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Abstract

While interactive multimedia animation is a very
compelling medium, few people are able to express
themselves in it.  There are too many low-level details
that have to do not with the desired content—e.g.,
shapes, appearance and behavior—but rather how to get
a computer to present the content.  For instance,
behaviors like motion and growth are generally gradual,
continuous phenomena.  Moreover, many such
behaviors go on simultaneously.  Computers, on the
other hand, cannot directly accommodate either of these
basic properties, because they do their work in discrete
steps rather than continuously, and they only do one
thing at a time.  Graphics programmers have to spend
much of their effort bridging the gap between what an
animation is and how to present it on a computer.

We propose that this situation can be improved by a
change of language, and present Fran, synthesized by
complementing an existing declarative host language,
Haskell, with an embedded domain-specific vocabulary
for modeled animation.  As demonstrated in a collec-
tion of examples, the resulting animation descriptions
are not only relatively easy to write, but also highly
composable.

Index terms: Graphics, animation, multimedia,
temporal modeling, domain-specific languages,
embedded languages, functional programming, Haskell.

1 Introduction

Any language makes some ideas easy to express and
other ideas difficult. As we will argue in this paper,
today’s mainstream programming languages are ill-
suited for expressing multimedia animation (3D, 2D
and sound), both in their basic paradigm and their
vocabulary. These languages support what we call
“presentation-oriented” programming, in which the
essential nature of an animation, i.e., what an animation
is, becomes lost in details of how to present it. We
consider the question of what kind of language is
suitable for capturing just the essence of an animation,
and present one such language, Fran, synthesized by
complementing an existing declarative “host language”,
Haskell, with an embedded domain-specific vocabu-
lary.

We propose a declarative alternative to presentation-
oriented programming, in which a model of the
animation is described, leaving presentation as a
separate task, to be done automatically.  This idea of
modeling has been applied fruitfully in the area of non-
animated 3D graphics as discussed below, and is now
widely, though not universally, accepted.  Our contri-
bution is to extend this idea in a uniform style to
encompass as well sound and 2D images, and across the
time dimension.  For brevity, this paper concentrates on
3D animation, but it is really the uniform integration of
different types that gives rise to great expressive power.
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While imperative programming languages are suited to
presentation-oriented programming, the modeling
approach requires a different kind of language.
Unfortunately, bringing a useful new language into
being is quite a daunting task, requiring design of
semantics and syntax, implementation of compilers and
environment tools, and writing of educational material.
However, as Peter Landin taught us more than thirty
years ago, we can logically separate a language into (a)
a domain-specific vocabulary and (b) a domain-
independent way of composing more complex things
from simpler ones [20].  In other words, a language is a
combination of a “ host language”  and a “ domain-
specific embedded language”  (DSEL).  By reusing the
same host language for several different vocabularies,
we can amortize the cost of its creation over more uses.
In fact, unlike thirty years ago, and thanks in part to
Landin’s influence, we are now fortunate enough to
have some appropriate, established candidate languages
from which to choose.  In this paper, we examine
various features of a candidate host language to see
which are helpful and which are not helpful for
modeled animation.  We find that Haskell is a fairly
good fit, requiring only a few compromises.

The rest of this paper is organized as follows.  Section 2
informally introduces the domain concepts of interest.
Section 3 presents just enough of Haskell to understand
Section 4, which contains a few examples of modeled
animation.  Section 5 introduces the notions of
presentation and modeling for non-animated 3D
graphics, and looks at some concrete benefits.  Section
6 extends the idea and benefits of modeling to a variety
of types besides 3D geometry, including sound and 2D
images, and across the time dimension.  Section 7
considers the pragmatics of creating a new domain
specific language (DSL), and motivates the DSEL
approach.  Section 8 examines the usefulness of host
language features in some detail.  The remainder of the
paper looks at related work and describes some
directions for future work on modeled animation.

2 Domain Concepts

A good first step in designing a DSL is to lay out the
domain concepts.  In our case, these concepts include
3D geometry, 2D images, sound, supporting types like
colors, vectors and points, plus the notions that support
reactive behavior.  In this section, we will look into
these domain concepts informally, independently from
their concrete realization in a DSL.

2.1 3D Geometry

A 3D geometric model may be thought of a collection
of primitive shapes, each having surface properties like
color or textured images, and reflectivity.

The primitive shapes may be polyhedra, i.e., made of
up connected polygonal faces, or smoothly curved.  In
fact, polyhedra are often intended as an approximation.
Underlying display software and hardware often
perform interpolation of lighting across surface
polygons, in order to give the impression of a smoothly
curved solid.  In any case, geometric primitives are
often best constructed with interactive modeling tools,
and then simply “ imported”  into a language.  We take
this importation approach, and so will ignore details of
geometric primitives.

Operations that are well suited to linguistic specifica-
tion include the following:

• Spatial transformation: 3D models may be moved,
scaled and rotated, as well as more esoteric trans-
formations like shearing.

• Decoration: Models may be made more attractive,
lifelike, etc, by the application of colors, and espe-
cially images, to the surface.

• Aggregation: After importing and transforming
some models, it is often useful to unite them into a
single model.  The power of this operation is that
the aggregate may then be subjected to further
transformation (and aggregation), rather than hav-
ing to keep track of several models and transform
them individually.

• Lighting: Various types of lights (positional,
directional, spot) may be created, colored, aggre-
gated with other lights and geometric models, sub-
jected to spatial transformation, etc.  Each light
affects the appearance of geometric models in the
same scene.

• Sound: 3D models may emit sounds.  As with light
sources, sound sources are subjected to spatial
transformation, which will influence the ultimate
presentation.

In supporting the operations outlined above, it will be
necessary to provide several other supporting types:
geometric transforms (translation, scaling, rotation, and
composition, and inversion); colors (construction and
decomposition in RGB and HSL form, shades of gray,
predefined constants), points and vectors (construction
and decomposition in rectangular and spherical
coordinates, distance, sums, differences, and scaling as
sensible), images (for texture-mapping), and sound.
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2.2 Images

Languages and modeling representations for 3D
typically exclude or trivialize support for (2D) images.
(For example, in VRML [32], the texture map for a 3D
model may be specified either as a URL that points to a
stored image or movie, or as a bitmap.  The richness
provided for synthetic and hierarchical construction, as
well as animation, of 3D is denied to 2D.) In contrast,
we believe that images should be given the same kind
and level of support as 3D.

Our notion of image has infinite extent and infinite
resolution.  In contrast, a bitmap is a finite, discrete
rectangular array of pixels.  Images are thus independ-
ent of the size and resolution introduced by viewing,
and are not turned into bitmaps until they are actually
displayed.

Similarly to 3D geometry, it is very useful to import
images from externally created discrete bitmaps,
animations, and movies.  Again, importation is just a
start, and is augmented by a rich set of operations,
including the following:

• Rendered 2D geometry, including line segments,
polygons, and circles.

• Rendered text using any number of fonts and
optional features like bold and italic.

• Rendering of 3D geometry.

• Coloring.

• 2D spatial transformation.

• Overlaying of images.

• Partial transparency.

• Embedded sound.

• Image cropping, according to rectangular regions,
or arbitrary paths made up of line- and curve-
segments.

As with 3D geometry, several supporting types are
needed for the image operations: 2D geometric
transforms, colors, 2D points and vectors, text with
fonts, cropping rectangles and paths, 3D geometry, and
sound.

