
▶ Technical and Information Technologie

KYCID
An operational oauth2 integration of eKYC

Course of study Bachelor of Computer Sciences
Author M. Yann Mickael DOY
Advisor Prof. Emmanuel BENOIST
Expert Daniel VOISARD

June 13, 2024





Abstract

This bachelor’s thesis, carried out byMr YannMickael DOY and advised byMr Emanuel
BENOIST with the expertise of Mr Daniel VOISARD, explores the creation of an identity
verification service platform (Know your customer, eKYC) called KYCID for "Know your
customer’s ID".

The service enables third-party applications (client apps), such asGNUTaler, a payment
platform, to perform eKYC procedures, which verify either the telephone number via
a code sent by SMS, or by checking identity papers, or both.

ID papers verification is carried out by taking a photograph of the ID card or passport
and other images of the person in different positions using his camera orwebcam. This
enables an administrator to verify that the documents in question belong to the indi-
vidual in question and to validate their account.

In light of the aforementioned considerations, it is clear that security is of paramount
importance. This is why the integration between the client app and KYCID is done with
OAuth2. OAuth2 is a protocol and a set of specialised practices for delegating autho-
risation over HTTPS. In its version 2, it is technically mature and widely used in the
industry.

OAuth2 enables third parties (client applications) to request access to a protected re-
source on a service. In this case, the resource is the user’s identity, and the service is
KYCID. OAuth2 is not merely a protocol; it is also a framework that provides the tech-
nical knowledge to enable its implementation in a secure manner.

Furthermore, KYCID incorporates a comprehensive array of securitymeasures, includ-
ing password protection, an anti-brute force system, and filters to prevent SMS plump-
ing, which involves the use of premium rate numbers to extortmoney from the service.

TheKYCID functionality enables customers to registerwith an email address and verify
it (to prevent the use of fake emails), verify a phone number and verify identity docu-
ments. Furthermore, KYCID allows customers to carry out an eKYC procedure without
first creating an account. This account will be created automatically at the end of the
eKYC procedure.

The code has been developed in accordance with the principles of clean architecture,
which facilitates scalability and testability. This has been achieved by implementing a
comprehensive suite of automated unit, acceptance, and integration tests.

iii





Contents

Abstract iii

Acknowledgement vii

1. Introduction 1
1.1. Problematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. OAuth2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4. SMS Challenge for eKYC . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5. Document and Face challenge for eKYC . . . . . . . . . . . . . . . . . . 3
1.6. Product vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Architecture 7
2.1. Top-level overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Security 11
3.1. Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. OAuth2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Cross-site request forgery . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4. Client authentification . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Design 15
4.1. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2. Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3. Clean architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4. Domain layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5. Application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6. Infrastructure and presentation layer . . . . . . . . . . . . . . . . . . . 18

5. Testing 19
5.1. Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2. Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3. Acceptance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4. Integration tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5. End-to-end tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



Contents

6. Results 23

7. Conclusion 25

Bibliography 27

List of Figures 29

List of Tables 31

Listings 33

Glossary 35

A. User Manual 39
A.1. Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2. Nix setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.3. Environment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.4. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.5. Postgres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.6. SMTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.7. Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



Acknowledgement

Prior to commencing this thesis, it is necessary to acknowledge the individuals and re-
sources that have contributed to the completion of this work.

Firstly, the thesis draws upon a previous thesis project conducted by Mr Loïc Fauchère
in 2023, under the supervision ofMr Emanuel BENOIST as advisor andMr Daniel VOIS-
ARD as expert [11].

This work concerns the drafting of a service platform allowing third parties to carry
out KYC procedures bymanually verifying identity documents taken in photographs as
well as different selfies of users in different positions. Thus, this thesis, which follows
this work, will be supervised by the same people in the same roles (M. BENOIST and
M. VOISARD).

Initially, the report and source code were used directly, but then they were progres-
sively replaced. The technology influence (initially Adonis JS and Typescript) was re-
tained and subsequently replaced with Deno and Typescript.

Secondly, as a tangible application of this service platform developed at work, I inte-
grated the service into GNU Taler, a privacy-friendly payment platform [7]. As such, I
was able to benefit from the assistance of Mr Christian GROTHOFF, who is a core de-
veloper on this project as well as a lecturer at the BFH. In particular, he provided a
presentation on the KYC process in Taler via OAuth2 (see section 1.3).

Finally, thework is also based on a set of tools derived fromartificial intelligence. These
include ChatGPT, which was initially employed in the thesis but was subsequently su-
perseded by other AI, including the two models from DeepL (Translate and Write) [2,
3].

vii





1. Introduction

In order to comply with legal requirements, certain industries must verify the identity
of their users. For instance, the banking industry is subject to anti-money launder-
ing/terrorist financing laws. Similarly, casinos must ensure that their customers are of
an appropriate age, as do shops selling alcohol.

All these practices and mechanisms put in place by these industries are collectively
known as KYC, an acronym for Know Your Customer This work will focus more specifi-
cally on the IT version of KYC, known as eKYC for electronic KYC.

To successfully complete an eKYC, three key challenges must be addressed: the first is
user authentication, the second is the authentication of identity information, and the
third is non-usurpation of identity, which ensures that the identity in question belongs
to the user.

In order to facilitate the provision of the eKYC procedure by third parties and to avoid
the repetition of the same process in each project, this work introduces the creation of
an eKYC-as-a-Service platform.

