
JULY/AUGUST 2010	 1089-7801/10/$26.00 © 2010 IEEE	 Published by the IEEE Computer Society� 85

The Functional Web

O ver the past two years, Clojure (http://
clojure.org) has made quite a splash in two
areas: functional programming and the

Java Virtual Machine (JVM). Clojure is a Lisp
implementation on the JVM, offering its users
significant elegance, simplicity, and power.
Although Clojure is a fairly young language, it’s
extremely well thought out and mature, with
a vibrant community of talented and friendly
people using and contributing to it. If you’re tar-
geting the JVM as your platform, you’re doing
yourself a disservice by not considering Clojure
as an option. That being said, beauty is in the
eye of the beholder, and you must decide for
yourself. So, let’s take a look at Compojure, a
Web framework built on the Clojure language,
and see how to create and deploy a Compojure
application on the Google App Engine platform
(ht t p://e lhumidor.blogspot .com/2009/04/
clojure-on-google-appengine.html).

Clojure
If you’ve ever programmed a Lisp dialect, most
of Clojure’s syntax will resonate with you quite
well. Functions comprise a definition, a sym-
bol (function name), an optional documenta-
tion string, a function signature, and a function
body. The end result looks something like this:

(defn hello-world
 “Greets the world”
 [name]
 (println (str “Hello” name))

You can place several other options into a func-
tion, such as type hinting and metadata, but we
won’t cover those here. If you want to take a closer
look at the language, Stuart Halloway’s Program-
ming Clojure is a great place to get started.1

Compojure
Clojure has a few Web frameworks available,

such as Conjure (http://github.com/macourtney/
Conjure), Cascade (http://github.com/hlship/
cascade), and Compojure (http://github.com/weave
jester/compojure). To date, Compojure has been
the community favorite because it’s a simple and
concise Web framework that lets you build Web
applications with an unmatched quickness. It’s
similar in functionality to the Sinatra (www.
sinatrarb.com) framework from the Ruby World
and is currently undergoing some pretty heavy
changes. So, here, I’ve focused on the current
stable version, 0.3.2. Version 0.4 is currently
in beta but isn’t quite ready for this publica-
tion. You’ll be able to use Compojure 0.4 on App
Engine, but the example code here won’t quite
do the trick.

Compojure’s big win is simplicity; it lets you
create a Web application in just a few lines of
code. Compojure is also incredibly flexible, so
you’re empowered to build your application in a
way that makes sense to you without having to
fight the framework.

Google App Engine
The App Engine platform lets developers using
Java and Python have an immediately available,
free platform for hosting their Web applications.
The service also lets users tap into Google’s
authentication services to identify and autho-
rize users, taking some of the heavy lifting out
of developing a Web application. Later, I’ll show
you how to spin up a Compojure-based Web
application running on Google App Engine.

Getting Started
To get started, you’ll need to download and install
the Leiningen build tool (http://github.com/techno-
mancy/leiningen), which uses Maven’s dependency-
management tools (http://maven.apache.org) and
Ant’s task-execution powers (http://ant.apache.
org). You’ll also need to download and have
handy the Google App Engine Java toolkit.

Getting Started with Google
App Engine and Clojure
Aaron Bedra • Relevance

The Functional Web

86 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

Once you’ve installed Leinin-
gen, it’s time to set up the Leiningen
project file and add the application’s
dependencies. Luckily, Leiningen has
a nice feature that lets you gener-
ate a new project. Simply run lein
new example, which will generate
a project template that you can fill
in. One such file will be a project.
clj file stored in your application’s
root directory. Open it in your editor
of choice and modify it to match the
code in Figure 1.

Once you’ve completed your
updates, run lein deps. This will
fetch all the necessary libraries and
their dependencies, with the excep-
tion of the App Engine jar files.
After Leiningen is finished fetching
dependencies, open src/example/
core.clj and modify it to match the
code in Figure 2.

This example pulls in Compojure
and creates a servlet with a route to
“/” that, when requested, will display
the text “Hello App Engine”. Both
defroutes and defservice are mac-
ros inside the Compojure framework.

