
The Functional Web
Editor: Steve Vinoski • vinoski@ieee.org

SEPTEMBER/OCTOBER 2011	 1089-7801/11/$26.00 © 2011 IEEE	 Published by the IEEE Computer Society� 87

S cala is a hybrid object-oriented and func-
tional programming language for the Java
Virtual Machine (JVM) that’s growing in

popularity. Two previous Functional Web columns
presented the Lift framework, the best-known
Web framework written in Scala.1,2 In terms of its
prominence and full feature set, Lift is the Scala
analog of the Ruby world’s Ruby on Rails.

But other frameworks exist in the Scala
world, just as alternatives exist to Rails in the
Ruby world. One size doesn’t fit all needs. A full
list of Scala frameworks is available at http://
doi .ieeecomputersociet y.org/10.1109/MIC.
2011.104. Some are full-stack frameworks for
building multi-tier applications. Others are “point”
tools for specific parts of an application, like tem-
plate libraries for generating webpages (analog
ous to Java Server Pages). Still others focus on
building particular kinds of networked servers,
like REST response servers that are “headless.”

Space considerations prevent us from dis-
cussing all these tools. It’s hard to choose just a
few representative examples, but here I focus on
three: Play, a full-stack, commercially supported
application framework; Scalatra, inspired by the
lightweight, popular Sinatra framework; and
Finagle, a highly scalable, headless server library.

Play
Play (www.playframework.org) is a Java-based
Web framework with a very capable module
architecture that makes it straightforward to
write plug-in modules. Scala support is imple-
mented as a module. It permits the use of Scala
throughout the stack, including webpage tem-
plates and the database query layer.

A professional Web application developer
accustomed to the polish and ease of use provided
by Rails will feel at home with Play. Its creator,

Zenexity, has worked hard to create a developer-
friendly experience.

Installing Play is easy. You download the zip
file, expand it in a location of your choosing, and
add the base directory to your environment’s PATH
variable, so the play command is on your path.

To install the Scala module, run this
command:

play install scala

Now you can create a Scala Web application in a
directory of your choosing:

play new SampleScalaApp --with scala
play run

The new application SampleScalaApp is now
in a directory of the same name. Play’s built-in
Web server starts via the run command. By
default, it listens for requests on port 9000. If
you go to http://localhost:9000 in your browser,
you’ll see the page shown in Figure 1, which
provides instructions for what to do next.

The directory structure Play creates for an
application will be familiar to Rails programmers.
Because Play (and Rails) are designed to grow
gracefully as applications become large, Play puts
code for different application responsibilities in
separate files so file sizes remain manageable.

The SampleScalaApp/app directory has a
view subdirectory for views, which hold the
webpage templates, a models subdirectory for
domain classes, and a controllers subdirec-
tory for the responders to user actions. However,
because Scala code doesn’t require the direc-
tory structure to match the package structure,
you can put the files for your controllers
and models in the app directory, if you prefer.

Scala Web Frameworks:
Looking Beyond Lift

Dean Wampler • Think Big Analytics

IC-15-05-funw.indd 87 8/16/11 1:02 PM

The Functional Web

88	 www.computer.org/internet/� IEEE INTERNET COMPUTING

The simple examples that come with
the Scala module do just that.

Configuration of various proper-
ties, such as the database persistence
settings, occurs in SampleScalaApp/
conf/application.conf. Routing URL
requests to the controllers that handle
them is defined in SampleScalaApp/
conf/routes.

Let’s look at the ZenContact sam-
ple application that comes with the
Scala module to see examples of what
these various directories and files
might contain. Figure 2 shows the
routing table for ZenContact. It cov-
ers all the life-cycle steps required to
view and manage a list of contacts.

First, the expression {id} defines a
variable id that will be given whatever

value appears in this position in an
incoming URL path. The id will be
passed to the controller for use as a
database lookup key, for example.

Using the routes from Figure 2, the
URL http://localhost:9000/contacts
will get routed to the list method in
the Application singleton object,
which is defined in ZenContact/
app/controllers.scala, which looks
like this (simplif ied slightly for
brevity):

package controllers
/* imports ... */

object Application extends
Controller {

 def index = {

 Template('now -> new Date)
 }

 def list = {
 new Template(
 "contacts" -> Contact.find(
 "order by name,

 firstname ASC").
 list())

 }
 ...
}

The sidebar, “An Aside on Scala
Syntax” offers a brief explanation of
some Scala features used in this and
subsequent examples.

