
The Functional Web
Editor: Steve Vinoski • vinoski@ieee.org

2 	 Published by the IEEE Computer Society	 1089-7801/12/$31.00 © 2012 IEEE� IEEE INTERNET COMPUTING

T raditionally, a Web client sends an HTTP
request to a Web server and waits for a
response. For many Web clients, the HTTP

request-response protocol is perfect for load-
ing either static or dynamically created pages
and for posting request data, such as shopping
orders, to the server and waiting for either a
confirmation or error response. Think about how
many Web applications you use on a daily basis
that fit comfortably within the HTTP request-
response model.

Of course, not all Web applications work well
with HTTP’s request-response approach. Some
work best with notifications or updates from the
server, where clients receive messages without
having to first send requests to initiate server
replies. Event-oriented communication models
are nothing new; they’ve been used in all sorts
of distributed computing systems for decades. In
such systems, a client typically registers its net-
work endpoint information with a server along
with some indication of the types or classes of
events and notifications it’s interested in receiv-
ing. When the server detects a relevant event, it
consults its client registry and sends a notification
to each client registered for events of that type.

Getting Notified
Early Web clients wanting notifications had little
choice but to fake it via polling. At first glance,
such an approach might seem horribly ineffi-
cient, with myriad clients potentially hammer-
ing a beleaguered server with requests for polled
resources only to discover no changes to those
resources. Fortunately, HTTP provides ways to
avoid poor designs of this nature. For exam-
ple, servers can return last-modified times and
entity tags (etags) for polled resources, enabling
a client to perform conditional GET requests.

With such a request, if nothing has changed
since the client’s last retrieval, the server
returns a status of 304 Not Modified, thereby
avoiding expending network resources to return
the same resource data again and again. Servers
can also use HTTP response headers to indicate
that their polled resources can be cached by cli-
ents or intermediaries, thereby reducing their
own request loads by allowing clients to reuse
responses or get their data directly from inter-
mediate caches.

Even though HTTP polling can be surpris-
ingly efficient, it still has drawbacks, the most
obvious being how to determine the best polling
frequency. If events occur at a rate much greater
than a client’s polling frequency, many events
might no longer be relevant by the time the cli-
ent gets around to requesting them. On the other
hand, if clients poll too frequently, even servers
employing savvy caching and conditional GET
support can be kept overly busy. Finding a happy
medium requires either tuning clients manually
and then hoping server event frequency doesn’t
vary much, or writing smart clients that track
event resource modification times and dynami-
cally adjust their polling frequencies to match.
Both approaches seem brittle and difficult.

To avoid polling, over the years applications
have tried other workarounds. For example,
servers supporting a technique called “long
polling” avoid replying to polling clients imme-
diately if no events await them, holding replies
until new events arrive. Other approaches —
such as HTTP server push (also known as HTTP
streaming) and pushlets — work similarly, with
servers holding client connections open after
receiving requests in order to push new events
back to them as parts of what end up being very
long-duration responses.

Server-Sent Events
with Yaws

Steve Vinoski • Basho Technologies

IC-16-05-Funw.indd 2 7/14/12 4:24 PM

Server-Sent Events with Yaws

SEPTEMBER/OCTOBER 2012� 3

Fortunately, modern Web clients
have more options than just poll-
ing and nonstandard pseudo-polling
techniques. For example, at the other
end of the spectrum is the WebSocket
Protocol (RFC 6455; http://tools.ietf.
org/html/rfc6455), which lets clients
and servers agree to convert their
HTTP connection to use an entirely
different and usually custom appli-
cation protocol. WebSocket runs over
the same TCP connection the client
and server originally established for
HTTP communication, but rather
than being restricted to the request-
response model or to HTTP messages,
WebSocket is bidirectional, allowing
either end to initiate a message; cli-
ents and servers have the flexibility
to exchange any data and messages
in any format they agree on.

WebSocket’s flexibility is a bless-
ing and a curse, for at least a couple
of reasons. First, while it can clearly
supplant polling and easily sup-
port event-oriented applications,
it requires the client and server to
agree on yet another application pro-
tocol to run over WebSocket between
them. Most WebSocket-based appli-
cations today tend to exchange sim-
ple JavaScript Object Notation (JSON)
messages using basic custom appli-
cation protocols, but how advanced
they’ll become in the future is hard
to predict. The fact that the Web has
scaled as it has owes much to the
architectural constraints built into
HTTP (RFC 2616; www.ietf.org/rfc/
rfc2616.txt); ad hoc application pro-
tocols running over WebSocket are
unlikely to scale anywhere nearly as
well. In the long run, however,
one good outcome might be that
WebSocket opens the door to several
standardized application protocols
designed with specific constraints that
purposefully differ from HTTP’s con-
straints, letting Web applications
intentionally make different trade-
offs depending on what they’re try-
ing to do. Such standardization would
likely take years to complete.