2.3 Behaviors

So far, we have said nothing about animation.  Rather
than supporting animation with mechanisms specific to
3D geometry or 2D images, our approach is based on a
general notion of behaviors, treating geometry and
images as special cases.  Informally, a behavior is

simply a “ time-varying value” .  For instance, consider
an animation of a 3D bouncing ball.  The position of the
ball varies with time and so is a (3D) point-valued
behavior.  The ball itself is a 3D geometry-valued
behavior.  Finally, the animation being viewed is an
image-valued behavior.

Since behaviors are values that vary with “ time” , we
need to be clear about the nature of time.  A funda-
mental decision is discrete vs. continuous, that is, do we
think of time as moving forward in a (discrete)
sequence of “ clock ticks” , or a (continuous) flow?  At
first thought (especially to a programmer), a discrete
model of time may seem natural.  After all, the end user
will experience a discrete sequence of images.  As we
will argue in Section 6, however, this reasoning results
from a confusion between the ideal model and the
presentation of that model.  It is presentation that is
discrete, due to the nature of display devices.

Just as spatially continuous image models naturally
give rise to spatial resolution-independence and hence
scalability, the continuous time model for animation
yields temporal resolution-independence and scalabil-
ity.  For instance, one can stretch or squeeze a given
animation to fit a desired duration.  First making the
clear distinction between modeling and presentation,
and then allowing animation descriptions to be given in
modeling terms, has considerable advantages.  It fits
with own human perception of time and motion as
being continuous.  It also allows us to exploit our rich
heritage of mathematical, scientific, and engineering
tools for understanding and describing the basic
animation concepts of motion, growth, etc.

2.4 Events

Although motion and other behaviors are for the most
part continuous, some can usefully be thought of as
undergoing instantaneous change.  For instance,
whenever a rigid ball bounces, its velocity changes
instantaneously.  Such sudden changes are often caused
by an event of some kind (such as collision). For our
purposes, the event itself is an abstraction for the
sequence of its occurrences, rather than a single one.
(Note that we are using the term “ event”  in a somewhat
unusual way, but have been unable to find a concise
alternative.)

In order to respond to an event, a behavior needs to
know the times at which the event occurs, so we might
try to conceptualize an event abstractly as a stream of
occurrence times. However, reaction often requires an
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additional piece of information at each occurrence.  In
the bouncing ball example, the velocity of the ball at
the instant of each bounce is required in order to
calculate the rebound velocity.  If the event were the
(set of all) collisions between two balls, the required
information might be the velocity of one ball relative to
the other, together with the ball’s masses.  Thus, we
conceptualize an event as a stream of occurrences, each
of which is a time/value pair. The information required
from an event occurrence can be of any type, but for
any given event, the occurrence values will be all of the
same type.  For collisions, one might use (relative
velocity) vector-valued events.

The examples in this paper emphasize behaviors,
making very simple use of events.  For a much richer
treatment of events, see [8]. Briefly, events are created
and transformed in the following ways:

• external input;
• replacing or transforming an event’s data;
• forming the union of two events;
• filtering out some event occurrences;
• monitoring time-varying conditions; and
• sequential chains of events.

2.5 Users

Because we are primarily interested in interactive
animation, the user is an important domain concept.
We consider a user to be a container for all of the user
input that can be made available to an animation.  In
particular, this input includes mouse and tablet stylus
locations, which are 2D point-valued behaviors, and
events indicating activity from the pressing or releasing
of keyboard keys or buttons on the mouse and  stylus.

3 A Haskell mini-primer

We have embedded our DSL in the functional pro-
gramming language Haskell.  See [17] for an introduc-
tion to the language, and [19] for full details.  In this
section, we present just enough Haskell to understand
the examples in Section 4.

3.1 Definitions

A Haskell program is made up of a collection of
definitions.  For instance,

msg = "Shall we get started?"

msgSize = length msg

The first two lines define the name msg to be a
particular string, size to be the length of (number of
characters in) msg.  Note in the second line that
application of a function (length) to an argument
(msg) is written simply by juxtaposing the function and
argument, without requiring parentheses around the
argument.

A function definition is written similarly, but with the
from parameter name(s) given on the left hand side, as
in the following definition of greeting, which uses
the infix concatenation operator, “ ++” .

greeting name =
  "Hello, " ++ name ++ ".  " ++ msg

3.2 Types

Haskell is statically typed, but in most cases, all types
can be inferred automatically by the compiler or
interpreter.  For the three names defined above, the
following declarations may be either stated by the
programmer or left to be inferred:

msg      :: String
msgSize  :: Int
greeting :: String -> String

The last declaration means “ function from String to
String” .  Note that type names begin with capital
letters, while value and function names begin lower-
case letters.

3.3 Multiple arguments

Application and definition of functions with more than
one argument are written using repeated juxtaposition.
For instance, the following defines a function
strangeName of two arguments, making use of the
function elem of two arguments.  It considers a name
to be strange if the name contains a ‘z’ and is longer
than a given length.

strangeName name n =
  (elem ’z’ name) && (length name > n)

The types of elem (a Haskell standard library function)
and strangeName could be

strangeName :: String -> Int -> Bool

elem :: Char -> String -> Bool

where Bool is the type of booleans, i.e., true/false
values.
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The function type operator, “->” , is right associative,
so this declaration literally says that elem takes a
character and returns a function that takes a string and
returns a boolean.  Correspondingly, function applica-
tion is left associative, so the definition above applies
elem to ‘z’, returning a function that is returned to
name.  The notation may seem odd at first, but is
sometimes very useful.

3.4 Polymorphism

It is not really satisfactory for the elem function to
have such a restricted type.  In fact, it applies not just to
strings, i.e., sequences of characters, but to sequences
of any type of values.  The type String is just an
abbreviation for a list of characters:

type String = [Char]

The real type of elem is the following:

elem :: a -> [a] -> Bool

In type declarations, the use of a non-capitalized name
indicates a type variable.  This declaration says that the
first argument to elem has some type a, and the second
is a list of values, each having the same type a.  (Note
that the substitution for a is uniform. The sought
element and every member of the list must all have the
same type.)  In a definition like that of strangeName
above, the compiler figures out how to specialize the
type of elem to the context of its use, in this case on
characters.

Note that there is not a single “ list”  type, but rather a
list type constructor, that maps element types (a) to the
types of lists of elements ([a]).  One may define
additional type constructors as well – an ability that will
be crucial in capturing the general notions of behavior
and event, from Section 2.  For instance, the notion of
binary trees with values at the leaves might be captured
by a type constructor BinTree, so a tree of strings
would have type BinTree String.  Type construc-
tors may have any number of type arguments.

3.5 Infix operators

Note that the operators “&&”  and “>”  are used as infix.
Such operators are simply function names whose names
are composed of non-alphanumeric characters.  By
default, these names must be used as infix.  Alphanu-
meric names precede their arguments, but may be used
in infix form if surrounded by backquotes, as in

’z’ ‘elem‘ name.

Names may also have declared syntactic binding
strengths (precedences), to reduce the need for paren-
theses.  All infix applications bind less strongly than
function application (juxtaposition), so the parentheses
is the definition of strangeName are unnecessary
(because “&&”  binds less tightly than “>” ).

3.6 Local definitions

It is often convenient to introduce some definitions just
in order to make another definition more efficient or
readable.  In such a case, one may introduce local
definitions, prefixed by “where” .  For instance:

thriceLength name = n + m
 where
   n = length name
   m = n + n

Here, the scope of the names n and m include the right
hand side the definition of thriceLength, as well as
the right hand side the definitions of n and m them-
selves.  That is, definitions in the body of a where
clause are mutually recursive (as are definitions at top
level scope).

4 An introduction to Fran

The ideas presented in this paper are embodied in a
system called “ Fran”  (for “ functional reactive anima-
tion” ).  Fran consists of a collection of types, constants
and functions, that correspond to the domain concepts
outlined in Section 2.