1.1. Problematics

In recent years, the development of remote tools has made it necessary to use eKYC on
a larger scale than was previously necessary for face-to-face identity verification.

The emergence of Twint [14], a financial intermediary subject to Swiss anti-money laun-
dering laws [9], is a case in point. Twint offers its users the possibility of opening an
account without tying it to a bank, which means that anyone in Switzerland can open
an account anywhere.

The same can be said of telephone operators, which are subject to regulation [10], and
which also allow users to open an account themselves without going anywhere, thanks
to eKYC.

Themarket is developing, but there is noopen-source serviceusing a standardprotocol,
such as OAuth2 (see section 1.3), to simplify its use with the ecosystem of tools needed
for interoperability.

1



1. Introduction

1.2. Roles

The project encompasses a number of user/machine roles, which are defined below.

Role Type Description

KYCID Machine Authorization and Resource Server developed in this work
performing eKYC procedure

Client Machine Third party application delegating its Customer’s eKYC pro-
cedure to KYCID

Customers Human Any user who needs to be authenticated during an eKYC pro-
cedure

Operator Human Person responsible for installing/maintaining the KYCID ap-
plication (see section)

Admin Human Person responsible for validating customer profiles

Table 1.1.: Project Roles

1.3. OAuth2

OAuth2 is a network communication protocol based on HTTP (Web) that allows re-
sources (scopes) to be authorised for access to a third-party client application.

OAuth2 is also a framework (see section 3.2) which defines a security model.

OAuth2 is the second iteration of OAuth, which has therefore been able tomature tech-
nically and become more robust thanks to this test of time because, since its creation,
it has been particularly attacked.

1.4. SMS Challenge for eKYC

To perform an identity verification (eKYC), this work has proposed 2 methods:

Firstly, the indirect method, which consists in delegating the verification to a telecom
operator and in verifying only 2 things: that the user is in control of the number and
that the number is Swiss. Thanks to this, we can indirectly verify the identity of the
user.

2



1.5. Document and Face challenge for eKYC

VERIFY ID

CUSTOMER

PHONE NUMBER

PROVIDE
Access

KYCID SERVER

CODE CHALLENGE

RESOLVE
Challenge

Figure 1.1.: eKYC by SMS challenge

The process is in 3 steps: The customer enters his telephone number; Then, a secret
code will be sent by SMS to this number; Finally, the customer can enter the code re-
ceived to complete the challenge.

Enter

number
SMS Code Enter

Code

Figure 1.2.: Process of SMS Challenge for eKYC

1.5. Document and Face challenge for eKYC

The second method is more direct. It consists of verifying the identity card or pass-
port directly. To do this, we will use the user’s webcam/camera to scan the ID card or
passport.

On the back of the card or passport, there is a zone called MRZ for machine-readable
zone. This is a standard used in particular in aviation to scan via OCR (optical character
recognition) and thus extract all the information electronically.

3



1. Introduction

Figure 1.3.: Specimen Machine Readable Zone (MRZ)

However, there is a potential issue: the images of cards or the cards themselves could be
stolen. Therefore, it is necessary to implement measures to mitigate this risk of theft.
To address this, we utilise a face challenge, which requires users to submit selfies in
three different positions (head to the left, to the front, and to the right).

Figure 1.4.: Face challenge exemple

Consequently, an administrator can verify the photos to ascertain the legitimacy of the
document and ascertain that all photos (document and face challenge) were takenwith
the same camera at the same time, among other criteria. If all criteria are met, the
profile will be approved.

This method provides direct information on the identity of the customer, in contrast to
the indirect method. However, it is a deferred method that necessitates human inter-
vention.

1.6. Product vision

This work concerns the creation of a product designed to address the problem. The
product is a web service, named KYCID, which stands for Know Your Customer’s ID. It
allows third-party applications (clients) to carry out their eKYC procedures by delegat-
ing the work to the service.

From the customer’s perspective, using the service will be like a simple OAuth2 au-
thorisation code flow connection. Once the Access Token has been granted, it will be
possible to request an Endpoint with identity-related information.

4



1.6. Product vision

From the customer’s perspective, the process will be straightforward: they will simply
click on button in client app to be redirected to web page on the platform’s website,
where they will carry out the eKYC procedure. Once completed, they will be redirected
back to the customer and will have all the necessary information.

The eKYC procedure will be a linear process with optional steps listed below:

1. Obtain the user’s consent for the client to access the requested Scopes.

2. Enter the email address.

3. Register if an account does not exist.

4. Verify the email address (a codewill be sent by email) if the account is not verified.

5. Perform eKYC SMS Challenge procedure (see section 1.4) if it has been requested
in the Scopes by the client.

6. Should the client request it, the eKYC document and face challenge procedure
(see section 1.5) must be performed.

The registration of customers will be carried out by an operator with a technical profile
(typicallyMr Emanuel BENOIST) and does not necessarily require a graphical interface
to perform this task.

Inorder to export aCSVfile for thepurposeof invoicing the service, the serviceprovider
must keep track of authorisation requests made by each client.

5





2. Architecture

2.1. Top-level overview

KYCID SERVER

eKYC PROCEDURE

CUSTOMER

GNU TALER EXCHANGE

DEPOSITE
OAUTH2

DELEGATE eKYC

Figure 2.1.: Top-level project overview

The diagram above illustrates the three primary actors in the project:

1. Customer: the end user who wishes to deposit liquidity on the GNU Taler Ex-
change

2. GNU Taler Exchange: the payment service subject to AML, which delegates the
eKYC process to the KYCID service

3. KYCID: theweb service responsible for executing the eKYCprocess for GNUTaler
Exchange

7



2. Architecture

The following diagram is a model of the project’s planned money deposit sequence.

