
The Functional Web

88 	 Published by the IEEE Computer Society	 1089-7801/09/$25.00 © 2009 IEEE� IEEE INTERNET COMPUTING

G iven the Web’s position as the ubiquitous 
global network for exchanging information 
and data, we face new challenges daily on 

how best to develop software for it. Imperative 
languages such as Java, C#, PHP, and Perl cur-
rently dominate server-side programming for the 
Web, but these languages often lack the appro-
priate levels of abstraction required for handling 
typical Web interactions. In today’s age of pro-
gramming language renaissance, the search is on 
for a language and Web framework that would let 
us model a Web application as a composition of 
referentially transparent functional abstractions, 
alongside safe handling of mutable state.

A common problem found in today’s Web pro-
gramming models is the use of string values: in-
teractions between Web applications (including 
browsers) and Web servers occur primarily via 
textual representations such as JavaScript Object 
Notation (JSON) and via name-value string pairs. 
As a result, developers sometimes have to write a 
lot of code dedicated to validating unstructured 
strings at multiple layers of interaction. A frame-
work that can abstract the request-response cy-
cle via typed representations could help alleviate 
this problem to a great extent.

Another problem is the impedance mismatch 
between programming languages and Web me-
dia representations. XHTML, for example, is a 
monolithic structure, and most of today’s Web 
frameworks make programmers write error-
prone boilerplates to map form elements to code 
variables. Better framework support is also re-
quired to make such mapping more abstract 
and secure, and to ensure a complete separa-
tion of the presentation template from actual 
business logic.

Still another issue is the architectural mis-
match between Web applications and what 
mainstream languages can practically support. 

For example, many developers use event-driven 
architecture to model Web applications. How-
ever, today’s mainstream languages support 
event-driven programming via event listeners 
and callbacks, which result in an inversion of 
control of the main execution model.1 Light-
weight, event-based abstractions can provide a 
scalable way to model interactions on the Web.

In this column, we explore the applicabil-
ity of the programming language Scala (www.
scala-lang.org) together with Lift (http://liftweb.
net) as a development framework for the Web. 
Scala offers strong functional capabilities, and 
Lift exploits Scala’s benefits, described later, to 
implement a typed, extensible, event-based Web 
programming model.

What is Scala?
Scala is a hybrid object-oriented (OO) and func-
tional language developed by Martin Odersky — 
one of the original authors of the Java compiler 
and currently a professor at Ecole Polytechnique 
Fédérale de Lausanne. Scala runs on the Java 
virtual machine (JVM), compiles to .class files, 
and is completely interoperable with the Java 
programming environment. Scala’s syntax is 
lightweight, expressive, and concise due to semi-
colon inference, type inference, and the ability 
to define new control abstractions via closures.

Various features make Scala a viable choice 
for a future mainstream language on the JVM:

Extensibility — supports composition of •	
data structures via mixins and self-type 
annotations.
Statically checked duck typing via structur-•	
al typing — like dynamic languages but in a 
type-safe way.
Higher-order functions — first-class func-•	
tions that other functions can pass as argu-

Scala and Lift — Functional 
Recipes for the Web
Debasish Ghosh • Anshinsoft
Steve Vinoski • Verivue



MAY/JUNE 2009� 89

Scala and Lift

ments and accept as return types. 
Scala has lexical closures, the 
bedrock of functional program-
ming support. Scala’s closure 
support leads to easy develop-
ment of control abstractions and 
domain-specific languages.
Immutable data structures — in-•	
cluded as part of the standard 
library, which encourage develop-
ers to design referentially trans-
parent abstractions.
Advanced generator constructs — •	
for example, for-comprehension 
that makes code more expressive 
and succinct.
Pattern matching over abstract •	
data types — patterns in Scala are 
represented internally as partial 
functions, which developers can 
compose using various combi-
nators to construct extensible 
abstractions.
Event-driven programming via •	
the actor model.

One way to visualize the Web 
programming model is as a se-
quence of interactions based on 
events. Rich, immutable functional 
abstractions can act as a nice dual 
to asynchronous message-based 
concurrency in modeling this para-
digm, and Scala offers both. Next, 
we discuss Scala actors, which offer 
a scalable, event-based message-
passing concurrency model that the 
Lift framework uses extensively.

