Pellian sequence relationships among π , e, $\sqrt{2}$

J. V. Leyendekkers¹ and A. G. Shannon²

¹ Faculty of Science, The University of Sydney Sydney, NSW 2006, Australia

² Faculty of Engineering & IT, University of Technology Sydney, NSW 2007, Australia e-mails: tshannon38@gmail.com, anthony.shannon@uts.edu.au

Abstract: The numerators and denominators of the convergents of the continued fractions of π , *e* and $\sqrt{2}$ are shown to be elements of second order recurrence sequences of the Pellian or Fibonacci variety which are related to Pythagorean triples ($c^2 = b^2 + a^2$, b > a). π and $\sqrt{2}$ have surprisingly similar structures except that $\sqrt{2}$ has primitive Pythagorean triples with c - b = 1 or b - a = 1, whereas π has c - b even and not constant and b - a not constant, although the right-end-digits are constant.

Keywords: Integer structure analysis, Modular rings, Prime numbers, Fibonacci numbers, Infinite series, Pell sequence, Continued fractions, Primitive Pythagorean triples, Right-end-digits. **AMS Classification:** 11A41, 11A55, 11A07.

1 Introduction

We have recently shown that

$$\pi = 2\sqrt{2}Q \tag{1.1}$$

where Q is the ratio of the quarter circumference of a circle to the side of the inscribed square [13]. Here we extend the study to the structure of the irrationals e and $\sqrt{2}$ and compare with π . The first six convergents of their continued fractions are set out in Table 1.

Number	Convergents						
$\sqrt{2}$	1	3	7	17	41	99	
	1	2	5	12	29	70	
-	3	22	333	355	103993	104348	
п	1	7	106	113	33102	33215	
	2	3	8	11	19	87	
e	1	1	3	4	7	32	

Table 1. First six convergents for $\sqrt{2}$, π and e

2 The convergents for $\sqrt{2}$

The convergents $\frac{N}{D}$ from the first row of Table 1 satisfy the second order linear recurrence relations [8]:

$$N_{n+1} = 2N_n + N_{n-1}, D_{n+1} = 2D_n + D_{n-1}.$$
(2.1)

with initial terms 1 and 3 in the numerators $\{N_n\}$, and 1 and 2 in the denominators $\{D_n\}$ (the standard Pell sequence [8]).

From the relationship between the Pell and Pell-Lucas sequences [8], it has been shown [12] that Pellian sequences can be generated from the z-j grid [11] set up to characterise Pythagorean triples (Table 2)

$$c^2 = b^2 + a^2, b > a$$

Two questions arise:

- Are the sequences, $\{N_n\}$ and $\{D_n\}$ related to primitive Pythagorean triples (pPts)?, and
- Are there similar structures for π and e?

ζ=	= c - b, b > a	С	в	а	y = b - a
odd	$(2K-1)^2$	$\frac{j^2 + (j + z^{\frac{1}{2}})^2}{d^2 + f^2}$	$\frac{2j(j+z^{\frac{1}{2}})}{2df}$	$z^{last {2}}(2j+z^{last {2}}) \ f^2 - d^2$	$2j^2-z$
even	2 <i>K</i> ²	$\frac{\left[\left(\frac{1}{2}z\right)^{\frac{1}{2}}+2j-1\right]^{2}+\frac{1}{2}z}{d^{2}+f^{2}}$	$\frac{\left[\left(\frac{1}{2}z\right)^{\frac{1}{2}}+2j-1\right]^{2}-\frac{1}{2}z}{f^{2}-d^{2}}$	$[(\frac{1}{2}z)^{\frac{1}{2}}+2j-1] \times 2(\frac{1}{2}z)^{\frac{1}{2}}$ 2df	$(2j-1)^2 - z$

Table 2. *z*–*j* grid for Pythagorean triples: *j* is the integer counter;

criterion for generating pPts is $(j, z^{\frac{1}{2}}) = 1$ when z > 1; if z = 1 only pPts are obtained.

