Higher-order Unification with Dependent Function
Types®

(To appear in the proceedings of RTA-89)

Conal M. Elliott

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Internet: conal®@cs.cmu.edu

January 18, 1989

Abstract

Roughly fifteen years ago, Huet developed a complete semidecision algorithm for
unification in the simply typed A-calculus (A_). In spite of the undecidability of this
problem, his algorithm is quite usable in practice. Since then, many important appli-
cations have come about in such areas as theorem proving, type inference, program
transformation, and machine learning.

Another development is the discovery that by enriching A_, to include dependent
function types, the resulting calculus (Arp) forms the basis of a very elegant and expres-
sive Logical Framework, encompassing the syntax, rules, and proofs for a wide class
of logics.

This paper presents an algorithm in the spirit of Huet’s, for unification in Ar;. This
algorithm gives us the best of both worlds: the automation previously possible in A_,,
and the greatly enriched expressive power of Arj. It can be used to considerable advan-
tage in many of the current applications of Huet’s algorithm, and has important new
applications as well. These include automated and semi-automated theorem proving
in encoded logics, and automatic type inference in a variety of encoded languages.

*This research was supported in part by the Office of Naval Research under contract N00014-84-K-0415,
and in part by NSF Grant CCR-8620191.

1 Introduction

In the past few years, higher-order unification (“HOU_", s.e., unification in the simply
typed A calculus, “A_") has found a rapidly increasing number of applications. In spite
of the undecidability of the problem [7], experience has shown that Huet’s semidecision
algorithm [13] is quite usable in practice. The first applications were to theorem proving
in higher-order logic, using resolution [12] and later matings [1]. Another was to use A_
to encode the syntax of programming languages, and in particular the scopes of variable
bindings. One can then express program transformation rules without many of the pre-
viously required complicated side conditions, and use HOU_ to apply them [14,22 8 4].
A related area of application is to encode the syntax and inference rules of various log-
ics and use HOU_, to apply inference rules (in either direction) [19,5]. Quite recently, it
has been shown that HOU_ is exactly what is required for solving the problem of partial
type inference in the w-order polymorphic A-caleulus [21]. HOU_ has even been applied
to machine learning to extract justified generalizations from training examples [3]. In
applications such as these, HOU_ is usually coupled with some other search mechanism.
To meet the needs of such applications, Nadathur and Miller developed a programming
language “AProlog”, which is an extension of traditional Prolog both in using a richer logic
(including explicit quantification and implication), and in using A_, terms instead of the
usual first-order terms (and thus requiring HOU_,) [18,15].

A parallel development is the Edinburgh Logical Framework (LF) [10]. Here, A_
is enriched with dependent function types. The resulting calculus, “An”, together with
the judgments as types principle forms the basis of a very elegant and expressive system

encompassing the syntax, rules, and proofs for a wide class of object-logics.!

This paper presents an algorithm for HOUy, ¢.e., unification in A, that was inspired
by Huet’s algorithm for HOU_. Many of the applications of HOU_ listed above would
benefit from the addition of dependent types. For instance, the encoding of a typed
object-language in A_, usually cannot directly capture its typing rules. To account for
the object-language’s type system generally requires extra nontrivial mechanisms for spec-
ifying object-language typing rules and checking or inferring object-language types. In
A, one can represent object-language typing rules directly in the language’s signature.
For some object-languages, HOUp can then do automatic object-language type checking
and inference. For object-languages with considerably more complicated type systems,
we can still do some of the object-type checking or inference automatically, and return
the remaining work as a theorem proving task. It is important to note, though, that the
necessary theorem proving can be handled in the logical framework provided by Ap, (and
can therefore be automated or semi-automated).

'We refer to an encoded logic as an object-logic to stress the difference between the language being
represented, and the calculus in which it is represented. The latter is often referred to as the meta-logic.
When the encoded language is not necessarily a logic, we will often use the more general terms object-language
and meta-language.

As outlined in [10], LF is a “first step towards a general theory of interactive proof
checking and proof construction.” HOUp can be of significant assistance in two ways.
First, it allows us to go beyond purely interactive theorem proving, to do automated (and
semi-automated) theorem proving in LF encoded logics. These theorem provers could be
expressed, e.g., in a AProlog based on Ar, or in Elf, a language for logic definition and
verified meta-programming [20]. (Implementations of both of these languages are currently
under development.) Experience with typed programming languages has shown automatic
type inference to be of considerable practical value [9,2,28]. In A, a new problem arises:
It is also often possible to infer some of the subterms of a term, in the sense that no
other subterms would result in a well-typed term. It is precisely this A\;y term inference
that provides for object-language type inference. As we will show, HOUp turns the Ap
type checking algorithm into a type checking and term inference algorithm.? By a simple
extension of HOUp to handle type variables, which we have implemented, one can do
automatic type inference as well. (See [4, Chapter 6] for a similar extension to HOU_.)

The rest of this paper is structured as follows: Section 2 covers some preliminaries,
including the language and typing rules of Ar, the notion of approzimate well-typedness
and some concepts involved in unification. Section 3 discusses the difficulties in adapting
Huet’s algorithm to Ar. Section 4 develops our algorithm for HOUp based on a collection
of transformations on unification problems. Section 5 contains a proof that the “solved
form” unification problems constructed by our algorithm are always unifiable. Section 6
presents an algorithm for A type checking and term inference. Finally, Section 7 discusses
related work, and Section 8 summarizes the paper and points to future work.