Scala Actors — Message-
Passing Concurrency Model
Actors represent a model of com-
putation based on asynchronous 
message-passing concurrency that 
doesn’t restrict the message-arrival 
ordering. An actor has its own control 
thread, encapsulates its state, and, 
unlike shared-state concurrency 
models, offers a shared-nothing ar-
chitecture to its clients. Specifically, 
an actor localizes all states within 
itself, and the only way to change 
its state is via the exchange of im-

mutable messages. With an actor 
model, developers can’t write code to 
share state across actors, which im-
plies they needn’t work with mutex 
locks or other resource synchroniza-
tion primitives required to manage 
shared-state consistency. When the 
basic architecture is shared-nothing, 
each actor appears to act in its own 
process space. The actor implemen-
tation’s success and scalability de-
pend a lot on the language’s ability 
to implement lightweight processes 
on top of the underlying native 
threading model. Every actor has its 
own mailbox for storing messages, 
implemented as asynchronous, race-
free, nonblocking queues.

Erlang, which implements a light-
weight process model on top of op-
erating system primitives,2 inspired 
Scala’s actor model. Scala imple-
ments this model as a library on top 
of the JVM and offers message-based 
concurrency using pattern-matching 
techniques that are more dependable 
than shared-memory concurrency 
with locks. Being an object-oriented-
functional hybrid language, Scala 
actors integrate the benefits of Er-
lang’s lightweight processes and 
shared-nothing message passing 
with strongly typed messages.

Scala’s Salient Features
Message sends are usually asyn-
chronous. When any given part of 
the code sends a message to an ac-
tor, the language runtime stores that 
message in the actor’s mailbox, typi-
cally implemented as a queue. As the 
contract in Figure 1 shows, however, 
Scala also supports synchronous 
message sends that await a reply 
from the receiver.

receive typically waits in a loop, 
picking up the first message in the 
mailbox that matches any of the pat-
terns specified in the match clause. 
In case none of the patterns match, 
the actor suspends.

The messages over which pat-
tern matching takes place are usu-
ally implemented as immutable case 
classes, Scala’s variant of algebraic 
data types. Scala implements a mes-
sage receive in an actor using par-
tial functions that are defined only 
for the set of messages to which the 
actor is supposed to respond:

def receive[R] 
   (f:PartialFunction 
   [Any,R]):R = …

This creates possibilities for imple-
menting interesting message-receive 

trait Actor extends OutputChannel[Any] {
  // actor behavior
  def act():Unit

  // asynchronous send
  def !(msg:Any) {
  send(msg,Actor.self)
  }

  // synchronous send
  def !?(msg:Any):Any=…

  // send and get back a future for reply value
  def !!(msg:Any):Future[Any]=…
}

Figure 1. Actors. Actors in Scala interact with each other through messages, 
which can be sent asynchronously, synchronously, or asynchronously with 
futures, providing easy access to resulting return values. 



The Functional Web

90 		  www.computer.org/internet/� IEEE INTERNET COMPUTING

patterns using functional combi-
nators that let developers compose 
receive operations as sequences 
or alternatives. For example, in the 
following snippet, the message-re-
ceive pattern first tries to run the 
genericHandler. If it suspends, 
then it runs the specialHandler as 
an alternative:

trait GenericServer extends 
Actor {
  //..
  �def act=loop {receive  
   {genericHandler orElse  
   specialHandler}}

  //..
}

Similarly, we also have the andThen 
combinator, which sequences re­
ceive handlers one after the other. 
This loop combinator is defined in 
terms of andThen:

def loop(body: => Unit): Unit  
   = body andThen loop(body)

Scala actors are lightweight. The 
shared-memory threads that the 
JVM offers are heavyweight and in-
cur significant penalties from con-
text-switching overheads. To ensure 
lower process payload per instance, 
Scala’s creators designed its actors as 
lightweight event objects. The Sca-
la runtime schedules and executes 
the actors on an underlying worker 
thread pool that gets automatically 
resized when all threads block on 
long-running operations. In fact, 
Scala unifies two models of actor im-
plementation: a thread-based model 
and an event-based model. In the 
thread-based model (implemented by 
receive), every actor is associated 
with a JVM thread that implements 
full stack-frame suspension when 
the actor blocks. However, unlike 
Erlang processes, JVM threads are 
expensive — hence, thread-based ac-
tors can’t scale. The alternative im-
plementation — based on events and 

implemented as react — liberates 
the running thread when the actor 
blocks on a message. Scala imple-
ments a wait on react as a continu-
ation closure that captures the rest of 
the actor’s computation:

def react 
   (f: PartialFunction 
   [Message, unit]):Nothing=…

react never returns (its return type 
is Nothing). Hence, stack-frame sus-
pension involved in react-based 
message processing doesn’t exist. 
When the suspended actor receives a 
message that matches one of the pat-
terns the actor specifies, the Scala 
runtime executes the continuation 
by scheduling the task to one of the 
worker threads from the underlying 
thread pool.3

