
Higher-order Uni�cation with Dependent FunctionTypes�(To appear in the proceedings of RTA-89)Conal M. ElliottDepartment of Computer ScienceCarnegie Mellon UniversityPittsburgh, Pennsylvania 15213-3890Internet: conal@cs.cmu.eduJanuary 18, 1989AbstractRoughly �fteen years ago, Huet developed a complete semidecision algorithm foruni�cation in the simply typed �-calculus (�!). In spite of the undecidability of thisproblem, his algorithm is quite usable in practice. Since then, many important appli-cations have come about in such areas as theorem proving, type inference, programtransformation, and machine learning.Another development is the discovery that by enriching �! to include dependentfunction types, the resulting calculus (��) forms the basis of a very elegant and expres-sive Logical Framework, encompassing the syntax, rules, and proofs for a wide classof logics.This paper presents an algorithm in the spirit of Huet's, for uni�cation in ��. Thisalgorithm gives us the best of both worlds: the automation previously possible in �!,and the greatly enriched expressive power of ��. It can be used to considerable advan-tage in many of the current applications of Huet's algorithm, and has important newapplications as well. These include automated and semi-automated theorem provingin encoded logics, and automatic type inference in a variety of encoded languages.�This research was supported in part by the O�ce of Naval Research under contract N00014-84-K-0415,and in part by NSF Grant CCR-8620191. 0

1 IntroductionIn the past few years, higher-order uni�cation (\HOU!", i.e., uni�cation in the simplytyped � calculus, \�!") has found a rapidly increasing number of applications. In spiteof the undecidability of the problem [7], experience has shown that Huet's semidecisionalgorithm [13] is quite usable in practice. The �rst applications were to theorem provingin higher-order logic, using resolution [12] and later matings [1]. Another was to use �!to encode the syntax of programming languages, and in particular the scopes of variablebindings. One can then express program transformation rules without many of the pre-viously required complicated side conditions, and use HOU! to apply them [14,22,8,4].A related area of application is to encode the syntax and inference rules of various log-ics and use HOU! to apply inference rules (in either direction) [19,5]. Quite recently, ithas been shown that HOU! is exactly what is required for solving the problem of partialtype inference in the !-order polymorphic �-calculus [21]. HOU! has even been appliedto machine learning to extract justi�ed generalizations from training examples [3]. Inapplications such as these, HOU! is usually coupled with some other search mechanism.To meet the needs of such applications, Nadathur and Miller developed a programminglanguage \�Prolog", which is an extension of traditional Prolog both in using a richer logic(including explicit quanti�cation and implication), and in using �! terms instead of theusual �rst-order terms (and thus requiring HOU!) [18,15].A parallel development is the Edinburgh Logical Framework (LF) [10]. Here, �!is enriched with dependent function types. The resulting calculus, \��", together withthe judgments as types principle forms the basis of a very elegant and expressive systemencompassing the syntax, rules, and proofs for a wide class of object-logics.1This paper presents an algorithm for HOU�, i.e., uni�cation in ��, that was inspiredby Huet's algorithm for HOU!. Many of the applications of HOU! listed above wouldbene�t from the addition of dependent types. For instance, the encoding of a typedobject-language in �! usually cannot directly capture its typing rules. To account forthe object-language's type system generally requires extra nontrivial mechanisms for spec-ifying object-language typing rules and checking or inferring object-language types. In��, one can represent object-language typing rules directly in the language's signature.For some object-languages, HOU� can then do automatic object-language type checkingand inference. For object-languages with considerably more complicated type systems,we can still do some of the object-type checking or inference automatically, and returnthe remaining work as a theorem proving task. It is important to note, though, that thenecessary theorem proving can be handled in the logical framework provided by ��, (andcan therefore be automated or semi-automated).1We refer to an encoded logic as an object-logic to stress the di�erence between the language beingrepresented, and the calculus in which it is represented. The latter is often referred to as the meta-logic.When the encoded language is not necessarily a logic, we will often use the more general terms object-languageand meta-language. 1

As outlined in [10], LF is a \�rst step towards a general theory of interactive proofchecking and proof construction." HOU� can be of signi�cant assistance in two ways.First, it allows us to go beyond purely interactive theorem proving, to do automated (andsemi-automated) theorem proving in LF encoded logics. These theorem provers could beexpressed, e.g., in a �Prolog based on ��, or in Elf, a language for logic de�nition andveri�ed meta-programming [20]. (Implementations of both of these languages are currentlyunder development.) Experience with typed programming languages has shown automatictype inference to be of considerable practical value [9,2,28]. In ��, a new problem arises:It is also often possible to infer some of the subterms of a term, in the sense that noother subterms would result in a well-typed term. It is precisely this �� term inferencethat provides for object-language type inference. As we will show, HOU� turns the ��type checking algorithm into a type checking and term inference algorithm.2 By a simpleextension of HOU� to handle type variables, which we have implemented, one can doautomatic type inference as well. (See [4, Chapter 6] for a similar extension to HOU!.)The rest of this paper is structured as follows: Section 2 covers some preliminaries,including the language and typing rules of ��, the notion of approximate well-typednessand some concepts involved in uni�cation. Section 3 discusses the di�culties in adaptingHuet's algorithm to ��. Section 4 develops our algorithm for HOU� based on a collectionof transformations on uni�cation problems. Section 5 contains a proof that the \solvedform" uni�cation problems constructed by our algorithm are always uni�able. Section 6presents an algorithm for �� type checking and term inference. Finally, Section 7 discussesrelated work, and Section 8 summarizes the paper and points to future work.2 Preliminaries2.1 The Language and its Typing RulesThe calculus in which we do uni�cation is essentially the one used by LF [10]. However, tosimplify the exposition, and because it does not add any expressive power to the calculus,we omit the LF type �, which explicitly forms functions from terms to types.3 Letting themeta-variables M and N range over terms, A and B (and sometimes �; �, and �) over\types" (including type families), and K over kinds, the language is as follows:M ::= c j v j M N j �v:A:MA ::= c j �v:A: B j AM2Term inference does not subsume theorem proving in object-logics because it may leave free variables inthe resulting terms.3These �'s never appear in normal form terms. Of course, we do allow constants of functional kind.2