The concepts from Section 2 – 3D geometry, 2D
images, geometric transforms, points, vectors, and
colors – correspond to Fran types with names like
Geometry, Image, Transform3, Point3, etc.
The notions of behavior and event are represented via
the Fran type constructors Behavior and Event.
Because Fran programs work mainly at the behavior
level, Fran also defines several convenient synonyms
for behavior types:

type RealB       = Behavior Double
type GeometryB   = Behavior Geometry
type ImageB      = Behavior Image
type Transform3B = Behavior Transform3

In the remainder of this section we introduce Fran
through a handful of modeled animation examples.
Many more examples of functional animation may be
found in [10], [3], [5], [8], and [30]. See also the user’s
manual [25], which contains precise types and informal
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meanings of the embedded animation modeling
vocabulary and still more examples.

4.1 Static models

To start, we import a simple 3D model of a sphere from
“ X file”  format, by applying the importX function to
the file name.

  sphere = importX "sphere.x"

Similarly, we import the teapot model shown in Figure
1. However, the teapot is smaller than we would like, so
we adjust it after importing, scaling it uniformly by a
factor of 1.5:

  teapot = uscale3 1.5 **%
           importX "teapot.x"

The function uscale3 takes a number and produces a
3D transform. The infix operator **% applies a 3D
transform to a 3D model to yield a new model. Here are
the types of the modeling vocabulary we used.  (The
third declaration says that “**%”  takes two arguments.)

  importX  :: String -> GeometryB
  uscale3  :: RealB -> Transform3B
  (**%)    :: Transform3B -> GeometryB
           -> GeometryB

4.2 Spinning

Although types like GeometryB and Vector3B are
potentially animated, the example so far uses static
animations.  Next we will color the teapot red and make
it spin around the Y axis, as shown in Figure 2. (Scan
the frames from left to right, starting with the top row.)

  redSpinningPot =
    rotate3 zVector3 time **%
    withColorG red teapot

The new features are rotation, the unit Z vector, “ time”
and application of a color to a geometric model:

  rotate3 :: Vector3B -> RealB
          -> Transform3B
  zVector3 :: Vector3B
  time :: RealB
  withColorG :: ColorB -> GeometryB
             -> GeometryB

The function rotate3 takes an axis vector and a
number (both potentially animated) and yields a 3D
transform. The use of time here deserves special
attention. It is a primitive number-valued animation
(hence the type RealB) representing the flow of time.
Note that time is not a mutable real value, but a fixed
animation. Animations are essentially functions of time,
with time being the identity function, and operations
like rotate3, withColorG, and **% being
combinators that map functions of time to functions of
time.

4.3 Generalizing

Next, generalize this simple spinning teapot, so that its
color and rotation angle are parameters.

  spinPot :: ColorB -> RealB -> GeometryB

  spinPot potColor potAngle =
    rotate3 zVector3 potAngle **%
    withColorG potColor teapot

We will make use of the spinPot function in two
interactive 2D animations.

Figure 1.  Imported, scaled teapot

Figure 2. Spinning teapot
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  spin1, spin2 :: User -> ImageB
  spin1 = withSpin potSpin1
  spin2 = withSpin potSpin2

When a 2D animation is interactive, its type is a
function from the user supplying input. Hence the type
above. Yet to be defined are withSpin, potSpin1,
and potSpin2.

The argument to the function withSpin will be a
“ spinner” , i.e., something that knows how to turn an
animated number and a user into an animated geometric
model, using the animated number to determine a time-
varying rotation angle.  In an object-oriented language,
one would formalize the “ spinner”  type as an abstract
class, and then provide some number of concrete
subclasses.  In Haskell, we can capture the notion of
spinner as a function type:

type Spinner = RealB -> User-> GeometryB

potSpin1, potSpin2 :: Spinner

The withSpin function takes a spinner and a user and
produces an image animation:

withSpin :: Spinner -> User -> ImageB

Functions in Haskell are first class values and may be
passed into and out of functions.  Like objects, they can

combine data with code.  In fact, a good way to think of
Haskell functions is as single-method objects, sup-
ported by a lightweight notation.  (New functions may
be expressed in-line, without naming them, using
“ lambda”  notation.)

As a simple case, potSpin1 just ignores the user, uses
red for the pot color, and passes on the angle argument
unchanged:

  potSpin1 angle u = spinPot red angle

The withSpin function takes one of these geometry
producers and renders it together with some textual
instructions. Figure 3 shows the result combined with
potSpin1.

  withSpin f u =
    growHowTo u ‘over‘
    renderGeometry (f (grow u) u)
                   defaultCamera

The function grow will be defined below. Its job is to
turn user input into an animated angle, which gets
passed to the geometry producer. The produced
geometry is rendered with a default camera to produce
a 2D animation, which is overlaid by the instruction
text image produced by growHowTo. The function
renderGeometry takes geometry and camera (both
potentially animated, as always), and yields a 2D
animation:

  renderGeometry :: GeometryB
                 -> Transform3B -> ImageB

4.4 A more interesting pot spinner

Before looking into the definition of grow, consider a
second spinner, which adds a few new features:

• A light source is added and visualized as a white
sphere that orbits the spinning teapot. For conven-
ience, the translation vector is specified in spheri-
cal coordinates.

• The teapot’s color is animated, and specified in
HSL (hue/saturation/lightness) coordinates.

• The “ angle”  argument generated by grow and
passed by withSpin is really meant to be the rate
of change of the desired angle, and so is integrated
(over time).  Integration is meaningful because the
angle is a function of time (a behavior).

Figure 3. spin1 = withSpin potSpin1
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The definition:

  potSpin2 potAngleSpeed u =
    spinPot potColor potAngle
     ‘unionG‘ light
   where
    light = rotate3 yVector3 (pi/4)   **%
            translate3 (vector3Spherical
                            1 0 time) **%
            uscale3 0.1               **%
            withColorG white (
             sphere ‘unionG‘ pointLightG)
    potColor = colorHSL time 0.5 0.5
    potAngle = integral potAngleSpeed

Figure 4 shows the result.

4.5 Reactive growth

Now we turn to grow, which converts user input to a
time-varying angle (of type RealB).  It is defined as
the integral (over time) of the value generated by
bSign, defined below, which produces an animated
number.  That number has value zero when no mouse
buttons are pressed, but switches to negative one or
positive one while the user is holding down the left or
right mouse button. The angle value produced by grow
is thus growing while the right button is pressed,
shrinking while the left is pressed, and constant when
neither button is pressed.

  grow :: User -> RealB
  grow u = integral (bSign u)

The polymorphic bSign function is itself defined in
terms of a more general function selectLef-
tRight, which switches between three values,
depending on the left and right button states.

  bSign :: User -> RealB
  bSign u = selectLeftRight 0 (-1) 1 u

  selectLeftRight :: a -> a -> a -> User
                  -> Behavior a

  selectLeftRight none left right u =
    ifB (leftButton u)
        (constantB left)
      (ifB (rightButton u)
           (constantB right)
         (constantB none))

Some explanation: the function ifB is a behavior-level
conditional, taking an animated boolean and two
animated values, and choosing between the two
continuously.  The primitive constantB turns a
regular “ static”  value into a constant animated value (as
required here by ifB).  The leftButton and
rightButton functions tell whether the mouse
buttons are pressed.

