
The Functional Web
Editor: Steve Vinoski • vinoski@ieee.org

2 	 Published by the IEEE Computer Society	 1089-7801/12/$31.00 © 2012 IEEE� IEEE INTERNET COMPUTING

E rlang is best known for supporting scal-
able fault-tolerant systems, but it supplies a
variety of features that also make it a great

language for Web development. For example,
its concurrency features let developers easily
handle multiple simultaneous requests without
having to perform explicit lock and thread man-
agement. Erlang’s data types lend themselves
well to dynamically generating pages based on
common Web languages such as HTML, Java
Script Object Notation (JSON), and XML. The Erlang
application model lets multiple components —
each with its own supervisors and workers —
run within the same virtual machine instance,
even if they’re independently developed, all of
which simplifies the integration of different
datastores, code generators, parsers, and other
subsystems required for Web applications. The
Erlang open source distribution even includes a
built-in parser for HTTP messages, a basic Web
server, and a Web client library.

Nitrogen, a popular open source Erlang Web
framework (see http://nitrogenproject.com), adds
to Erlang’s support for Web systems. It builds on
the foundation Erlang provides for Web devel-
opment and extends it, making it easy for even
those new to Erlang to quickly take advan-
tage of the language. Because Nitrogen is quite
feature-rich, I can’t describe it in detail in this
column, so instead I stick to the basics of Nitro-
gen and supply examples of its features, explain
some of its capabilities, and show how it helps
Web developers exploit Erlang to develop clean,
robust websites that are straightforward to aug-
ment and maintain.

Building Nitrogen
Like many of today’s open source projects, you can
find Nitrogen on github.com. You can download

the latest version by running the following com-
mand in a command shell:

git clone git://github.com/nitrogen/
nitrogen.git

This creates a directory named nitrogen in
your current working directory; changing to
that directory lets you build Nitrogen. Because
Nitrogen is a Web framework, it runs on top of a
Web server, and it supports a variety of servers
including Yaws (http://yaws.hyber.org),1 Mochi-
web (https://github.com/mochi/mochiweb), and
inets, which is part of Erlang/OTP (http://erlang.
org). The way you build Nitrogen depends on
which server you want to use. For example, to
build it on Yaws, you type the command

make rel_yaws

which builds a Nitrogen release including Yaws
under the rel/nitrogen directory. Running the
following commands then starts Nitrogen lis-
tening for requests on port 8000 with an inter-
active Erlang console attached:

cd rel/nitrogen
bin/nitrogen console

After starting Nitrogen, pointing your browser
to http://localhost:8000/ will show you a “Wel-
come to Nitrogen” webpage.

Pages, Routing, and Elements
Part of the functionality Web servers and frame-
works provide is converting HTTP requests into
implementation-specific activities that attempt
to fulfill each request. The server code bridges the
boundary between client-side Web abstractions,

The Nitrogen Erlang
Web Framework

Steve Vinoski

IC-16-06-Funw.indd 2 9/8/12 5:02 PM

The Nitrogen Erlang Web Framework

NOVEMBER/DECEMBER 2012� 3

such as HTTP verbs and URLs, and
the implementation artifacts of the
server-side application that make
those abstractions concrete. Depend-
ing on the programming languages
and Web frameworks they use, devel-
opers can typically implement Web
resources in a wide variety of ways.
Similarly, servers can use a variety
of approaches to direct incoming
requests to the implementation arti-
facts that instantiate Web resources.

In Nitrogen, each Web resource,
or “page” in Nitrogen terminology,
is represented by an Erlang module
that typically exports several func-
tions. One such function is main/0,
where the “/0” represents the Erlang
function’s arity, or number of argu-
ments. Nitrogen calls main/0 when a
client sends a request for the web-
page associated with the module. As
we’ll see later, other functions in the
module help build the page response
for the client.

When Nitrogen receives a client
request for a page, it uses a scheme
based on page module names for
routing the request to the appropri-
ate page module. First, if the target
URL path has an extension, such as
“.jpg” or “.html,” Nitrogen just treats
it as a static file. The index module,
found in the file site/src/index
.erl, handles all requests made to
the root URL path “/”. Otherwise,
Nitrogen translates the path portion
of the target URL into a page mod-
ule name by replacing “/” charac-
ters with underscores. For example,
if a request arrives for a resource
with URL path /products/208809,
Nitrogen looks for a module named
products_208809. In cases like this,
though, having a separate module
for each possible URL path is pro-
hibitive; if thousands of products are
listed on the website, for example,
requiring a separate page module
for each one would create a substan-
tial development and maintenance
headache. Fortunately, this isn’t a
problem because if it fails to find an

exact page module match, Nitrogen
instead looks for the longest match-
ing module name. In this case, we
could instead have a page module
simply named products that would
handle requests for all URL paths of
the form /products/<product-id>.
While handling a request, the func-
tions in the products module can
use the framework’s wf:path_info/0
function to retrieve the remainder
of the URL path to determine which
product ID was requested.