MONEY DEPOSITE

NEED eKYC, REDIRECT KYCID

eKYC / OAuth Authorize

OAUTH REDIRECT OAuth Token

CHECK eKYC VERIFIED INFO

RELEASE MONEY

CUSTOMER

1.

2.

3.

4.

6.

GNU TALER EXCHANGE

1.

2.

4.

5.

6.

KYCID SERVER

4.

5.

3.

Figure 2.2.: Top-level project sequence flow

The following steps are involved in the process:

1. Deposits: The customer deposits liquidity on a GNU Taler exchange.

2. Initiation of eKYC process: As the exchange is subject to the AML, it initiates a
KYC process using the KYCID service (delegation via OAuth2 authorisation flow).
The customer’s browser is redirected to the KYCID.

3. OAuth front channel, eKYC: comprises a series of round trips between the cus-
tomer’s browser and the KYCID, duringwhich the KYCprocess is performed. This
process requires interaction with the customer, as illustrated in figure.

4. OAuthbackchannel: Once theKYCprocesshasbeencompleted, theuser’s browser
is redirected to the exchange with an authorisation code that allows it to retrieve
an access token from the KYCID. This is the OAuth back channel.

5. Retrieve eKYC information: the exchange can retrieve the information from the
eKYC process thanks to the access token previously granted.

6. Release: once verified, if the exchange criteria are satisfied. It can release the
deposits.

The process described above is a case study of an OAuth authorisation code flow appli-
cation for GNU Taler that performs an eKYC procedure to release money. you can find
more details on how OAuth2 works in section 3.2.

8



2.2. System architecture

2.2. System architecture

API REST

SMTP

POSTGRES

KYCID SERVER SMTP Exchange

POSTGRES SQL

EMAIL

DATABASE

OAUTH BACK

OAUTH CLIENT
(Bank)

RESOURCE OWNER
(Customer)

OAUTH FRONT

Figure 2.3.: System architecture

The figure above on the left shows the primary actors in the system (listed below).

▶ Client: The client is the service that delegates the KYC process to the system. An
example of this is the GNU Taler exchange.

▶ Customer: The user whose identity is being verified.

And on the right shows the secondary actors in the system (listed below).

▶ SMS Provider: The systemmust send SMSmessages to verify the phone number.
Swisscom is the SMS provider via the text messaging product, which allows SMS
to be sent via a REST API.

▶ Mail sending server: The system must also send an email to verify the address
and notify the user. An SMTP server (such as Microsoft Exchange) is required.

▶ Persistence: A postgres sql database to store system status.

9





3. Security

3.1. Cryptography

The security of this application is contingent upon the implementationof cryptographic
primitives. In this instance, we will utilise the robust libsodium library.

The first primitive employed is the hashing of passwords utilising Argon2id, which is
particularly slow and therefore mitigates brute-force offline attacks. The result of this
process, along with the salt and algorithm used, is encoded according to the standard
PHC string format.



The slowness of Argon2id provides protection against offline attacks, but it
is necessary to implement additional protection against online brute force
attacks. The number of attempts over a period of time must therefore be
limited.

The second primitive used is an AEAD (authenticated encryption with additional data),
which is used to seal contextual data injected into anHTML form in order to implement
workflow (succession of forms + navigation).


The AEAD used to create a crypto token utility to convey information be-
tween forms. The implementation is analogous to that of Branca [1].

The last primitive employed is the CSPRNG generator, which is used to generate non-
guessable random code.

3.2. OAuth2 Framework

This project takes place in the context of the OAuth2 framework, which defines amodel
(notably for security) aswell as a set of protections required to complywith the standard
[8]. OAuth2 allows a third-party application (client) to access a set of resources (scope)
belonging to a resource owner (RO) on a remote server.

OAuth2 defines 4 roles:

11



3. Security

Role Type Description

Resource Data The resource in question is to be accessed. In KY-
CID its an human identity

Resource owner (RO) Person Customer in KYCID. He own his ID

Client Machine Third party should perform and delegate to KYCID
an eKYC process.

Authorization server Machine OAuth2 server. it’s KYCID.

Resource server Machine Server provide resource access. it’s KYCID.

Table 3.1.: Roles in OAuth2 Framework

To describe the different security features, we first need to describe the different steps
in an authorisation flow sequence, as shown in the figure below:

START FLOW

REDIRECT

Front channel

REDIRECT BACK Back channel

Resource access

Resource Owner

1.

2.

3.

4.

1.

2.

4.

5.

4.

3.

Authorization serverCLIENT Resource server

5.

Figure 3.1.: OAuth2 authorization flow sequence

The figure above shows a sequence of steps in an authorisation code flow. The steps
are explained below:

1. the resource owner initiates the flow.

2. the client redirects the user via the HTTP redirection mechanism. However, the
client is susceptible to a CSRF attack due to the fact that initialising the flow is
merely a URL to which the user is redirected. This URL is therefore susceptible
to guessing, and therefore the attack can be carried out (see section 3.3).

12



3.3. Cross-site request forgery

3. The RO interacts with the authorization server in a front channel call phase due
to the presence of a web app that allows interaction.