It is easy to define these two button state functions in
terms of a toggling function that takes an initial value
and two events that tell when to switch to true and
when to false.

  leftButton, rightButton ::
    User -> BoolB
  leftButton  u = toggle (lbp u) (lbr u)
  rightButton u = toggle (rbp u) (rbr u)

  toggle :: Event a -> Event b -> BoolB
  toggle go stop =
    stepper False (  go   -=> True
                 .|. stop -=> False)

The functions lbp, lbr, rbp, and rbr, yield left and
right button press and release events.

  lbp, rbp, lbr, rbr :: User -> Event ()

The stepper function takes an initial value v and an
event e, and yields a piecewise-constant behavior that
starts out as v and switches to the values associated with
occurrences of e.  In the definition of toggle, the
event is constructed from the go and stop argument
events. The event handling operator “-=>”  is used to
replace the trivial values from the button-press events,
and the event merging operator “.|.”  is used to merge
the two boolean-valued events (streams) into a single
one.  As a result, the constructed event occurs with
value True whenever go occurs and with value
False whenever stop occurs.  (Note: the event
operators are described in [10], but their semantics have
changed since that publication, and now consist of a
sequence of occurrences, not just a single one.  Also,
the button press events and mouse motion behavior are

Figure 4. spin2 = withSpin potSpin2
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functions of a User rather than a start time.)

4.6 Adding instructions

Finally, to generate instructions and user feedback, we
define growHowTo, which produces a rendered string,
colored yellow and moved down to be out of the way.
The text gives instructions when neither button is
pressed, says “ left”  while the left button is pressed, and
“ right”  while the right button is pressed. Its definition
involves 2D versions of vectors, transform formation
and application, and coloring, plus the polymorphic
function selectLeftRight, defined above.

  growHowTo :: User -> ImageB

  growHowTo u =
    translate2 (vector2XY 0 (-1)) *%
    withColor blue (
     stringBIm messageB)
    where
      messageB = selectLeftRight
                   "(press a button)"
                   "left" "right" u

4.7 Lights

In addition to visible geometry, we can add lights to a
3D model. In this next example, shown in Figure 5, we
combine a sphere, which is visible but does not emit
light, and a “ point light source” , which is invisible but

emits light. We color the sphere/light pair yellow,
shrink it, and give it motion.

  movingLight =
    translate3 motion **%
    uscale3 0.1       **%
    withColorG yellow (
      sphereLowRes ‘unionG‘ pointLightG)
   where
    motion = vector3Spherical 1.5
               (pi*time) (2*pi*time)

For convenience, we have expressed the motion path in
terms of spherical coordinates, saying that the distance
from the origin of space (which is also the center of the
teapot) is always 1.5 units, the longitude is π times the
elapsed time, and the latitude is twice π times the
elapsed time. Consequently, light meanders about,
maintaining a fixed distance from the center of the
teapot, and repeating its behavior every two seconds.

To finish the example, combine the moving light with a
green teapot:

  potAndLight =
    withColorG green teapot ‘unionG‘
    movingLight

The unionG function, here used as an infix operator,
combines two GeometryB values to form another one.

  unionG :: GeometryB -> GeometryB
         -> GeometryB

Note the expression “ 2 * pi * time”  used in
defining the light’s motion. The meaning of “*”  is not
the usual one, operating on static numbers, but rather a
counterpart “ lifted”  to consume and produce number-
valued animations (of type RealB). Even the numeric
literal 2 and the constant pi are taken to mean the
corresponding unchanging number-valued animations
(having type RealB). In Fran several dozen functions
have been lifted in this way, so that, for instance,
“*” and sin have not only the usual types

  (*) :: Double -> Double -> Double
  sin :: Double -> Double

but also

  (*) :: RealB -> RealB -> RealB
  sin :: RealB -> RealB

 (The type name “RealB”  is a synonym for “Behav-
ior Double” .) This kind of assists greatly in making
animations easy to write and read.

Figure 5. potAndLight
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4.8 Time transformation

The next example, shown in Figure 6, replaces the
single light from Figure 5 with a string of five lights
playing “ follow the leader” .  The leader is the moving
light from the previous example.  All of the others are
time-delayed replicas.

  potAndLights =
    slower 5 (
     withColorG green teapot ‘unionG‘
     delayAnims3 (2/5) (
      replicate 5 movingLight) )

We make a list of five copies of the moving light, using
the replicate function, stagger them in time with
delayAnims3 (defined below), and combine them
with a green teapot. Then we slow down the animation
to see it more clearly.

 The function delayAnims3, takes a time delay and a
list of 3D animations, and yields a 3D animation. Each
successive member of the given animation list is
delayed by the given amount after the previous
member.

  delayAnims3 dt anims =
    unionGs (
     zipWith later [0, dt ..] anims)

The notation [0, dt ..] means the infinite list of
numbers 0, dt, 2 dt, 3 dt, etc. The function zipWith
applies a given two argument function to the successive
values from two given lists, stopping when it reaches
the end of the shorter list. We use it here to delay the
first animation in anims by 0 seconds, the second by
dt seconds, the third by 2 dt seconds, etc.  The Fran

function unionGs is like unionG, but it combines a
list of 3D animations rather than just two.

Figure 7 shows another use of delayAnims3. Here
we create a single ball having a spiral motion that
traces the surface of an unseen sphere of radius 1.5,
with a longitude angle changing ten times as fast as the
latitude angle. From this one moving ball, we make
twenty balls, colored with evenly spaced hues, and then
stagger them in time with delayAnims3.

spiral3D = delayAnims3 0.075 balls
   where
     ball = translate3 motion **%
            uscale3 0.1       **%
            sphere
     balls  = [ withColorG (bColor i) ball
              | i <- [1 .. n] ]
     motion = vector3Spherical
                1.5 (10*time) time
     n = 20
     bColor i =
       colorHSL
         (2 * pi * fromInt i / fromInt n)
         0.5 0.5

The Fran functions later and slower are both
examples of time transformation.  They apply to 3D
animations, but also to 2D animations, sounds, and
behaviors of all types. Spatial transformation is widely
recognized as a useful tool for making specifications of
static 3D models more convenient, modular and
compact.  Fran applies the idea to time as well.

Figure 6. potAndLights

Figure 7. spiral3D
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With the given examples in mind, we step back from
our chosen approach to expressing interactive anima-
tion, and consider the history, the benefits of “ model-
ing” , and of language embedding.

5 Presentation vs. modeling for
3D geometry

The practice of 3D graphics programming has made
tremendous progress over the past three decades. In the
early days, if you wanted your program to display some
graphics you had to work at the level of pixel genera-
tion. You had to master scan-line conversion of lines,
polygons, and curved surfaces, hidden surface elimina-
tion, and lighting and shading models— rather complex
tasks. A significant advancement was the distillation of
this expertise into rendering libraries (and underlying
hardware). With a rendering library, you could express
yourself at the level of triangles and transformation
matrices. While an advancement, these libraries
presented a view of a somewhat complex state machine
containing registers such as the current material
properties and the current local or global transformation
matrices. You had to drive this state machine, push
register values onto a stack, change them, instruct the
library to display a collection of triangles, and restore
the registers at the right time.

The next major advancement was to further factor out
common chores of graphics presentation into libraries
that presented complex structured models, as exempli-
fied in such systems as PHIGS, SGI’s Inventor and
Performer, VRML, and Microsoft’s Direct3D RM
(retained mode). The paradigm shift from presentation
to modeling for geometry has had several practical
benefits:

• Ease of construction. Models are generally easier
for people to express and read than the corre-
sponding presentation programs. (In the case of
experienced programmers, there may be an initial
period of unlearning presentation-oriented thinking
habits, i.e., unconscious tendencies to think in
terms of how to display some geometry, rather than
simply what the geometry is.) In fact, model speci-
fications are often not programs at all, but simply
descriptions, such as “ a red chair, doubled in size” .
Presentation specifications, on the other hand, gen-
erally are programs.