Creating a new page module is
easy. Assuming you still have Nitro-
gen running as directed earlier, run
the following commands from your
shell (not from the Nitrogen console,
but from your command shell) to
create a products page module:

bin/dev page products
make
bin/dev compile

The first command generates an
Erlang module named products.erl
and stores it under the site/src
directory. The generated products.
erl file is based on the file site/.
prototypes/page.erl. The second
command recompiles any new files
in the Nitrogen system, and in doing
so picks up the new products mod-
ule and compiles it (in this step, no
other files are recompiled unless
they’re new or have been changed
since the previous build). The third
command communicates with the
still-running Nitrogen system to
tell it to rescan its installation to
look for new files; when Nitrogen
finds the newly compiled products
module, it loads it to make it ready
for client requests. Step 3 is help-
ful during development because it
lets you reload modified modules
and add new ones without restarting
the Web server. If, after performing
these steps, you then access http://
localhost:8000/products from your
browser, you’ll be greeted with a
page saying “Hello from products

.erl!” Likewise, accessing http://
localhost:8000/products/208809
produces the same result, given that
it’s also handled by the products
page module due to Nitrogen’s
longest-match routing approach.

The new products page produces a
webpage based on the bare.html tem-
plate stored under site/templates/
bare.html. This particular template
is specified by the products page
itself, in its main/0 function:

main() ->
#template { file=

"./site/templates/bare.html"
}.

The body of main/0 — which, as
mentioned earlier, Nitrogen invokes
to begin processing a request —
returns an Erlang record of type
#template. A record is a collection
of named fields; here, the file field
indicates the filename of the tem-
plate Nitrogen will use to create the
response to the client’s request.

If you view the bare.html tem-
plate f i le, you’l l see it’s most ly
HTML, except for two unusual direc-
tives, both of which look like Erlang
code. The first looks like a nested list
containing a fully qualified invoca-
tion of an Erlang function defined in
a module named page:

[[[page:body()]]]

In this context, Nitrogen treats the
module page as referring to the cur-
rent module, so for the products
page, this snippet, known as a “call-
out” in Nitrogen terminology, invokes
the products:body/0 function, which
appears in Figure 1.

Interestingly, this function appears
to be a cross between Erlang and
HTML, even though it’s pure Erlang.
The #panel, #span, #p, and #button
records, called Nitrogen elements,
resemble HTML elements, and their
fields look much like HTML attributes.
The body attribute of the #panel

IC-16-06-Funw.indd 3 9/8/12 5:02 PM

The Functional Web

4	 www.computer.org/internet/� IEEE INTERNET COMPUTING

element is an Erlang list of child
elements, and the return value of
the body/0 function is a list of one
element, the #panel. When Nitro-
gen gets this return value, it trans-
lates each element in the list into
HTML and JavaScript as appropri-
ate, which it then uses to replace the
[[[page:body()]]] callout in the tem-
plate, after which it returns the com-
pleted page to the client.

For an actual website that lets cus-
tomers order products, a development
team using Nitrogen would write
its own template for product pages.
Such a template would have callouts
wherever needed within the product
page layout; these callouts would
invoke functions in the product page
module to obtain information such
as the product name, manufacturer,
price, and customer reviews. The
product page module could obtain
such information from a database,
but in general, page modules could
get information from virtually any
back-end sources, because Nitrogen
doesn’t restrict applications to using
only certain databases or back ends.

Actions and Events
Many Web applications today are
incredibly responsive due to the

choices Web developers have in
terms of handling computations
completely on the client in Java
Script, avoiding full-page refreshes
using XMLHttpRequests or Web-
Socket, and dynamically and asyn-
chronously updating page elements
using server push approaches. To
support these kinds of applications,
Nitrogen provides a flexible, event-
driven programming model based
on actions, events, and long-polling
techniques.

Nitrogen actions attach to pages
or elements. Actions have triggers
and targets; a trigger is the ele-
ment that, when acted upon, causes
an action to occur, and a target is
the element that the action affects.
Nitrogen supplies several actions for
modifying pages, for effects such
as showing, hiding, or fading, and
for alerts and confirmations. Nitro-
gen builds many of these actions
using the immensely popular jQuery
JavaScript library (http://jquery.
com). Attaching actions to elements
is best done using the wf:wire func-
tions. Each takes a list of actions to
be applied, but they differ on trig-
gers and targets: wf:wire/1 treats
the page as both trigger and target,
wf:wire/2 treats the page as trigger

but takes a specif ic target , and
wf:wire/3 takes both trigger and
target. For example, you could use
wf:wire/3 to set up a button as a
trigger on the products page so that
when it’s clicked, it causes a photo of
the product — its target — to appear
or disappear.