K ::= Type j �v:A: KWe will often use the abbreviation \A!B" for \�v:A: B" when v is not free in B, andsimilarly for kinds.The typing rules for �� may be found in [10]. Below we reproduce just enough tounderstand the rest of this paper. A typing judgment involves a signature � assigningtypes and kinds to constants, a context � assigning types to variables. We omit well-formedness considerations for signatures, contexts, and kinds. Constants and variables arelooked up in � and � respectively. The other rules are, for the kind of a type,4� `� A 2 Type � ; v:A `� B 2 Type� `� �v:A: B 2 Type� `� A 2 �v:B:K � `� M 2 B� `� AM 2 [M=v]K� `� A 2 K K =�� K 0 � `� K 0 kind� `� A 2 K 0and, for the type of a term,� `� A 2 Type � ; v:A `� M 2 B� `� �v:A:M 2 �x:A: B� `� M 2 �v:A: B � `� N 2 A� `� M N 2 [N=v]B� `� M 2 A A =�� B � `� B 2 Type� `� M 2 B2.2 Approximate Typing and NormalizationHuet's algorithm depends on normalizability and the Church-Rosser property, and bothmay fail with ill-typed terms.5 However, as we will see, in HOU� we are forced to dealwith ill-typed terms. A key factor in the design of our algorithm is how we deal withill-typedness, and to that end, we de�ne a notion of approximate well-typedness, and statesome of its properties.We begin by de�ning two approximation functions, one that maps a term M into asimply typed term M , and another that maps a type A into a simple type A:64We write \� ; v :A for the result of extending the context � by the assignment of the type A to thevariable v and, for simplicity, we will assume that v is not already assigned a type in �. (This can always beenforced by �-conversion.) Also, in these rules, the =�� relation refers to convertability between types orkinds using the � or � conversion rules on the terms contained in these types or kinds. We take �-conversionfor granted.5For non-normalizability, consider (�x:�: xx) (�x:�: xx). This is ill-typed for any choice of �, and hasno normal form. For loss of Church-Rosser, consider (�x:�: (�y:�: y)x), which �-reduces to (�x:�: x), but�-reduces to (�y:�: y).6This translation is similar to the translation in [10] of �� terms into untyped terms.3

De�nition 1 The approximation of a term or type is given byc = cv = vM N = M N�x:A:M = �x:A:Mand c = c�x:A: B = A!BAM = AApproximation is extended to kinds by setting K = Type for all K, and to contexts andsignatures in the obvious way.De�nition 2 A term M has the approximate type A in � i� � `� M 2 A. (Note thenthat A is a simple type.) In this case, we say that M is approximately well-typed in �.Even approximately well-typed terms do not have the strong normalization or Church-Rosser properties, but they do have weaker normalization and uniqueness properties, whichwill su�ce for our algorithm.De�nition 3 A term is in long �� head normal form (LHNF for short) if it is�x1:�1: � � ��xk:�k: aM1 � � �Mmfor some k � 0 and m � 0, where a is a variable or constant, and aM1 � � �Mm is not ofapproximate function type. Given a term in LHNF as above, its head is a, and its headingis �x1: � � ��xk:a. (Note that if the term is approximately well-typed, the heading determinesm, but not �1; . . . ; �k or M1; . . . ;Mm.)We can now state our normalization and uniqueness properties:Theorem 4 Every approximately well-typed term has a LHNF. Furthermore, every LHNFof an approximately well-typed term has the same heading (modulo �-conversion).Proof sketch: The properties follow from the normalizability and Church-Rosser prop-erties of well-typed terms in �! [11,23], since given an approximately well-typed term M ,any reduction sequence on M (which is well-typed in �!) can be paralleled on M , andnoting that we can follow normalization by enough �-expansions to convert to long form(where the body aM1 � � �Mm is not of approximate function type). 2Because of this uniqueness property, we will apply the words \head" and \heading" toan arbitrary approximately well-typed termM to mean the head or heading of any LHNFof M .This normal form allows us to make an important distinction (as in HOU!) amongapproximately well-typed terms: 4