• Authoring. Content creation systems are naturally
based on models, because their end users think in
terms of models, and typically have neither

expertise nor interest in programming the corre-
sponding presentation.

• Composability. Models tend to be more robustly
composable than presentation programs, thanks to
the absence of side effects, which could otherwise
interfere in subtle ways with the meaning of other
components. Composability is a crucial factor in
the scalability of any programming or modeling
system, as well as the key to enabling powerful
end-user features like cut-and-paste and drag-and-
drop. The keys to robust composability are that (a)
composition must construct the same kind of thing
as the composed components, so that the result can
be composed again, arbitrarily, and (b) composi-
tion operations allow only well-controlled interac-
tions among components (e.g., lighting and
occlusion). Note that there is an industry that sells
a variety of specialized geometric models, but there
is not one that sells specialized presentation code
snippets.

• Optimizability. Model-based systems contain a
presentation sub-system that contains code to ren-
der any model that can be constructed with the
system. Because higher level information is avail-
able to the presentation sub-system than with pres-
entation programs, there are many more
opportunities for optimization. Examples include
hierarchical culling, display-sensitive triangle gen-
eration from curved surfaces, set-up for various
hidden surface removal algorithms when lacking
Z-buffered hardware, and vertex data conversion
from application representation to device repre-
sentation. SGI’s Performer and Microsoft’s Di-
rect3D RM products were largely motivated by
these opportunities for optimization. Imagine how
hard it would be to do these optimizations if the
application explicitly managed each step of ge-
ometry presentation. It would be akin to reverse
engineering the model out of the imperative pres-
entation code.

• Economy of scale. Because the presentation sub-
system is used for many different applications, it is
worthwhile to invest considerably in optimization
and functionality.  When an application does its
own presentation, such an investment is not as
likely to be warranted.

• Usefulness and longevity. Models have broader
usefulness and a longer lifetime than presentation
programs, because models are platform independ-
ent. Presentation sub-systems can be separately
tuned or totally re-implemented to run on a variety
of radically different hardware architectures, from
no graphics hardware, to SMP platforms, to SGI-
like 3D hardware, and well beyond. Models will
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not only be able to be presented on these different
architectures, but their presentation can exploit the
best features of each architecture. Again, economy
of scale makes this tuning and re-implementation
work worthwhile.

• Regulation. The presentation sub-system can
perform automatic level-of-detail management,
determining the sequence of low-level presentation
instructions executed dynamically, based on scene
complexity, machine speed and load, etc.  In con-
trast, a presentation-oriented application either
hardwires a level-of-detail, and so is appropriate
for only a narrow range of machines and circum-
stances, or must make a considerable investment in
doing explicit, specialized regulation.

In spite of the benefits listed above, not everyone has
made the shift from presentation to modeling of
geometry. The primary source of resistance to this
paradigm shift has been that it entails a loss of low level
control of execution, and hence efficiency. As men-
tioned above, handing over low level execution control
from the application to the presentation sub-system
actually benefits execution efficiency where authors
lack the significant resources and expertise required to
implement, optimize, and port their programs for all
required platforms. In other cases, as in the case of
state-of-the-art commercial video games, the resources
and expertise are available and worth the considerable
investment. An example is Doom, which would have
been a failure at the time if implemented on top of a
general-purpose presentation library. On the other hand,
even Doom and its successors really adopt the modeling
paradigm, in that they consist of a rendering engine
paired with a modeling representation. In addition to
the loss of direct control of efficiency, modeling tends
to eliminate some flexibility in the form of presenta-
tion-level tricks that do not correspond to any expressi-
ble model. In our experience, these tricks tend not to
scale well and are not composable, and in cases that do,
are achievable through model extensibility.

There have been many other similar paradigm shifts,
generally embodied in specialized languages, some-
times with corresponding tools that generate the
language. Examples include dialog box languages and
editors; grammar languages and parser generators; page
layout languages and desktop publishing programs; and
high-level programming languages and compilers.

6 Presentation vs. modeling for
animation

The conventional approach to constructing richly
interactive animated content is much like the old days
of graphics rendering, as described briefly above, that is
one must write sequential, imperative programs. (Much
animation is in fact modeled rather than programmed,
because it comes from animation authoring tools, but
interaction is severely limited, for instance to hyper-
linking.) These programs must explicitly manage
common implementation chores that have nothing to do
with the content of animation itself, but rather its
presentation on a digital computer. These implementa-
tion chores include:

• sampling in time for simulation and frame
generation, even though the animation is conceptu-
ally continuous;

• capturing and handling of sequences of motion
input “ events” , even though motion input is con-
ceptually continuous;

• time slicing to update each time-varying animation
parameter, even though these parameters conceptu-
ally vary in parallel;

• management of network connections and remote
messaging for distributed applications such as
shared virtual spaces, multi-player games, and
collaborative design, even though the various users
and objects are conceptually in a single world;

The essence of modeled animation is to carry the
presentation/modeling paradigm shift beyond static
(non-time-varying) 3D geometry, and thus more
broadly reap the kind of benefits described in the
previous section. The extensions to static geometric
modeling embodied in modeled animation include the
following:

• Apply the modeling principle to richly model
sound and 2D imagery. These domains are as com-
plex and important in their own right as geometry,
and so are supported on equal footing with 3D,
rather than as decorations on an essentially 3D rep-
resentation, such as VRML’ s scene graphs. Going
even further, treat the multitude of other data types
that arise from 3D, 2D, and sonic modeling (trans-
forms, points, colors, etc.) on an equal footing as
well.

• Go beyond modeling of static geometry, images,
etc., to behaviors and interaction— what one might
call temporal modeling.
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• Recognize that for a modeling representation to be
sufficiently rich, it must inevitably be a quite ex-
pressive language, though not necessarily an im-
perative programming language. Even static
modeling representations like VRML [24] had to
incorporate the essential mechanisms of a lan-
guage, which are composition (through hierarchy
and aggregation), naming, and information passing
(through attributes), though in ad hoc, limited
forms.

By extending modeling from static 3D to other types
and to animation, we also extend the modeling benefits
listed in the previous section. Most of these benefits
translate in straightforward ways, but some possible
non-obvious extensions are as follows:

• Composability. Temporal models compose into
new temporal models, to an arbitrary level of com-
plexity. There are no execution side-effects to
cause interference among the composed compo-
nents, nor are there any evaluation order dependen-
cies. For example, in the examples above, consider
the use of the relatively simple spinPot to help
define the more complex potSpin2, and the use
of selectLeftRight to define bSign and
growHowTo.

• Optimizability. Techniques such as culling via
spatial bounding volume hierarchies can be applied
infrequently to temporal models, rather than at
every frame on static models. Such analyzability is
especially important for intensive computations
like collision detection, which has been shown to
be amenable to temporal analysis techniques [15].
Moreover, because animation is modeled explic-
itly, rather than being the result of side-effects to a
mutable static model carried out by imperative
code, the engine knows exactly what values and
relationships are fixed and which ones vary dy-
namically. Note that it is precisely this knowledge
that has proved vital to the success of programming
language compilers. Most programmers gave up
the control afforded by writing self-modifying
code, and as a result, compilers gained enough in-
formation about the run-time behavior of a pro-
gram to be able to perform significant
optimization. As a result, most portions of even
performance- and space-sensitive code are now
written in languages like C or C++, rather than
assembler. Many of the benefits of, and objections
to, modeling vs. presentation listed above directly
apply to the issue of programming in C vs. assem-
bly language.