In this case, it is the authorization server that is vulnerable to the RO attempting
to circumvent the established procedures. Consequently, it is imperative to never
trust any input originating from theuser (systematic validation) and to implement
measures to protect against CSRF (see section 3.3).

The purpose of server authorisation is to determine whether to grant access to
the requested resource (scopes). To achieve this, the server can implement any
application logic (within the web app) to perform this action.

4. If the previous step has been authorised, the RO will be redirected to the client
with an authorisation code and the csrf protection token from step 2 (this infor-
mation is conveyed by query parameters called code and state).

With this code we can make a so-called back channel request (as opposed to the
front channel of step 3), because it is an http request from server to server and
therefore there is no WebUI. This request is sent from the client to the authenti-
cation server with the received authentication code and something that authen-
ticates the client to the authentication server (see section 3.4).

This request retrieves an access token. The reason for having 2 tokens (autho-
risation code and access token) instead of a direct access token is related to the
fact that the token returned by the front channel can only be passed in url (query
parameter), which is not a secure means of transport for information as sensitive
as an access token, as url can be logged in several places (proxy server, cache,
history, intercepted by the application on Android, log server). Therefore, the
authorisation code can only be used once to obtain the access token.

3.3. Cross-site request forgery

A CSRF attack may occur when an application contains actions that are linked to one
another. It is possible for another site to forge a request for a given action, thus bypass-
ing the intended steps and processes. This could result in the hijacking of the originally
planned process by a hacker. Additionally, the request could be made on another site,
leading to the recovery of the cookie at the time of the request. To mitigate this issue,
two methods can be employed:

The first method involves setting the "Same-Site" attribute to "Lax" on the cookie. This
prevents the cookie from being added if the request is made on another site or domain.
This avoids recovering the session.

The second method is to add a CSRF token (which must not be forgeable anywhere
other than on the server) in a hidden field. When the request is processed, the token is
checked to ensure its validity. In KYCID, the CSRF token is implemented by an AEAD

13



3. Security

(see section A), which encrypts the contextual data of the action, thus securing it. In
addition, the action and session are used as additional data to ensure that the AEAD
signature is unique for each action and session, thus avoiding reusing a token twice.
Furthermore, the token has a defined lifetime.

3.4. Client authentification

Twomethods exist for authenticating the client. The first and simplestmethod involves
recording a secret that is known only to the client and the authorisation server. By
sending this secret, the authorisation server can verify the client’s authenticity.

However, this method can cause problems in the event of a leak or if the client is not
executed on a server but directly in JavaScript in the browser or in an application on
a smartphone. This is referred to as a non-confidential client. This client is unable to
safeguard this secret.

In response to this problem, OAuth2 has introduced a secondmethod of client authen-
tication called PKCE (Proof Key for Code Exchange) which does not authenticate the
client but rather authenticates that the Back Channel request was made by the same
instance as the Front Channel request. To achieve this, the client generates a secret,
named code_verifier, at random and hashes it with SHA256. The result of this process
is called code_challenge. The authentication server is able to verify the authenticity of
the client by repeating the process of hashing the code_verifier and comparing the result
with the code_challenge sent in the front-channel request.


In OAuth 2.1, it is imperative to utilise PKCE, regardless of whether the client
possesses a secret. This is to mitigate the risk of an attack in the event of a
leak of this secret.

 In the field of cryptography, PKCE represents a commitment scheme.

14



4. Design

4.1. Approach

In this project, the approach used is Domain Driven Design (here after DDD). This ap-
proach, originally introduced by Eric EVANS in an over-rated book called BlueBook,
considers that the domain/business of the application is far more valuable than the
technique and should therefore be put first.

There are 2 aspects to this theory: strategy and tactics.

Strategical Tactical design pattern

Bounded Context

Unambiquitous
Language

Domain
Sub-Domain

Generic Sub-Domain

Context Map

Dependencies
Injection

Entites

Value Object

Port / Adapter
Factories

Repository

Layer

Figure 4.1.: DDD Strategical concept vs Tactical concept

The figure above lists the main patterns used in the project, both strategic and tactical.
The strategic patterns are more conceptual and mainly used for modelling, whereas
the tactical patterns are standard design patterns.

4.2. Technologies

The technologies used are listed below:

▶ Typescript: superset of ecmascript (JS) allowing to devéloppé in JS with a power-
ful system of verification of type.

15



4. Design

▶ Libsodium: serious library written in C that allows to perform various crypto-
graphic tasks. Used for encryption / token authentication (see Token Security
section) as well as password hashing (see Password Security section). Has a JS/TS
port/module for use in Typescript.

▶ PostgreSQL: database engine. Chosen because already used by M. Emanuelle
BENOIST to be used after the thesis.

▶ Deno fresh: Small HTTP/HTTPS framework developed in Typescript (modifica-
tion compared to Adonis previously used by Mr Loïc Fauchière).

▶ Valita: Small library allowing to make verification / validation of data and allow-
ing to make correspond the Typescript types defined at compilation, but with a
runtime verification (validation).

▶ Tesseract: ORC Engine to scan MRZ on ID Document

▶ Deno: Secure runtime (change from node used before).

4.3. Clean architecture

The KYCID server software is designed on a "clean architecture" model, as described in
reference [12]. This model is a layered model, but where the domain is the base layer
rather than the persistence layer.

