
Higher-Order Abstract Syntax∗

Frank Pfenning† Conal Elliott†

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Abstract

We describe motivation, design, use, and implemen-
tation of higher-order abstract syntax as a central rep-
resentation for programs, formulas, rules, and other
syntactic objects in program manipulation and other
formal systems where matching and substitution or
unification are central operations. Higher-order ab-
stract syntax incorporates name binding information
in a uniform and language generic way. Thus it acts
as a powerful link integrating diverse tools in such
formal environments. We have implemented higher-
order abstract syntax, a supporting matching and
unification algorithm, and some clients in Common
Lisp in the framework of the Ergo project at Carnegie
Mellon University.

1 Introduction

Higher-order abstract syntax is a generalization of the
usual data type of abstract syntax tree that is used to
represent syntactic objects in implementations of sys-
tems that manipulate programs, formulas, rules, etc.

∗This research was supported in part by the Office of Naval
Research under contract N00014-84-K-0415 and in part by the
Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 5404, monitored by the Office of Naval Research
under the same contract.

†The authors can be reached via electronic mail on the
ArpaNet as fp@cs.cmu.edu and conal@cs.cmu.edu.

Higher-order abstract syntax uses a simply typed λ-
calculus enriched with products and polymorphism
and thus extends a proposal by Huet and Lang [11].
It differs from LF [1,9] in that we do not allow depen-
dent function types, since no appropriate matching
or unification algorithm is known. Moreover, we feel
that products and polymorphism, which are absent
from LF, are an essential feature for practical appli-
cations.

The requirements that led to the design of higher-
order abstract syntax arose through one of the Ergo
project’s goals, namely to build a language-generic
environment for formal program development. Com-
ponents of such an environment that we have com-
pleted include a parser and unparser generator, an
attribute grammar compiler, a type inference facility,
and an interaction facility based on the X window
system. Other components now being implemented
include a language- and rule-independent transforma-
tion system and a logic-independent deduction sys-
tem.

Such a program design environment should support
rapid prototyping of all relevant aspects of program-
ming languages. That is, one should be able to easily
specify syntax, semantics, and transformation rules
for a language and obtain an environment tailored to
manipulating programs in that language. Our goals
are even broader, since we believe that logical lan-
guages and proof systems are essential for formal pro-
gram development and, therefore, that we must be
able to support these as well.

The requirements for the internal representation of
syntactic objects in such a system are quite different
from the requirements in a single-language system.
On the other hand, many of the same issues come up
in compiler generation systems. We believe the basic
principles that should guide the design of an inter-
nal representation for programs (and other syntactic
objects) in our context are:



• Simple, user-friendly syntactic and semantic defi-
nition of a language should be supported through
the representation. It should also allow definition
of transformation and inference rules in a simi-
lar style. In particular, it should be possible to
avoid complex side-conditions wherever possible.

• Efficient and correct use can be made of the def-
initions. In particular, the system must be able
to efficiently and correctly transform programs
or apply inference rules.

• The representation should be general enough to
be used by all relevant tools in an environment,
thereby providing for a high degree of integration
between the tools.

Abstract syntax trees have proved very useful in
similar contexts. This has been well established in
systems like PSG [2], the Cornell Synthesizer Gen-
erator [19], Gandalf [8,6], or Popart [20]. However,
abstract syntax trees do not completely satisfy the
more general requirements listed above. The crux of
the problem is that almost all languages in this con-
text will have name binding constructs. These bind-
ing constructs make correct matching and substitu-
tion difficult (see Section 2 for some examples). Also,
the requirements of a language generic system do not
allow incorporation of the information about binding
constructs the way it can be done in single-language
systems. Instead, the language implementor must ex-
plicitly define the binding constructs of the language
once and for all, and the system must be able to in-
corporate this information into the representation.

We found that all static binding constructs we
examined can be represented in a simply typed λ-
calculus with Cartesian products. We also added
polymorphism to the representation to make it pow-
erful to enough to conveniently state general transfor-
mation and inference rules. A somewhat less general,
but closely related representation was first proposed
by Huet and Lang [11]. It should be noted that our
representation in no way prohibits dynamic extent of
variables, nor does it mean a commitment to a call-
by-name over call-by-value semantics. Also, since the
types are syntactic sorts, no commitment to the se-
mantic type structure of the object language is made.
Higher-order abstract syntax is appropriate and use-
ful for almost all languages, including Prolog, ML,
Pascal, various logics and type theories, Hoare logics,
etc.