• Usefulness and longevity. Because model defini-
tions have no artificial sequentiality, temporal
models may be executed in parallel, where parallel
hardware is available. In contrast, imperative pro-
grams are notoriously difficult to parallelize and in
practice must be rewritten.

• Regulation. The presentation of an interactive
animation involves a multitude of sampling rates,
including simulation parameter sampling, input
sampling, geometry generation, geometry render-
ing, and image display. These many sampling rates
may all be varied automatically, based on the com-
putational and visual complexity of a scene, ma-
chine speed and load, etc. Moreover, computation
of simulation parameters based on kinematics or
dynamics can choose and adaptively vary numeri-
cal integration algorithms.

7 Language considerations

So far, we have used the term “ modeling language”
loosely. In this section, we make a more precise
examination of the different possible notions of
“ language”  and some of their pros and cons for
practical use.

A language may be thought of as the combination of
two complementary aspects. One aspect is domain-
generic, and contains fundamental syntactic and
semantic notions like definition and use of names for
values and types, construction and application of
functions or procedures, control flow, data flow,
exception handing, and typing rules. The other
language aspect is a domain-specific vocabulary,
describing, e.g., math operations on floating point
numbers, string manipulation, lists and trees, and in our
context, geometry, imagery, sound and animation.

Holding these two language aspects in mind, there are
two strategies we could adopt in making concrete the
idea of an animation modeling language, or any DSL,
which we will call “ integrated”  and “ embedded”
respectively. In the integrated approach, the DSL
combines both language aspects. In the embedded
approach, the domain-specific vocabulary is introduced
into an existing “ host”  programming language. While
these two strategies may be similar in spirit, the
pragmatics of carrying them out differs considerably.

The chief advantage of integration is that one can have
a perfectly suited language, semantically and syntacti-
cally, while the embedded approach requires toleration
of compromises made to accommodate a broad range of
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domains. In return for this toleration, the embedded
DSL approach allows one to use already existing
language infrastructure.

To be useful in practice, not just a toy or a research
experiment, a complete DSL needs several components,
well designed and well executed:

• A language definition. Despite the best intentions
of their original designers, successful DSL’ s (ones
with users) tend to grow, eventually incorporating
more and more general purpose language features.
When this growth is not anticipated, by providing
good general purpose abstraction mechanisms a
priori, the results can be ugly.

• A language implementation. Depending on the
domain, an interpreter may suffice, but for some
cases, including real-time animation, compilation is
important.  A good compiler, such as the Glasgow
Haskell Compiler [26], requires years to develop.

• Environment tools. Programmers need debuggers
and profilers to get their programs working cor-
rectly and efficiently. Also, inherent in domain-
specificity, there needs to be a way to package up
components of functionality in such a way that it
can inter-operate with components implemented in
other languages, domain-specific or otherwise.

• Educational material. Users must be provided with
tutorials to get them started, and reference manuals
to fill in the details.

Given this list, we have ample incentive to try to make
the embedded DSL approach work, if we can find a
suitable existing host language. We next take a closer
look at the question of what features constitute
suitability.

8 Choosing a host language for
modeled animation

We have found a variety of host language features to be
helpful for animation modeling and language embed-
ding in general, while others were harmful. The helpful
features include the following, some of which are
obvious from a programming language perspective, but
are in fact missing or very weakly present in popular
model representations for geometry and animation.

• Expressions. Models are specified primarily in
terms of other models, applying various kinds of
transformations, forming aggregates, transforming
some more, etc. Expressions, in the programming
language sense, are well suited for this composi-

tional style of specification, since they nest con-
veniently and suggest manipulation of values
(models) rather than effects (presentations). One
kind of expression that is particularly useful is the
conditional, as in C’ s often ignored: “ cond ? exp1 :
exp2” .

• Definition. In order to use a model more than once,
or to separate the definition of a model from its
uses, there needs to be a mechanism for referring to
a single model any number of times in different
contexts. A simple and general such mechanism is
the definition of names for models denoted by ex-
pressions, together with the use of names to denote
the corresponding models. Such definitions should
have controllable scope, such as introduced by
“where”  in the some of the examples above.

• General parameterization. Values such as
numbers, strings and booleans are not nearly as
interesting a set of reusable building blocks as are
the functions that create these values. Exactly the
same is true for values/models such as geometry,
images, sounds, transformations, and animations.
The most powerfully reusable building blocks tend
to be parameterized models, such as spinPot and
leftRightSelect above, and therefore a mod-
eling language needs a mechanism for expressing
functions from arguments of arbitrary types to re-
sults of arbitrary types.

• Higher-order programming (first class functions).
Higher-order functions allow succinct expression
and encapsulation of useful domain-specific pro-
gramming patterns. Consequently, it is useful to
allow for parameterized models to accept other
parameterized models as arguments and/or produce
them as results. As a particular example, response
to user interaction events is often expressed in
terms of call-backs. In a higher-order language,
these call-backs may be specified succinctly, using
lambda-abstraction or locally-defined functions.
(Strong static typing eliminates the need for unsafe
type coercion or run-time checking.)  In the exam-
ples above, withSpin makes critical use of
higher-order programming.

• Strong, static typing. Models and their components
are of a variety of different types, such as geome-
try, image, sound, 2D and 3D transform, 2D and
3D point and vector, color, number and Boolean, as
well as animations over all of these types, and
events yielding information of all of these types. A
static type system guides authors toward meaning-
ful model descriptions, enabling helpful error mes-
sages before execution.  Static typing also
improves performance by eliminating the need for
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run-time type checking, while retaining execution
safety. In order not to clutter a model definition, it
is helpful is types can be inferred automatically,
rather than always being specified explicitly.

• Parametric polymorphism. Animation is a
polymorphic concept, applying to geometry, im-
ages, sound, 2D and 3D points vectors, colors,
numbers etc. Similarly, reactive animation makes
essential use of the polymorphic notion of an event,
occurrences of which carry with them not only a
time, but also a value of some type. Several of
Fran’ s animation- and event-building operations
“ifB” , “stepper” , “==>”  and “.|.” , apply to
an infinite family of types.  Note that non-
polymorphic languages generally have polymor-
phic primitives, such as conditionals. To serve as a
host language for an embedded DSL, however, the
polymorphism must be available for the embedded
vocabulary, as in the function selectLef-
tRight, which was applied to numbers and to
strings above.

• Notational flexibility. It is convenient to give new,
domain-specific, meanings to old names. In par-
ticular, Fran overloads most of the names of the
standard math functions, e.g., “sin”  and “+” , to
operate at the level of animations. It even overloads
constants, e.g., “pi”  and “ 1” , to denote animations
(though not very animated ones), and introduces
new infix operators with suitable associativity and
binding strength. While “ merely”  a notational con-
venience, this notational flexibility is largely re-
sponsible for giving the “ look and feel”  of a
tailored domain specific language, and makes the
resulting programs much easier to read than they
would be if we had to introduce a whole new col-
lection of names.

• Automatic garbage collection. An animation
typically contains many components that contribute
for a short while, or in any case, less than the full
duration of the animation. Automatic garbage col-
lection makes for safe and efficient memory use.

• Laziness. An interactive animation is a “ big”  value,
often infinitely big, containing repetition and
branching. It is important, even crucial, that parts
of an animation be available for consumption be-
fore the rest of the animation has actually been
produced. The idea of laziness is to postpone pro-
duction of parts of a value until the last possible
moment, i.e., when those parts need to be con-
sumed for display. Often parts are completely un-
used, and so should never actually be computed.
For example, in a computer game, many possible
branches are not taken and many simulated char-

acters are not seen during the play of a single
game.  As a simpler example, the animations pro-
duced by bSign and growHowTo can have an
infinite number of phase changes, according to user
input, but they are available immediately for partial
consumption.