DOMAIN

APPLICATION

INFRASTRUCTURE

PRESENTATION

MS Exchange

POSTGRES

CLIENT

CUSTOMER

PRIMARY ACTORS SECONDARY ACTORS

Figure 4.2.: Software Layer architecture

16



4.4. Domain layer

The design comprises three layers: the domain layer, the application layer and the in-
frastructure and presentation layer. The domain and application layers constitute the
core layer.

4.4. Domain layer

This is the most elementary layer of the system, so it depends only on itself. There will
only be simple classes that model the domain (hence the name) and raise exceptions if
invariants are not respected.



It is important to distinguish between the domain model and the database
persistence model. For instance, in a database, the objective is to avoid du-
plication. In the domain, it is possible to have two distinct classes represent-
ing a user in two different contexts. However, in the database, the aim is to
merge these into a single table.

4.5. Application layer

This layer constitutes the core of the domain and is dependent on both itself and the
domain layer situated directly below. The role of the application layer is to connect the
domainwith the external environment. In order to fulfil this function, it is necessary to
invert control using the port/adapter pattern. This involves creating an interface (port)
in the application layer which can be used by the layer but placing the implementation
(adapter) in the layer above. It is preferable to place as little business code as possible
in this layer and to instead place it in the domain layer.

It is also necessary for the application layer to prevent the infrastructure layer from
depending indirectly on the application layer. For example, exceptions raised in the
domain layer must be handled by the application layer. Similarly, it is important to
avoid raising exceptions in the application layer. However, exceptions that are raised
by adapters should not be handled by the application layer.

It is not advisable for the application layer to raise exceptions, as this should be the
domain layer’s responsibility. However, any exception raised in an adapter in the in-
frastructure layer that is not a domain exception (for example, a connection failure
exception) should not be handled by the application layer.


The application layer must not depend on infrastructure or technical code
that you have not written yourself (avoid complex libraries).

17



4. Design

4.6. Infrastructure and presentation layer

This layer is responsible for encapsulating all the technical complexity associated with
infrastructure and user presentation. It will contain themost direct code to implement
the application layer adapter. Not any business logic is included.


This layer should be independent of the domain, as it is not directly below
it. This principle is linked to the fact that we do not want a change in the
domain to imply a change in the infrastructure, nor vice versa.

18



5. Testing

KYCID uses a TDD [4] approach which consists of writing the tests before the code and
following the cycle below.

Fail

PassRefactor

Figure 5.1.: TDD Developpment Cycle

Cycle steps:

1. write the test, run it and then fail it (to check the test’s ability to detect)

2. have the tests taken as directly as possible

3. refactor the code

4. repeat the cycle as many times as necessary



The following narrative scheme [5] is particularly useful for writing tests:
1. Given: a certain situation (arrange)
2. When: trigger action (act)
3. Then: verify result of action (assert)

19



5. Testing

5.1. Strategy

It is important to note that not all tests are equally useful or even cost the same. In our
case, we can list four types of test: unit tests, acceptance tests, integration tests and
end-to-end tests. These can be hierarchised in a diamond below:

Figure 5.2.: Diamond testing strategy

The subsequent section will provide detailed information regarding the specific nature
of each test.

5.2. Unit tests

These tests are designed to assess a single unit of code, hence the name. They are rela-
tively simple and quick to write.

However, they tend to focus onminor technical details thatmay not be directly relevant
to the final project. Consequently, we only use unit tests when necessary and not as a
systematic approach. This is in contrast to pyramid testing [6], which relies on them as
a fundamental basis.

5.3. Acceptance tests

The purpose of acceptance testing is to validate/accept the existence of a given use case.

They aremore interesting because they verify functionality, which is themost valuable
thing in software (at least in terms of agility).

20



5.4. Integration tests

These tests are more difficult to write. However, with a clean architecture (see section
4.3), these tests are greatly simplified because we are testing the core layer (domain
and application layer). This layer does not depend on the infrastructure, but on ports
that have been specially designed for this case. There is therefore no technical code,
only business code, which means that the acceptance test becomes a kind of large unit
acceptance test.

5.4. Integration tests

The objective of integration tests is not to be exhaustive but to verify the communica-
tion (integration) between components. These tests are necessary to ensure the overall
functionality of the application, but they are complex to write. Consequently, the strat-
egy in diamand is to write the minimum necessary and no more.

5.5. End-to-end tests

In end-to-end testing, the objective is to test from the perspective of the end user. This
makes these tests the most challenging to write, as they require the control of a sig-
nificant amount of code, which introduces a high degree of complexity and technical
detail. Unlike integration tests (see section A), they must also simulate the entire appli-
cation and its infrastructure, which contributes to the high cost.

However, these tests, which verify the user’s point of view, are considered the most
valuable according to the principles of agility. Consequently, there will be few end-to-
end tests in the diamond strategy.

21





6. Results

Following a significant investment of time and effort, I was able to develop KYCID with
a clean code structure (in accordance with the principles of clean architecture), which
allows the code to evolve and be maintained.

In addition, the testing strategy has been followed more closely, with the implementa-
tion of unit, acceptance and integration tests that are relatively comprehensive. How-
ever, due to a lack of time and the necessary setup to get started, no end-to-end tests
could be set up and were replaced by manual tests.

In terms of operational functionality, the system can be readily configured via the vari-
able environment, as detailed in the user manual (see section A.4). The configuration
options allow the user to select and configure various aspects of the system, including
persistence, email and SMS sending, and HTTPS server configuration.