Adopting this typed λ-calculus representation al-
lows us to use the very powerful mechanism of higher-
order unification (of which higher-order matching

and substitution are special cases). We have imple-
mented Huet’s algorithm [10] for higher-order uni-
fication with extensions to deal with products and
polymorphism. It is complete except for some rare
cases involving higher-order polymorphism. In cer-
tain cases, straightforward matching would produce
too many unifiers to be useful, and in this case the
client (user or program) can preinstantiate some vari-
ables to generate a more specialized version of a pat-
tern. Note that this problem of too many rewrites is
inherent in program transformation, and not a defect
of our implementation. On the contrary: our imple-
mentation provides a simple way of stating a very
general, valid rule and then partially instantiating it
to a more specialized one which is automatically cor-
rect and can be applied efficiently.

We also provide a first-order interface to higher-
order abstract syntax. This first-order interface is
defined through the augments in the grammar and is
used by tools that still depend on the conventional no-
tion of abstract syntax (like the parser and unparser
generators and the current attribute grammar com-
piler). As discussed in Section ?? the efficiency loss
due to the dual interface seems to be minimal.

In the remainder of this paper, we first point out
some of the inadequacies of the representation of pro-
grams as abstract syntax trees. We then discuss
higher-order abstract syntax and illustrate its use
through a diverse set of examples. Finally, some im-
plementation issues concerning higher-order abstract
syntax and related work are discussed.

2 Some Motivating Examples

In this section we highlight some of the problems that
arise in matching and substitution due to the presence
of binding constructs in a language. Almost all lan-
guages have these binding constructs, though some-
times they are not immediately apparent. For ex-
ample, in Prolog the “free” variables in a clause are
actually bound in that clause, since they are clearly
distinct from variables with the same name in other
clauses. A function definition stated as f(x) = b actu-
ally binds x and f (see the beginning of Section 3.2).

The rules we present throughout this paper are
stated without any semantic side conditions such as
strictness or termination. Depending on the language
semantics, such conditions may still be necessary to
ensure full semantic equivalence between the trans-
formed programs. However, it should be noted that
in all the examples the syntactic side conditions on



the rules disappear without compromising the valid-
ity of the rule.

2.1 Correct Matching and Substitution

This problem should be very familiar; it is generally
called “variable capturing”. It appears in two differ-
ent forms: during matching and during substitution.
Consider the rule of let-conversion.

let x = e in b ⇐⇒ b[e/x]

Here are two incorrect applications of this rule.
Note that reading them from right to left shows the
problem of doing correct matching against b[e/x].

let x = y in let y = 5 in x ∗ y /⇐⇒
let y = 5 in y ∗ y

let x = 5 in let x = x ∗ x in x /⇐⇒
let x = 5 ∗ 5 in 5

What is required for correct substitution is recog-
nition of name conflicts and renaming of bound vari-
ables. If this rule is read from right-to-left, it is
clear that there are many possible ways of abstract-
ing an expression from a program, and that there-
fore straightforward matching on any representation
would be very non-deterministic. In a situation like
this the solution is to partially instantiate the pattern
before matching.

2.2 Variable Occurrence Restriction

Variable occurrence restrictions again require renam-
ing of bound variables during substitution, or failure
of matching. The following example is taken from a
formalization of a natural deduction system to show
the variety of circumstances in which these problems
occur.

Γ ` P ∀I, where x not free in Γ.
Γ ` ∀xP

If this rule is used by matching against the lower
line, the restriction on x must be checked separately
— it is difficult to formulate the rule simply and con-
cisely. Ideally, x would be renamed to a new variable
x0 if x is already free in Γ. If the rule is used in
the other direction, it should simply not match if x

appears in Γ. As we will see in Section 3.3, rules in-
corporating occurrence conditions can be formulated
easily and applied correctly using higher-order ab-
stract syntax.