The list method instantiates a
new HTML page Template to format
the response. The latter is passed
key-value pairs, in which the keys
are names of variables that will be
referenced in the HTML template — in
this case, a contacts variable. A
find method on a singleton named
Contact, which corresponds to a
domain model object of the same
name, is called to query the database
for all the contacts, ordered by name.
The query result is converted to a
Scala list. (At the Java byte-code level,
Contact.find will look exactly like a
static find method defined in a tra-
ditional Java class named Contact.)

Here is the Contact domain model
class defined in ZenContact/app/
models.scala (again simplified for
brevity):

package models
/* imports ... */

case class Contact(
 id: Pk[Long],
 @Required firstname:
 String,
 @Required name: String,
 @Required birthdate: Date,
 @Email email: Option[String]
)

object Contact extends
Magic[Contact]

GET / Application.index
GET /contacts Application.list
POST /contacts Application.create
POST /contacts/{id} Application.save
GET /contacts/{id} Application.form
GET /contacts/new Application.form
POST /contacts/{id}/delete Application.delete

Map static resources in /app/public to the /public URL
GET / staticDir:public

Figure 2. Routing table for ZenContact in the ZenContact/conf/routes file.
The table covers all the life-cycle steps required to view and manage a list of
contacts.

Figure 1. Your initial Play application webpage.

IC-15-05-funw.indd 88 8/16/11 1:02 PM

Scala Web Frameworks: Looking Beyond Lift

SEPTEMBER/OCTOBER 2011� 89

You can handle integration with
Play’s Java-based object-relational
mapping (ORM) layer using annota-
tions (such as the @Required anno-
tation on some of Contact’s fields)
and having the “companion” single-
ton Contact extend a Magic class
that provides the find method, for
example.

So, what are the benefits of using
Scala? All the code you would write
in Java becomes more concise in
Scala, and you gain the additional
benefit of Scala’s rich collections
library. A great illustration of this is
the new Anorm API in Play’s Scala
module (http://scala.playframework.
org). It isn’t a traditional ORM, but
a wrapper for the lower-level Java
Database Connectivity (JDBC) API.
Anorm embraces a view I discuss
elsewhere,3 that there are benefits to
working directly with the collections
that your database driver provides,
as long as those collections offer
useful methods for working with
them. In contrast, the benefits of
converting back and forth between
those collections and domain objects
don’t always outweigh the disadvan-
tages of extra runtime complexity
and overhead.

Anorm wraps JDBC with Scala
collections semantics and more con-
venient handling of the checked

exceptions used in JDBC. Anorm also
embraces the view that SQL itself is
the best domain-specific language
for talking to your database, so you
should embrace it and not try to hide
from it. Anorm makes it easy to con-
vert back and forth between Scala
collections and data from queries or
data that’s used for updates. You can
parse results with pattern match-
ing and a built-in parser combinator
library.

Here’s an example query adapted
from the Anorm documentation:

val countries =
 SQL("Select name,population

from Country")().collect {
 case Row("France", pop:Int)

=> ("France", pop)
 case Row(name:String, pop:Int)

if(pop > 1000000) =>
 (name, pop)
}

Country is a database table, and
the block passed to collect uses
pattern matching to select the rows
we care about. In this case, we select
France and all other countries where
the population is greater than 1 mil-
lion (note that Scala case matching is
eager; that is, the first match “wins”).
Each case “body” returns the tuple
(name, population). The collect

method will ignore any rows that
don’t match one of the cases, effec-
tively implementing a filter.

Play provides a rich, well-designed
framework for building multi-tier
Web applications that will feel
familiar to the Ruby on Rails devel-
oper moving to Scala. The Scala
module adds powerful APIs that
exploit Scala’s functional program-
ming features.

Scalatra
One popular alternative to Rails
in the Ruby world is a lightweight
framework called Sinatra. It’s ideal
for quickly building lightweight
Web applications with minimal
code, where massive scalability and
interoperability with extensive third-
party services are less important.
Compared to Rails, Sinatra is easier to
use for websites without database per-
sistence requirements, for example.
Scalatra (https://github.com/scalatra/
scalatra) started as a port of Sinatra
to Scala, but has since added new
capabilities of its own.