2 Preliminaries

2.1 The Language and its Typing Rules

The calculus in which we do unification is essentially the one used by LF [10]. However, to
simplify the exposition, and because it does not add any expressive power to the calculus,
we omit the LF type A\, which explicitly forms functions from terms to types.® Letting the
meta-variables M and N range over terms, A and B (and sometimes «, o, and 7) over
“types” (including type families), and K over kinds, the language is as follows:

Mu=c|v | MN | A M
Au=c | Iv:A.B | AM

?Term inference does not subsume theorem proving in object-logics because it may leave free variables in
the resulting terms.

3These \’s never appear in normal form terms. Of course, we do allow constants of functional kind.

2

K ::= Type | ITv:A. K

We will often use the abbreviation “A—B” for “Ilv: A. B” when v is not free in B, and

similarly for kinds.

The typing rules for Ay may be found in [10]. Below we reproduce just enough to
understand the rest of this paper. A typing judgment involves a signature ¥ assigning
types and kinds to constants, a contert I' assigning types to variables. We omit well-
formedness considerations for signatures, contexts, and kinds. Constants and variables are
looked up in ¥ and I' respectively. The other rules are, for the kind of a type,*

'y A € Type ' v:AbFy B € Type
I' s IIv: A. B € Type
'ty Aellv:B. K 'y M eB
Fky AMe[M/v]K
FFy Ae K K =5, K' ' Fy K’ kind
T "2 Ae R

and, for the type of a term,
'y A € Type N vAtky M €B
ks AviA. M cllz: A B
'ty M ellv:A. B F'Fy Ne A
'ty MN €[N/v]B
ks M e A A=, B 'ty B € Type
'y M eB

2.2 Approximate Typing and Normalization

Huet’s algorithm depends on normalizability and the Church-Rosser property, and both
may fail with ill-typed terms.® However, as we will see, in HOUp we are forced to deal
with ill-typed terms. A key factor in the design of our algorithm is how we deal with
ill-typedness, and to that end, we define a notion of approzimate well-typedness, and state
some of its properties.

We begin by defining two approximation functions, one that maps a term M into a
simply typed term M, and another that maps a type A into a simple type A:°

*We write “T' , v: A for the result of extending the context I' by the assignment of the type A to the
variable v and, for simplicity, we will assume that v is not already assigned a type in T'. (This can always be
enforced by a-conversion.) Also, in these rules, the =g, relation refers to convertability between types or
kinds using the 7 or n conversion rules on the terms contained in these types or kinds. We take a-conversion
for granted.

>For non-normalizability, consider (Az:o. x x) (Az:o. x2). This is ill-typed for any choice of ¢, and has
no normal form. For loss of Church-Rosser, consider (Az:o. (Ay:7. y) 2), which fS-reduces to (Az:o. z), but
n-reduces to (Ay:7. y).

This translation is similar to the translation in [10] of Ary terms into untyped terms.

3

Definition 1 The approximation of a term or type is given by

cC = ¢
v o= w
MN = MN
Ari A M A A. M
and
cC = ¢
Ma:A.B = A—B
AM = A

Approzimation is extended to kinds by setting K = Type for all K, and to contexts and
stgnatures in the obvious way.

Definition 2 A term M has the approximate type A in ' iff T b M € A. (Note then
that A is a simple type.) In this case, we say that M is approximately well-typed in T

Even approximately well-typed terms do not have the strong normalization or Church-
Rosser properties, but they do have weaker normalization and uniqueness properties, which
will suffice for our algorithm.

Definition 3 A term is in long fn head normal form (LHNF for short) if it is
Axii0q. - Axgiop.abMy - M,

for some k > 0 and m > 0, where a s a variable or constant, and a My --- M,, 1s not of
approzimate function type. Given a term in LHNF as above, its head s a, and its heading
s Axq. - - Axg.a. (Note that if the term is approrimately well-typed, the heading determines
m, but not oy,...,0p or My,..., M,.)

We can now state our normalization and uniqueness properties:

Theorem 4 Every approzimately well-typed term has a LHNF. Furthermore, every LHNF
of an approzimately well-typed term has the same heading (modulo a-conversion).

Proof sketch: The properties follow from the normalizability and Church-Rosser prop-
erties of well-typed terms in A_ [11,23], since given an approximately well-typed term M,
any reduction sequence on M (which is well-typed in A_) can be paralleled on M, and
noting that we can follow normalization by enough n-expansions to convert to long form
(where the body a My - -+ M,, is not of approximate function type). a

Because of this uniqueness property, we will apply the words “head” and “heading” to
an arbitrary approximately well-typed term M to mean the head or heading of any LHNF
of M.

This normal form allows us to make an important distinction (as in HOU_,) among

approximately well-typed terms:

Definition 5 Given an approzimately well-typed term M whose heading s Aay. - -+ A\xy,. a,
we will call M rigid if a 1s either a constant or one of the z;, and flexible otherwise.