Note that in a system that uses first-order abstract
syntax, not only would the rule be conditional, but
the language implementor would somehow have to
define a predicate not-free-in for the language in
question.

2.3 Correct Treatment of Contexts

Many program transformation rules can be stated
naturally through the use of contexts. Correct appli-
cations of these rules, however, is tricky. For example,
a rule propagating computation into the branches of
an if expression could be written as

C[if p then a else b] ⇐⇒ if p then C[a] else C[b]

Consider the following incorrect application.

let p = false in if p then 1 else 2 /⇐⇒
if p then let p = false in 1

else let p = false in 2

As noted in [16] syntactic conditions on C are dif-
ficult to formulate if one wishes to eliminate the pos-
sibility of incorrect rule application as in the exam-
ple. The use of higher-order abstract syntax solves
this problem by allowing the statement of the rule
as above, but automatically prohibiting the incorrect
use below without any additional conditions.

3 Design and Use of Higher-Order
Abstract Syntax

In this section we will sketch higher-order abstract
syntax and illustrate how it solves the problems men-
tioned in the previous section.

3.1 Well-Sorted First-Order Abstract Syntax

Ordinarily a parser creates untyped abstract syntax
trees. They can be viewed as terms where the opera-
tors in the language act as function symbols, and the
lexical terminals as constants. Variables as such do
not exist in this representation, that is, object lan-
guage variables are represented as identifiers, which



are all considered constants. In some systems in
which program schemas are considered, explicit no-
tations for schema-variables are introduced. These
schema- or meta-variables become variables in the ab-
stract syntax.

In the context of syntax manipulation tools the
need for types in the abstract syntax soon arises. This
is because one needs to be able to test whether a sub-
stitution of a subterm for another is syntactically le-
gal. The types then are derived from the syntactic
sorts or syntactic categories. The notion of syntactic
sort and object language type usually do not coincide,
though typically the object language types refine the
syntactic sort structure.

As an example throughout this paper we will use
a simple functional language with mutually recursive
function definitions, because it provides a good frame-
work for illustrating the use of higher-order abstract
syntax.

We begin with a grammar that, except for special
fonts, can be read directly by the parser and unparser
generator in the Ergo Support System. The gram-
mar augments surrounded by “< >” indicate the ab-
stract syntax that the parser constructs to represent
the concrete syntax on the left. We omit some of the
straightforward grammar augments.

P ::= rec D <rec0(D)>
D ::= F = E | D0 and D1

F ::= V | V F
E ::= V <var(V )>

| C <const(V )>
| if E0 then E1 else E2 <ite(E0, E1, E2)>
| let B in E <let0(B,E)>
| E0 E1 <apply(E0, E1)>
| lam V . E <lam0(V, E)>

B ::= V = E | B0 and B1

This completes the outline of a view of abstract
syntax as typed terms, where operators correspond to
function symbols and syntactic sorts to types. Meta-
variables or schema variables would have to be a dis-
tinct syntactic category.

In the Ergo Support System, the first-order ab-
stract syntax as defined by means of the grammar
above is used by the parser, unparser, formatter,
and interaction facility (for highlighting proper sub-
terms). However, if a higher-order view is defined
for a language the abstract syntax tree is never built.
Instead, we parse directly into higher-order abstract
syntax.

The first-order view from the higher-order repre-
sentation is then created through a function that de-
composes a term into its first-order operator and ar-
guments. Currently, this function must be specified
directly by the language implementor.

3.2 Higher-Order Abstract Syntax

Motivated by the examples in Section 2 we now gener-
alize to higher-order terms. This representation was
suggested by Huet and Lang [11] for use in program
transformation. In this first generalization, simply
typed lambda terms represent programs. Syntactic
sorts become λ-calculus types. The lexical termi-
nals and the operators that do not introduce vari-
able bindings are, respectively, first-order and second-
order constants of the λ-calculus.

Another crucial change occurs for the variables.
Operators in the object language that are binding
constructs are now explicitly encoded as third-order
constants. As the following examples will show, this
requires that bound object language variables actu-
ally become variables in the typed lambda calculus.