Persistence has twomodes: the first is in-memory, where all data is stored inmemory (a
useful feature for testing anddevelopment purposes), and the second is postgres, where
all data is stored in the database with the same name. In terms of email transmission,
there are twomodes: a "fakemode,"which logs the email to the console (used for testing
and development), and an SMTP mode, which sends an email using this protocol.

With regard to SMS transmission, there are also two modes: a "fake mode," which is
similar to sending email, and a Swisscom mode, which uses the Text Messaging (SMS)
service to send SMS.

In terms of functionality, the main features are present, namely a connection system
with email verification, a brute force protection system for passwords and codes en-
tered, and a procedure for sending emails and text messages. Additionally, a session
system, as well as user verification by SMS, identity verification with ID card/passport
scanning, document MRZ with validation by admin, and connection via OAuth2 autho-
risation flow are included.

Nevertheless, certain functionalities are absent, including PKCE security, password re-
set, request to forget, and a CSV export system for billing the service to the customer.

23





7. Conclusion

KYCID is a pre-production prototype. There are numerous avenues for further devel-
opment. In particular, we may cite the non-implemented functionalities mentioned in
the results (see results 6).

The potential enhancementsmay be found in the AI, whichwould permit the human to
be assisted in his task of detecting fraud in the verification of identity documents. This
would permit the process to be enhanced and industrialised, for instance, to pre-filter
the profile for human validation.

Similarly, to ascertain that it is indeed theholder’s identity card,weutilise a face-challenge.
We can envisage more complex face-challenges, such as live actions (using a video
stream instead of photos).

Another area for improvement is the operational aspect, in particular the introduction
of an observability/monitoring system with security audit logs. In addition, an admin-
istration system should be implemented to enable the client application to register, and
a billing and payment system should be developed. This project has considerable po-
tential for further development.

To conclude on a more personal note and to draw some experience from this project,
it can be observed that even a project that seems simple because it’s an idea that can be
quickly explained can reveal unexpected complexities and workloads.

This is particularly evident in terms of planning, where the tasks may not seem com-
plicated at first sight, but they are very numerous and, furthermore, the number of
tasks is underestimated due to poor identification. It is therefore of great importance
to utilise planning tools in order to ensure that the project remains on track. Theproject
management issues encountered in this thesis can be categorised into two distinct cat-
egories.

The first of these is that when a project is behind schedule, the necessity to catch up
tends to result in a reduction in the rigour of maintenance for documentation, sched-
ules and tests. This reduction in quality will ultimately lead to a loss of work efficiency,
which will accentuate the delay (negative cycle). The challenging aspect of this is that
the loss of efficiency is only visible weeks later.

Secondly, experience plays a crucial role, particularly in terms of taking a step back and
not wanting to go too fast on certain tasks while not dragging your feet. This is not a
simple balance to achieve.

25





Bibliography

[1] Authenticated and encrypted API tokens. URL: https://branca.io/.
[2] DeepL Translate: The world’s most accurate translator. URL: https://www.deepl.

com/translator.
[3] DeepLWrite: AI-powered writing companion. URL: https://www.deepl.com/write.
[4] MartinFowler.Bliki: Test driven development. Dec. 11, 2023.URL: https://martinfowler.

com/bliki/TestDrivenDevelopment.html.
[5] Martin Fowler. Given When Then. Aug. 21, 2013. URL: https://martinfowler.

com/bliki/GivenWhenThen.html.
[6] MartinFowler.ThePractical Test Pyramid. Feb. 26, 2018.URL: https://martinfowler.

com/articles/practical-test-pyramid.html.
[7] GNU Taler. URL: https://taler.net/fr/.
[8] Dick Hardt. The OAuth 2.0 Authorization Framework. Tech. rep. 6749. Oct. 2012.

76 pp. DOI: 10.17487/RFC6749. URL: https://www.rfc- editor.org/info/
rfc6749.

[9] loi sur les établissements financiers (LEFin). Jan. 1, 2020.URL: https://www.fedlex.
admin.ch/eli/cc/2018/801/fr.

[10] Loi sur les télécommunications (LTC). Jan. 1, 2021. URL: https : / / www . fedlex .
admin.ch/eli/oc/2020/1019/fr.

[11] Fauchère Loïc. “KYC-procedures as a service”. Bachelor’s thesis. Berner Fach-
hochschule, June 2023.

[12] Robert C. Martin. The Clean Architecture. Aug. 13, 2012.
[13] Nix and NixOS. URL: https://nixos.org.
[14] TWINT. URL: https://twint.ch.