The value of this distinction is that applying a substitution cannot change the heading of
a rigid approximately well-typed term.

2.3 Unlification

Our formulation of higher-order unification is a generalization of the usual formulation
that is well suited for exposition of the algorithm. First we need to define well-typed and
approximately well-typed substitutions:

Definition 6 The set OF of well-typed substitutions from I' to I” is the set of those
substitutions 6 such that for every v: A in I', we have I Fx Ov € 0A. The set O
of well-typed substitutions over I' is the union over all well-formed contexts T of OF .

Simalarly the approximately well-typed substitutions from I' to IV are those 8 such that
I"bs Gv € GA.

For our purposes, a unification problem is with respect to a unification context I', and
is made up of an initial substitution 8, and a disagreement set” D whose free variables are
in I'. The intent is to compose the unifiers of D with 85. More precisely,

Definition 7 A unification problem s a triple (I',6y, D) consisting of a context I', «
substitution 8 € @11:0 for some context Ty, and a set D of pairs of terms whose free variables
are typed by T.

Definition 8 The set of unifiers of a unification problem (T, 8y, D) 1s®
U(T,0,,D)) = {86, | 6 €O ANY(M,M') € D.OM =g, 6M'}
Note that when 6y is an identity substitution and D is a singleton set, we have the usual

problem of simply unifying two terms.

This specification serves as an organizational tool. What we really want to implement
is something like the most general unifiers computed in first-order unification. However, in
the higher-order case, (a) there are not unique most general unifiers, (b) even producing a

"We adopt the standard term disagreement pair for a pair of terms to be unified, and disagreement set
for a set of disagreement pairs to be simultaneously unified.

8We use functional order composition, i.e., (6 o 6g)M = 6(6y M).

S

“complete set of unifiers”, the set of whose instances forms the set of all solutions, becomes
at a certain point too undirected to be useful, and (c) it is not possible to eliminate
redundant solutions [12]. Huet’s idea of pre-unification [12] (implicit in [13]) solved these
difficulties. For us, each pre-unifier of a unification problem (I", 6y, D) is a new unification
problem (I, 8, D'), such that each solution of (I, 6, D) is a solution of (I, 6y, D), and
(I", ¢, D') is in solved form, i.e., D' contains only pairs of flexible terms. Huet showed
(constructively) that in A_. such D’ are always unifiable [13, Section 3.3.3], and hence the
existence of a pre-unifier implies the existence of a unifier. This is not always the case in
A, but by maintaining a certain invariant on unification problems, we will show that the
pre-unifiers constructed by our algorithm do always lead to unifiers.

3 Problems with Adapting Huet’s Algorithm

Huet’s algorithm relies on two important invariants that we are forced to abandon in
HOUy. This section motivates our algorithm by explaining why we cannot maintain these
invariants, and discussing how we handle the resulting difficulties.

In HOU_, one can can require all disagreement pairs to be “homogenous”, #.e., relating
terms of the same type. In Arp, since substitution affects types, two terms might be unifiable
even if they have different types. For example, the disagreement pair (Az:o. x, Ay:7. y) is
unified by the unifiers of the types ¢ and 7. Also, even if we do not start out with
heterogenous disagreement pairs, they arise naturally in the presence of dependent types.
Consider, for instance, a disagreement pair (q M N,q M’ N') of well-typed terms in the
signature

(a:Type , bra—Type , c:Type , q:Ilz:a. (ba)—c)

Note that both terms have type c. As in the SIMPL phase of Huet’s algorithm, we can re-
place this disagreement pair by the unification-equivalent? set of pairs { (M, M'), (N, N') }.
Note, however, that N has type (b M), while N’ has type (b M’).

The second invariant we have to abandon is that disagreement pairs contain only well-
typed terms. To see why, consider a disagreement set D' U{(v,c)}, where v:o in I" and c: 7
in ¥. In Huet’s algorithm, assuming the situation were allowed to arise, the treatment of
this disagreement set would involve applying the substitution [c/v] to D’ and continuing
to work on the result. However, if o and 7 are different types, and v occurs (freely) in
D’ this substitution will construct ill-typed terms.'® A similar phenomenon can happen
in A_, but is carefully avoided by Huet’s algorithm. In the MATCH phase, if the flexible
head has type a;— -+ —a,,—ap, for a base type ag, then among the m possible “pro-
jection substitutions”, only the well-typed ones are tried. Because substitution does not

9We use unification-equivalent to mean having the same set of unifiers.

100n the other hand, if v does not occur in I, for instance if D' = { }, we will have forgotten that we
must unify ¢ and 7, and so the result would be wrong.

6

affect types in A_, this is just a matter of comparing type constants. When substitutions
instantiate types though (as in Ar), we need to unify types, not just compare them.

These considerations might suggest that we can regain our invariants if, at certain
points in the algorithm, we do type unification before continuing to unify terms. The
fatal flaw in this idea is that we are doing pre-unification, not full unification, and after
pre-unifying types, there may still be some remaining flexible-flexible pairs. Thus, some
heterogeneity or ill-typedness may still be present.

