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ABSTRACT: 

 

Rapid urban development between the 1960 and 2010 decades have changed the urban landscape and pattern in the Kowloon 

Peninsula of Hong Kong. This paper aims to study the changes of urban morphological parameters between the 1985 and 2010 and 

explore their influences on the urban heat island (UHI) effect. This study applied a mono-window algorithm to retrieve the land 

surface temperature (LST) using Landsat Thematic Mapper (TM) images from 1987 to 2009. In order to estimate the effects of local 

urban morphological parameters to LST, the global surface temperature anomaly was analysed. Historical 3D building model was 

developed based on aerial photogrammetry technique using aerial photographs from 1964 to 2010, in which the urban digital surface 

models (DSMs) including elevations of infrastructures and buildings have been generated. Then, urban morphological parameters 

(i.e. frontal area index (FAI), sky view factor (SVF)), vegetation fractional cover (VFC), global solar radiation (GSR), Normalized 

Difference Built-Up Index (NDBI), wind speed were derived. Finally, a linear regression method in Waikato Environment for 

Knowledge Analysis (WEKA) was used to build prediction model for revealing LST spatial patterns. Results show that the final 

apparent surface temperature have uncertainties less than 1 degree Celsius. The comparison between the simulated and actual spatial 

pattern of LST in 2009 showed that the correlation coefficient is 0.65, mean absolute error (MAE) is 1.24 degree Celsius, and root 

mean square error (RMSE) is 1.51 degree Celsius of 22,429 pixels. 

 

 

1. INTRODUCTION 

The surface temperature is one of the main urban climatic 

parameters (Voogt and Oke, 2003). Some studies have 

investigated the effect of urbanization to regional warming 

(Christy and Goodridge, 1995; Dai et al., 1999; Diem et al., 

2005; Lam, 2006; Lau and Ng, 2013). Hong Kong has the 

highest population density district in the world (Zhang, 2000). 

Understanding how the urban climatic changes caused by the 

past urban landscapes can permit planners and authorities to 

have the perspective for urban planning and design.  

 

Human activities changes the natural environment, which lead 

to the reductions of natural surface and long-wave emission of 

surface, release of atmosphere pollutants and waste heats. These 

artificial factors determine the urban climate (Oke, 1978; 

Landsberg, 1987; Goldreich, 1995; Gomez et al., 1998). 

Thermal remote sensing of urban surface temperatures observes 

land surface temperature (LST) effectively in related to the 

surface energy balance.  

 

Taha (1997) found the variations of surface albedo and 

vegetation cover are the controlling factors of climate. It has 

been proved that a negative correlation existed between 

Normalized Difference Vegetation Index (NDVI) and 

temperature (Chen et al. 2006, Zhang and Wang 2008), but a 

positive correlation is shown between Normalized Difference 

Build-up Index (NDBI) and temperature (Chen et al. 2006). 

Higher wind speed reduces the temperature differences inside 

the canopy layer due to inner atmospheric turbulent mixing and 

advection activity (Oke, 1982). Kolokotroni et al. (2006) 

investigated the upper limit of heat island intensity, which 

increased until a certain wind speed and then gradually declined 

as the wind speed increased.  

 

Currently, most researchers have focused on studying the spatial 

and temporal distribution, cause and effect, as well as the 

prediction model of the urban climate. This study aims to 

investigate the relationship between the urban morphology of a 

high density city and its urban climatic characteristics from a 

historical perspective. And, it will help predict the spatial 

distribution of urban surface temperature in the future based on 

the predictable morphologic factors. Our research team has 

developed historical 3D building morphological models 

between the 1964 and 2010. Following urban morphological 

parameters (i.e. FAI, SVF), VFC, NDBI, and GSR were 

calculated between the 1985 and 2010, LST data between the 

1987 and 2009 were retrieved from historical Landsat images 

data. Finally, a linear regression method in WEKA was used to 

predict spatial patterns of LST. 

 

2. STUDY AREA AND DATA USED 

The Kowloon Peninsula in Hong Kong (Figure 1), a highly 

urbanized with an area of 160 km2 and an average population 

density of 44,917 persons/km2 in 2011 (Population Census, 

2011), is selected as the study area. The Mongkok district in the 

Kowloon Peninsula has the largest population density in the 

world (130,000 persons/km2) (Boland, 2013). Kowloon has one 

large park (Kowloon Park) and a few small diverse urban parks, 

which separate built-up landscape in general. The topography is 

mainly flat, but goes up to 300 m in the northern of the 
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Peninsula. Since the core areas in Kowloon is over 3 km from 

the coast, it has been strongly believed that the “wall effect” 

prevents cool sea breezes from penetrating to the inner city. 

