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Abstract: The numerators and denominators of the convergents of the continued fractions of 

π, e and 2  are shown to be elements of second order recurrence sequences of the Pellian or 

Fibonacci variety which are related to Pythagorean triples (c2 = b2 + a2, b > a). π and 2  have 

surprisingly similar structures except that 2  has primitive Pythagorean triples with c – b = 1 
or b – a = 1, whereas π has c – b even and not constant and b – a not constant, although the 
right-end-digits are constant. 
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1 Introduction 

We have recently shown that  

 π = 2 2 Q (1.1) 

where Q is the ratio of the quarter circumference of a circle to the side of the inscribed square 

[13]. Here we extend the study to the structure of the irrationals e and 2  and compare with π. 
The first six convergents of their continued fractions are set out in Table 1.  
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Table 1. First six convergents for 2 , π and e 
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2 The convergents for 2  

The convergents 
D
N  from the first row of Table 1 satisfy the second order linear recurrence 

relations [8]: 
 .2,2 1111   nnnnnn DDDNNN  (2.1) 

with initial terms 1 and 3 in the numerators {Nn}, and 1 and 2 in the denominators {Dn} (the 
standard Pell sequence [8]). 

From the relationship between the Pell and Pell-Lucas sequences [8], it has been shown 
[12] that Pellian sequences can be generated from the z–j grid [11] set up to characterise 
Pythagorean triples (Table 2) 

c2 = b2 + a2, b > a  

Two questions arise:  
 Are the sequences, {Nn} and {Dn} related to primitive Pythagorean triples (pPts)?, and  
 Are there similar structures for π and e? 
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Table 2. z–j grid for Pythagorean triples: j is the integer counter; 
criterion for generating pPts is (j, z½) = 1 when z > 1; if z = 1 only pPts are obtained. 

The elements of the numerator sequence, {Nn}, are all odd and it is found that they equal 
d (= j) for pPts with z = 1 (Table 3). 

 

n d = j f = j + z½ pPts y = 2j2 – z z = 2j2 – y 

1 1 2 5, 4, 3 1 1 
2 3 4 25, 24, 7 17 1 
3 7 8 113, 112, 15 97 1 
4 17 18 613, 612, 35 577 1 
5 41 42 3445, 3444, 83 3361 1 
6 99 100 19801, 19800, 199 19601 1 
7 239 240 114721, 114720, 479 114241 1 
8 577 578 667013, 667012, 1155 665857 1 

Table 3. Numerators and pPts 

The sequences {f} and {y} are not present in [18]. However, {f} ≡ {2un} where 

.12 11   nnn uuu  

a Pellian non-homogeneous second order recurrence relation with initial terms, 1 and 2 [7].  
That is, {f} satisifies 
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.22 11   nnn fff  

The other internal parameters are z = 1, and y (c – b) which also satisfies a Pellian non-
homogeneous recurrence relation: 
 ayyy nnn   11 6  (2.2) 

in which  
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The elements of the sequence of denominators, {Dn}, equal d, f pairs for pPts with 
y (b – a) = 1 (Table 4). 

n d = j f = j + z½ pPts z z  y 

1, 2 1 2 5, 4, 3 1 1 1 
3, 4 5 12 169, 120, 119 49 7 1 
5, 6 29 70 5741, 4060, 4059 1681 41 1 
7, 8 169 408 195025, 137904, 137903 57121 239 1 

Table 4. Denominators and pPts 

Again we can find Pellian-type recurrence relations; for instance, { z } satisfies (2.2) 
with a = 0. 

3 Convergence of e and π 

The convergents of e in the third row of Table 1 oscillate between Pellian and Fibonacci 
sequences (Table 5). 

n 1,2,3 2,3,4,5 4,5,6 
Recurrence 

relation 212   nnn NNN  21   nnn NNN  214   nnn NNN  

Type Pellian Fibonacci Pellian 

Table 5. Recurrence relations for convergents of e 

The convergents of π in the second row of Table 1 also oscillate between Pellian and 
Fibonacci sequences (Table 6). 
 

n 1,2,3 2,3,4 3,4,5 4,5,6 
Recurrence 

relation 2115   nnn NNN
 

21   nnn NNN
 

21292   nnn NNN
 

21   nnn NNN
 

Type Pellian Fibonacci Pellian Fibonacci 

Table 6. Recurrence relations (Rr) for convergents of π 

The Pellian-type sequences are again associated with pPts. For example, for π the first 
two Nn are the d and f of the triple: {493, 475, 132} with z = 18 and y = 343. If N3 (333) is 
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taken as d, then the triple is {757305, 535527, 535464} with z = 221778 (18  12321) and 

y = 63. When Dn = 7, 106 for d and f, this yields the triple {11285, 11187, 1484} with z = 98 
and y = 9703. The value of z is even and has a right-end-digit (RED) of  8 while y has a RED 

of 3. The REDs remain constant while the values of  z and y vary.  This is in contrast to the 2  

system where z = 1 for {Nn} and y = 1 for {Dn}. 
 The continued fraction for π is: 
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The occurrence of 15, 1 and 292, 1 and 2, 1 in the partial quotients and the coefficients in the 
Pellian-type recurrence relations invites further investigation. These partial quotients, unlike 

those for e and 2 , have not been found to obey any simple laws [2]. It is somewhat 
surprising then that the Pellian relations for e and π have similar patterns which are a mix of 

the second order recurrence relations [14]. The recurrence relations associated with 2  follow 
different patterns in their links with pPts, in contrast to those of e and π. 

4 Concluding comments 

Topics for further research readily emerge. For instance, if we take the recurrence relation (2.2) 
and generalize it to the homogeneous form 

 2,1,, 6   nmnmnm www  (4.1) 

with initial conditions ,,1 2,1, mww mm  m = 1,2,…,7, we get the tableau in Table 7: 

n 
m 

1 2 3 4 5 6 
Reference 

1 1 1 5 29 169 985 [5] 
2 1 2 11 64 373 2174 [4] 
3 1 3 17 99 577 3363 [9] 
4 1 4 23 134 781 4552 [1] 
5 1 5 29 169 985 5741 [5] 
6 1 6 35 204 1189 6930 [6] 
7 1 7 41 239 1393 8119 [15] 

2  0 1 6 35 204 1189 [6] 

Table 7. Examples of recursive sequence defined by (4.1); 

nmnmnm www ,,1,2    

We notice that 
 ,1,6,1,   nnmnm www  (4.2) 

and if nmnmnm www ,1,,1   , then mm ww 5,66,1   and  .1,5,62  nn ww  

 To what extent can these results be generalized? 
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