Our solution is to perform just enough of the type unification to insure that the substi-
tution we are about to apply is approximately well-typed and cannot therefore destroy head
normalizability. We do this by defining a partial function Rp that converts a pair of types,
into a (unification-equivalent) set of disagreement pairs. If the function fails (is undefined)
then the types are nonunifiable. Rr is defined by the following cases, and is undefined if
no case applies. For brevity, we will write “AT". M” for a context I' = [a1:aq,. .., 2, vy |
to mean Azxiiaq. - ATqion,. M.

Rr(c,c) = {}
Rr(AM,A"M') = Rp(AA)U{(AI. M,\I". M")}
Rr(Ilv: A. B, IIv": A". B") = Rp(A, A") UR(.4 (B,[v/v']|B')

We will use R as follows: Before performing a substitution of a term of type 7 to a variable
of type o, in a unification context I', we compute Rpy(o, 7). If this is undefined, we know
that the substitution cannot lead to a (well-typed) unifier. If it yields a disagreement set
D, we perform the substitution (which we now know to be approximately well-typed), and
add D to the resulting disagreement set, to account for any ill-typedness introduced by
the substitution.

In order to prove unifiability of the disagreement sets in the pre-unifiers produced
by our algorithm, we will need to keep track of which disagreement pairs account for
which others. This relationship and the required approximate well-typedness conditions
are embodied in the following invariant, on which our algorithm depends and which it
maintains while transforming disagreement sets.

Definition 9 A wunification problem (I',8y, D) is acceptable, which we will write as
“A(Q)7, iff the following conditions hold:

1. Fach of the disagreement pairs in D relates terms of the same approrimate type
(which are therefore approzimately well-typed).

2. There 1s a strict partial order't “C7on D such that for any disagreement pair P € D,

every unifier of { P' € D | P' T P} instantiates P to a pair of terms of the same
type (which are therefore well-typed).

1L e., a transitive, antisymmetric, nonreflexive relation

7

3. Any well-typed unifier of D, when composed with 6y, yields a well-typed substitution.

It is important to note that the algorithm only maintains the ezistence of these strict
partial orders, but never actually constructs them.

4 The Dependent Pre-unification Algorithm

This section presents an abstract algorithm for HOUp, based on collection of transfor-
mations from unification problems to sets of unification problems, which preserve sets of
unifiers and maintain our invariant of acceptability. The goal of the transformations is to
eventually construct unification problems in solved form.

We define the property required of our transformations as follows:

Definition 10 For a unification problem Q and a set of unification problems Q, we say
that “Q < Q7 iff when Q 1is acceptable, (a) so are all of the members of Q, (b) the set of
unifiers of Q is the union of the sets of unifiers of the members of Q, and (c) the members
of @ have no unifiers in common. More formally, Q@ <1 Q iff A(Q) wmplies the following
three conditions

VQ' € Q. AQ")
uQ) = J ue)

Q'eQ

VQ.Q"eR.Q #F Q" UQ)NUQT) =1}

Our algorithm is based on three transformations. Others may be added as optimiza-
tions, but these three suffice for completeness.'? The transformations deal with unification
problems containing a rigid-rigid, rigid-flexible, or flexible-rigid pairs. When no transfor-
mation applies, we have a unification problem in solved form. Collectively, these three
transformations form a subrelation <1z of .

4.1 The Transformations

For brevity, in all cases we assume for our unification problem () that

Q = (T,6,D)
D = {(M,M)}uUD

120f particular value is the variable-term case, using a rigid path check [13]. Several others for HOU_,
are found in [16].

Without loss of generality, we can assume that M and M’ are in LHNF (if not, convert
them), so let

M = Arpoy. - Azpog.alMy--- M,

M = dalial. - Aalzal.d M-+ M!

(The invariant that M and M’ have the same approximate type insures that they start
with the same number k of \’s.)

The rigid-rigid transformation. Assume that M and M’ are rigid, ¢.¢e., a is a constant
or some ¥, and @' is a constant or some z’,. If @ and o’ are the same modulo their binding
contexts'® then approximate well-typedness insures that m = m/, and we have

Q < {{[,6,D'U{(M; M) |1<i<m})}

where M; = \ay:ay. -+ Aapag. M; and MZ»’ = Azlral. - Aziral. M! for 1 <1 < m.
Otherwise,

Q <Qu {}

This transformation corresponds to one step of Huet’s SIMPL phase. It preserves
the set of unifiers because substitution does not affect the heading of M or M’. Thus
rigid terms with distinct heads are nonunifiable, and rigid terms with the same head are
unified exactly by the unifiers of their corresponding arguments. As for the invariant, (1)
comes from M and M’ being approximately well-typed, and (3) follows because the initial
substitution is the same and the new disagreement set has the same unifiers as D. For (2),
a new strict partial order can be derived from an old one by replacing the old disagreement
pair by the new ones, and adding <MZ’,M{> C <M],M]’> for 1 <1< j < m. The reason for
adding these is that each of the M, can appear in the types of later M;, and similarly for
the M.

As an example, consider the earlier case of { (¢ M N,q M’ N') }. The rigid-rigid trans-
formation replaces this pair by { (M, M’), (N, N') }. The disagreement pair (M, M') ac-
counts for the difference between the type (bM) of N and the type (bM') of N'. As
another example, consider the disagreement set {{(Aa:o. x, A\y:7. y)} U D’. The rigid-rigid
transformation yields simply D’, which is correct, because the invariant insures that the
difference between ¢ and 7 is already accounted for in D’.