De�nition 5 Given an approximately well-typed term M whose heading is �x1: � � � �xn:a,we will call M rigid if a is either a constant or one of the xi, and
exible otherwise.The value of this distinction is that applying a substitution cannot change the heading ofa rigid approximately well-typed term.2.3 Uni�cationOur formulation of higher-order uni�cation is a generalization of the usual formulationthat is well suited for exposition of the algorithm. First we need to de�ne well-typed andapproximately well-typed substitutions:De�nition 6 The set ��0� of well-typed substitutions from � to �0 is the set of thosesubstitutions � such that for every v : A in �, we have �0 `� �v 2 �A. The set ��of well-typed substitutions over � is the union over all well-formed contexts �0 of ��0� .Similarly the approximately well-typed substitutions from � to �0 are those � such that�0 `� �v 2 �A.For our purposes, a uni�cation problem is with respect to a uni�cation context �, andis made up of an initial substitution �0 and a disagreement set7 D whose free variables arein �. The intent is to compose the uni�ers of D with �0. More precisely,De�nition 7 A uni�cation problem is a triple h�; �0;Di consisting of a context �, asubstitution � 2 ���0 for some context �0, and a set D of pairs of terms whose free variablesare typed by �.De�nition 8 The set of uni�ers of a uni�cation problem h�; �0;Di is8U(h�; �0;Di) 4= f � � �0 j � 2 �� ^ 8hM;M 0i 2 D: �M =�� �M 0 gNote that when �0 is an identity substitution and D is a singleton set, we have the usualproblem of simply unifying two terms.This speci�cation serves as an organizational tool. What we really want to implementis something like the most general uni�ers computed in �rst-order uni�cation. However, inthe higher-order case, (a) there are not unique most general uni�ers, (b) even producing a7We adopt the standard term disagreement pair for a pair of terms to be uni�ed, and disagreement setfor a set of disagreement pairs to be simultaneously uni�ed.8We use functional order composition, i.e., (� � �0)M = �(�0M).5

\complete set of uni�ers", the set of whose instances forms the set of all solutions, becomesat a certain point too undirected to be useful, and (c) it is not possible to eliminateredundant solutions [12]. Huet's idea of pre-uni�cation [12] (implicit in [13]) solved thesedi�culties. For us, each pre-uni�er of a uni�cation problem h�; �0;Di is a new uni�cationproblem h�0; �0;D0i, such that each solution of h�0; �0; D0i is a solution of h�; �0;Di, andh�0; �0;D0i is in solved form, i.e., D0 contains only pairs of
exible terms. Huet showed(constructively) that in �! such D0 are always uni�able [13, Section 3.3.3], and hence theexistence of a pre-uni�er implies the existence of a uni�er. This is not always the case in��, but by maintaining a certain invariant on uni�cation problems, we will show that thepre-uni�ers constructed by our algorithm do always lead to uni�ers.3 Problems with Adapting Huet's AlgorithmHuet's algorithm relies on two important invariants that we are forced to abandon inHOU�. This section motivates our algorithm by explaining why we cannot maintain theseinvariants, and discussing how we handle the resulting di�culties.In HOU!, one can can require all disagreement pairs to be \homogenous", i.e., relatingterms of the same type. In ��, since substitution a�ects types, two terms might be uni�ableeven if they have di�erent types. For example, the disagreement pair h�x:�: x; �y:�: yi isuni�ed by the uni�ers of the types � and � . Also, even if we do not start out withheterogenous disagreement pairs, they arise naturally in the presence of dependent types.Consider, for instance, a disagreement pair hqM N; qM 0N 0i of well-typed terms in thesignature h a:Type ; b:a!Type ; c:Type ; q:�x:a: (bx)!c iNote that both terms have type c. As in the SIMPL phase of Huet's algorithm, we can re-place this disagreement pair by the uni�cation-equivalent9 set of pairs f hM;M 0i; hN;N 0i g.Note, however, that N has type (bM), while N 0 has type (bM 0).The second invariant we have to abandon is that disagreement pairs contain only well-typed terms. To see why, consider a disagreement set D0[fhv; cig, where v:� in � and c:�in �. In Huet's algorithm, assuming the situation were allowed to arise, the treatment ofthis disagreement set would involve applying the substitution [c=v] to D0 and continuingto work on the result. However, if � and � are di�erent types, and v occurs (freely) inD0 this substitution will construct ill-typed terms.10 A similar phenomenon can happenin �! but is carefully avoided by Huet's algorithm. In the MATCH phase, if the
exiblehead has type �1!� � �!�m!�0, for a base type �0, then among the m possible \pro-jection substitutions", only the well-typed ones are tried. Because substitution does not9We use uni�cation-equivalent to mean having the same set of uni�ers.10On the other hand, if v does not occur in D0, for instance if D0 = f g, we will have forgotten that wemust unify � and � , and so the result would be wrong.6

a�ect types in �!, this is just a matter of comparing type constants. When substitutionsinstantiate types though (as in ��), we need to unify types, not just compare them.These considerations might suggest that we can regain our invariants if, at certainpoints in the algorithm, we do type uni�cation before continuing to unify terms. Thefatal
aw in this idea is that we are doing pre-uni�cation, not full uni�cation, and afterpre-unifying types, there may still be some remaining
exible-
exible pairs. Thus, someheterogeneity or ill-typedness may still be present.Our solution is to perform just enough of the type uni�cation to insure that the substi-tution we are about to apply is approximately well-typed and cannot therefore destroy headnormalizability. We do this by de�ning a partial function R� that converts a pair of types,into a (uni�cation-equivalent) set of disagreement pairs. If the function fails (is unde�ned)then the types are nonuni�able. R� is de�ned by the following cases, and is unde�ned ifno case applies. For brevity, we will write \��: M" for a context � = [x1:�1; . . . ; xn:�n]to mean �x1:�1: � � ��xn:�n: M .R�(c; c) = f gR�(AM;A0M 0) = R�(A;A0) [fh��: M; ��0: M 0igR�(�v:A: B;�v0:A0: B0) = R�(A;A0) [R(�;v:A)(B; [v=v0]B0)We will use R as follows: Before performing a substitution of a term of type � to a variableof type �, in a uni�cation context �, we compute R[](�; �). If this is unde�ned, we knowthat the substitution cannot lead to a (well-typed) uni�er. If it yields a disagreement setD̂, we perform the substitution (which we now know to be approximately well-typed), andadd D̂ to the resulting disagreement set, to account for any ill-typedness introduced bythe substitution.In order to prove uni�ability of the disagreement sets in the pre-uni�ers producedby our algorithm, we will need to keep track of which disagreement pairs account forwhich others. This relationship and the required approximate well-typedness conditionsare embodied in the following invariant, on which our algorithm depends and which itmaintains while transforming disagreement sets.De�nition 9 A uni�cation problem h�; �0;Di is acceptable, which we will write as\A(Q)", i� the following conditions hold:1. Each of the disagreement pairs in D relates terms of the same approximate type(which are therefore approximately well-typed).2. There is a strict partial order11 \<"on D such that for any disagreement pair P 2 D,every uni�er of f P 0 2 D j P 0 < P g instantiates P to a pair of terms of the sametype (which are therefore well-typed).11i.e., a transitive, antisymmetric, nonre
exive relation7