The elements of the numerator sequence, $\{N_n\}$, are all odd and it is found that they equal d (= j) for pPts with z = 1 (Table 3).

n	d = j	$f=j+z^{\frac{1}{2}}$	pPts	$y=2j^2-z$	$z=2j^2-y$
1	1	2	5, 4, 3	1	1
2	3	4	25, 24, 7	17	1
3	7	8	113, 112, 15	97	1
4	17	18	613, 612, 35	577	1
5	41	42	3445, 3444, 83	3361	1
6	99	100	19801, 19800, 199	19601	1
7	239	240	114721, 114720, 479	114241	1
8	577	578	667013, 667012, 1155	665857	1

Table 3. Numerators and pPts

The sequences $\{f\}$ and $\{y\}$ are not present in [18]. However, $\{f\} \equiv \{2u_n\}$ where

$$u_{n+1} = 2u_n + u_{n-1} - 1.$$

a Pellian non-homogeneous second order recurrence relation with initial terms, 1 and 2 [7]. That is, $\{f\}$ satisifies

$$f_{n+1} = 2f_n + f_{n-1} - 2$$

The other internal parameters are z = 1, and y (c - b) which also satisfies a Pellian non-homogeneous recurrence relation:

$$y_{n+1} = 6y_n - y_{n-1} + a \tag{2.2}$$

in which

$$a = \begin{cases} -4 & n \text{ even,} \\ 12 & n \text{ odd.} \end{cases}$$

The elements of the sequence of denominators, $\{D_n\}$, equal d, f pairs for pPts with y(b-a) = 1 (Table 4).

п	d = j	$f = j + z^{\frac{1}{2}}$	pPts	z	\sqrt{z}	у
1, 2	1	2	5, 4, 3	1	1	1
3, 4	5	12	169, 120, 119	49	7	1
5,6	29	70	5741, 4060, 4059	1681	41	1
7, 8	169	408	195025, 137904, 137903	57121	239	1

Table 4. Denominators and pPts

Again we can find Pellian-type recurrence relations; for instance, $\{\sqrt{z}\}$ satisfies (2.2) with a = 0.

3 Convergence of *e* and π

The convergents of e in the third row of Table 1 oscillate between Pellian and Fibonacci sequences (Table 5).

n	1,2,3	2,3,4,5	4,5,6
Recurrence relation	$N_n = 2N_{n-1} + N_{n-2}$	$N_n = N_{n-1} + N_{n-2}$	$N_n = 4N_{n-1} + N_{n-2}$
Туре	Pellian	Fibonacci	Pellian

Table 5. Recurrence relations for convergents of e

The convergents of π in the second row of Table 1 also oscillate between Pellian and Fibonacci sequences (Table 6).

п	1,2,3	2,3,4	3,4,5	4,5,6
Recurrence relation	$N_n = 15N_{n-1} + N_{n-2}$	$N_n = N_{n-1} + N_{n-2}$	$N_n = 292N_{n-1} + N_{n-2}$	$N_n = N_{n-1} + N_{n-2}$
Туре	Pellian	Fibonacci	Pellian	Fibonacci

Table 6. Recurrence relations (Rr) for convergents of π

The Pellian-type sequences are again associated with pPts. For example, for π the first two N_n are the *d* and *f* of the triple: {493, 475, 132} with z = 18 and y = 343. If N_3 (333) is

taken as *d*, then the triple is {757305, 535527, 535464} with z = 221778 (18 × 12321) and y = 63. When $D_n = 7$, 106 for *d* and *f*, this yields the triple {11285, 11187, 1484} with z = 98 and y = 9703. The value of *z* is even and has a right-end-digit (RED) of 8 while *y* has a RED of 3. The REDs remain constant while the values of *z* and *y* vary. This is in contrast to the $\sqrt{2}$ system where z = 1 for $\{N_n\}$ and y = 1 for $\{D_n\}$.

The continued fraction for π is:

$$\pi = 3 + \frac{1}{7+15} + \frac{1}{1+292} + \frac{1}{1+1} + \frac{1}{1+1} + \frac{1}{1+2} + \frac{1}{1+3} + \frac{1}{1+1} + \frac{1}{$$

The occurrence of 15, 1 and 292, 1 and 2, 1 in the partial quotients and the coefficients in the Pellian-type recurrence relations invites further investigation. These partial quotients, unlike those for e and $\sqrt{2}$, have not been found to obey any simple laws [2]. It is somewhat surprising then that the Pellian relations for e and π have similar patterns which are a mix of the second order recurrence relations [14]. The recurrence relations associated with $\sqrt{2}$ follow different patterns in their links with pPts, in contrast to those of e and π .