The flexible-rigid transformation. Assume that M is flexible and M’ is rigid. In
this case, we will form a set of substitutions, each of which partially instantiates the
flexible head @ in such a way that completely determines its head but leaves its arguments
completely undetermined. These are the imitation and projection substitutions generated

by Huet’s MATCH phase.

137 e., they are the same constant, or a = ; and ' = x§ for some j

9

These substitutions are motivated by consideration of the LHNF of fa for any unifier ¢
of M and M’. Let the type of a be Ily;:7y. -« - IIy,: 7. To, where 74 is not a II type. Then
for any well-typed substitution 6, any LHNF of fa has the form

Ay T o AYpi T N7 - N,

for some variable or constant b. Since the head of 80 has to be the rigid head o’ of M’,
the only possibilities for b are (1) o', if @’ is a constant, or (2) some y;, for 1 < i < m. For
each such b, we can capture this restriction on #a by equivalently saying that 6 has the
form 6o [Ny/a], for some 6, where

Ny = Ayt AN T D (01 Y1 Ym) -+ (V0 Y1 -+ Yim)

Here vy, ..., vy, are distinct variables not in T' or among the y;.'* (See [4, Section 3.2.2]
for details.) Letting B be the set of possible b’s described above, one can then show that'®

ue) = JulnN/alQ)

beB

where by an application “0Q" of a substitution § € L to a unification problem @' =
(I, 6, D"), we mean the unification problem

(T",006,,{ (M, 6M") | (M,M') € D'})
Now, to reestablish the invariant, we must add disagreement pairs to account for any

difference between the types of @ and N,. Let o, and oy, be the types in I of @ and N,
and, for each b € B such that Ry(o,, oy,) is defined, let

Qy = ([Nb/a]<P7907D>)UR[](UavaNb)

where by the union of a unification problem (I, 6, D) with a disagreement set D", we

mean (I, 6;, D" U D"). Then we have
Q <y {Qy | be B and Ry(o,,0n,) is defined }

Note that this addition of Ry(c,,0n,) is the only place where our set of transformations
differs from Huet’s. For simply typed terms, these Ry(o.,on,) (when defined) are always
empty, so our algorithm does no more work than Huet’s.

14Tn order to account for the v;,, we assume a nonstandard definition of substitutions and their composition
that causes temporary variables to be eliminated appropriately [4, Section 2.6].

15The key step is that U((T', 0y, D)) can be re-expressed as
U {(@o[Ny/al)oby | B €O, ANV(M, M) €D.(00[Ny/a])M =p, (0o [Ny/a])M"}
beB

where T'y 1s the result of removing @ and adding vp1, ..., vp, to I'. Then by using associativity of substitution
composition, and contracting the definition of U, the result follows.

10

It is important to note that the generated unification problems have no solutions in
common. This is because, for each b, any unifier of @), is an instance of [N;/a] o 6y, and
since each N, has a different rigid head (namely b), no two of the [Ny /a |08y can have any
instances in common. This property is what guarantees minimality (see Theorem 13).

A new strict partial order can be derived from an old one by replacing each disagreement
pair by its newly instantiated version, and by adding P C P’ for each P € Ry(o,,0n,) and
P' € [Ny/a]D, since we added Rp(o,,0n,) to account for any introduced ill-typedness.

The rigid-flexible transformation. The rigid-flexible case can be handled simply by
reflecting it into the flexible-rigid case: If M is rigid and M’ is flexible then

Q <y {<P7907{<M/7M> } UD/>}

4.2 The Algorithm

Now that we have presented the three transformations, together defining the relation
<y, we will describe a search process that operates on a set of unification problems and
enumerates a set of pre-unifiers. Informally, the process goes as follows: If there are
no unification problems left, stop. Otherwise, choose a unification problem to work on
next. If it is in solved form, add it the the set of solutions. Otherwise, apply one of the
transformations, in some way, to replace the unification problem by a finite set of new
unification problems. Then continue.

Note that two kinds of choices are made in this process. First, there is the choice
of which unification problem to work on next, and second, there is the choice of which
transformation to apply and how to apply it. It turns out that the second kind of choice
may be made completely arbitrarily, but, in order to have completeness, the first kind
must be done in a fair way.'® Huet formulated this difference by constructing “matching
trees”, in which the nodes are disagreement sets and the edges are substitutions, and then
showed that all matching trees are complete. His pre-unifiers are constructed by composing
substitutions along edges that form a path from the original disagreement set to one in
solved form. In our formulation, these composed substitutions are part of the unification
problem.

Definition 11 For a relation p between unification problems and sets of unification prob-
lems, and a unification problem @), a p search tree from @ is a tree T of unification
problems such that

16Tn implementation terms, this means that we can use e.g., breadth-first search or depth-first search with
iterative deepening, but not simple depth-first search.

11

o The root of T 1s Q.

o For every node Q' in T, the set of children of Q' in T s either empty if Q' 1s in
solved form, or is some Q satisfying Q' p Q iof Q' is not in solved form.