The generalization to simply typed λ-terms is still
insufficient for many languages. The problem is the
presence of lists of various forms: lists of arguments,
lists of bound variables, lists of mutually recursive
function definitions. The usual solution is to curry
functions, which enables representation, but not sim-
ple, finitary definition of transformation or inference
rules. See, for example, the formalization of Hoare
logic in LF [1], where the natural encoding remains
restricted to a two-register machine. More generally,
LF can naturally formalize an n-register machine for
any fixed n, but only give a very unsatisfactory en-
coding of full Hoare logic.

To solve this problem, we have extended higher-
order abstract syntax and the unification algorithm to
handle products. In our formulation of the λ-calculus
with products, we use pattern binders akin to ML,
rather than constants fst and snd . The product is bi-
nary and associates to the left. Our example language
has three constructs that introduce scope: let, lam,
and rec. Figure 1 shows how they are represented in
higher-order abstract syntax.

In order to express transformation rules through
patterns, we now augment the grammar for the ob-
ject language to a grammar for an associated pattern
language. The pattern language is not universal, but
rather is be constructed in harmony with a given ob-
ject language. Because of the higher-order nature of



let V1 = E1 and . . . and Vn = En in E as <let(λ〈V1 . . .Vn〉 . E)〈E1, . . . , En〉>
lam V . E as <lam(λV . E)>

rec V1V11 . . .V1n1 = E1 and . . . and VmVm1 . . .Vmnm = Em as

<rec(λ〈V1, . . . , Vm〉 . 〈lam(λV11 . lam(λV12 . . .E1 . . .)), . . . , lam(λVm1 . lam(λVm2 . . .Em . . .))〉)>

Figure 1: Representation of let, lam, and rec.

our abstract syntax, this requires more than just the
introduction of schema variables. Typically, an object
language and its associated pattern language will dif-
fer by three or four productions. These additional
productions provide for specifying variable applica-
tions, in some cases also for variables, abstractions,
and products.

Here we include higher-order application and ab-
straction. Note how the augments of these produc-
tions differ from the cases building apply and lam.

E ::= . . . | E0[E1] <E0(E1)>
| λV . E <λV . E>

Let us reconsider the let-conversion rule from Sec-
tion 2.1. We can now state a single polymorphic rule
for let-conversion. The first line shows how it would
actually be stated, the second line shows the hidden
type variable α. The given type is the most gen-
eral, with let being a polymorphic constant of type
(α → E) → α → E. Remember that the types in
the representation correspond roughly to the syntac-
tic categories of the language definition.

let x = e in b[x] ⇐⇒ b[e]
let xα = eα in bα→E [xα] ⇐⇒ b[e]

We can match this rule, for example, against the
following term

let x = 5 and y = 6 in x ∗ y

In this example, the substitution will be

α←− E × E
e←− 〈5, 6〉
b←− λ〈x, y〉 . x ∗ y

Then the right-hand side becomes

b[e] = (λ〈x, y〉 . x ∗ y)[〈5, 6〉] =
βη

5 ∗ 6

The Fold and Unfold rules [3] provide two more ex-
amples of how rules can be concisely and easily for-
mulated in this framework. Here we show the simpler
Unfold rule and give a definition that states one sin-
gle rule for any number of mutually recursive function
definitions.

rec f = b[f ][f ] ⇐⇒ rec f = b [b[f ][f ]] [f ]

We now consider an example where this rule is ap-
plied to a recursive function definition. The objective
of the transformation is to replace the first recursive
call to gcd by the properly instantiated function body.
This is achieved in two steps: the first is to replace
a recursive function call by its definition, the second
is to use lam-reduction (analogous to β-reduction,
but on the level of the object language) to obtain the
instantiated body.

rec gcd x y = if x = 1 then 1
else if x = y then x
else if x < y then gcd y x
else gcd (x− y) y

This program matches the unfold rule in four dif-
ferent ways, each either unfolding or not unfolding
each of the two recursive calls. In the substitution
below, g abstracts the occurrences of gcd that are to
be unfolded and f the ones that remain unchanged
in the transformation.

b←− λg . λh . if x = 1 then 1
else if x = y then x
else if x < y then g y x
else h (x − y) y