3. Any well-typed uni�er of D, when composed with �0, yields a well-typed substitution.It is important to note that the algorithm only maintains the existence of these strictpartial orders, but never actually constructs them.4 The Dependent Pre-uni�cation AlgorithmThis section presents an abstract algorithm for HOU�, based on collection of transfor-mations from uni�cation problems to sets of uni�cation problems, which preserve sets ofuni�ers and maintain our invariant of acceptability. The goal of the transformations is toeventually construct uni�cation problems in solved form.We de�ne the property required of our transformations as follows:De�nition 10 For a uni�cation problem Q and a set of uni�cation problems Q, we saythat \Q < Q" i� when Q is acceptable, (a) so are all of the members of Q, (b) the set ofuni�ers of Q is the union of the sets of uni�ers of the members of Q, and (c) the membersof Q have no uni�ers in common. More formally, Q < Q i� A(Q) implies the followingthree conditions 8Q0 2 Q:A(Q0)U(Q) = [Q02QU(Q0)8Q0; Q00 2 Q: Q0 6= Q00) U(Q0) \ U(Q00) = f gOur algorithm is based on three transformations. Others may be added as optimiza-tions, but these three su�ce for completeness.12 The transformations deal with uni�cationproblems containing a rigid-rigid, rigid-
exible, or
exible-rigid pairs. When no transfor-mation applies, we have a uni�cation problem in solved form. Collectively, these threetransformations form a subrelation <U of < .4.1 The TransformationsFor brevity, in all cases we assume for our uni�cation problem Q thatQ = h�; �0;DiD = f hM;M 0i g [D012Of particular value is the variable-term case, using a rigid path check [13]. Several others for HOU!are found in [16]. 8

Without loss of generality, we can assume that M and M 0 are in LHNF (if not, convertthem), so let M = �x1:�1: � � ��xk:�k: aM1 � � �MmM 0 = �x01:�01: � � ��x0k:�0k: a0M 01 � � �M 0m0(The invariant that M and M 0 have the same approximate type insures that they startwith the same number k of �'s.)The rigid-rigid transformation. Assume thatM andM 0 are rigid, i.e., a is a constantor some xj , and a0 is a constant or some x0j 0. If a and a0 are the same modulo their bindingcontexts13 then approximate well-typedness insures that m =m0, and we haveQ <U f h�; �0;D0 [f hM̂i; M̂ 0i i j 1 � i � m gi gwhere M̂i = �x1:�1: � � ��xk:�k: Mi and M̂ 0i = �x01:�01: � � ��x0k:�0k: M 0i for 1 � i � m.Otherwise, Q <U f gThis transformation corresponds to one step of Huet's SIMPL phase. It preservesthe set of uni�ers because substitution does not a�ect the heading of M or M 0. Thusrigid terms with distinct heads are nonuni�able, and rigid terms with the same head areuni�ed exactly by the uni�ers of their corresponding arguments. As for the invariant, (1)comes fromM andM 0 being approximately well-typed, and (3) follows because the initialsubstitution is the same and the new disagreement set has the same uni�ers as D. For (2),a new strict partial order can be derived from an old one by replacing the old disagreementpair by the new ones, and adding hM̂i; M̂ 0ii < hM̂j ; M̂ 0ji for 1 � i < j � m. The reason foradding these is that each of the Mi can appear in the types of later Mj , and similarly forthe M 0i .As an example, consider the earlier case of f hqM N; qM 0N 0i g. The rigid-rigid trans-formation replaces this pair by f hM;M 0i; hN;N 0i g. The disagreement pair hM;M 0i ac-counts for the di�erence between the type (bM) of N and the type (bM 0) of N 0. Asanother example, consider the disagreement set fh�x:�: x; �y:�: yig [D0. The rigid-rigidtransformation yields simply D0, which is correct, because the invariant insures that thedi�erence between � and � is already accounted for in D0.The
exible-rigid transformation. Assume that M is
exible and M 0 is rigid. Inthis case, we will form a set of substitutions, each of which partially instantiates the
exible head a in such a way that completely determines its head but leaves its argumentscompletely undetermined. These are the imitation and projection substitutions generatedby Huet's MATCH phase.13i.e., they are the same constant, or a = xj and a0 = x0j for some j9