Definition 12 For a relation p between unification problems and sets of unification prob-
lems, we define the relation p™ as follows: Qp**Q iff there 1s some p search tree from Q)
whose set of solved nodes 15 Q.

We can then show the following

Theorem 13 Let Q) be a unification problem such that A(Q), and let Q be any set of
unification problems such that Q ;7 Q. Then

1. A(Q') for each Q' € Q.
2. Bvery Q' € Q s a pre-unifier of Q, i.e., it s in solved form and U(Q') CU(Q).
3. Q is minimal, i.e., for any two distinct members @', Q" of Q, U(Q) NUQ")={ }.

4. Q s complete, i.e., for any unifier 6 of Q), there is a Q' € Q such that § € U(Q").

Proof sketch:

1. Each transformation maintains the invariant for each constructed unification prob-
lem.

2. The transformations do not introduce new unifiers, and @ contains only solved form
unification problems.

3. As noted in the discussion of the flexible-rigid transformation, when the search for
pre-unifiers branches, the new unification problems have no unifiers in common.

4. Because our invariant insures head normalizability, the completeness proof goes much
as in [13], and has two main parts: (a) For a given unification problem @, there
can be only finitely many successive applications of the rigid-rigid and rigid-flexible
transformations. (b) For any unification problem (I', 6y, D) to which the flexible-
rigid transformation applies, and any unifier 8 of D, there is flexible-rigid-successor
(I, 6,,D") of (I", 8y, D) and a unifier ' of D’ such that 6" has strictly lower complexity
than 6, where complexity is defined in terms of sizes of the long 1 normal forms
involved. Another consideration, not required in HOU_, is that Rp always terminates.

12

Given a pair of terms M and M’ to unify, we can satisfy the invariant initially in
either of two ways. The first is to simply check that M and M’ are well-typed and have
the same type. (This is possible because type checking is decidable [10].) This method is
simple but does not allow for terms that will become well-typed or disagreement pairs that
will become homogeneous after substitution.!” The second method is much more flexible.
Instead of type-checking the terms, we perform only approximate type-checking, and at
the same time, construct a disagreement set whose unifiers (if any) instantiate the terms
to well-typed terms of the same type. This process is defined in Section 6.

5 Unifiability of Flexible-flexible Disagreement Sets

The value of pre-unification in A_ is that solved disagreement sets (ones containing only
flexible-flexible pairs) are always unifiable, and so pre-unifiability implies unifiability [13].
This is not true in general for Ar, but it is true of solved sets satisfying our invariant. By
making vital use the strict partial order in the definition of A, we can generalize Huet’s
constructive proof of this fact to Ar. For the simply typed subset of Ap, the substitution
that we use specializes to Huet’s.

Definition 14 For a contezt I, the canonical unifier 65 over T is the substitu-
tton assigning to each variable v : a0y, - M0, cQr---Q, n T', the term
Ar1:01. AT O he Q1 -+ - Qn, where he 15 a variable of type My, - -y Th.cyr - - Yo

Theorem 15 If) s a acceptable unification problem in solved form with unification
context T, then 65 € U(Q).

Proof: Let C be the strict partial order imposed on disagreement sets by our invariant.
Since disagreement sets are always finite, C is a well founded ordering, and thus we will
give an inductive argument. Let (M, M’) be an arbitrary member or our disagreement set
for

M = Aziiaq. - Azpap. v M- M,
M = Aol - Azpalh o' M- M

where v and v’ are variables with types

v Hapor. - Haiop.cQr--Q

. . <! [! !
v Iafiof. - lal ol . cQ) - Q)

171ll-typedness and heterogeneity can still arise during unification though.

13

and
¢ : Iy -y, 7. Type

The reason that the types of both v and v’ must involve the same type constant c, is that
our invariant insures that M and M’ have the same approximate type. Now, for 1 < 5 < n,

let
N, = /\Zlioél."'/\Zkioék.[(elng)/l'l,...,(elng)/l'm]Qj

Nio= N - Az [(BF M)/, .. (OF M))20, Q)

Then, for some choice of &q,...,a&; and aq,..., &g, we have

OSM = Azpidg. oo Az @p he (Ny 21 2g) - (N 2y -+ 21)
OLM' = Nii@l. - Azf@h o he (N] 25 2) oo (N 2) - 2))

By induction, assume that 5 unifies all disagreement pairs below (M, M’) in the ordering.
Thus, by our invariant, 85 M and 65 M’ are well-typed terms of the same type, so

Ozyidg. -+ Mzgidg. ¢ (Nyzp oo zg) o (Npzg o0 21)
= Ilzp:d@f. - Mz o (N{zy---z) - (NL 2o 2)

It then follows that GIQM =4 GIQM’. O

6 Automatic Term Inference

It is well known that first-order unification provides for type inference in A_, with type
variables and in similar languages [17]. Recently, it has been shown that HOU_, is the key
ingredient for the corresponding problem in the w-order polymorphic A-calculus [21]. In
Arr there is a new problem of interest, namely term inference, which requires HOUp. This
problem has two important applications. One is making our unification algorithm more
widely applicable, by initially establishing the required invariant, as mentioned at the end
of Section 4, and made precise below. The other is to provide automatic object-language
type inference. This section gives a very simple algorithm for A term inference, using
HOUp.