Recall that in Play, you normally
define routing, controllers, models,
and views in separate files. This sep-
aration of concerns makes sense for
larger applications. In Scalatra, you
can define everything in one file,
which is very convenient for small,

An Aside on Scala Syntax

For readers unfamillar with Scala syntax, here are a few
pointers:

•	 Compared to Java, Scala import statements use the “_”
character instead of “*” as a wildcard.

•	 Semicolons are inferred.
•	 The object keyword declares a singleton object. The run-

time will only instantiate one instance. Scala uses objects to
hold methods and fields that would be declared static in
Java classes.

•	 When the case keyword is used, it adds extra features to
a class, including a corresponding singleton object (called a
companion) with the same name (used for factories, pattern
matching, and so on).

•	 The whole class body is the primary constructor, so the
constructor argument list is passed after the class name.

•	 A method definition begins with def. Types for return val-
ues are usually inferred, and parentheses are usually omit-
ted if there are no arguments. The method body begins
after the “=” sign.

•	 Scala supports the syntax key -> value to pass key-value
pairs to maps and methods that want them.

•	 Pattern matching is like switch statements on steroids. In
pattern-matching expressions, each potential match begins
with the case keyword, followed by a match expression
and the body to execute if the match succeeds. The match
expression and body are separated by “=>”.

•	 You subclass with the extends keyword. Using the with
keyword, you can implement pure interfaces or mix in addi-
tional behaviors. Both pure Java-like interfaces and mix-ins
are defined using a feature called traits.

IC-15-05-funw.indd 89 8/16/11 1:02 PM

The Functional Web

90	 www.computer.org/internet/� IEEE INTERNET COMPUTING

simple applications. As the applica-
tion size grows, you can separate
responsibilities into different files.

Let’s look at a simple one-file
example of a Scalatra application,
broken into several sections, which

I adapted from the examples that
come with the distribution. (Actu-
ally, a web.xml file is also required
to configure the Web server.) The
first section, which is shown in
Figure 3, defines an HTML template

that will be rendered with the Sca-
late template engine (http://scalate.
fusesource.org). The second section,
shown in Figure 4, defines how the
application should respond to vari-
ous requests.

Setting up a Scalatra project and
running it in development mode isn’t
as straightforward as it is for Play.
Some familiarity with Maven or the
Scala build tool, sbt (https://github.
com/harrah/xsbt/wiki) helps. The
Scalatra README.markdown file that
comes with the distribution describes
the details.

Once you have the project set up
and running with the example code
in Figures 3 and 4, you will get the
page Figure 5 shows when you go
to http://localhost:8080 (the default
port). The “hello world” link at the
bottom takes you to the same page.

Clicking the “date example” link
produces Figure 6, which demon-
strates the parsing and handling of
URL path values.

Note how the route definition
automatically decomposes the URL
path /date/2009/12/26 into year,
month, and day values.

Finally, clicking the “form exam-
ple” link yields Figure 7. (I entered the
word “Hello!” into the text field before
taking the screen shot.) Clicking the
“Submit” button produces Figure 8.

The value in the form text field,
Hello!, was passed as a parameter
with the POST and used by the appli-
cation to prepare the response shown
to the user.

Although Scalatra requires very
little code to create applications,
it actually scales better than you
might expect because it uses Jetty
(http://jetty.codehaus.org/jetty/) as
the underlying Web server.

Scalatra is a great tool for quickly
building lightweight Web applica-
tions, especially if you’re already
familiar with Scala and Java tools,
like sbt and Jetty. As with Play and
its Scala module, Scalatra lets you
use the power of Scala collections

/* package declaration and imports ... */

// UrlSupport and ScalateSupport are "traits";
// mixins of additional behaviors.
class TemplateExample extends ScalatraServlet
 with UrlSupport with ScalateSupport {

 // Scala supports embedded XML literals, which we
 // use to create this page template. They are mapped
 // to a Seq (sequence) of Node objects.
 object Template {

 // """multi-line string""".
 def style() =
 """
 pre { border: 1px solid black; padding: 10px; }
 body { font-family: Helvetica, sans-serif; }
 h1 { color: #8b2323 }
 """