These substitutions are motivated by consideration of the LHNF of �a for any uni�er �of M and M 0. Let the type of a be �y1:�1: � � ��ym:�m: �0, where �0 is not a � type. Thenfor any well-typed substitution �, any LHNF of �a has the form�y1: �̂1: � � ��ym: �̂m: b N1 � � �Nnfor some variable or constant b. Since the head of �M has to be the rigid head a0 of M 0,the only possibilities for b are (1) a0, if a0 is a constant, or (2) some yi, for 1 � i �m. Foreach such b, we can capture this restriction on �a by equivalently saying that � has theform �̂ � [Nb=a], for some �̂, whereNb = �y1:�1: � � ��ym:�m: b (vb1 y1 � � � ym) � � � (vblb y1 � � � ym)Here vb1; . . . ; vblb are distinct variables not in � or among the yj .14 (See [4, Section 3.2.2]for details.) Letting B be the set of possible b's described above, one can then show that15U(Q) = [b2BU([Nb=a]Q)where by an application \�Q0" of a substitution � 2 ��00�0 to a uni�cation problem Q0 =h�0; �00;D0i, we mean the uni�cation problemh�00; � � �00; f h�M; �M 0i j hM;M 0i 2 D0 giNow, to reestablish the invariant, we must add disagreement pairs to account for anydi�erence between the types of a and Nb. Let �a and �Nb be the types in � of a and Nb,and, for each b 2 B such that R[](�a; �Nb) is de�ned, letQb = ([Nb=a]h�; �0; Di) [R[](�a; �Nb)where by the union of a uni�cation problem h�0; �00;D0i with a disagreement set D00, wemean h�0; �00;D0 [D00i. Then we haveQ <U fQb j b 2 B and R[](�a; �Nb) is de�ned gNote that this addition of R[](�a; �Nb) is the only place where our set of transformationsdi�ers from Huet's. For simply typed terms, these R[](�a; �Nb) (when de�ned) are alwaysempty, so our algorithm does no more work than Huet's.14In order to account for the vbi , we assume a nonstandard de�nition of substitutions and their compositionthat causes temporary variables to be eliminated appropriately [4, Section 2.6].15The key step is that U(h�; �0;Di) can be re-expressed as[b2B f (�̂ � [Nb=a]) � �0 j �̂ 2 ��b ^ 8hM;M 0i 2 D: (�̂ � [Nb=a])M =�� (�̂ � [Nb=a])M 0 gwhere �b is the result of removing a and adding vb1; . . . ; vblb to �. Then by using associativity of substitutioncomposition, and contracting the de�nition of U, the result follows.10

It is important to note that the generated uni�cation problems have no solutions incommon. This is because, for each b, any uni�er of Qb is an instance of [Nb=a] � �0, andsince each Nb has a di�erent rigid head (namely b), no two of the [Nb=a] � �0 can have anyinstances in common. This property is what guarantees minimality (see Theorem 13).A new strict partial order can be derived from an old one by replacing each disagreementpair by its newly instantiated version, and by adding P < P 0 for each P 2 R[](�a; �Nb) andP 0 2 [Nb=a]D, since we added R[](�a; �Nb) to account for any introduced ill-typedness.The rigid-
exible transformation. The rigid-
exible case can be handled simply byre
ecting it into the
exible-rigid case: If M is rigid and M 0 is
exible thenQ <U fh�; �0; f hM 0;M i g [D0ig4.2 The AlgorithmNow that we have presented the three transformations, together de�ning the relation<U, we will describe a search process that operates on a set of uni�cation problems andenumerates a set of pre-uni�ers. Informally, the process goes as follows: If there areno uni�cation problems left, stop. Otherwise, choose a uni�cation problem to work onnext. If it is in solved form, add it the the set of solutions. Otherwise, apply one of thetransformations, in some way, to replace the uni�cation problem by a �nite set of newuni�cation problems. Then continue.Note that two kinds of choices are made in this process. First, there is the choiceof which uni�cation problem to work on next, and second, there is the choice of whichtransformation to apply and how to apply it. It turns out that the second kind of choicemay be made completely arbitrarily, but, in order to have completeness, the �rst kindmust be done in a fair way.16 Huet formulated this di�erence by constructing \matchingtrees", in which the nodes are disagreement sets and the edges are substitutions, and thenshowed that all matching trees are complete. His pre-uni�ers are constructed by composingsubstitutions along edges that form a path from the original disagreement set to one insolved form. In our formulation, these composed substitutions are part of the uni�cationproblem.De�nition 11 For a relation � between uni�cation problems and sets of uni�cation prob-lems, and a uni�cation problem Q, a � search tree from Q is a tree T of uni�cationproblems such that16In implementation terms, this means that we can use e.g., breadth-�rst search or depth-�rst search withiterative deepening, but not simple depth-�rst search.11