What are usually thought of as primitive control
structures, such as conditionals and iteration, are
often definable in lazy languages. As a conse-
quence, “ domain-specific control structures”  are
also definable. (Higher-order programming with
lambda abstraction makes it possible to define do-
main-specific variable binding constructs as well.)
For instance, one could define animation repetition
operators in  Fran.

Laziness also plays a role complementary to gar-
bage collection, for efficient use of memory. Lazi-
ness delays consumption of memory until just
before an animation component is needed, while
garbage collection frees the memory when an ani-
mation component is no longer needed.

• Modules. Like conventional programs, model
specifications can grow to be quite complex, and so
should be specifiable in parts by different authors
and in different files distributed throughout the
Internet. Moreover, it should be possible to com-
pile these modules into an executable form such as
Intel binary or Java byte-code, with formal inter-
faces that state the names and types of values and
functions implemented in the module.

For programmers not familiar with modern functional
languages, it may be easier at first to think of a given
set of higher-order, polymorphic, overloaded, and non-
strict functions as being “ language”  features.  Going
beyond this view yields a much more powerful
understanding, by making it apparent that one can
effortlessly extend the “ language”  with new features
having these same properties.  For instance, in non-lazy
programming languages, the polymorphic lazy
conditional statement or expression is wired into the
language, and it is impossible to introduce a variation,
unless it happens to be expressible as a macro.  Even
where applicable, macro facilities are often weakly
expressive, statically untyped, and/or problematic with
respect to scoping.

Imperative programming languages, such as C, C++,
Java and Visual Basic, have statements in addition to
expressions, and in fact, emphasize statements over
expressions. For example, in these languages, it is
possible to introduce a scoped variable in a statement,
but not in an expression. Also, if works on statements,
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though C has its ternary “?:”  expression operator.
While expressions are primarily for denoting values,
statements are for denoting changes to an internal or
external state. State changes certainly occur during
presentation of a model, but are not appropriate in the
model itself, as they interfere with composability,
optimizability, and multithreaded, parallel and distrib-
uted execution.  There are also “ semi-functional”
languages, such as Lisp and ML, which give richer
treatment to expressions without discarding imperative
programming.

Common language features that are statement-oriented,
and which thus are not useful for modeled animation,
include the following:

• Sequencing. Without statements, there is no role
for the usual notion of sequencing, which is exe-
cuting multiple statements in serial, and relies on
implicit communication of information from one
statement to the next through side effects.

• “ Goto” .

• Conditional statements.

• Sequential iteration. Really just a compact way to
specify possibly infinite sequencing and condi-
tional execution.

In another sense, rather than avoiding state changes, our
approach is to impose a discipline on state-changing
computations and to treat them as first-class values, in
the spirit of “ functional imperative programming”
[34][27].  Moreover, we generalize from discretely
changing to continuously changing state.

Given the language requirements and non-requirements
above, we now return to the “ integrated-vs-embedded”
question, keeping in mind that design and implementa-
tion of a new programming language and development
tools, and creation of required educational material are
formidable tasks, not to be undertaken unless genuinely
necessary. Fortunately, there are well-suited existing
languages, the so-called “ statically typed, higher-order,
purely functional”  languages. Of those languages,
Haskell [19], [17], [30] has the largest following, has an
international standard (Haskell 1.4), and is undergoing
considerable development. For these reasons, we have
chosen Haskell as Fran’ s host language. Other lan-
guages can be used as well, with varying tradeoffs. For
example, Java is more popular than Haskell and
supports garbage collection, but is predominately
statement-oriented and lacks parametric polymorphism,
notational flexibility and laziness.

While neither the current development tools and
educational material for Haskell programming, nor the
size of the Haskell programming community, is
impressive compared to those of mainstream languages,
we believe that both are sufficient to act as a seed, with
which to generate initial compelling applications. We
hope that these initial applications will inspire the
curiosity and creativity of a somewhat larger set of
programmers, leading to better development tools and
written materials, yet more compelling applications,
and so on, in a positive feedback cycle.

Having touted the benefits of lazy functional languages
for modeling geometry and animation, it is only fair to
point out that some domains are better served by
descriptions not easily expressed in a functional setting.
For example, some domains already have problem
solving techniques based around satisfying systems of
equations or non-linear constraints.  Constraint logic
programming allows specification of relationships
among model components.  Given these relationships,
the underlying search and constraint satisfaction
engines automatically determine how to compute some
components in terms of others.  We would really like to
find a language paradigm that combines functional and
constraint logic programming into a single one that has
the strengths of both.  Such a combination is a matter of
ongoing research.

Aside from issues of familiarity, there will always be an
important role for imperative computation in the
construction of complete applications. One could throw
such features into a modeling language, or even try to
force imperative programming languages to also serve
as modeling languages. We prefer the approach of
multi-lingual integration, which is to support construc-
tion of application modules in a variety of languages
and then combine the parts, generally in compiled form,
with a language neutral tool [11].

9 Implementation

A discussion of the implementation of Fran is beyond
the scope of this paper.  We refer the interested reader
to [10][6][7], and to [28], which describes the imple-
mentation of a predecessor of Fran.

As explained informally in Section 2.3, a behavior is a
time-varying value.  It may thus be represented directly
as a function of time.

type Behavior a = Time -> a
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It is easy to define function overloadings that work on
behaviors, e.g.,

sin :: RealB -> RealB
(sin b) t = sin (b t)

(+) :: RealB -> RealB -> RealB
(b1 + b2) t = b1 t + b2 t

An event may be identified with a stream (lazy list) of
occurrences, each of which is a time/value pair:

type Event a = [(Time,a)]

Now consider stepper, as introduced in Section 4.5:

stepper :: a -> Event a -> Behavior a

Recall that x0 ‘stepper‘ e starts out having the
constant value x0 and changes to a new constant value
with each occurrence of e.  It can be defined simply as
follows.

x0 ‘stepper‘ [] = \ t -> x0
x0 ‘stepper‘ ((t1,x1) : occs’) =
  \ t -> if t1 >= t then x0
         else (x1 ‘stepper‘ occs’) t

The first clause says that when the event has no more
occurrences, the value for every t is x0.  (The Haskell
notation “\ t ->”  introduces an anonymous function
with formal parameter t.  The backslash is read as
“ lambda” .)  The second clause applies in the case of a
nonempty list and calls first element (t1,x1) and the
remaining elements occs’. The sampled value is x0
only until the time t1 of the first occurrence, and then
becomes the value x1 of that occurrence.  The value at
t will turns out to be x1 if there are no more occur-
rences before t.

The definitions of stepper, while simple and correct,
turn out to be impractical.  The problem comes from the
context of use.  A behavior is typically sampled not just
once, but rather at a sequence of times.  The definition
of stepper given above scans through the occurrences
from the beginning each time, in order to find the
appropriate value.  Typically, the sample times are
closely spaced and strictly increasing, so this redundant
work should be avoidable.

A more practical representation of behaviors to support
stepper, is as a function from a stream of sample
times to a stream of values.

type Behavior a = [Time] -> [a]

The overloadings are only a little more complicated:

sin :: RealB -> RealB
(sin b) ts = map sin (b ts)

(+) :: RealB -> RealB -> RealB
(b1 + b2) ts =
  zipWith (+) (b1 ts) (b2 ts)

The standard function map applies a function to each
element of a list and packages up the list of results.  The
function zipWith is like map but applies to functions
of two arguments.