4 Concluding comments

Topics for further research readily emerge. For instance, if we take the recurrence relation (2.2) and generalize it to the homogeneous form

$$w_{m,n} = 6w_{m,n-1} - w_{m,n-2} \tag{4.1}$$

with initial conditions $w_{m,1} = 1, w_{m,2} = m, m = 1, 2, ..., 7$, we get the tableau in Table 7:

n m	1	2	3	4	5	6	Reference
1	1	1	5	29	169	985	[5]
2	1	2	11	64	373	2174	[4]
3	1	3	17	99	577	3363	[9]
4	1	4	23	134	781	4552	[1]
5	1	5	29	169	985	5741	[5]
6	1	6	35	204	1189	6930	[6]
7	1	7	41	239	1393	8119	[15]
Δ_2	0	1	6	35	204	1189	[6]

Table 7. Examples of recursive sequence defined by (4.1);

$$\Delta_2 W_{m,n} = W_{m+1,n} - W_{m,n}$$

We notice that

$$w_{m,n} = w_{m-1,n} + w_{6,n-1}, \tag{4.2}$$

and if $\Delta_1 w_{m,n} = w_{m,n+1} - w_{m,n}$, then $\Delta_1 w_{m,6} = w_{6,5m}$ and $\Delta_2 w_{6,n} = w_{5,n+1}$.

To what extent can these results be generalized?

References

- [1] Adler, I. Thre Diophantine Equations Part II. *The Fibonacci Quarterly*. Vol. 7, 1969, 181–193.
- [2] Ball, W. W. R., H. S. M. Coxeter. *Mathematical Recreations and Essays*. New York, Macmillan, 1956.
- [3] Berge, C. Principles of Combinatorics. New York: Academic Press, 1971.
- [4] Emerson, E. I. Recurrent Sequences in the Equation $DQ^2 = R^2 + N$. *The Fibonacci Quarterly*. Vol. 7, 1969, 231–242.
- [5] Fielder, D. C. Special Integer Sequence Controlled by Three Parameters. *The Fibonacci Quarterly*. Vol. 6, 1968, 64–70.
- [6] Forder, H. G. A Simple Proof of a Result on Diophantine Approximations. *The Mathematical Gazette*. Vol. 47, 1963, 237–238.
- [7] Horadam, A. F., A. G. Shannon. Asveld's polynomials, in A. N. Philippou, A. F. Horadam and G. E. Bergum (eds.), *Applications of Fibonacci Numbers*, Dordrecht, Kluwer, Vol. 3, 1988, 163–176.
- [8] Horadam, A. F., A. G. Shannon. Pell-type number generators of Pythagorean triples, in G. E. Bergum et al (eds.), *Applications of Fibonacci Numbers*, Dordrecht, Kluwer, Vol. 5, 1993, 331–343.
- [9] Lehmer, D. H. A Cotangent Analogue of Continued Fractions. *Duke Mathematical Journal*. Vol. 4, 1935, 323–340.
- [10] LeVeque, W. J. Fundamentals of Number Theory. Reading, MA: Addison-Wesley, 1977.
- [11] Leyendekkers, J. V., J.M. Rybak. The Generation and Analysis of Pythagorean Triples within a Two-parameter Grid. *International Journal of Mathematical Education in Science and Technology*. Vol. 26, 1995, 787–793.
- [12] Leyendekkers, J. V., J. M. Rybak. Pellian Sequences Derived from Pythagorean Triples. *International Journal of Mathematical Education in Science and Technology*. Vol. 26, 1995, 903–922.
- [13] Leyendekkers, J. V., A. G. Shannon. The Structure of π (submitted).
- [14] Mack, J. M. The Continued Fraction Algorithm. *Bulletin of the Australian Mathematical Society*. Vol. 3, 1970, 413–422.
- [15] Newman, M., D. Shanks, H. C. Williams. Simple Groups of Square order and an Interesting Sequence of Primes. *Acta Arithmetica*. Vol. 2, 1980/81, 129–140.
- [16] Roberts, J. *Lure of the Integers*. Washington, DC: Mathematical Association of America, 1992.
- [17] Shannon, A. G., A. F. Horadam, Arrowhead Curves in a Tree of Pythagorean Triples. *International Journal of Mathematical Education in Science and Technology*. Vol. 25, 1994, 255–261.
- [18] Sloane, N. J. A., S. Plouffe. *The Encyclopedia of Integer Sequences*. San Diego: Academic Press, 1995.