Second, WebSocket imposes addi-
tional interoperation, infrastructure,
and implementation details on both
client and server above and beyond
HTTP. It requires clients and serv-
ers to know how to make and ser-
vice connection upgrade requests,
respectively, and it also requires
both ends to know how to format and
parse WebSocket messages. Fortu-
nately, the WebSocket specification
isn’t overly complicated, and numer-
ous servers, clients, and Web frame-
works already support it (including
the Yaws Web server discussed later);
still, it imposes nontrivial interop-
eration and implementation taxes
that will likely mean some servers,
frameworks, and clients will never
make the jump to supporting it.

For Web applications that just
want to employ a simple and efficient
server-based notification model, a
happy medium exists between polling
and WebSocket: Server-Sent Events
(SSE). This approach — which as of
this writing is a W3C working draft
(www.w3.org/TR/eventsource/) —
lets servers send event data to clients
using regular HTTP based on tech-
niques pioneered by HTTP server
push and pushlets. Despite its status
as a working draft, numerous serv-
ers and clients already use the tech-
nique, likely due to how easily Web
server developers can implement it,
as we’ll see later.

A client wishing to receive SSE-
style events from a server sends it
a regular HTTP request, specifying
a resource just as with any other
request, but also specifying text/
event-stream as the desired content
type of the response. Assuming the
server supports such event streams,
it replies with regular HTTP response
headers specifying the content type
as text/event-stream. It then holds
the connection open without finish-
ing the response, and as it obtains
event data for the client, it sends
them as simple text messages. Just as
with the older HTTP server push and

pushlets approaches, each such mes-
sage is part of the same open-ended
HTTP response. The messages can
optionally have specific event names
and can also have identifiers that let
a disconnected client reconnect and
tell the server the ID of the last event
it saw, thus letting the server restart
the event stream where the client
left off.

There are two elements to the
simplicity of SSE: it’s based on regu-
lar HTTP, and it’s text-based, making
it easy to create and parse events.

Yaws and Server-Sent Events
Yaws is an open source Erlang Web
server hosted on Github (see http://
github.com/klacke/yaws and http://
yaws.hyber.org). Its creator, Claes
“Klacke” Wikström, started the proj-
ect in late 2001, and it’s been under
active development ever since. It’s
a fully stocked system providing a
long list of features both new and
old, including HTTP 1.1, forward and
reverse proxies, response streaming,
WebSocket, SOAP, haXe, JSON-RPC
2.0, SSL, and request rewriting. It’s
widely used within the Erlang com-
munity as well as by others who
aren’t Erlang developers, and is best
known for its great performance and
high reliability.

In June 2012, I added support for
SSE to Yaws in version 1.94. The imple-
mentation, which is very straight
forward as we’ll see later, sits on top of
the Yaws response streaming capabil-
ity. This capability exploits Erlang’s
lightweight processes1 to let an
application-supplied process take con-
trol of a socket from Yaws and use it to
communicate directly with the client.
The following steps describe how this
works:

1.	An application registers a call-
back with Yaws for a given URL
path.

2.	When Yaws sees a request including
that path, it dispatches the request
to the application’s callback.

IC-16-05-Funw.indd 3 7/14/12 4:24 PM

The Functional Web

4	 www.computer.org/internet/� IEEE INTERNET COMPUTING

3.	The callback validates the request
and either starts a new Erlang
process to handle it or retrieves
an existing handler process, per-
haps from a pool.

4.	The callback returns to Yaws,
supplying a list of HTTP response
headers. Last in the list is a tuple
consisting of the streamcontent_
from_pid directive and the request
handler’s process ID.

5.	Yaws sends the HTTP response
headers and then gives control
of the client socket to the stream
handler process.

6.	Once the handler decides it’s
completed the response, it returns
control to Yaws, optionally clos-
ing the socket before doing so.

With this capability, supporting
SSE isn’t difficult: the handler pro-
cess merely needs to watch for its
application-specific events, format
them according to the W3C speci-
f ication, and send them over the
socket to the client.

Yaws Example
Yaws supplies an example that shows
how to use SSE to show and update
the server date and time on a simple
webpage. Assuming you have Yaws
version 1.94 or later, you can find
it in the Yaws distribution in the
files examples/src/server_sent_
events.erl and www/server_sent_
events.html. The former handles the
initial client request and supplies the
handler process for event streaming,
whereas the latter supplies the client-
side HTML along with the JavaScript
code that handles the event stream.

