL component to a
pathterm in each pathspec. There are
three pathterm types:

•	 A string pathterm indicates a
fixed component of the URL path.

For example, a Web resource at
the URL path /a/b could have the
pathspec ["a", "b"].

•	 An atom pathterm creates a
named match for any path com­
ponent. For example, a URL
path /a/b could match the path­
spec ["a", second], letting the
resource implementation look up
the “b” part of the path at runtime
via the name second.

•	 A star pathterm ('*'), which can
be used only as the last compo­
nent of a pathspec, indicates a
wildcard that can match one or
more path components. For exam­
ple, given the path /a/b/c/d and
the pathspec ["a", "b", '*'],
the “a” and “b” match literally
and the star matches the remain­
ing components, making them
programmatically accessible to
the resource implementation.

Webmachine considers a whole path­
spec to match a URL path when all
pathterms in the pathspec are used
and all URL path components are
matched.

Besides the pathspec, a dispatch
map tuple contains two other ele­
ments: the resource element, which
indicates the name of the Erlang mod­
ule implementing the resource, and
the args element, which is a list of
arguments that will be passed to the
resource module’s init/1 function.
(In Erlang, references to functions are
normally written in the form “function/
arity,” where “function” is the name of

the function and “arity” is a num­
ber indicating the number of argu­
ments the function requires.) Figure 1
shows the dispatch map for Wriaki,
found in the file apps/wriaki/priv/
dispatch.conf.

The dispatch map shows that
the Wriaki URL space is supported
with six Erlang modules. Webma­
chine expects each resource module
to supply functions it can invoke as
appropriate as it guides incoming
requests through its HTTP flow dia­
gram. All resource functions have
the same signature — each takes
two arguments, request data and
resource process state, and returns a
3-tuple consisting of a return value,
response data, and resource process
state. To return specific response
data, a resource function augments
a copy of its request data argument
to include the response data, and
returns the augmented request data
as the second element of its returned
3-tuple. (A copy is required because
Erlang enforces immutability of var­
iables. Erlang ensures that such
copies are inexpensive by sharing as
much of the original value as pos­
sible with the new copy.) Similarly,
if a resource function modifies the
process state of a resource, it might
note the new state in a new instance
of its resource process state argu­
ment and return it as the third ele­
ment of the return value. A resource
function is also free to simply pass
its request data and resource process
state unmodified in its return value.

{["wiki"],   redirect_resource,     "/wiki/Welcome"}.
{["wiki",‘*’],  wiki_resource, []}.
{[],          redirect_resource, "/wiki/Welcome"}.

{["user"], login_form_resource, []}.
{["user",name], user_resource, []}.
{["user",name,session], session_resource, []}.

{["static",'*'], static_resource,   "www"}.

Figure 1. The dispatch map for Wriaki. Each line contains a pathspec, the name
of a resource module that serves requests on URLs matching the pathspec, and
a list of arguments passed to the resource module’s init/1 function.

IC-16-01-Funw.indd 91 12/8/11 2:17 PM

The Functional Web

92	 www.computer.org/internet/� IEEE INTERNET COMPUTING

Because requiring every resource
module to implement every possible
resource function would make it
tedious and error-prone for develop­
ers to implement resources, Webma­
chine supplies reasonable defaults for
all resource functions. This means
each resource module need supply
only those functions it must special­
ize based on its resource’s specific
Web characteristics. In the next few
sections, I examine some of Wriaki’s
resource modules and the resource
functions they provide.

Redirect
Wriaki implements a redirect resource
in the Erlang source f ile apps/
wriaki/src/redirect_resource.
erl. As the dispatch map shows, this
resource is used for the paths / and
/wiki, and each pathspec includes the
string argument "/wiki/Welcome"
to be passed to the redirect_resource:
init/1 function:

init(Target) ->
 {ok, Target}.

The redirect_resource:init/1
function simply returns its single
argument as the second element
of a 2-tuple indicating success­
ful resource initialization. Web­
machine treats the second element
of the tuple as the resource’s process
state, storing it on the resource’s
behalf and later passing it along to
other resource functions it invokes
as part of the same request han­
dling process. In this case, Target
is simply the string argument from
the dispatch map. This value figures
prominently in the resource’s moved_
permanently/2 function:

moved_permanently(RD, Target) ->
 {{true, Target}, RD, Target}.

“Moved permanently” corresponds
to HTTP status code 301, which in
turn corresponds to location K5 in the
Webmachine decision flow diagram.

By supplying this resource function,
the redirect_resource implementa­
tion redirects any incoming requests
to Target, which, as explained earlier,
is specified in the dispatch path as the
URL path /wiki/Welcome. Together,
these dispatch path entries and the
redirect_resource implementation
alias the paths / and /wiki to the
path /wiki/Welcome. The end effect
of matching either path in the dispatch
map is a redirection of the request over
to the wiki_resource module.

Wiki Resource
The wiki_resource module, found
in the file apps/wriaki/src/wiki_
resource.erl, implements Wria­
ki’s wiki pages. Its init/1 function
returns a record instance for its pro­
cess state:

init([]) ->
 {ok, Client} = wrc:connect(),
 {ok, #ctx{client = Client}}.