We will construct the term inference algorithm using two partial functions. The first
one, Mip, for a given context I' and signature ¥ (the latter of which we will leave implicit)
takes a term M and, if defined, yields a pair consisting of a type A and a disagreement
set D. Mip(M) is undefined when M is not even approximately well-typed. Otherwise, for
every unifier 6 of D, it is the case that I' -y M € 8 A. The second partial function Air,
takes a type A and, if defined, yields a pair consisting of a kind K and a disagreement set
D. If Air(A) is undefined then A has no well-kinded instance. Otherwise, for every unifier

14

6 of D, we have I iy #A € K. The structure of these definitions is determined by the
typing rules in Section 2, and uses the partial function R defined in Section 3.

Mip(v) = (A,{ }) wherev:AinT
Mip(c) = (A,{ }) wherecAin ¥
Mir(M N) = ([N/v]B,DUD URp(A,4"))
where { Mip(M) = ((TIv: A. B), D)'®
Mip(N) = (A’, D)
Mir(Av: A. M) = (v:A.B,DU D"
Air(A) = (Type, D)

where { Miro.a(M) = (B, D')

Air(c) = (K,{}) wherecK in ¥
Air(Ilv: A. B) = (Type,D U D')
Air(A) = (Type, D)
Air.4(B) = (Type, D’)
Air(AM) = ([M/v]K,DUD"URyB,B"))

. Air(A) = (Ilv: B. K), D)
where { Mi(M) = (B, D')

where {

Given a term M in a context I' we do type-checking/term inference as follows. If
Mip(M) is undefined, then M is not approximately well-typed, and hence it has no well-
typed instance, so we indicate failure. Otherwise, let (4, D) = Mip(M), and let Q be such
that (T, 64, D) <1577 Q, where 8! is the identity substitution over I'. If Q is empty, then M
has no well-typed instance. Otherwise, for each (I, ', D') € Q, we return the instantiated
term 6'M together with the “constraint” D’.1?

If on the other hand we have two terms M and M’ to be unified in a context I,
we can proceed as follows: If Mip(A) or Mip(M') is undefined, then M or M’ is not
approximately well-typed, so we indicate typing error. Otherwise, let (A, D) = Mip(M)
and (A, D) = Mir(M’). Then if Ry(4, 4") is undefined, we indicate typing mismatch.
Otherwise, let D" = Rp(A, A’). Then apply the pre-unification algorithm to the unification
problem (T, 6j¢. {(M, M')U D U D" U D"}).

18The intended interpretation is that if the type part of Mir(M) is not a II type, then Mip(M N) is
undefined.

¥Depending on the application, if @ has more than one element, and/or if D’ is nonempty for some
(T",0',D")y € Q, it may be appropriate to request a user to provide a more constrained term.

15

The reason that A term inference often gives object-language type inference is that
we can use Ar terms to encode object-language types and then construct object-language
terms using constants whose (dependent) types record the object-language’s typing system.
One example of this is in the encoding of higher-order logic, given in [10]. Another is a
simple first-order typed expression language [4, Section 7.3.3].

7 Related Work

Our algorithm is clearly influenced by the ideas underlying Huet’s. A related transforma-
tional approach is Snyder and Gallier’s for HOU_, and equational unification [27,26]. One
minor difference is that, rather than carrying along a substitution as part of their unifica-
tion problems, they represent these substitutions as a “solved” part of their disagreement
sets. A more important difference is that their transformations map a unification prob-
lem to a single unification problem, rather than a set of unification problems. However,
doing so prevents an important distinction between the two kinds of “nondeterminism” in
the algorithm, namely between the multiplicity of pre-unifiers in a complete set, and the
multiplicity of ways in which transformation rules can be chosen and applied (resulting in
different complete sets of preunifiers). We do not see how one could construct minimal
sets of pre-unifiers using their approach.

Recently, Pym [24] reported an independently developed algorithm for HOUyj.

8 Conclusions and Further Work

In this paper, we have presented an algorithm for HOUyy, ¢.e., higher-order (pre-)unification
in a typed A-calculus with dependent function types. This algorithm makes possible many
valuable extensions to current applications of HOU_ , as well as mechanized theorem prov-
ing in object-logics encoded as in the Edinburgh Logical Framework (LF). We also pre-
sented a particularly useful application of HOUy to perform A term inference. This
algorithm makes HOUy more widely applicable and allows for automatic type inference in
a variety of object-languages.

Our algorithm has good efficiency properties. For simply typed examples, it does the
same work as Huet’s algorithm. Thus the additional power of the algorithm is only payed
for where it is used.

A critical property of pre-unification in A_, is that pre-unifiability is a sufficient con-
dition for unifiability. Although this is not generally true in A under the relaxed typing
conditions that we are forced to allow, we showed that the pre-unifiers constructed by our
algorithm do indeed lead to unifiers.