Lift: Functional  
Web Framework
Lift is a Web framework founded 
as an open source project by David 
Pollak, a software consultant in the 
San Francisco area. It’s not part of 
Scala itself but rather is built on 
top of Scala’s functional features. 
Lift’s design and implementation 
extensively apply the advantages of 
immutable data structures, higher-
order functions, abstract data types, 
and pattern matching. Scala’s strict 
type system supplements this func-
tional richness and adds to the 
framework’s security and correct-
ness. It also lets users write type-
safe code that’s resistant to attacks 
such as Structured Query Language 
(SQL) injection.

One of the main areas in Lift that 
shines with higher-order functions 
is HTML form processing. To ensure 
a complete separation of presenta-
tion logic from the code, Lift doesn’t 
allow direct mapping of HTML tags 
to form fields. Instead, Lift imple-
ments controllers as snippets, which 
use closures to bind form elements 
to proper location and data. Consid-

er the following form template — a 
pure XML file containing only Lift-
specific and custom tags, without 
any code whatsoever:

<lift:Ledger.add form=POST>
  <entry:description />  
  <entry.amount /><br />
  <entry:submit />
</lift:Ledger.add>

Lift processes the form elements 
and tags in the Lift-rendering pipe-
line via a combination of snippets 
that process the tag’s XML contents. 
Figure 2 shows a sample snippet for 
the previous template.

Note that the code performs the 
form-element mappings in the call to 
the bind method, using higher-order 
functions that Lift automatically 
invokes when the user submits the 
form. This ensures a complete sepa-
ration of the presentation and logic 
in HTML form processing, where Lift 
does all the plumbing of managing 
the controller pipelines during form 
rendering and submission.

Pattern matching over abstract 
data types, a common idiom in func-
tional languages, eschews the com-
plexity of the Visitor4 design pattern. 
Pattern matching can make code 
more expressive — one example of 
its usage in Lift is the way it handles 
URL rewriting. The application code 
defines a mapping from Rewrite­
Request to RewriteResponse using 
pattern matching that the developer 
appends to the default rule set in 
LiftRules.rewrite, thus ensuring 
it automatically gets plugged into 
Lift’s processing chain. Figure 3 
provides an example of user-defined 
rewrite rules using Scala pattern 
matching. This rule rewrites URIs 
of the form /item/<itemname>, 
so that the showItem template can 
handle them.

Lift uses all the functional pro-
gramming benefits that Scala of-
fers to implement a functional Web 
framework. As the previous examples 



MAY/JUNE 2009� 91

Scala and Lift

illustrate, Lift APIs are also based 
around closures and pattern match-
ing, which encourage client applica-
tion code to be functional as well.

How Lift Uses Actors
Lift uses actors and immutabil-
ity as part of its implementation 
framework and encourages Web-
application development based on 
events and messages. One of the 
main areas in Lift that uses actors 
as a basic architectural unit is its 
Comet support. Ajax and Comet 
extend the traditional Web model 
with asynchronous interactions via 
partial updates of the document ob-
ject model. Comet uses long-polling 
HTTP requests to let the server push 
data to the client without any addi-
tional requests. Comet is event driv-
en and asynchronous — a perfect fit 
for actor modeling. The CometActor 
uses the Scala actor react event 
loop to send messages that abstract 
JavaScript commands for pushing 
data to the client:

trait CometActor extends Actor  
   with BindHelpers { ..
  def act={
    loop {
      react(composeFunction)
    }
  }
}

Figure 4 shows a sample imple-
mentation of a CometActor from the 
Lift examples. The user just has to 
define the function that he or she 
wants rendered as the Comet request 
— Lift takes care of all the heavy 
lifting underneath, including man-
aging timeouts.

For this Clock example,

ActorPing.schedule()•	  schedules 
a tick message every 10 seconds; 
and
the method •	 lowPriority is a 
PartialFunction that goes into 
the actor event-loop and does a 

partial update of specific frag-
ments on the client side, without 
rerendering the entire content.