 

 

Figure 1. The study area: Kowloon Peninsula in Hong Kong 

(The right: DOM in 2014) 

 

Hong Kong is under humid sub-tropical climate. Daily mean air 

temperatures range generally between 16.1 °C to 28.7 °C, but 

some abnormal temperatures also occur, e.g. the lowest 

temperatures ever recorded by the Hong Kong Observatory 

(HKO) are 0.0 °C on 18 January 1893 (HKO, 2003).  

 

Table 1 shows that thermal infrared images acquired by Landsat 

4 and 5 TM and Landsat 7 ETM+ sensors from 1987 onwards 

were used to derive LST data, as well as images from Landsat 2, 

3, 4, 5 and 7 TM from 1975 onwards were used to calculate 

NDVI. In the previous study, buildings heights and buildings 

footprints data between the 1964 and 2010 were obtained from 

aerial photographs. 

 

Date (yyyy/mm/dd) Time 

(GMT) 

Spacecraft Cloud cover 

1975/12/24 02:10 Landsat 2 0% 

1979/10/19 02:10 Landsat 3 0% 

1987/12/08 02:20 Landsat 5 0% 

1990/12/24 02:17 Landsat 4 10% 

1995/12/30 01:54 Landsat 5 0% 

2000/11/01 02:42 Landsat 7 0% 

2005/11/23 02:40 Landsat 5 12% 

2009/12/04 02:42 Landsat 5 6% 

Table 1. Landsat images data between the 1975 and 2009 in 

Hong Kong 

 

3. LST RETRIEVAL 

In the study, the LST data were converted from the raw digital 

numbers (DN) in thermal infrared band 6 using the mono-

window algorithm. The calibration parameters on the satellite 

sensor and the Planck equation developed were used to 

calculate the brightness temperature. The parameters include 

upwelling and downwelling atmospheric radiances, atmospheric 

transmittance and surface emissivity. After atmospheric 

correction and emissivity calculation, surface temperature was 

calculated from brightness temperature. Specifically, LST at 30 

m spatial resolution from Landsat image data was retrieved 

through the following four steps: 

 

(1) Conversion from digital number to radiance 

The DN were transformed into radiances using the TM post-

calibration dynamic ranges provided by Markham and Barker 

(1986), which is described as: 

   

 L Gain DN Bias              (1)  

 

where  L  is the spectral radiance at the sensor's aperture, the 

Gain  and Bias are band-specific rescaling factors, which are 

obtained from the metafile of the image. 

 

(2) Land surface emissivity estimation 

 

The thermal infrared band emissivity were simulated as a 

weighted mean according to tabulated numbers published by 

Masuda et al. (1988) using: 
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where     is the narrowband emissivity based on land use 

type, such as impervious surface area, vegetation, buildings 

areas.  f   is the spectral response function (Markham and 

Barker, 1985). 

 

(3) Atmospheric correction 

 

The Top of Atmospheric (TOA) radiances were then converted 

to surface-leaving radiance by removing the effects of the 

atmosphere in the thermal region. Specifically,  the radiosonde 

launched near the study area at 0:00 GMT including 

geopotential, pressure, temperature, relative humidity and ozone 

profiles allow us to estimate the atmospheric transmissivity and 

atmospheric upwelling and downwelling radiances by 

MODTRAN 4.0 (Abreu and Anderson, 1996). The atmospheric 

profiles data with 27 pressure levels are provided by European 

centre for Medium-Range Weather Forecasts (ECMWF). 

Atmospheric data are available globally every 6 h and every 

0.125 degree in latitude and longitude. Then, surface-leaving 

radiance will be calculated using the following equation (Barsi 

et al., 2005). 

 

  1TL L L L                 (3) 

       

where 
TL  is the blackbody radiance of kinetic temperature T, 

L is the space-reaching or top-of-atmospheric radiance 

measured by the instrument, L   is the upwelling atmospheric 

radiance,   is the total atmospheric transmissivity between the 

surface and the sensor, L   is the downwelling atmospheric 

radiance, L   and L   were calculated using a radiative transfer 

code e.g. MODTRAN (Berk et al., 1989),   is the land surface 

emissivity. 