Applying the substitution to rec f = b[b[f ][f ]][f ],
the right-hand side of the rule, yields:

rec gcd x y = if x = 1 then 1
else if x = y then x
else if x < y then

(lam x . lam y .
if x = 1 then 1
else if x = y then x
else if x < y then gcd y x
else gcd (x− y) y) y x

else gcd (x− y) y

Now we can apply lam-reduction twice, yielding
the correctly unfolded program:

rec gcd x y = if x = 1 then 1
else if x = y then x
else if x < y then

if y = 1 then 1
else if y = x then y
else if y < x then gcd x y
else gcd (y − x) x

else gcd (x− y) y

Then, using two simple rules for simplifying
if-then-else expressions we can eliminate some of
conditions to get

rec gcd x y = if x = 1 then 1
else if x = y then x
else if x < y then

if y = 1 then 1
else gcd (y − x) x

else gcd (x− y) y

Higher-order rule descriptions, like the description
of Unfold, can be embedded in a programming lan-
guage so that compositions of transformations like
the one above can be described as short pieces of
programs. A good example of such a system is
λProlog [15]. Higher-order abstract syntax provides
a way for systems like λProlog to use readable con-
crete syntax for programs without sacrificing power,
simplicity of expression, or efficiency.

3.3 Propagating Contexts

Here is the promised solution to the challenge in Sec-
tion 2.3. The context variable C simply becomes a
second-order variable and will be instantiated only to
proper contexts. A typical rule would be the follow-
ing:

C[if p then a else b] ⇐⇒ if p then C[a] else C[b]

See Figure 2 for an example of a context prop-
agation rule and its use with higher-order abstract
syntax. The last counterexample demonstrates how
higher-order matching ensures that bound variables
will not leave their scope. This restriction is not en-
forced through a test after a potential match is pro-
duced, but is an integral part of the higher-order uni-
fication algorithm.

3.4 Raising Rules

So far all examples have been second-order. However,
there are many applications, in which one would like
to use third-order matching. In the context of raised
rules (as discussed here), our algorithm will always
terminate (a result due to Miller [13]). Raised rules
are a significant generalization of Huet & Lang’s tem-
plate matching [11].

Here is an example of an equivalence we would to
obtain as a consequence of a general rule for context
propagation.

let x = y ∗ y in
let z = x ∗ y in

if y > 0 then z else x

⇐⇒
if y > 0

then let x = y ∗ y in
let z = x ∗ y in z

else let x = y ∗ y in
let z = x ∗ y in x

This does not match the context propagation rule
from above, since a substitution like a←− z would be
captured by the binding on z. A general solution in a
case like this is to raise the order of the rule through
explicit abstraction. This solution is inspired by Paul-
son’s ∀-lifting [18] that was discovered independently
by Miller and called raising [13]. Both raise the order
of certain equations in the presence of parameters.
Raising requires that we be able to explicitly men-
tion the “λ” of the λ-calculus representation in the
pattern. The following is a raised version of context
propagation.

C[λx . if p then a[x] else b[x]] ⇐⇒
if p then C[λx . a[x]] else C[λx . b[x]]



C[if p then a else b] ⇐⇒ if p then C[a] else C[b]

x ∗ (if x > 0 then 1 else −1) ⇐⇒ if x > 0 then x ∗ 1 else x ∗ (−1)
where C ←− λz . x ∗ z, a←− 1, b←− −1, p←− x > 0.

(if x > 0 then 1 else −1) ∗ x ⇐⇒ if x > 0 then 1 ∗ x else (−1) ∗ x
where C ←− λz . z ∗ x, a←− 1, b←− −1, p←− x > 0.

let q = false in if q then 1 else −1 /⇐⇒ if q then let q = false in 1 else let q = false in −1
since C ←− (λz.let q = false in z), a←− 1, b←− −1 and p←− q leads to a clash.

Figure 2: Examples of context propagation.

This operation raised the order of a and b to be
second-order variables, C is now a third-order vari-
able of type (E → E)→ E. A match of this pattern
against its motivating example is given through the
substitution

C ←− λf . let x = y ∗ y in let z = x ∗ y in f [〈x, z〉]
p ←− y > 0
a ←− λ〈z0, z1〉 . z1

b ←− λ〈z0, z1〉 . z0

Again note the use of polymorphism in the rule
description and the instantiation of type variables to
product types to capture the fact that this should
apply to any number of bound variables that may
appear in the branches of the if, but not in the test
p.