The last thing you need to do
before you fire up your applica-
tion and test it is create a web.xml
and appengine-web.xml in war/
WEB-INF using the code in Figure 3.

You now have enough to try out
your example, but you must com-
pile your application before you can
boot it. You can do so by running
lein compile. After this com-
pletes, you can start your applica-
tion by running dev_appserver.
sh war and opening your browser to
http://localhost:8080. If you’re
having trouble running this com-
mand, make sure that you have the
App Engine SDK’s bin directory on
your path.

Deploying Your
App Engine Application
Now that you have a working appli-
cation, it’s time to deploy it to the
App Engine service and test it out.
At this point, you’ll need to set up
an account on App Engine. After
you sign in to your account, you’ll
see a list of your applications. Click

the Create an Application button.
Choose an application identifier,
give your application a title, and
click Save. Once you’ve completed
this step, you need to make one
minor tweak before you’re ready to
deploy: open appengine-web.xml
and modify the application tag to
match the name of your App Engine
application. When you’re ready, sim-
ply run appcfg.sh update war.
This starts the upload process and
should leave you with a successfully
deployed application.

Adding Some Style
With this structure, you might be
wondering how to go about add-
ing some real content and style to
your application. You can do this
many different ways, but Compo-
jure has built-in HTML templating.
Let’s take a look at how to add basic
style sheets and JavaScript files to
an application.

First, create a style.css file in
the war/stylesheets directory.
Add a few basic style rules so you
have something to reference. From
here, open example.core and adjust
it to match the code in Figure 4.

After making the changes, make
sure to run lein compile and boot
your application again. When you
visit http://localhost:8080 again,
you should see your style sheet rules
applied and working. If you want
to see how this template language
works and view a few more exam-
ples, you can visit http://github.com/
weavejester/hiccup.

Authentication
An advantage to using App Engine
is that you can tap into Google’s
authentication system, and doing so
is quite easy. The first thing you’ll
need is the appengine-api-1.0-
sdk-1.3.3.jar file. Copy this file
into war/WEB-INF/lib. Next, create
a new file called user.clj and add
the code from Figure 5.

The example in Figure 5 taps

(defproject example “1.0.0-SNAPSHOT”
 :description “IC example application”
 :dependencies [[org.clojure/clojure “1.2.0-master-SNAPSHOT”]
 [org.clojure/clojure-contrib “1.2.0-SNAPSHOT”]
 [compojure-gae “0.3.3”]]
 :compile-path “war/WEB-INF/classes”
 :library-path “war/WEB-INF/lib”
 :namespaces [example.core])

Figure 1. project.clj code. This example sets up the project dependencies so
that Leiningen knows what to download and where to store the compiled code.

(ns example.core
 (:use [compojure.http servlet routes])
 (:gen-class :extends javax.servlet.http.HttpServlet))

(defroutes webservice
 (GET “/” “Hello App Engine”))

(defservice webservice)

Figure 2. Program code. After Leiningen finishes fetching dependencies, open
and modify src/example/core.clj to match the code in this figure.

JULY/AUGUST 2010� 87

Getting Started with Google App Engine

into the App Engine API and calls
directly into some of the Java code
that’s provided in the toolkit. All
the function calls that start with a
period, such as (.getCurrentUser
(get-user-service)), are actually
Clojure’s innovative Java interoper-
ability at work. To take a closer look
at how it works, visit http://clojure.
org/java_interop. The code in Figure
5 isn’t a complete authentication sys-
tem, but it serves the basic purpose
of logging in a user.

This code gives you all the basics
you need to access the authentica-
tion system. The only thing left here
is to wire up this code into the view.
Open core.clj and update it to look
like the code in Figure 6.

You now have what you need to
test out the functionality. Once again,
just run lein compile and boot
your application. You should see the
“Hello App Engine” text and a sign-
in link. Clicking this link takes you
to a fake authentication screen with
a username already filled in. This is
just the development environment
stub for authentication, so clicking
Log In will authenticate you without
any passwords. Go ahead and deploy
your application one more time and
test it out with the real authentica-
tion system.

I f you want to explore this further,
you can find the example code

for this article at http://github.com/
abedra/ieee-example. The code in
cludes examples for using Google’s
authentication system to identify
users who access your application.
To learn more about Compojure,
you can join the google group at
ht tp://groups.google.com/group/
compojure.