This new representation allows an efficient implemen-
tation of x0 `stepper` e, given below.  Use x0
until the first occurrence (t1,x1) of e.  Then behave
like x1 `stepper` e’, where e’ is the remainder
of the event e.  When there are no more occurrences,
the behavior becomes constant.

x0 ‘stepper‘ occs@((t1,x1) : occs’) =
  \ ts@(t:ts’) ->
     if t1 >= t then
       x0 : stepper x0 occs ts’
     else stepper x1 occs’ ts

x0 ‘stepper‘ [] =
  \ ts -> map (\ t -> x0) ts

There are still practical problems remaining.  For
instance, it is usually not possible to determine when an
event first occurs until it actually does occur. Conse-
quently, the test “t1 >= t”  in the definition of
stepper above cannot be made.  A simple solution to
this problem is to inject sufficient non-occurrences into
the representation of an event.  This approach and many
other issues are described in detail in [6].  We are now
developing a very different, and fundamentally
imperative, implementation, as well as investigating
compile-time optimization.

10 Related work

The idea of a “ domain-specific embedded language”  is,
we believe, the central message in Landin’ s seminal
paper “ The Next 700 Programming Languages” .

Most programming languages are partly a way
of expressing things in terms of other things
and partly a basic set of given things.  The
ISWIM (If you See What I Mean) system is a
byproduct of an attempt to disentangle these
two aspects in some current languages.  [...]
ISWIM is an attempt at a general purpose
system for describing things in terms of other
things, that can be problem-oriented by appro-
priate choice of “ primitives.”   So it is not a
language so much as a family of languages, of
which each member is the result of choosing a
set of primitives. [20]
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Henderson’s functional geometry [14] was one of the
first purely declarative approaches to graphics, although
it does not deal with animation or reactivity.  Several
other researchers have also found declarative languages
well-suited for modeling pictures.  Examples include
[21][35][12].

Haskore [18] is a purely functional approach to
constructing, analyzing, and performing computer
music, which has much in common with Henderson’s
functional geometry, even though it is for a completely
different medium.  The Haskore work also points out
useful algebraic properties that such declarative systems
possess.

Arya used a lazy functional language to model non-
interactive 2D animation as lazy lists of pictures,
constructed using list combinators [1]. This work was
the original inspiration for our own; we have extended
it to interactivity, continuous time, and many other
types besides images.

TBAG modeled animations over various types as
functions over continuous time [9][28]. It also used the
idea of lifting functions on static values into functions
on animations, which we adopted for Fran. Unlike Fran,
however, reactivity was handled imperatively, through
constraint assertion and retraction, performed by an
application program. Like Fran, TBAG was an
embedded language, but it used C++ as its host
language, in an attempt to appeal to a wider audience.
The C++ template facility was adequate for parametric
polymorphism. The notation was in some ways even
more malleable than in Haskell, because C++ over-
loading is genuinely ad hoc. On the other hand, unlike
Haskell, C++ only admits a small fixed set of infix
operators. The greatest failings of C++ (or Java) as a
host language for a modeling language are its lack of an
expression-level “ let”  and convenient higher-order
functions. The latter may be simulated with objects, but
without a notational equivalent to lambda expressions.
(In the case of Java, anonymous inner classes help
considerably.)

Obliq-3D is another 3D animation system embedded in
a more general purpose programming language [23].
However, its host language is primarily imperative and
object-oriented, rather than functional.  Accordingly,
Obliq-3D’ s models are initially constructed, and then
modified, by means of side-effects.  In this way it is
reminiscent of Inventor [29].

Direct Animation is a library developed at Microsoft to
support interactive animation [22]. It is designed to be

used from mainstream imperative languages, and mixes
the functional and imperative approaches. Fran and
Direct Animation both grew out of an earlier design
called ActiveVRML [4], which was an “ integrated”
DSL.

There are also several languages designed around a
synchronous data-flow notion of computation, includ-
ing Signal [13] and Lustre [2], which were specifically
designed for control of real-time systems. In Signal, the
most fundamental idea is that of a signal, a time-
ordered sequence of values. Unlike Fran, however, time
is not a value, but rather is implicit in the ordering of
values in a signal. Time is thus discrete rather than
continuous, with emphasis on the relative ordering of
values in a data-flow-like framework. The designers of
Signal have also developed a clock calculus with which
one can reason about Signal programs. Lustre is more
similar to Fran in style, but is also rooted in the notion
of a sequence, and owes much of its nature to Lucid
[33].

Hudak [16] gives several examples of DSELs (and
coined the term), argues their general merits, and points
to the importance of optimization through techniques
like partial evaluation.

11 Conclusions

Traditionally the programming of interactive 3D and
multimedia animations has been a complex and tedious
task. We have argued that one source of this difficulty
the use of languages to describe how to present
animations.  In such descriptions the essential nature of
an animation, i.e., what an animation is, becomes lost in
details of how to present it. Focusing on the “ what”  of
animation, i.e., modeling, rather than the “ how”  of its
presentation, yields a much simpler and more compos-
able programming style.  The modeling approach
requires a new language, but this new language can be
synthesized by adding a domain-dependent vocabulary
to an existing domain-independent host language.  We
have found Haskell quite well-suited, as demonstrated
in a collection of sample animation definitions.

A running theme of this paper has been economy of
scale.  We recommend making choices that amortize
effort required over several uses of the fruits of that
effort.  The alternatives are poor quality or impractica-
bly high cost.  Specifically:

• “ Modeling”  vs “ presentation” .  Graphics modeling
allows reuse of a single graphics presentation en-
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gine, and temporal modeling allows reuse of a sin-
gle temporal presentation engine.

• “ Embedded”  vs “ integrated”  language.  Languages,
if they are to be genuinely useful, require a large
investment of effort.  An embedded language in-
herits design, compilers, environment tools, and
educational material from its host language.

• Composability.  Because modeled, parameterized
animations are neatly composable, they may be
reused in a variety contexts, instead of being re-
peatedly reinvented with slight variations for each
similar situation.

A notable exception to the necessity of modeling,
embedding and composability for high quality interac-
tive animation is in software that can sell in huge
quantity, which then exploits an end-user economy of
scale.  The unfortunate consequence to this exception,
however, is mainstreaming of the content, as in violent
video games.  Fortunately, however, even these games
are often implemented using the modeling approach,
and thus allow consumers to create new characters and
worlds for them.

There are ample opportunities for future work in
modeled animation, including the following.

• Multi-lingual integration. We believe that in order
for Haskell, or any other non-mainstream language
to make a serious contribution in the software in-
dustry, it should be cast not as a language for im-
plementing entire applications, but rather software
components. This identity then implies strong sup-
port for generating language-independent calling
interfaces. As a concrete goal, one should be able
to program animation modules in Haskell, compile
them into binaries with COM interfaces, and then
distribute them. A Java or Visual Basic program-
mer should then be able to wire together the
Haskell-based animation components without
knowing in what language they were implemented.

• Domain-specific optimization. In theory, it is
possible for a domain-generic compiler to do do-
main-specific compilation, by using various forms
of partial evaluation. We intend to investigate this
approach, by using the Glasgow Haskell compiler
[26], perhaps with some domain-generic enhance-
ments.

• Notational compromises. As mentioned above,
using Haskell required only a few compromises.
One has to do with overloading. We cannot, for

instance, use “+”  for the addition of 2D or 3D
points and vectors (or even “.+^” , which now can
be used for 2D or 3D, but not both). Similarly, we
cannot use “==”  for the lifted form of equality,
applying to two like-typed animations to yield a
boolean animation. Extending Haskell to allow
“ multi-parameter type classes”  might eliminate
some of these compromises.
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