This also shows that variable occurrence conditions
become unnecessary. The fact that p could not de-
pend on any variable bound in the context is implicit
in the formulation of the rule.

Our current incomplete support for polymorphism
cannot handle this example.

4 Other Applications

Higher-order abstract syntax captures the binding in-
formation present in a language. We have shown in
Section 3 how this can be used for correct unification,
matching, and substitution and direct formulation of
rewrite rules in the context of a language-generic en-
vironment for manipulating programs, formulas, and
other syntactic objects.

In the following subsections we indicate how other
components of such a generic environment can exploit

the scoping information embedded in the representa-
tion.

4.1 Type Inference

In the Ergo Support System, we have prototyped
a component for general type inference, given the
semantic type signature of a language. Conceptu-
ally, the type signature is translated into an attribute
grammar that will do type inference on a given term,
though the actual implementation is slightly more ef-
ficient.

An early problem with our type signature specifi-
cation language was that implicit binding constructs
could not be handled. For example, in Prolog the
binding of the free variables over a clause is implicit,
and it need not have the same type as a variable with
the same name in another clause. Other languages,
where binding constructs are complicated could not
be handled either. An example is an imperative lan-
guage where an arbitrary number of local variable
declarations may follow a begin.

With the use of higher-order abstract syntax these
problems disappear, since the necessary analysis is
done once and for all at parse time. Without go-
ing into detail, here is a possible type signature for
our functional example language that is based on the
higher-order abstract syntax representation. Note
that this completely eliminates the need for analyz-
ing the syntactic categories D, F , and B, which are
not present in the higher-order abstract syntax. Con-
stants of the object language may be declared sepa-
rately — the last line is an example.

Briefly, the operator in the language (constant in
the higher-order abstract syntax) is listed with their



semantic types. Type constructors of the object lan-
guage are funtype, prodtype, boolean, and number, type
variables are α and β.

rec : (α→ α)→ α
ite : boolean→ α→ α→ α
let : (α→ β) → α→ β
apply : (funtype α β)→ α→ β
lam : (α→ β) → (funtype α β)
∗ : (funtype (prodtype number number) number)

The higher-order nature of the abstract syntax
makes this straightforward specification possible.
Note that this specification does not treat let in the
way ML does, that is, it does not copy the type vari-
ables in instances of α.

4.2 Attribute Grammar Evaluator

Most attribute grammars on a language with binding
constructs will have to pass around an environment
as context in which the attribute value will be com-
puted. Typically that environment is enlarged when
descending through a binding construct of language.
As mentioned above, determining where variables are
bound often requires a significant amount of work,
like collecting free variables from a term.

Using higher-order abstract syntax the repeated
work can be avoided, thereby improving the efficiency
of attribute analysis. Moreover, expression of at-
tribute equations is more concise, since the environ-
ment of bound variables can effectively be hidden
from the user in most cases.

The Analysis Facility in the Ergo Support System
can currently process only attribute grammars that
traverse first-order abstract syntax. The implemen-
tation of an extension of attribute grammars to take
advantage of the higher-order abstract syntax is out-
lined here and planned for the near future.

Again, lacking space, the example is not fully ex-
plained but should indicate the form of such gen-
eralized attribute grammars. We show a fragment
of an attribute grammar that evaluates expressions
from our simple language. A higher-order subterm is
treated as if it returns a function from the attribute
value for the bound variable to the attribute value
for the whole expression. That function can then be
applied in the definition of other attributes. In the
implementation, the function objects are never built,
but they serve as a convenient, conceptual device. In
effect, the attribute grammar will be translated into

another computing the same value, but using envi-
ronments in which the variable name is bound to the
value to which the function would eventually be ap-
plied.

E(↑value) = C(↑value) | . . .
| let([E → E](↑valuefn), E(↑value0))

where value = valuefn(value0)
| apply(E(↑value0), E(↑value1))

where value = value0(value1)
| lam([E → E](↑valuefn))

where value = valuefn

In this example, the evaluation of a let would be
significantly more efficient that evaluation of and ap-
plication of an abstraction to an argument. The rea-
son is that the term corresponding to the lam expres-
sion is actually built first, then later reduced by appli-
cation, while the reference to valuefn in the clause for
let will be compiled into a form using environments.