 // The expression { title } will be replaced
 // with the value for the title method argument,
 // using the Scalate template engine.
 def page(title:String, content:Seq[Node]) = {
 <html>
 <head>
 <title>{ title }</title>
 <style>{ Template.style }</style>
 </head>
 <body>
 <h1>{ title }</h1>
 { content }
 <hr/>
 hello world
 date
 example
 form example
 </body>
 </html>
 }
 }

Figure 3. Scalatra example, part 1. This segment defines a template singleton
object, which is the template for building the HTML pages. It exploits Scala’s
ability to embed XML literals into code. The embedded HTML snippets are
processed with the Scalate template engine.

IC-15-05-funw.indd 90 8/16/11 1:02 PM

Scala Web Frameworks: Looking Beyond Lift

SEPTEMBER/OCTOBER 2011� 91

and other functional features to
minimize the code you write and
maximize your ability to transform
data as needed.

Finagle
Finally, let’s consider Finagle (https://
twitter/github.com/finagle), which
was developed at Twitter for building
very fast, RPC-style servers using
Netty, a client–server socket API
based on Java’s New IO (NIO) library.
Finagle is designed to meet Twitter’s
needs for extreme scalability.

Finagle is a good example of a very
focused server development tool that
doesn’t attempt to provide a full Web
stack. Instead, it focuses on serving
a specific need — the development of
fast, lightweight client–server net-
working applications, in which the
ability to scale is paramount.

For clients, Finagle offers connec-
tion pooling, load balancing, failure
detection, failover, retry, and other
features important for distributed,
reliable, and scalable client access to
services. For servers, Finagle offers
“backpressure” (a defense against
denial-of-service attacks or other
rogue clients), service registration,
and support for protocols like HTTP,
Comet, Thrift, and Memcached/
Kestrel.

For the purposes of this col-
umn on the functional Web, Fina-
gle demonstrates the elegance and
power of compositional semantics
that are common in functional lang
uages such as Scala. Finagle uses
an elegant composition mechanism
for handling the parallel paths of
normal and exceptional processing
that any Web application must
handle.

Consider the server example
shown in Figure 9, which is adapted
from an example in the distribution.
It demonstrates an HTTP server that
separates exception handling from
normal control-flow processing and
how they’re composed together to
build the service.

 beforeAll {
 contentType = "text/html"
 }

 // Routing: HTTP GET request for URL
 // http://server:port/ (i.e., empty path)
 get("/") {
 Template.page("Scalatra: Hello World",
 <h2>Hello world!</h2>
 <p>Referer: { (request referer) map {
 Text(_) } getOrElse { <i>none</i> }}</p>
 <pre>Route: /</pre>
)
 }

 // Routing: HTTP GET request for a URL with
 // the path "/date/YYYY/MM/DD", where Y, M,
 // and D will be assigned to the year, month,
 // and day parameters, respectively.
 get("/date/:year/:month/:day") {
 Template.page("Scalatra: Date Example",

 Year: {params("year")}
 Month: {params("month")}
 Day: {params("day")}

 <pre>Route: /date/:year/:month/:day</pre>
)
 }

 // Routing: HTTP GET request that will return
 // a form with one text field.
 get("/form") {
 Template.page("Scalatra: Form Post Example",
 <form action={url("/post")} method='POST'>
 Post something:
 <input name='submission' type='text'/>
 <input type='submit'/>
 </form>
 <pre>Route: /form</pre>
)
 }

 // Routing: HTTP POST request, invoked when
 // the form is submitted using POST.
 post("/post") {
 Template.page("Scalatra: Form Post Result",
 <p>You posted: {params("submission")}</p>
 <pre>Route: /post</pre>
)
 }

 protected def contextPath =
 request.getContextPath
}

Figure 4. Scalatra example, part 2. The second half of the file defines
the content type used for the returned pages (“text/html”) and how
the application should respond to various queries.

IC-15-05-funw.indd 91 8/16/11 1:02 PM

The Functional Web

92	 www.computer.org/internet/� IEEE INTERNET COMPUTING

Figure 5. “Hello World” (and home) page for the Scalatra example.

Figure 6. Date example. This page demonstrates the parsing and handling of URL path values.