� The root of T is Q.� For every node Q0 in T , the set of children of Q0 in T is either empty if Q0 is insolved form, or is some Q satisfying Q0 �Q if Q0 is not in solved form.De�nition 12 For a relation � between uni�cation problems and sets of uni�cation prob-lems, we de�ne the relation ��� as follows: Q���Q i� there is some � search tree from Qwhose set of solved nodes is Q.We can then show the followingTheorem 13 Let Q be a uni�cation problem such that A(Q), and let Q be any set ofuni�cation problems such that Q< ��U Q. Then1. A(Q0) for each Q0 2 Q.2. Every Q0 2 Q is a pre-uni�er of Q, i.e., it is in solved form and U(Q0) � U(Q).3. Q is minimal, i.e., for any two distinct members Q0; Q00 of Q, U(Q0) \ U(Q00) = f g.4. Q is complete, i.e., for any uni�er � of Q, there is a Q0 2 Q such that � 2 U(Q0).Proof sketch:1. Each transformation maintains the invariant for each constructed uni�cation prob-lem.2. The transformations do not introduce new uni�ers, and Q contains only solved formuni�cation problems.3. As noted in the discussion of the
exible-rigid transformation, when the search forpre-uni�ers branches, the new uni�cation problems have no uni�ers in common.4. Because our invariant insures head normalizability, the completeness proof goes muchas in [13], and has two main parts: (a) For a given uni�cation problem Q, therecan be only �nitely many successive applications of the rigid-rigid and rigid-
exibletransformations. (b) For any uni�cation problem h�; �0;Di to which the
exible-rigid transformation applies, and any uni�er � of D, there is
exible-rigid-successorh�0; �00;D0i of h�; �0;Di and a uni�er �0 of D0 such that �0 has strictly lower complexitythan �, where complexity is de�ned in terms of sizes of the long �� normal formsinvolved. Another consideration, not required in HOU!, is that R� always terminates.12

2Given a pair of terms M and M 0 to unify, we can satisfy the invariant initially ineither of two ways. The �rst is to simply check that M and M 0 are well-typed and havethe same type. (This is possible because type checking is decidable [10].) This method issimple but does not allow for terms that will become well-typed or disagreement pairs thatwill become homogeneous after substitution.17 The second method is much more
exible.Instead of type-checking the terms, we perform only approximate type-checking, and atthe same time, construct a disagreement set whose uni�ers (if any) instantiate the termsto well-typed terms of the same type. This process is de�ned in Section 6.5 Uni�ability of Flexible-
exible Disagreement SetsThe value of pre-uni�cation in �! is that solved disagreement sets (ones containing only
exible-
exible pairs) are always uni�able, and so pre-uni�ability implies uni�ability [13].This is not true in general for ��, but it is true of solved sets satisfying our invariant. Bymaking vital use the strict partial order in the de�nition of A, we can generalize Huet'sconstructive proof of this fact to ��. For the simply typed subset of ��, the substitutionthat we use specializes to Huet's.De�nition 14 For a context �, the canonical uni�er �C� over � is the substitu-tion assigning to each variable v : �x1:�1: � � ��xm:�m: cQ1 � � �Qn in �, the term�x1:�1: � � ��xm:�m:hcQ1 � � �Qn, where hc is a variable of type �y1:�1: � � ��yn:�n:c y1 � � � yn.Theorem 15 If Q is a acceptable uni�cation problem in solved form with uni�cationcontext �, then �C� 2 U(Q).Proof: Let < be the strict partial order imposed on disagreement sets by our invariant.Since disagreement sets are always �nite, < is a well founded ordering, and thus we willgive an inductive argument. Let hM;M 0i be an arbitrary member or our disagreement setfor M = �z1:�1: � � ��zk:�k: v M1 � � �MmM 0 = �z01:�01: � � ��z0k:�0k: v0M 01 � � �M 0m0where v and v0 are variables with typesv : �x1:�1: � � ��xm:�m: cQ1 � � �Qnv0 : �x01:�01: � � ��x0m0:�0m0: cQ01 � � �Q0n17Ill-typedness and heterogeneity can still arise during uni�cation though.13

and c : �y1:�1: � � ��yn:�n: TypeThe reason that the types of both v and v0 must involve the same type constant c, is thatour invariant insures thatM andM 0 have the same approximate type. Now, for 1 � j � n,let Nj = �z1:�1: � � ��zk:�k: [(�C�M1)=x1; . . . ; (�C�Mm)=xm]QjN 0j = �z01:�01: � � ��z0k:�0k: [(�C�M 01)=x1; . . . ; (�C�M 0m)=xm]Q0jThen, for some choice of �̂1; . . . ; �̂k and �̂1; . . . ; �̂k, we have�C�M = �z1: �̂1: � � � �zk: �̂k: hc (N1 z1 � � � zk) � � � (Nn z1 � � � zk)�C�M 0 = �z01: �̂01: � � � �z0k: �̂0k: hc (N 01 z01 � � � z0k) � � � (N 0n z01 � � � z0k)By induction, assume that �C� uni�es all disagreement pairs below hM;M 0i in the ordering.Thus, by our invariant, �C�M and �C�M 0 are well-typed terms of the same type, so�z1: �̂1: � � ��zk: �̂k: c (N1 z1 � � � zk) � � � (Nn z1 � � � zk)= �z01: �̂01: � � ��z0k: �̂0k: c (N 01 z01 � � � z0k) � � � (N 0n z01 � � � z0k)It then follows that �C�M =�� �C�M 0. 26 Automatic Term InferenceIt is well known that �rst-order uni�cation provides for type inference in �! with typevariables and in similar languages [17]. Recently, it has been shown that HOU! is the keyingredient for the corresponding problem in the !-order polymorphic �-calculus [21]. In�� there is a new problem of interest, namely term inference, which requires HOU�. Thisproblem has two important applications. One is making our uni�cation algorithm morewidely applicable, by initially establishing the required invariant, as mentioned at the endof Section 4, and made precise below. The other is to provide automatic object-languagetype inference. This section gives a very simple algorithm for �� term inference, usingHOU�.We will construct the term inference algorithm using two partial functions. The �rstone, Mi�, for a given context � and signature � (the latter of which we will leave implicit)takes a term M and, if de�ned, yields a pair consisting of a type A and a disagreementset D. Mi�(M) is unde�ned whenM is not even approximately well-typed. Otherwise, forevery uni�er � of D, it is the case that � `� �M 2 �A. The second partial function Ai�,takes a type A and, if de�ned, yields a pair consisting of a kind K and a disagreement setD. If Ai�(A) is unde�ned then A has no well-kinded instance. Otherwise, for every uni�er14