 

Date 

(yyyy/mm/dd) 

Transmittance Upwelling 

radiance 

Downwelling 

radiance 

1987/12/08 0.82 1.19 1.95 

1990/12/24 0.81 1.38 2.25 

1995/12/30 0.95 0.32 0.59 

2000/11/01 0.65 2.49 3.71 

2005/11/23 0.72 2.05 3.16 

2009/12/04 0.76 1.64 2.60 

Table 2. Atmospheric correction parameter 

 

(4) Surface temperature 
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Lastly, the radiances calculated were converted to surface 

temperature using the Landsat specific estimate of the Planck 

curve (Chander and Markham, 2003): 

 

  2 1ln 1 273.15BT K K L       (4)  

 

where 
BT  is the temperature in degree Celsius (°C), 

1K  and 

2K  are pre-launch calibration constants. For Landsat 5 TM, 

1K =607.76 Wm-2sr-1μm-1 and 
2K =1260.56 K; For Landsat 4 

TM, 
1K =671.62 Wm-2sr-1μm-1 and 

2K =1284.30 K; For Landsat 

7 TM, 
1K =666.09 Wm-2sr-1μm-1 and 

2K =1282.71 K; L  is the 

spectral radiance.  

 

To validate the atmospheric correction, sea surface temperature 

(SST) was calculated with emissivity of 1.0 in the years of 2005 

and 2009. SST retrieved and observed at the Waglan Island 

station are 23.7 °C and 23.1 °C in 2005, 19.1 °C and 19.9 °C in 

2009. The apparent surface temperatures have uncertainties less 

than 1 °C when the atmosphere is relatively clear. Figure 2 

shows the spatial distribution of the retrieved LST between the 

1987 and 2009, and densely high rise areas appear cool on 

daytime images, which is consistent with the previous study in 

Hong Kong (Nichol, 2005). 

 

 

 

 
Figure 2. Spatial pattern of LST in the Kowloon Peninsula at 30 

m spatial resolution (a): 1987; (b): 1990; (c): 1995; (d): 2000; 

(e): 2005; (f): 2009 

 

Many researches have suggested that increasing greenhouse 

gases may result in global warming. The effect of climate 

change on urban environment should be considered as 

composed by global and local urban climate change. From the 

Royal Netherlands Meteorological Institute (KNMI) climate 

explorer (http://www.climexp.knmi.nl), global mean 

temperature of Coupled Model Intercomparison Project Phase 

(CMIP5) monthly historical and Representative Concentration 

Pathways (RCPs)  are derived from mean value of multi-model 

(e.g. ACCESS1-0, BNU-ESM, CCSM4, CESM1-CAM5, 

CMCC-CM, CNRM-CM5), and give the temperature anomaly 

relative to the mean temperature of the 1951–1980 reference 

period. These data depict how much global region have been 

warmed or cooled compared with a base period of 1951-1980. 

The RCP database aims at documenting the emissions, 

concentrations, and land-cover change projections. In the study, 

the global mean temperature chosen is modelled using RCP 6.0, 

which is developed by the Asia-Pacific Integrated Model (AIM) 

modelling team at the National Institute for Environmental 

Studies (NIES) in Japan (Fujino et al., 2006; Hijioka et al., 

2008). Table 3 shows global temperature anomaly between the 

1987 and 2009 which can help to reduce the effect of global 

warming in the study area. 

 

Date (yyyy/mm/dd) Mean LST (°C) Global temperature 

anomaly (°C) 

1987/12/08 21.8 0.29 

1990/12/24 22.8 0.41 

1995/12/30 19.3 0.32 

2000/11/01 30.9 0.61 

2005/11/23 29.3 0.76 

2009/12/04 23.4 0.75 

Table 3. The mean LST and global temperature anomaly 

 

4. POTENTIAL IMPACT FACTORS 

4.1 VFC, NDBI  

The VFC and NDBI indices were used to characterize the land 

use and land cover (LULC) types and used to evaluate the 

quantitative relationships between LULC types and LST. NDVI 

was calculated using the following equation. 

 

 4 3

4 3

b b
NDVI

b b





                                  (5) 

 

where 
3b  is the reflectance value of red band (band 3) and 

4b  is 

the reflectance value of near-infrared band (band 4) from the 

Landsat images. The NDVI values range from −1 to 1, and 

positive values indicating vegetated areas, negative values 

signifying non-vegetated surface features. Gutman and Ignatov 

(1998) used a dense vegetation mosaic-pixel model to derive 

the VFC by scaled NDVI, which is defined as, 

 

 min

max min

NDVI NDVI
f

NDVI NDVI





   (6)                

                           

where minNDVI  and maxNDVI  correspond to the values of NDVI 

for bare soil and a surface with a VFC of 100%, respectively. In 

theory, minNDVI  should be zero for most soil types, but changes 

from -0.1 to 0.2 (Carlson and Ripley, 1997; Rundquist, 2002), 

due to the influences of many factors. maxNDVI  should be the 

max of NDVI, but subject to the spatial or temporal change, due 

to the influences of vegetation type. Thus, maxNDVI  and 
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minNDVI  are not fixed value (Kaufman and tanre, 1992; Qi et al., 

1994), even in the same image. According to the size of VFC, 

the medium-high (0.5< VFC ≤  0.7) and high (0.7 < VFC) 

vegetation cover were chosen as vegetation areas in the study.  