IC-15-05-funw.indd 92 8/16/11 1:02 PM

Scala Web Frameworks: Looking Beyond Lift

SEPTEMBER/OCTOBER 2011� 93

Note the composition of error
and normal response handling in the
definition of myService. The under-
lying SimpleFilter and Service

types that are subclassed by Handle-
Exceptions and Respond, respec-
tively, support a composition protocol
that’s common in Scala libraries —

that is, the andThen method, which
composes invocation of the two
apply methods in the objects so that
HttpServer handles exceptions first,

Figure 7. Form post example. This shows a conventional form for the user to fill in.

Figure 8. Form post result example. When the user submits the form in Figure 7, the content of the field is used
to prepare the response shown here.

IC-15-05-funw.indd 93 8/16/11 1:02 PM

The Functional Web

94	 www.computer.org/internet/� IEEE INTERNET COMPUTING

then normal processing. In either
case, the Respond object returns
a response asynchronously (using
a Future) to the client. Note this
model’s power in separating con-
cerns and building services that
compose from smaller pieces.

W eb application development
might be approaching 20 years

old, but we’re still learning new
tricks as we apply the elegance, con-
cision, and power of functional pro-
gramming ideas. The example Web
and service frameworks I discussed
here — Play, Scalatra, and Finagle —
demonstrate these capabilities, while
leveraging the best established fea-
tures in traditional object-oriented
frameworks.�

References
1.	 D. Ghosh and S. Vinoski, “Scala and Lift:

Functional Recipes for the Web,” IEEE

Internet Computing, vol. 13, no. 3, 2009,

pp. 88–92.

2.	 D. Pollak and S. Vinoski, “A Chat Appli

cation in Lift,” IEEE Internet Computing,

vol. 14, no. 3, 2010, pp. 88–91.

3.	 D. Wampler, Functional Programming

for Java Programmers, O’Reilly Media,

2011.

Dean Wampler is a principal consultant at Think

Big Analytics (http://thinkbiganalytics.

com). He specializes in Scala and “big

data” analytics using the Hadoop ecosys-

tem of tools. Wampler has a PhD in phy

sics from the University of Washington.

He’s the coauthor of Programming Scala

(2009) and the author of Functional Pro-

gramming for Java Developers (2011),

both published by O’Reilly Media. He’s a

member of IEEE and the ACM. Contact

him at dean@deanwampler.com and

follow him on Twitter, @deanwampler.

/* package declaration and imports ... */
object HttpServer {
 /* A simple Filter that catches exceptions and
 * converts them to appropriate HTTP responses. */
 class HandleExceptions
 extends SimpleFilter[HttpRequest, HttpResponse]{
 def apply(
 request: HttpRequest,
	 service: Service[HttpRequest, HttpResponse]) = {
 // "handle" is invoked asynchronously.
 // If an exception occurred, it sets the
 // corresponding error status code.
 service(request) handle { case error =>
 val statusCode = error match {
 case _: IllegalArgumentException => FORBIDDEN
 case _ => INTERNAL_SERVER_ERROR
 }
 val errorResponse =
		 new DefaultHttpResponse(HTTP_1_1, statusCode)
 errorResponse.setContent(
		 copiedBuffer(error.getStackTraceString, UTF_8))
 errorResponse // return value
 }
 }
 }

 /* The service itself. Simply echoes back "hello!".
 * Note that no error handling is required here! */
 class Respond extends Service[HttpRequest, HttpResponse]{
 def apply(request: HttpRequest) = {
 val response = new DefaultHttpResponse(HTTP_1_1, OK)
 response.setContent(copiedBuffer("hello!", UTF_8))
 Future.value(response) // asynchronous
 }
 }

 def main(args: Array[String]) {
 val handleExceptions = new HandleExceptions
 val respond = new Respond

 // Compose the error Filter and Service together:
 val myService: Service[HttpRequest, HttpResponse] =
	 handleExceptions andThen respond

 val server: Server = ServerBuilder()
 .codec(Http())
 .bindTo(new InetSocketAddress(8080))
 .name("httpserver")
 .build(myService)
 }
}

Figure 9. A Finagle example. This segment demonstrates the separation
of exception handling from normal control flow and how these handlers
are composed together.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-15-05-funw.indd 94 8/16/11 1:02 PM