� of D, we have � `� �A 2 �K. The structure of these de�nitions is determined by thetyping rules in Section 2, and uses the partial function R de�ned in Section 3.Mi�(v) = hA; f gi where v:A in �Mi�(c) = hA; f gi where c:A in �Mi�(M N) = h[N=v]B;D [D0 [R[](A;A0)iwhere (Mi�(M) = h(�v:A: B); Di18Mi�(N) = hA0;D0iMi�(�v:A:M) = h�v:A: B;D [D0iwhere (Ai�(A) = hType;DiMi�;v:A(M) = hB;D0iAi�(c) = hK; f gi where c:K in �Ai�(�v:A: B) = hType;D [D0iwhere (Ai�(A) = hType;DiAi�;v:A(B) = hType;D0iAi�(AM) = h[M=v]K;D [D0 [R[](B;B0)iwhere (Ai�(A) = h(�v:B: K);DiMi�(M) = hB0;D0iGiven a term M in a context � we do type-checking/term inference as follows. IfMi�(M) is unde�ned, then M is not approximately well-typed, and hence it has no well-typed instance, so we indicate failure. Otherwise, let hA;Di = Mi�(M), and let Q be suchthat h�; �id� ;Di<��U Q, where �id� is the identity substitution over �. If Q is empty, then Mhas no well-typed instance. Otherwise, for each h�0; �0; D0i 2 Q, we return the instantiatedterm �0M together with the \constraint" D0.19If on the other hand we have two terms M and M 0 to be uni�ed in a context �,we can proceed as follows: If Mi�(M) or Mi�(M 0) is unde�ned, then M or M 0 is notapproximately well-typed, so we indicate typing error. Otherwise, let hA;Di = Mi�(M)and hA0;D0i = Mi�(M 0). Then if R[](A;A0) is unde�ned, we indicate typing mismatch.Otherwise, let D00 = R[](A;A0). Then apply the pre-uni�cation algorithm to the uni�cationproblem h�; �id� ; fhM;M 0i [D [D0 [D00gi.18The intended interpretation is that if the type part of Mi�(M) is not a � type, then Mi�(M N) isunde�ned.19Depending on the application, if Q has more than one element, and/or if D0 is nonempty for someh�0; �0;D0i 2 Q, it may be appropriate to request a user to provide a more constrained term.15

The reason that �� term inference often gives object-language type inference is thatwe can use �� terms to encode object-language types and then construct object-languageterms using constants whose (dependent) types record the object-language's typing system.One example of this is in the encoding of higher-order logic, given in [10]. Another is asimple �rst-order typed expression language [4, Section 7.3.3].7 Related WorkOur algorithm is clearly in
uenced by the ideas underlying Huet's. A related transforma-tional approach is Snyder and Gallier's for HOU! and equational uni�cation [27,26]. Oneminor di�erence is that, rather than carrying along a substitution as part of their uni�ca-tion problems, they represent these substitutions as a \solved" part of their disagreementsets. A more important di�erence is that their transformations map a uni�cation prob-lem to a single uni�cation problem, rather than a set of uni�cation problems. However,doing so prevents an important distinction between the two kinds of \nondeterminism" inthe algorithm, namely between the multiplicity of pre-uni�ers in a complete set, and themultiplicity of ways in which transformation rules can be chosen and applied (resulting indi�erent complete sets of preuni�ers). We do not see how one could construct minimalsets of pre-uni�ers using their approach.Recently, Pym [24] reported an independently developed algorithm for HOU�.8 Conclusions and Further WorkIn this paper, we have presented an algorithm for HOU�, i.e., higher-order (pre-)uni�cationin a typed �-calculus with dependent function types. This algorithm makes possible manyvaluable extensions to current applications of HOU!, as well as mechanized theorem prov-ing in object-logics encoded as in the Edinburgh Logical Framework (LF). We also pre-sented a particularly useful application of HOU� to perform �� term inference. Thisalgorithm makes HOU� more widely applicable and allows for automatic type inference ina variety of object-languages.Our algorithm has good e�ciency properties. For simply typed examples, it does thesame work as Huet's algorithm. Thus the additional power of the algorithm is only payedfor where it is used.A critical property of pre-uni�cation in �! is that pre-uni�ability is a su�cient con-dition for uni�ability. Although this is not generally true in �� under the relaxed typingconditions that we are forced to allow, we showed that the pre-uni�ers constructed by ouralgorithm do indeed lead to uni�ers. 16