16

We have implemented a prototype version of an extension of our HOUp algorithm,
which also handles type variables. Although the treatment of type variables is incomplete,
it is quite useful in practice. We also plan to add treatment of the dependent version of
Cartesian product types (often called “strong sum” or “X” types).?® This implementation
will form the basis of (a) a generalization of the programming language AProlog [18] to
Arn, to serve as a convenient implementation language for applications of HOUyy, and (b)
the new language Elf for logic definition and verified meta-programming [20].

An area for future work is to develop a complete treatment of type variables, and if this
succeeds, explicit polymorphism as in the second- or w-order polymorphic A-calculus [6,25].

9 Acknowledgment

I am very grateful to Frank Pfenning for originally suggesting the problem in Ap, and
for several very helpful discussions yielding many useful ideas, in particular the idea of
approximate well-typedness.

References

[1] Peter B. Andrews, Dale Miller, Eve Cohen, and Frank Pfenning. Automating higher-
order logic. Contemporary Mathematics, 29:169-192, August 1984.

[2] R. M. Burstall, D. B. MacQueen, and D. T. Sanella. HOPE: an Ezperimental Ap-
plicative Language. Technical Report CSR-62-80, Department of Computer Science,
University of Edinburgh, Edinburgh, U.K., 1981.

[3] Michael R. Donat and Lincoln A. Wallen. Learning and applying generalised solu-
tions using higher order resolution. In Ewing Lusk and Ross Overbeek, editors, 9th
International Conference on Automated Deduction, Argonne, Illinois, pages 41-60,

Springer-Verlag LNCS 310, Berlin, May 1988.

[4] Conal Elliott. Some Ezxtensions and Applications of Higher-order Unification: A
Thesis Proposal. Ergo Report 88-061, Carnegie Mellon University, Pittsburgh, June
1988. Thesis to appear June 1989.

[5] Amy Felty and Dale A. Miller. Specifying theorem provers in a higher-order logic
programming language. In Ewing Lusk and Ross Overbeek, editors, 9th International
Conference on Automated Deduction, Argonne, Illinois, pages 61-80, Springer-Verlag
LNCS 310, Berlin, May 1988.

20Preliminary work on this appears in [4].

17

(6]

[10]

[11]

[12]

[13]

[19]

Jean-Yves Girard. Une extension de l'interpretation de Godel a 1’analyse, et son
application a ’elimination des coupures dans ’analyse et la theorie des types. In J. E.
Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 63—
92, North-Holland Publishing Co., Amsterdam, London, 1971.

Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13:225-230, 1981.

John Hannan and Dale Miller. Uses of higher-order unification for implementing
program transformers. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic
Programmang: Proceedings of the Fifth International Conference and Symposium, Vol-
ume 2, pages 942-959, MIT Press, Cambridge, Massachusetts, August 1988.

Robert Harper. Standard ML. Technical Report ECS-LFCS-86-2, Laboratory for the
Foundations of Computer Science, Edinburgh University, March 1986.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
In Symposium on Logic in Computer Science, pages 194-204, IEEE, June 1987.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and \-calculus.
Cambridge University Press, 1986.

w. PhD

Gérard Huet. Résolution d’équations dans des langages d’ordre 1,2,..
thesis, Université Paris VII, September 1976.

9

Gérard Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

Gérard Huet and Bernard Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31-55, 1978.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. Journal of Pure and Applied Logic, 1988.
Submitted.

Dale A. Miller. Unification under mixed prefixes. 1987. Unpublished manuscript.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348-375, August 1978.

Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A. Kowalski
and Kenneth A. Bowen, editors, Logic Programmang: Proceedings of the Fifth Interna-
tional Conference and Symposium, Volume 1, pages 810-827, MIT Press, Cambridge,
Massachusetts, August 1988.

Lawrence C. Paulson. The Representation of Logics in Higher-Order Logic. Technical
Report 113, University of Cambridge, Cambridge, England, August 1987.

18

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

Frank Pfenning. Elf: A Language for Logic Definition and Verified Meta-
Programmang. Ergo Report 88-067, Carnegie Mellon University, Pittsburgh, Penn-
sylvania, October 1988.

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In
Proceedings of the 1988 ACM Conference on Lisp and Functional Programming, ACM
Press, July 1988.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the
SIGPLAN 88 Symposium on Language Design and Implementation, pages 199-208,
ACM Press, June 1988. Available as Ergo Report 88-036.

Garrel Pottinger. Proof of the normalization and Church-Rosser theorems for the

typed A-calculus. Notre Dame Journal of Formal Logic, 19(3):445-451, July 1978.

David Pym. A unification algorithm for the logical framework. November 1988.
Laboratory for Foundations of Computer Science, University of Edinburgh. To appear

as LFCS report.

John Reynolds. Towards a theory of type structure. In Proc. Collogue sur la Pro-
grammation, pages 408-425, Springer-Verlag LNCS 19, New York, 1974.

Wayne Snyder. Complete Sets of Transformations for General Unification. PhD
thesis, University of Pennsylvania, 1988.

Wayne Snyder and Jean H. Gallier. Higher-order unification revisited: complete sets
of transformations. Journal of Symbolic Computation, 1988. To appear in the special
issue on unification.

David A. Turner. Miranda: a non-strict functional lanugage with polymorphic types.
In Functional Programmang Languages and Computer Architecture, Springer-Verlag,
Berlin, September 1985.

19