27

https://branca.io/
https://www.deepl.com/translator
https://www.deepl.com/translator
https://www.deepl.com/write
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/bliki/GivenWhenThen.html
https://martinfowler.com/bliki/GivenWhenThen.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://taler.net/fr/
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.fedlex.admin.ch/eli/cc/2018/801/fr
https://www.fedlex.admin.ch/eli/cc/2018/801/fr
https://www.fedlex.admin.ch/eli/oc/2020/1019/fr
https://www.fedlex.admin.ch/eli/oc/2020/1019/fr
https://nixos.org
https://twint.ch




List of Figures

1.1. eKYC by SMS challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Process of SMS Challenge for eKYC . . . . . . . . . . . . . . . . . . . . 3
1.3. Specimen Machine Readable Zone (MRZ) . . . . . . . . . . . . . . . . . 4
1.4. Face challenge exemple . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Top-level project overview . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Top-level project sequence flow . . . . . . . . . . . . . . . . . . . . . . 8
2.3. System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. OAuth2 authorization flow sequence . . . . . . . . . . . . . . . . . . . . 12

4.1. DDD Strategical concept vs Tactical concept . . . . . . . . . . . . . . . . 15
4.2. Software Layer architecture . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1. TDD Developpment Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2. Diamond testing strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 20

29





List of Tables

1.1. Project Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1. Roles in OAuth2 Framework . . . . . . . . . . . . . . . . . . . . . . . . 12

A.1. KYCID Software Dependencies . . . . . . . . . . . . . . . . . . . . . . . 39

31





Listings

A.1. Multi-user nix install on Linux . . . . . . . . . . . . . . . . . . . . . . . 39
A.2. Nix install on MacOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.3. Single-user nix install on Linux . . . . . . . . . . . . . . . . . . . . . . 40
A.4. Enabled Nix Flake feature . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.5. Disposable dev environment shell . . . . . . . . . . . . . . . . . . . . . 40
A.6. Production environment install . . . . . . . . . . . . . . . . . . . . . . 41
A.7. All Environment Variable and .env.sample . . . . . . . . . . . . . . . . 41
A.8. Setup local postgres server . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.9. Fake SMTP Server for developpment . . . . . . . . . . . . . . . . . . . . 43
A.10. Usage command cheatsheet . . . . . . . . . . . . . . . . . . . . . . . . 43

33





Glossary

Access Token An authorization token allowing access to a resource

CSPRNG Cryptographically-safe pseudo random generator

CSRF Cross-site request forgery is well-know HTTP vulnerability

eKYC electronic KYC

Endpoint URL on which we can access frommachine to machine (API)

KYC acronym for Know your Customer is a set of practices aimed at verifying user
identity

KYCID eKYC-as-a-Service web platform developed in this thesis and acronym of Know
your customer’s ID

MRZ Zone on an identity card or passport where all the information on the document
is encoded and easily scannable

OAuth2 An HTTP-based communication protocol and framework for granting third-
party access to resources

OCR Optical character recognition is an algorithm / process for extracting text from
an image / scan

Scopes List of strings specifying the resources the client wants to access

35



36



Declaration of Authorship

I hereby declare that I have written this thesis independently and have not used any
sources or aids other than those acknowledged.

All statements taken fromotherwritings, either literally or in essence, havebeenmarked
as such.

I hereby agree that the present work may be reviewed in electronic form using appro-
priate software.

June 13, 2024
Y. Doy

37





A. User Manual

A.1. Requirement

The following software is required for the deployment of KYCID:

Dependencies Version Comment

Deno >= 1.43 KYCID Runtime environement

Postgres compatible with 15 database

Tesseract compatible with 5.3 OCR Engine for Card or Passport Scanning

Nix any with flake feature Environement manager, optional

Mailcatcher any fake SMTP server with webUI, only for dev

TexLive with BFH template only for compiling documentation

Table A.1.: KYCID Software Dependencies

It is possible to install these dependencies independently, in accordance with the usual
installation procedure. In this case, it is not necessary to install Nix. Alternatively,
the guide below provides instructions on how to install Nix and use it to set up the
environment.

A.2. Nix setup

Nix is a packet manager [13], which allows the user to create immutable and repro-
ducible builds.


It is important to note that Nix, as a packet manager, is distinct from NixOS,
a Linux distribution that employs Nix as a general packet manager.

To install nix you can just run install with following command:

Listing A.1: Multi-user nix install on Linux

39



A. User Manual

•••
student@ubuntu:~$ sh <(curl -L https://nixos.org/nix/install) --daemon

The installer will run interactively and pose a series of questions. Once the installation
process is complete, it is necessary to restart the terminal. If the user is using a Mac,
the following command should be executed:

Listing A.2: Nix install on MacOS

•••
student@macintosh:~$ sh <(curl -L https://nixos.org/nix/install)

In addition, should you wish to avoid installing the Nix system for all users, you may
opt to install it in single user mode via the following command:

Listing A.3: Single-user nix install on Linux

•••
student@ubuntu:~$ sh <(curl -L https://nixos.org/nix/install) --no-daemon

It should be noted that, in order to utilise the Flake feature, which has been designated
as experimental, it is necessary to perform the requisite activation procedure.


Despite the note on the flake functionality as experimental, this is not the
case. It is a significant change, and the features are named as such for the
sake of Nix retro-compatibility. The functionality is widely stable and used.

Run the following command to enabled NIX Flake feature (the same on Linux and Ma-
cOS):

Listing A.4: Enabled Nix Flake feature

•••
student@macintosh:~$ mkdir -p ~/.config/nix # to be sure that folder exists
student@macintosh:~$ echo ’experimental-features␣=␣nix-command␣flakes’ >

~/.config/nix/nix.conf

A.3. Environment setup

To set up the environment for execution, simply install the various dependencies listed
in the software requirement section. With NIX, the following command will suffice:

Listing A.5: Disposable dev environment shell

40

@
~
@
~
@
~
@
~
@
~


A.4. Configuration

•••
student@macintosh:~$ cd /path/to/projet
student@macintosh:~$ nix develop
student@macintosh:~$
student@macintosh:~$# without TexLive
student@macintosh:~$ nix shell .#deno .#tesseract .#postgresql .#mailcatcher

This command will start a shell in which the dependencies will be available. This will
ensure that they do not conflict with the rest of the system. Once the shell is closed, the
applications will still be stored in the Nix cache, but they will not be accessible in the
PATH.