This function connects to the Riak
database and stores the database han­
dle into an instance of the ctx record
defined locally within the module.
In addition to the client field for
the database connection, the ctx
record has fields for tracking a user
editing a wiki page, as well as ver­
sion information for the page being
viewed.

The wiki_resource module also
implements an allowed_methods re-
source function:

allowed_methods(RD, Ctx) ->
 {['HEAD','GET','POST','PUT'],
 RD, Ctx}.

This function informs Webmachine
that the wiki resource accepts four
HTTP methods — HEAD, GET, POST,
and PUT — indicating the read/write
nature of the wiki pages. By default,
a Webmachine resource is read-only,
accepting only GET and HEAD requests.
The resource need only declare what
methods it supports; should a client

invoke a method on a resource that
isn’t allowed, Webmachine automati­
cally returns HTTP status 405, which
means “method not allowed,” to the
client (see location B10 of the Web­
machine HTTP flow diagram).
To store a new wiki page, the wiki_
resource module supplies two func­
tions: content_types_accepted/2 and
accept_form/2. The first function
tells Webmachine what content types
the resource is willing to accept,
whereas the second is the function
Webmachine invokes when content of
the given type is sent to the resource:

content_types_accepted
  (RD, Ctx) ->
 �MT = "application/x-www-

form-urlencoded",
 �{[{MT, accept_form}], RD,

Ctx}.

The content_types_accepted/2 func-
tion tells Webmachine that wiki pages
accept content with the MIME type
“application/x-www-form-urlencoded,”
which is the default content type for
HTML forms. If content of this type is
posted to a wiki page due to a user cre­
ating a new page or editing a page, the
content_types_accepted/2 func­
tion return value tells Webmachine
to process the content by calling the
accept_form/2 function. Should a
client try to send a content type the
resource doesn’t declare as an accept­
able type, Webmachine automatically
returns HTTP status 415, meaning
“unsupported media type,” to the cli­
ent (see location B5 of the Webma­
chine HTTP flow diagram).

Figure 2 shows just how straight­
forward the accept_form/2 function
is. It extracts the article text from
the RD request data argument, stores
the article in the page’s archive and
history, and finally stores the article
itself in Riak. The function returns
true to inform Webmachine it suc­
cessfully accepted the content.

Because a wiki page that can’t
be viewed isn’t very useful, the

IC-16-01-Funw.indd 92 12/8/11 2:17 PM

Wriaki, a Webmachine Application

JANUARY/FEBRUARY 2012� 93

wiki_resource module also supplies
a to_html/2 function. Webmachine’s
default version of the content_types_
provided/2 resource function returns
[{"text/html", to_html}], indicat­
ing that resources support the “text/
html” MIME type via a to_html/2
function. Given that wiki_resource
doesn’t supply its own content_types_
provided/2 function, Webmachine’s
default applies, but wiki_resource
supplies its own to_html/2 function
that can render wiki pages in HTML.

Users
A wiki can’t exist unless it has users
to create, update, and delete pages.
The implementation of Wriaki’s
user resource primarily tracks user
details and makes authorization
decisions. The user resource is imple­
mented in the apps/wriaki/src/
user_resource.erl module. The
user_resource module supplies
init/1, allowed_methods/2, and
content_types_accepted/2 func­
tions that look very much like their
counterparts described earlier for the
wiki_resource module. It also sup­
plies an accept_form/2 function,
but it’s implemented much differ­
ently than in wiki_resource (see
Figure 3).

Here, accept_form/2 has two
clauses (separated by the semicolon).
The first is invoked when the user
field of the user_resource ctx pro­
cess state record (which is a differ­
ent type than the wiki_resource
ctx record described earlier) equals
notfound, indicating that a new
user is registering. The function cre­
ates a new user and stores it in the
database, starts a new session, and
passes this information to the second
function clause. The second func­
tion clause, which Webmachine calls
when users update their wiki regis­
tration information, parses the form
data, updates the user’s details in the
database, and returns true to inform
Webmachine that the user form was
accepted successfully.

To verify authorization, user_
resource also supplies an is_autho-
rized/2 function, which checks to
see if a user is viewing his or her
own user page. If so, the user can
edit the information on the page; if
not, the wiki renders the user page
for viewing only.

Simplicity
If you take the time to study the
Wriaki implementation, you’ll be
struck by its elegance and simplicity,
especially given that it implements a
fully functional wiki. There are sev­
eral reasons for its simplicity:

•	 As we’ve seen from the redirect_
resource, wiki_resource, and
user_resource Wriaki modules,
implementing a Webmachine re-
source is just a matter of identi­
fying the resource functions the
resource must provide to imple­
ment its desired behavior. Because
Webmachine encapsulates and han­
dles HTTP, the Wriaki source code
contains very little direct HTTP
knowledge.