The server_sent_events mod-
ule is a Yaws application module, or
“appmod” (see http://yaws.hyber.org/
appmods.yaws). It exports a func-
tion named out/1 taking a single
argument (hence the “/1”, which
indicates the function arity), which
is a Yaws #arg record containing
all the details of each incoming
request. In the Yaws configuration
file, we register the appmod on the
URL path “/sse”, which is the HTTP

event resource the client will request
to receive the event stream. Any
client request made to that path
causes Yaws to invoke the server_
sent_events:out/1 function, pass-
ing an #arg instance containing all
the details of the request, including
the incoming HTTP headers. The
out/1 function, shown in Figure 1,
is fairly simple; it just ensures that
the client submitted a GET with a
requested response content type of
text/event-stream and, if so, cre-
ates a new event handler process and
returns its ID along with the appro-
priate HTTP headers to Yaws.

The event handler process is also
implemented in the server_sent_
events module, using the Erlang/
OTP (Open Telecom Platform) gen_
server framework, or “behavior”
in Erlang parlance. (OTP is a set of
frameworks and libraries that are part
of the Erlang open source distribution.
It’s useful in a variety of domains,
not just telecom.) As its name implies,
gen_server is useful for imple-
menting server processes; it enables
these processes to reply to incoming
requests and to maintain state. For this
example, we use it to hold onto the cli-
ent socket and to maintain a timer that
indicates when to fire new events.

The event handler supplies sev-
era l funct ions that gen_server
requires, but only two are important
for the example. Figure 2a shows a
function named handle_info/2 that
handles the message from Yaws indi-
cating that it has handed control of
the client socket to our gen_server
event streamer process; Figure 2b
shows a different handle_info/2
function that handles the recurring
tick message from the timer.

Both the out/1 function and the
timer handler handle_info/2 func-
tion use functions in the yaws_sse
module, which provides the core
support for SSE-compliant events.
It supplies several functions for for-
matting event IDs, names, and data,
as the W3C working draft requires,

out(A) ->
 case (A#arg.req)#http_request.method of
 'GET' ->
 case yaws_api:get_header(A#arg.headers, accept) of
 undefined ->
 {status, 406};
 Accept ->
 case string:str(Accept, "text/event-stream") of
 0 ->
 {status, 406};
 _ ->
 {ok, Pid} = gen_server:start(?MODULE,
 [A], []),
 yaws_sse:headers(Pid)
 end
 end;
 _ ->
 [{status, 405},
 {header, {"Allow", "GET"}}]
 end.

Figure 1. The server_sent_events:out/1 function handles incoming
requests for the event stream. It first verifies that the client performed a
GET request and supplied an Accept header specifying the type “text/event-
stream.” If so, it starts the event streaming process via gen_server:start/3
and returns the appropriate response headers via yaws_sse:headers/1.

IC-16-05-Funw.indd 4 7/14/12 4:24 PM

Server-Sent Events with Yaws

SEPTEMBER/OCTOBER 2012� 5

and a l so f u rn i shes the send_
events/2 function to send formatted
event data to the client. This exam-
ple uses only event data, and doesn’t
need either event names or IDs.

Using the command-line tool
curl, you can issue a GET request to
the example event resource to see
the details of the server response.
The following command assumes
you have Yaws version 1.94 or newer
installed and running on your local
machine, listening on port 8000:

curl -D /dev/tty \
 -H 'Accept: text/event-stream' \
 http://localhost:8000/sse

On the first line of the command, the
-D /dev/tty option (which assumes
you’re running the command on Mac
OS X, Linux, or some other UNIX
system) directs the response headers
to the terminal. On the second line,
the -H option sets the Accept HTTP
header for the request to the required
text/event-stream MIME type. The
final line specifies the URL of the
event stream resource.

The server response appears as
follows (but note that some lines here-
are artificially wrapped due to space
constraints):

HTTP/1.1 200 OK
Connection: close
Server: Yaws 1.94
Cache-Control: no-cache
Date: Fri, 29 Jun 2012

13:47:07 GMT
Content-Type: text/event-stream

data:Fri, 29 Jun 2012
13:47:08 GMT

data:Fri, 29 Jun 2012
13:47:09 GMT

data:Fri, 29 Jun 2012
13:47:10 GMT

data:Fri, 29 Jun 2012
13:47:11 GMT

First, the 200 OK response shows
that the GET was successful. As the
W3C working draft recommends,
the Cache-Control header is set to
no-cache to prevent the client or
any intermediaries from caching the
response. The last header, Content-
Type, is set to text/event-stream as
the client requested.

The remainder of the response
shows four events. Each line of each
event is preceded by the “data:”
marker to let receivers distinguish
event data from event IDs and names.
In this example, each event consists
of only a single line and a newline,
but the W3C working draft also
allows multiline events. Each whole
event, whether just a single line or
multiple lines, is also terminated
by a newline, hence the blank line
between each event in the response.