Please note that this shell will have ALL the dependencies, including those
used only in development such as TexLive (> 4GB), Mailcatcher or Postgres
(as long as you already have a Postgres server elsewhere).


Please be aware that only the binaries and the library are installed, and no
configuration file will be generated on your system or any daemon started.

In order to install only the dependencies in production, the following commands must
be executed:

•••
student@macintosh:~$ cd /path/to/projet
student@macintosh:~$## Global install on system
student@macintosh:~$ nix profile install ".#deno" ".#tesseract"

".#postgresql"
student@macintosh:~$## Local install on current shell
student@macintosh:~$ nix shell ".#deno" ".#tesseract" ".#postgresql"

Listing A.6: Production environment install

A.4. Configuration

The configuration of all elements takes place via environment variables. It is possible
to log these variables in a file with the extension .env.
#
# HTTPS
#
HTTPS_HOST="0.0.0.0" # hostname or ip
HTTPS_PORT="443" # listening port
HTTPS_KEY="./src/http/ca-key.dev.pem" # path to TLS cer t i f i ca te key
HTTPS_CERT="./src/http/ca-cert.dev.pem" # path to TLS cer t i f i ca te

#
# MAILER
#

41

@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~


A. User Manual

MAILER="smtp" # mailer type either "smtp" or " fake" ( for test or dev)
SMTP_HOST="127.0.0.1"
SMTP_TLS=1 # only i f enabled TLS (remove variable to disable )
SMTP_PORT="1025"
#SMTP_USER="kycid@smtp . local " # SMTP connection auth user
#SMTP_PASS="smtp_password" # SMTP connection auth password
SMTP_FROM="kycid@smtp.local" # email as sender

#
# SMS PROVIDER ( https : / / d ig i ta l . swisscom .com)
#
SMS_PROVIDER="swisscom" # sms provider type either "swisscom" or " fake" ( for test or dev)
SWISSCOM_SMS_TOKEN_ENDPOINT=https://api.swisscom.com/oauth2/token
SWISSCOM_SMS_MESSAGE_ENDPOINT=https://api.swisscom.com/messaging/sms
SWISSCOM_SMS_CLIENT_ID=client-id
SWISSCOM_SMS_CLIENT_SECRET=client-secret

#
# PERSISTENCE
#
PERSISTANCE="postgres" # persistance type either "postgres" or "memory" ( for test or dev)
PGHOST="127.0.0.1"
PGDATABASE="kycid"
PGUSER="ydo"
PGAPPNAME="kycid"

#
# TESSERACT
#
TESSERACT_PATH=/path/to/bin/tesseract

Listing A.7: All Environment Variable and .env.sample

A.5. Postgres

•••
student@macintosh:~$ initdb -D pgdata # pgdata is path to a folder that hold server

files
student@macintosh:~$ postgres -D $PWD/pgdata --listen_addresses=’127.0.0.1’ &
student@macintosh:~$ export PGHOST=127.0.0.1
student@macintosh:~$ export PGUSER=<your user>
student@macintosh:~$ export PGDATABASE=<database name>
student@macintosh:~$ export PGAPPNAME=kycid
student@macintosh:~$ createdb $PGDATABASE
student@macintosh:~$ cd /path/to/project
student@macintosh:~$ deno task nessie migrate # to run migration

Listing A.8: Setup local postgres server

42

@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~


A.6. SMTP

A.6. SMTP

•••
student@macintosh:~$ mailcatcher --ip 127.0.0.1 --smtp-port 1025 --http-port

1080 --foreground

Listing A.9: Fake SMTP Server for developpment


Access to the email messages sent via this fake SMTP server is available via
a web interface at the following address: http://127.0.0.1:1080.

A.7. Usage

•••
student@macintosh:~$# MIGRATE POSTGRES SCHEMA
student@macintosh:~$ deno task nessie migrate
student@macintosh:~$
student@macintosh:~$# RUN DEV SERVER (AUTO RELOAD ON FILE CHANGE)
student@macintosh:~$ deno task dev
student@macintosh:~$
student@macintosh:~$# RUN PRODUCTION SERVER
student@macintosh:~$ deno run --allow-all src/http/main.ts
student@macintosh:~$
student@macintosh:~$# COMPILE LaTeX thesis (only on dev env)
student@macintosh:~$ cd docs
student@macintosh:~$ bfhlatex thesis

Listing A.10: Usage command cheatsheet

43

@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~
@
~

	Abstract
	Acknowledgement
	Introduction
	Problematics
	Roles
	OAuth2
	SMS Challenge for eKYC
	Document and Face challenge for eKYC
	Product vision

	Architecture
	Top-level overview
	System architecture

	Security
	Cryptography
	OAuth2 Framework
	Cross-site request forgery
	Client authentification

	Design
	Approach
	Technologies
	Clean architecture
	Domain layer
	Application layer
	Infrastructure and presentation layer

	Testing
	Strategy
	Unit tests
	Acceptance tests
	Integration tests
	End-to-end tests

	Results
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Listings
	Glossary
	User Manual
	Requirement
	Nix setup
	Environment setup
	Configuration
	Postgres
	SMTP
	Usage