 

NDBI (Equation (7)) as an index is sensitive to the built-up area 

(Zha et al., 2003). 

 

 5 4

5 4

b b
NDBI

b b





                                                         (7)  

            

where 
5b  and 

4b  are the respective DN of mid-infrared band 

(band 5) and near-infrared band (band 4) of the Landsat images.  

 

 

4.2 SVF calculating using a raster DSM 

The SVF is defined by the ratio between radiation received 

from a flat surface and the entire hemispheric radiation 

environment (Watson and Johnson 1987). The range of the SVF 

is between 0 and 1, and closes to 1 in perfectly flat terrain, and 

decreases proportionally in these locations with obstructions 

such as buildings and trees, reaches to 0 in a completely 

obstructed location means that all outgoing radiation and 

received diffuse solar radiation will be intercepted by obstacles 

(Oke 1993; Brown and Grimmond 2001).  

 

The software of calculating the SVF can be downloaded from 

(IAPS ZRC SAZU, 2010), which is implemented using the 

remote sensing software ENVI+IDL (ITT Visual Information 

Solutions, 2010). In SVF calculation, the DSM data were 

resampled to 30 meter resolution for maintaining the consistent 

spatial scale with LST data and input into the software, 

searching radius is 90 m (3 pixels) in 16 directions. Figure 3 

shows the spatial distribution of SVF values in the study area. 

 

 

 

 

Figure 3. Spatial distribution of SVF at 30 spatial resolution. (a): 

1985; (b): 1990; (c): 1995; (d): 2000; (e): 2005; (f): 2010 

 

4.3 FAI derived from a GIS-based method 

For urban renewal study, it is essential to facilitate a measure to 

estimate wind condition in respects to the geometry and 

orientation of buildings.  

 

In the study, the frontal area (FA) was calculated by inputting 

raster data with the height information, wind direction, and 

backward flow coefficient in a GIS-based program. From the 

perspective of scale assimilation, buildings vector data was first 

converted to raster data at 30 m spatial resolution. Figure 4 

demonstrates the prototype of FAI calculation developed in 

ArcGIS Engine and Visual C# program environment based 

on .NET Framework platform.  

 

 
Figure 4. The parameter setting window of the FAI calculation  

 

The FAI is the total area of building facets projected to plane 

normal facing the particular wind direction. The FAI is the FA 

divided by the plane area (Burian et al., 2002; Grimmond and 

Oke, 1999; Wong et al., 2010) (Equation (8)) 

 

 _FAI FA Area grid     (8) 

 

Where FAI is the frontal area index, FA is the frontal area, 

Area_grid is the grid area (900 m2 in the study). Figure 5 shows 

the FAI values of the Kowloon Peninsula in east-west direction 

at 30 m spatial resolution from 1985 to 2010, in which nodata 

indicates that wind flow of the ground objects was blocked and 

sea surface did not take part in FA calculation. Due to east wind 

of high frequency in Hong Kong, FAI values were calculated 

easterly wind movement towards the west. 
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Figure 5. Spatial distribution of FAI at 30 spatial resolution. (a): 

1985; (b): 1990; (c): 1995; (d): 2000; (e): 2005; (f): 2010 

 

4.4 Simulation of GSR 

The GSR received by topography and surface features is a 

function including the geometry of the earth, atmospheric 

transmittance, geographical location, sun elevation angle, 

orientation (slope and aspect), and elevation (Allen et al., 2006). 