We have implemented a prototype version of an extension of our HOU� algorithm,which also handles type variables. Although the treatment of type variables is incomplete,it is quite useful in practice. We also plan to add treatment of the dependent version ofCartesian product types (often called \strong sum" or \�" types).20 This implementationwill form the basis of (a) a generalization of the programming language �Prolog [18] to��, to serve as a convenient implementation language for applications of HOU�, and (b)the new language Elf for logic de�nition and veri�ed meta-programming [20].An area for future work is to develop a complete treatment of type variables, and if thissucceeds, explicit polymorphism as in the second- or !-order polymorphic �-calculus [6,25].9 AcknowledgmentI am very grateful to Frank Pfenning for originally suggesting the problem in ��, andfor several very helpful discussions yielding many useful ideas, in particular the idea ofapproximate well-typedness.References[1] Peter B. Andrews, Dale Miller, Eve Cohen, and Frank Pfenning. Automating higher-order logic. Contemporary Mathematics, 29:169{192, August 1984.[2] R. M. Burstall, D. B. MacQueen, and D. T. Sanella. HOPE: an Experimental Ap-plicative Language. Technical Report CSR-62-80, Department of Computer Science,University of Edinburgh, Edinburgh, U.K., 1981.[3] Michael R. Donat and Lincoln A. Wallen. Learning and applying generalised solu-tions using higher order resolution. In Ewing Lusk and Ross Overbeek, editors, 9thInternational Conference on Automated Deduction, Argonne, Illinois, pages 41{60,Springer-Verlag LNCS 310, Berlin, May 1988.[4] Conal Elliott. Some Extensions and Applications of Higher-order Uni�cation: AThesis Proposal. Ergo Report 88{061, Carnegie Mellon University, Pittsburgh, June1988. Thesis to appear June 1989.[5] Amy Felty and Dale A. Miller. Specifying theorem provers in a higher-order logicprogramming language. In Ewing Lusk and Ross Overbeek, editors, 9th InternationalConference on Automated Deduction, Argonne, Illinois, pages 61{80, Springer-VerlagLNCS 310, Berlin, May 1988.20Preliminary work on this appears in [4]. 17

[6] Jean-Yves Girard. Une extension de l'interpretation de G�odel a l'analyse, et sonapplication a l'elimination des coupures dans l'analyse et la theorie des types. In J. E.Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 63{92, North-Holland Publishing Co., Amsterdam, London, 1971.[7] Warren D. Goldfarb. The undecidability of the second-order uni�cation problem.Theoretical Computer Science, 13:225{230, 1981.[8] John Hannan and Dale Miller. Uses of higher-order uni�cation for implementingprogram transformers. In Robert A. Kowalski and Kenneth A. Bowen, editors, LogicProgramming: Proceedings of the Fifth International Conference and Symposium, Vol-ume 2, pages 942{959, MIT Press, Cambridge, Massachusetts, August 1988.[9] Robert Harper. Standard ML. Technical Report ECS-LFCS-86-2, Laboratory for theFoundations of Computer Science, Edinburgh University, March 1986.[10] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics.In Symposium on Logic in Computer Science, pages 194{204, IEEE, June 1987.[11] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and �-calculus.Cambridge University Press, 1986.[12] G�erard Huet. R�esolution d'�equations dans des langages d'ordre 1; 2; . . . ; !. PhDthesis, Universit�e Paris VII, September 1976.[13] G�erard Huet. A uni�cation algorithm for typed �-calculus. Theoretical ComputerScience, 1:27{57, 1975.[14] G�erard Huet and Bernard Lang. Proving and applying program transformationsexpressed with second-order patterns. Acta Informatica, 11:31{55, 1978.[15] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofsas a foundation for logic programming. Journal of Pure and Applied Logic, 1988.Submitted.[16] Dale A. Miller. Uni�cation under mixed pre�xes. 1987. Unpublished manuscript.[17] Robin Milner. A theory of type polymorphism in programming. Journal of Computerand System Sciences, 17:348{375, August 1978.[18] Gopalan Nadathur and Dale Miller. An overview of �Prolog. In Robert A. Kowalskiand Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth Interna-tional Conference and Symposium, Volume 1, pages 810{827, MIT Press, Cambridge,Massachusetts, August 1988.[19] Lawrence C. Paulson. The Representation of Logics in Higher-Order Logic. TechnicalReport 113, University of Cambridge, Cambridge, England, August 1987.18

[20] Frank Pfenning. Elf: A Language for Logic De�nition and Veri�ed Meta-Programming. Ergo Report 88{067, Carnegie Mellon University, Pittsburgh, Penn-sylvania, October 1988.[21] Frank Pfenning. Partial polymorphic type inference and higher-order uni�cation. InProceedings of the 1988 ACM Conference on Lisp and Functional Programming, ACMPress, July 1988.[22] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of theSIGPLAN '88 Symposium on Language Design and Implementation, pages 199{208,ACM Press, June 1988. Available as Ergo Report 88{036.[23] Garrel Pottinger. Proof of the normalization and Church-Rosser theorems for thetyped �-calculus. Notre Dame Journal of Formal Logic, 19(3):445{451, July 1978.[24] David Pym. A uni�cation algorithm for the logical framework. November 1988.Laboratory for Foundations of Computer Science, University of Edinburgh. To appearas LFCS report.[25] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Pro-grammation, pages 408{425, Springer-Verlag LNCS 19, New York, 1974.[26] Wayne Snyder. Complete Sets of Transformations for General Uni�cation. PhDthesis, University of Pennsylvania, 1988.[27] Wayne Snyder and Jean H. Gallier. Higher-order uni�cation revisited: complete setsof transformations. Journal of Symbolic Computation, 1988. To appear in the specialissue on uni�cation.[28] David A. Turner. Miranda: a non-strict functional lanugage with polymorphic types.In Functional Programming Languages and Computer Architecture, Springer-Verlag,Berlin, September 1985.
19