4.3 Denotational Specification of Language
Semantics

We have found that using higher-order abstract syn-
tax significantly simplifies denotational semantics
specifications. The key idea here, proposed in [11], is
to specify the semantics of a language simply by giv-
ing an interpretation of the constants, and adopting
the standard interpretations for variables, abstrac-
tions and applications.

Semantic specifications are syntax-directed, that is,
the meaning of a compound expression should be a
“function” of the meanings of its components in the
abstract syntax. The constant interpretations are
exactly these functions, and putting together terms
with application has the semantic effect of applying
the meaning of the constant to the meanings of the
components. This frees the language specifier from
this step and makes the semantic specifications very
direct.

The standard technique for handling binding con-
structs is to make the meaning of an expression be a
function from environments to values. For example,
the semantics of a let expression in a call-by-name
language is commonly given as

E [[let v = e0 in e1]]ρ = E [[e1]](ρ+ [v → E [[e0]]])

Using the formulation of let given above, this sim-
plifies greatly to



µ[[let]] = λf . λa . f a

The formulation of the call-by-value case is only
slightly more complicated.

Formal syntactic systems involving semantic prop-
erties (such as total or partial equivalence of mean-
ings) that are based on higher-order abstract syntax
will naturally be much simpler than their traditional
counterparts. This is because there is less distance
between the (abstract) syntax being manipulated and
the meanings that motivate them.

5 Some Implementation Issues and
Further Work

5.1 Implementation of Higher-Order Ab-
stract Syntax

It seems that the most costly operations on abstract
syntax are higher-order matching and unification. We
therefore decided to implement the typed λ-terms,
and provide the first-order interface through explicit
conversion functions that are called when the first-
order components of a term are accessed. Our posi-
tive experience with the current implementation con-
firms that this was the right decision. The first-order
constituents of a λ-term are cached as they are com-
puted, thus making term-traversal almost as efficient
as for first-order abstract syntax. We have not no-
ticed a performance loss during formatted unpars-
ing, which is the most time-consuming operation car-
ried out using the first-order view of abstract syn-
tax. However, the representation of λ-terms them-
selves leaves room for improvement. Currently, we
use the normal form described by Huet in [10], but
lazy normalization and the use of deBruijn’s nota-
tion [5] should lead to some efficiency improvements
in the implementation of the unification algorithm.

5.2 Specification of Name Binding Con-
structs

Currently the language implementor has to supply
some highly stylized Lisp functions that achieve the
translations between higher- and first-order view of
abstract syntax. We have not yet had enough experi-
ence to feel confident in a design of a user-oriented
way of specifying the binding properties of a lan-
guage.

5.3 Nondeterminism

In general during program transformation, many of
the rules will be too non-deterministic to be simply
matched against a given program. In such a case we
need a more specific instance of a general rule. This
more specific instance can be obtained through sub-
stitution for some of the free variables in the pattern.
The correctness of the specialized rule follows directly
from the correctness of the general rule.

If one uses higher-order matching as part of the
execution of a higher-order logic program [15] then
it is the programmer’s responsibility to formulate
and order the clauses in such a way that the non-
determinism of the higher-order unification is con-
trolled. This requires some experience with λProlog,
but is in general not too difficult.

Another solution we have used successfully is to in-
teractively point at subterms displayed in a window,
for example, to identify subterms over which to ab-
stract.

5.4 Language Representation

When one is faced with the task of implementing an
object language using higher-order abstract syntax,
one is faced with a variety of choices. The most
straightforward representation is described in this pa-
per: syntactic categories (usually a subset of the non-
terminals) become types and there is a distinct, pos-
sibly higher-order constant for each operator in the
language.

However, sometimes one would like to eliminate
some of the syntactic sugar from the concrete syntax
and thus map different concrete syntax expressions
to the same representation. This is currently possible
in our implementation, but not very well supported,
since the unparser would only unparse into concrete
syntax corresponding to the core language. The ad-
vantage of using a smaller core language is that one
needs to define semantics, transformation rules, etc.,
only for the core language.