The solar radiation derives from the sun, which will be 

intercepted as direct, diffuse, and reflected components, the 

three radiation forms the GSR. The solar radiation analysis tool 

in the ArcGIS Spatial Analyst extension maps and analyses the 

global solar radiation over a geographic area at specific time 

periods (ESRI Inc., 2015). The GSR does not include reflected 

radiation, as the direct radiation is the principal component, 

secondly is the diffuse radiation. The DSM data were resampled 

to 30 meter resolution and input into ArcGIS software for 

calculating GSR at a specific time period. The fraction of 

radiation passing through the atmosphere as an important factor 

is calculated by the average of transmissivity values of all 

wavelengths. And, the average values of transmissivity from all 

wavelengths were estimated by the MODTRAN 4.0. Figure 6 

shows that GSR including direct radiation and diffuse radiation 

which was modelled based on the transmissivity values in Table 

4. Then, the simulated GSR values in the King’s park extracted, 

according to the geographical location, were used for evaluating 

the accuracy. Table 4 shows that the maximum difference and 

minimum difference between observed GSR and simulated GSR 

at King’s park station from 1987s onwards is 0.09 MJ/m2 and 

0.00 MJ/m2, respectively. 

 

 

Date 

(yyyy/mm/dd) 
Transmissivity 

GSR (unit:MJ/m2) 

Error Model 

value 

King’s 

park 

1987/12/08 0.59 2.15 2.14 0.01 

1990/12/24 0.58 1.90 1.90 0.00 

1995/12/30 0.66 2.04 2.05 -0.01 

2000/11/01 0.56 2.23 2.32 -0.09 

2005/11/23 0.57 2.03 2.07 -0.04 

2009/12/04 0.58 1.93 1.96 -0.03 

Table 4. A comparison between observed and simulated GSR 

 

 

 

 
Figure 6. Spatial distribution of GSR at a specific time from 

1987 to 2009. (a): 1987; (b): 1990; (c): 1995; (d): 2000; (e): 

2005; (f): 2009 

 

4.5 Simulation of Air flow 

An ArcGIS extension named Airflow Analysis was used to 

calculate the wind speed in the study. The model has been 

developed by Kyushu University. It provides complex 

calculations, mesh generation, wind simulation, and 2D/3D 

visualization integrated into ArcGIS version 10.3, and the 

results can be used for further spatial analysis in ArcGIS. The 

wind speed was calculated by inputting building footprints and 

height attributes into the Airflow Analysis tool. Figure 7 shows 

the normalized values of average wind speed in east-west 

direction using Airflow Analysis module.  
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Figure 7. Spatial distribution of the normalized value of wind 

speed in east-west direction from 1985 to 2010. (a): 1985; (b): 

1990; (c): 1995; (d): 2000; (e): 2005; (f): 2010 

 

5. PREDICTION MODEL 

The WEKA is a significant and systemic workbench in data 

mining and machine learning. It not only provides a toolbox 

about learning algorithms, but also a framework in which new 

algorithms can be implemented without the support of 

infrastructure data manipulation and program evaluation (Hall 

et al., 2009).  

 

The WEKA software package was downloaded from Machine 

Learning Group (2013). Classifiers as main learning methods in 

WEKA include a series of rule sets and decision trees for data 

modelling. Moreover, the command interface in WEKA also 

includes visualization tools and algorithms for data analysis and 

predictive modelling (Frank et al., 2004). In the study, VFC, 

NDBI, FAI, GSR, building height, SVF, wind speed, altitude, 

longitude, and time after multicollinearity analysis were 

selected as attributes to predict the spatial distribution of LST. 

The correlation coefficient was used to measure the accuracy on 

the predictions. And the correlation coefficients from the 

method of linear regression, Reduced Error Pruning Tree 

(REPTree) (a fast decision tree learner), instance-based learners 

(IBk) (k-nearest neighbour learner), model trees and rules 

(M5Rules) are 0.65, 0.59, 0.33, and 0.61, respectively. As a 

result, it is found that linear regression will be the best in 

predicting the spatial pattern of LST. Figure 8 shows the 

predicted spatial pattern of LST in 2009, which was used to 

compare with the spatial distribution of LST retrieved from 

Landsat image. It can be found that the differences of maximum 

LST and minimum LST are 2 °C, 1 °C, respectively. 

Furthermore, it can also be found by analysis of pixel-to-pixel 

that the correlation coefficient is 0.65, MAE is 1.24 degree 

Celsius, and RMSE is 1.51 degree Celsius of 22,429 pixels. 

 
Figure 8. Comparison between simulated and actual spatial 

pattern of LST in 2009 

 

6. CONCLUSION 

In the study, spatial and temporal characteristics were analyzed 

about the relationships between factors (VFC, NDBI, SVF, FAI, 

building height, GSR, wind speed) and LST. And, these factors 

are demonstrated the usefulness for the prediction of LST. 

Ultimately, it is found that a linear regression method 

outperformed in predicting the spatial pattern of LST, which 

can be verified by the comparison between the simulated and 

actual spatial pattern of LST in 2009. 
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