App Engine provides support
for Java and Python. Although the
examples provided by Google are
written purely in Java, Clojure lets
you tap into Java while opening up
a world of simpler and more power-

ful abstractions. Of course, alterna-
tive JVM-based languages exist that

offer advantages over using Java, but
the elegance and simplicity of Clo-

war/WEB-INF/web.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd”
 version=”2.5”>
 <servlet>
 <servlet-name>example</servlet-name>
 <servlet-class>example.core</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>example</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

war/WEB-INF/appengine-web.xml
<appengine-web-app xmlns=”http://appengine.google.com/ns/1.0”>
 <application>example</application>
 <version>1</version>
 <static-files />
 <resource-files />
</appengine-web-app>

Figure 3. Program code. Use this code to create a web.xml and appengine-
web.xml in war/WEB-INF to test your application.

(ns example.core
 (:use [compojure.http servlet routes]
 [compojure.html gen page-helpers])
 (:gen-class :extends javax.servlet.http.HttpServlet))

(defn index
 [request]
 (html
 (doctype :html4)
 [:head (include-css “/stylesheets/style.css”)]
 [:body
 [:div {:id “content”} “Hello World”]]))

(defroutes webservice
 (GET “/” index))

(defservice webservice)

Figure 4. Adding style. This example uses the built in Compojure template
language to build out the html content for the “/” route.

The Functional Web

88 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

jure combined with Compojure make
for a great win on App Engine.�

Reference
1.	 S. Halloway, Programming Clojure, The

Pragmatic Bookshelf, May 2009; www.

pragprog.com/titles/shcloj/programming

-clojure.

Aaron Bedra is a principal at Relevance (http://

thinkrelevance.com), where he works as

a technical lead, speaker, and author.

His research interests include enterprise

systems integration using Clojure and

JRuby. Bedra is a member of Clojure/core

(http://clojure.com). He maintains the

Ruby code coverage analysis tool, RCov,

and is a contributor to many open source

projects, including Clojure Contrib, Com-

pojure, and Ruby on Rails. Contact him at

aaron@thinkrelevance.com.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

(ns example.user
 �(:import com.google.appengine.api.users.
 UserServiceFactory))

(def user-service (atom nil))

(defn get-user-service
 “UserService for the current request.”
 []
 (if @user-service
 @user-service
 �(reset! user-service

 (UserServiceFacto-ry/getUserService))))

(defn get-user
 �“If the user is not logged in will return
 nil.”

 []
 (.getCurrentUser (get-user-service)))

(defn get-login-url
 ([dest]
 (.createLoginURL (get-user-service) dest))
 ([dest auth-domain]

 �(.createLoginURL (get-user-service) dest
 auth-domain)))

(defn get-logout-url
 ([dest]
 (.createLogoutURL (get-user-service) dest))
 ([dest auth-domain]
 �(.createLogoutURL (get-user-service) dest

 auth-domain)))

(defn is-logged-in
 []
 (.isUserLoggedIn (get-user-service)))

(defn login-box
 []
 (if (is-logged-in)
 �(do [:span {:class “login-text”}

 (get-user) “ - “
 �[:a {:href (get-logout-url “/”)}

 “sign out”]])
 [:span {:class “login-text”}
 �[:a {:href (get-login-url “/”)}

 “sign in”]]))

Figure 5. Authentication. Use this code to tap into Google’s authentication system.

(ns example.core
 (:use [compojure.http servlet routes]
 [compojure.html gen page-helpers]
 example.user)
 (:gen-class :extends javax.servlet.http.HttpServlet))

(defn render
 “The base layout for all pages”
 [body]
 (html
 (doctype :html4)
 [:head (include-css “/stylesheets/style.css”)]
 [:body
 [:div {:class “container”}
 [:div {:id “login”}] (login-box)
 [:div {:id “content”} body]]]))

(defn index
 [request]
 (render “Hello App Engine”))

(defroutes webservice
 (GET “/” index))

(defservice webservice)

Figure 6. More authentication. Use this code to update core.clj.