Note that the example response
shown here might be misleading
for two reasons: First, it makes the
response appear as if it all arrives
at once, but it doesn’t. The headers
arrive first, and then the first time-
of-day event arrives after a one-second
pause. The difference between the
value of the Date header and the first
event shows this pause. After that,

each subsequent event arrives indi-
vidually, one second after the previ-
ous event.

Second, due to space considerations,
the output shows only four events, but
if you run the command yourself, you’ll
see that the actual event stream contin-
ues for as long as we allow it. We even-
tually have to kill or interrupt the curl
command to close the connection and
stop the stream.

As the curl example shows, SSE
can be used in any application using
HTTP for communication, but it’s
also instructive to view the resource
using a Web browser that supports
event streams. Using a recent version
of Safari, Chrome, Firefox, or Opera,
try visiting the URL http://localhost:
8000/server_sent_events.html if you
have Yaws running locally, or http://
yaws.hyber.org/server_sent_events.
html to load the example directly
from the Yaws website. If your browser
supports event streams, you’ll see a
simple page that looks like the screen-
shot in Figure 3, except the time of
day will dynamically update on the
page every second.

The server_sent_events.html
page contains some simple HTML to
provide the static text, and also loads

handle_info({ok, YawsPid}, State) ->
 {ok, Timer} = timer:send_interval(1000, self(), tick),
 {noreply, State#state{yaws_pid=YawsPid, timer=Timer}};
(a)

handle_info(tick, #state{sock=Socket}=State) ->
 Time = erlang:localtime(),
 Data = yaws_sse:data(httpd_util:rfc1123_date(Time)),
 ok = yaws_sse:send_events(Socket, Data),
 {noreply, State};
(b)

Figure 2. Example handle_info 2 functions. (a) When Yaws sends the event
streamer process the {ok, YawsPid} message to indicate that it can start
sending events on the client socket, the server_sent_events:handle_
info/2 function starts a timer to send a message to the event streamer every
second. It then stores the reference to the timer in its gen_server state.
(b) This instance of handle_info/2 handles the tick message from the
recurring timer. When the message arrives, this function gets the local time,
converts it to a GMT date string, and calls the yaws_sse:data/1 function to
send the string as an event to the client.

IC-16-05-Funw.indd 5 7/14/12 4:24 PM

The Functional Web

6	 www.computer.org/internet/� IEEE INTERNET COMPUTING

JavaScript to handle the event stream
and dynamically display it. The
JavaScript code is straightforward:

var es = new EventSource('/sse');
es.onmessage = function(event) {
 var h2 = document.

querySelector('#date-time');
 h2.innerHTML = event.data;
}

First, the code creates an instance of
an EventSource class, which knows
how to parse SSE-style events and
make their data available to your cli-
ent application. The single argument
to the EventSource constructor,
“/sse,” is the URL path for the event
source resource, just as we saw with
the curl example. The code then
sets a callback function on the event
source, which is called whenever the
event source receives an event mes-
sage. The callback function receives
one argument: an event object.
The function simply selects the HTML

element in the page with the ID “date-
time,” which is a header element,
and changes its text to that of the
event data, which is the time-of-day
event string accessible via the data
property of the event object. Every
time the server sends a new time-
of-day event string, the callback
function runs, dynamically updat-
ing the time of day displayed on the
webpage.

W 3C SSE make sending notifica-
tions to your Web applications —

for example, social network updates,
changes in values of financial instru-
ments, or cluster monitoring alerts —
uncomplicated and painless. They
might not be as flexible or powerful
as WebSocket but that doesn’t mean
they’re not effective. They work over
plain old HTTP, they’re easy for appli-
cations to create and receive, and
numerous Web browsers and serv-
ers already support them. The event

names and event ID features allow
even mobile applications running
on devices with spotty service and
limited battery life to eff iciently
retrieve only the events they missed
while disconnected. And with solid
building blocks such as Erlang’s
lightweight process model and the
response streaming capability of
Yaws, implementing server support
for SSE is especially straightforward,
making it easy for Yaws applications
to use it for their Web clients.�

Acknowledgments
Thanks to Stefan Tilkov of innoQ for his com-

ments on a draft of this article.

Reference
1.	 J. Armstrong, Programming Erlang: Soft-

ware for a Concurrent World, The Prag-

matic Bookshelf, 2007.

Steve Vinoski is an architect at Basho Tech-

nologies in Cambridge, Massachusetts.

He’s a senior member of IEEE and a mem-

ber of the ACM. You can read Vinoski’s

blog at http://steve.vinoski.net/blog/ and

contact him at vinoski@ieee.org or on

Twitter at @stevevinoski.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Figure 3. Visiting the server_sent_events example in a browser that
supports event streams results in a webpage in which the time of day
is dynamically updated once per second.

IC-16-05-Funw.indd 6 7/14/12 4:24 PM