•	 The fact that Webmachine supplies
defaults for all resource functions
greatly simplifies resource mod­
ules, letting them implement only

accept_form(RD, Ctx=#ctx{user=notfound}) ->
 %% register new user
 User = wuser:create(username(RD), []),
 {AuthRD, Auth} = wriaki_auth:start_session(RD, User),
 accept_form(AuthRD, Ctx#ctx{user=User, auth=Auth});
accept_form(RD, Ctx=#ctx{user=User, client=C}) ->
 {ok, Client} = wrc:set_client_id(C, wobj:key(User)),
 ReqProps = mochiweb_util:parse_qs(wrq:req_body(RD)),
 ModUser = update_password(
 update_bio(
 update_email(User, ReqProps),
 ReqProps),
 ReqProps),
 ok = wrc:put(Client, ModUser),
 {true, RD, Ctx#ctx{client=Client, user=ModUser}}.

Figure 3. The accept_form/2 function for Wriaki’s user resource. It handles
registration of new users and updates to registered user information.

accept_form(RD, Ctx=#ctx{client=Client}) ->
 Article = article_from_rd(RD, Ctx),

 %% store archive version
 ok = wrc:put(Client, article:create_archive(Article)),

 %% update history
 ok = article_history:add_version(Client, Article),

 %% store object
 ok = wrc:put(Client, Article),

 {true, RD, Ctx}.

Figure 2. The accept_form/2 function for Wriaki’s wiki resource. When a user
finishes adding or updating a wiki page, this function extracts the submitted
page content, stores it, and updates the history of the target wiki page.

IC-16-01-Funw.indd 93 12/8/11 2:17 PM

The Functional Web

94	 www.computer.org/internet/� IEEE INTERNET COMPUTING

those functions for which Web­
machine’s defaults don’t apply.
The fact that all resource func­
tions have the same signature
also makes them easy for devel­
opers to understand.

•	 Wriaki gets substantial mileage
out of using the Riak database and
other packages on which it depends.
It encapsulates these facilities in
easy-to-use modules that expose
only those utilities required to
implement the wiki. The bulk of the
implementation of the wiki itself
consists of integrating calls to these
other packages as needed.

•	 By following Erlang’s “let it crash”
philosophy, Wriaki avoids numerous
lines of defensive error-handling
code. When you read the Wriaki
source, it tells you very clearly what
should happen, assuming every­
thing works as expected. Should
something go wrong, Erlang’s pro­
cess-supervision capabilities kick in,

allowing only the Web request that
caused the problem to die, without
affecting any other concurrent
requests. The fact that Wriaki is
built over the reliable and highly
available Riak database helps
here as well.

•	 In general, Erlang code tends to be
compact and easy to read because
the language itself is relatively
simple. It has comparatively few
language elements, and its syn­
tax, though not derived from the
C family of languages, is straight­
forward and consistent.

A s this exploration of Wriaki
shows, Webmachine is unique,
unlike any other HTTP toolkit

you’ve used. It handles all the intrica­
cies of HTTP on behalf of your appli­
cation, such that your resources wind
up being good Web citizens, and its
collection of resource functions helps
minimize the amount of resource

implementation code you have to
write. Whether you’re an Erlang expert
or are new to the language, you’ll
find that Webmachine can greatly
ease the development of HTTP-savvy
Web applications.�

Acknowledgments
Thanks to my teammates Bryan Fink and

Justin Sheehy of Basho Technologies for their

reviews of a draft of this column.

Reference
1.	 J. Sheehy and S. Vinoski, “Developing

RESTful Web Services with Webma­

chine,” IEEE Internet Computing, vol. 14,

no. 2, 2010, pp. 89–92.

Steve Vinoski is an architect at Basho Tech­

nologies in Cambridge, Mass. He’s a

senior member of IEEE and a member of

the ACM. You can read Vinoski’s blog at

http://steve.vinoski.net/blog/ and contact

him at vinoski@ieee.org or on Twitter at

@stevevinoski.
JU

LY
 •

 A
U

G
U

ST
 2

01
1

Online Social Networks

IPv6 Deployment

The Digital Divide

Personal Health
Records

 IEEE IN
TERN

ET CO
M

PU
TIN

G

JU
LY • AU

G
U

ST 2011
PERSO

N
A

L H
EA

LTH
 RECO

RD
S

VO
L. 15, N

O
. 4

W
W

W
.CO

M
PU

TER.O
RG

/IN
TERN

ET/

IC-15-04-c1 Cover-1

May 20, 2011 3:06 PM

TIMELY, ENVIRONMENTALLY FRIENDLY DELIVERY

DIGITAL EDITIONS
Keep up on the latest tech innovations with new digital
editions from the IEEE Computer Society. At more than
65% off regular print prices, there has never been a better
time to try one. Our industry experts will keep you informed
through a format that’s timely, easy to search and save, and
environmentally friendly.

• Email noti� cation. Receive an alert as soon
as each digital edition is available.

• Two Formats. Choose the enhanced PDF edition OR
the web browser-based edition.

• Quick access. Download the full issue in a � ash.
• Convenience. Read your digital edition anytime

—at home, work, or on your mobile.
• Digital archives. Subscribers can access the

digital issues archive dating back to January 2007.

Interested? Go to www.computer.org/digitaleditions
to subscribe and see sample articles.

IC-16-01-Funw.indd 94 12/8/11 2:17 PM