Besides using actors as part of 
its implementation, Lift also en-
courages event-driven, actor-based 

class Ledger {
  def add (xhtml:Group):NodeSeq = {
    var desc=..
    var amount=0
    def processEntryAdd () { ... }

    bind(entry,xhtml,
      description -> SHtml.text(desc, desc=_),
      amount -> SHtml.text(amount,amount=_),
      submit -> SHtml.submit(Add,processEntryAdd))
  }
}

Figure 2. Ledger. Lift supports mapping of form elements through higher-order 
functions, invoked automatically in its processing pipeline.

class Clock extends CometActor {
  override def defaultPrefix=Full(“clk”)
  ActorPing.schedule(this,Tick,10 seconds)

  private lazy val spanId=uniqueId+”_timespan”

  def render=bind(“time” -> timeSpan)

  def timeSpan=(<span id={spanId}>{timeNow}</span>)

  override def lowPriority={
    case Tick =>
      �partialUpdate(SetHtml(spanId, Text(timeNow. 

   toString)))
      ActorPing.schedule(this, Tick, 10 seconds)
  }
}

Figure 4. CometActor. Actor support in Scala provides for easy implementation 
of Comet-enabled Web applications.

LiftRules.rewrite.append {
  �case RewriteRequest(ParsePath(item::itemname:: 
   Nil,_,_,_),_,_) =>

    RewriteResponse(showItem::Nil,
      Map(itemname -> itemname))
}

Figure 3. Rules. Scala pattern matching used in Lift for URL rewriting.



The Functional Web

92 		  www.computer.org/internet/� IEEE INTERNET COMPUTING

modeling at the application level. 
Developers can model user inter-
actions as asynchronous messages 
delivered to Scala actors, which can 
then trigger domain logic or writes 
in the database.

I n this column, we’ve provided 
only a small taste of the power and 

utility of both Scala and Lift — we 
encourage you to explore the refer-
ences for further information. A fu-
ture column will cover the Lift Web 
framework in much more detail.�

References
P. Haller and M. Odersky, “Event-Based 1.	

Programming without Inversion of Con-

trol,” LNCS 4228, Springer, pp. 4–22.

J. Armstrong, 2.	 Programming Erlang: Soft-

ware for a Concurrent World, Pragmatic 

Bookshelf, 2007.

P. Haller and M. Odersky, “Scala Actors: 3.	

Unifying Thread-Based and Event-Based 

Programming,” Theoretical Computer 

Science, vol. 410, nos. 2–3, 2009, pp. 

202–220.

E. Gamma et al., “Design Patterns: Ab-4.	

straction and Reuse of Object-Oriented 

Design,” Proc. 7th European Conf. Object-

Oriented Programming, Addison-Wesley, 

1993, pp. 406–431.

Debasish Ghosh is the chief technology evan-

gelist at Anshinsoft. He’s a senior mem-

ber of the ACM. You can read Ghosh’s 

blog at http://debasishg.blogspot.com and 

contact him at dghosh@acm.org.

Steve Vinoski is a member of the technical 

staff at Verivue. He’s a senior member 

of the IEEE and a member of the ACM. 

You can read Vinoski’s blog at http://

steve.vinoski.net/blog and contact him at 

vinoski@ieee.org.

Lower nonmember rate  
of $32 for S&P magazine!

IEEE Security & Privacy is 
THE premier magazine for 
security professionals.

Top security professionals  
in the field share information  
on which  
you can rely:

•  Silver Bullet podcasts 
and interviews

•  Intellectual  
Property  
Protection  
and Piracy

•  Designing for  
Infrastructure Security

• Privacy Issues
•  Legal Issues and Cybercrime
•  Digital Rights Management
• The Security Profession

Visit our Web site at www.
computer.org/security/

Subscribe now!

www.computer.org/services/ 
nonmem/spbnr

.NET SEcuriTy • iNTErviEw wiTh MEliSSa haThaway

NovEMbEr/DEcEMbEr 2008
voluME 6, NuMbEr 6

GooGle’s Android PlAtform • risk Assessment for norwAy’s infrAstructure

JAnuAry/februAry 2009
Volume 7, number 1

Barack’s BlackBerry Bind • education via second life

March/april 2009
volume 7, numBer 2

April theme: TRUST MANAGEMENT

http://computer.org/cn/elsewhere

WANT TO READ MORE?