Some ac t ions occur ent i re ly
within JavaScript on the client side,
but a nice feature of Nitrogen is how
it enables events to also be easily
handled on the server. For example,
the products:body/0 function
in Figu re 1 shows t h i s but ton
definition:

#button { text="Click me!",
postback=click },

The postback attribute indicates that
the value click, an Erlang atom,
should be sent from the client back to
the server when this button is clicked.
Nitrogen directs it to the event/1 func-
tion on the products page:

event(click) ->
 wf:insert_top(placeholder,

�"<p>You clicked the
button!").

This function exploits Erlang’s
pattern-matching capabilities, such
that only the atom click will match
this function clause. This function
calls the wf:insert_top/2 function
to place a new paragraph element at
the top of the target element, which
in this case is the placeholder panel
at the bottom of the products page.
Thanks to Erlang pattern match-
ing, you can have as many differ-
ent event/1 function clauses for
postbacks as you like by specify-
ing different postback data, which
can be any Erlang term, to indicate
events from different elements. The
wf:insert_top/2 function is an
example of Nitrogen’s AJAX sup-
port, which lets servers efficiently
add, remove, and update elements of
the current page.

body() ->
 [
 #panel { style="margin: 50px 100px;", body=[
 #span { text="Hello from products.erl!" },

 #p{},
 #button { text="Click me!", postback=click },

 #p{},
 #panel { id=placeholder }
]}
].

Figure 1. The products:body/0 function. This function shows the use of
Erlang records to model HTML elements, with record fields corresponding to
HTML attributes. The function returns a list consisting of a single HTML panel,
which in turn is composed of nested HTML elements. When a client requests
a page implemented by the products module, Nitrogen invokes this function
and converts the returned Erlang data to HTML and JavaScript to form the
client response.

IC-16-06-Funw.indd 4 9/8/12 5:02 PM

The Nitrogen Erlang Web Framework

NOVEMBER/DECEMBER 2012� 5

But Wait, There’s More
As I mentioned earlier, Nitrogen pro-
vides numerous features, too many
to cover in this column space. In
describing only its most basic capa-
bilities, I’ve hardly scratched the
surface, given that Nitrogen also
supports the following features and
more:

•	 request redirection,
•	 session state and page state,
•	 cookies,
•	 HTTP header manipulation,
•	 authorization and authentication,
•	 asynchronous updates via HTTP

long-polling,
•	 validation, and
•	 custom elements, actions, and

templates.

Nitrogen’s elegant combination of
features — its event-driven program-
ming model, the power of the jQuery
library and JavaScript, its portability
across Erlang Web servers, and the
fact that it lets developers use Erlang
for both client and server code —
is def initely compelling. Even if
you’re a Web developer either new to
Erlang or interested in trying out the

language, Nitrogen could be a great
way to ease into it. For more infor-
mation, please refer to the Nitrogen
website at http://nitrogenproject.com.

And Lastly, Thank You
Over the past few years, my guest
columnists, coauthors, and I explored
the application of functional pro-
gramming languages, tools, and
techniques to the domain of Web
development. We dove into languages
such as Erlang, Haskell, JavaScript,
Roy, and Scala as we examined the
details of a variety of Web servers
and frameworks. My initial hope for
the column was to take advantage of
the broad Web development domain
to help increase awareness of the
general benefits of using functional
programming approaches. Based on
reader feedback, I believe we achieved
that goal.

N ow, after 10 years of writing for
Internet Computing , the t ime

has come for a break. I’ve been
lucky to have collaborated with
a number of bright, innovative coau-
thors and guest columnists. I’ve also

been fortunate to have worked with
some incredibly talented and patient
editors — namely, Steve Woods in the
early years, Jennifer Gardelle in the
middle, and for the past few years,
Rebecca Deuel-Gallegos — who work
incredibly hard behind the scenes
to ensure this magazine’s consistent
high quality. But perhaps best of all,
I’ve been blessed to have thoughtful
readers like you providing excellent
feedback, asking great questions,
and offering kind encouragement.
Thank you all for everything.�

Reference
1.	 S. Vinoski, “Yaws: Yet Another Web Server,”

IEEE Internet Computing, vol. 15, no. 4,

2011, pp. 90–94.

Steve Vinoski is an architect at Basho Tech-

nologies in Cambridge, Massachusetts.

He’s a senior member of IEEE and a

member of ACM. You can read Vinoski’s

blog at http://steve.vinoski.net/blog/ and

contact him at vinoski@ieee.org or on

Twitter at @stevevinoski.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-16-06-Funw.indd 5 9/8/12 5:02 PM