Another possibility for a more concise representa-
tion of a typed language is to use the types of the
λ-calculus to represent the types of the object lan-
guage. The class of languages for which this is possi-
ble is limited by the expressiveness of the type system
of the higher-order abstract syntax.



6 Related Work

LF, the Edinburgh Logical Framework [1,9,7] makes
explicit use of a different version of the λ-calculus
to represent logical formulas and programs and the
deduction system for reasoning about them. The
way quantifiers are encoded is similar to the way
it is done in higher-order abstract syntax and goes
back to Church [4]. Because of the power of their
λ-calculus with dependent function types, it is not
known whether there is a natural unification algo-
rithm that could be used for proof search in their
system in a general way. However, their system is
at the same time weaker in a different respect, since
it does not allow products or polymorphism. This
means that many natural formulations of transfor-
mation or inference rules cannot be represented in
LF.

Isabelle [18] uses a representation similar to ours
for the statement of rules, and uses higher-order uni-
fication for deduction. Isabelle’s λ-calculus represen-
tation does not have the expressive power of higher-
order abstract syntax, but explicitly encodes quanti-
fier dependencies.

λProlog [14,12,17] provides a natural metalan-
guage for writing programs acting on higher-order ab-
stract syntax. This was the basic point made in [15].
We plan a generalization of λProlog that would deal
with products and thus allow us to use it as a very
expressive metalanguage for metaprogramming in the
context of language-generic program derivation and
theorem proving.

7 References

[1] Arnon Avron, Furio A. Honsell, and Ian A. Ma-
son. Using typed Lambda Calculus to Implement
Formal Systems on a Machine. Technical Re-
port ECS-LFCS-87-31, Laboratory for Founda-
tions of Computer Science, University of Edin-
burgh, Edinburgh, Scotland, June 1987.

[2] Rolf Bahlke and Gregor Snelting. The PSG sys-
tem: from formal language definitions to interac-
tive programming environments. ACM Transac-
tions on Programming Languages and Systems,
8(4):547–576, October 1986.

[3] R. M. Burstall and John Darlington. A trans-
formation system for developing recursive pro-
grams. Journal of the Association for Comput-
ing Machinery, 24(1):44–67, January 1977.

[4] Alonzo Church. A formulation of the simple the-
ory of types. Journal of Symbolic Logic, 5:56–68,
1940.

[5] N. G. de Bruijn. Lambda-calculus notation with
nameless dummies: a tool for automatic formula
manipulation with application to the Church-
Rosser theorem. Indag. Math., 34(5):381–392,
1972.

[6] David Garlan. Views for Tools in Integrated En-
vironments. PhD thesis, Carnegie Mellon Uni-
versity, 1987. Available as Technical Report
CMU-CS-87-147.

[7] Timothy G. Griffin. An Environment for Formal
Systems. Technical Report 87-846, Department
of Computer Science, Cornell University, Ithaca,
New York, June 1987.

[8] Gandalf Group. Special issue on the Gandalf
project. In The Journal of Systems and Soft-
ware, Volume 5, Number 2, May 1985.

[9] Robert Harper, Furio Honsell, and Gordon
Plotkin. A framework for defining logics.
In Symposium on Logic in Computer Science,
pages 194–204, IEEE, June 1987.

[10] Gérard Huet. A unification algorithm for typed
λ-calculus. Theoretical Computer Science, 1:27–
57, 1975.

[11] Gérard Huet and Bernard Lang. Proving
and applying program transformations expressed
with second-order patterns. Acta Informatica,
11:31–55, 1978.

[12] Dale Miller, Gopalan Nadathur, and Andre Sce-
drov. Hereditary Harrop formulas and uniform
proof systems. In Second Annual Symposium on
Logic in Computer Science, pages 98–105, IEEE,
June 1987.

[13] Dale A. Miller. Unification under mixed prefixes.
1987. Unpublished manuscript.

[14] Dale A. Miller and Gopalan Nadathur. Higher-
order logic programming. In Proceedings of the
Third International Conference on Logic Pro-
gramming, Springer Verlag, July 1986.

[15] Dale A. Miller and Gopalan Nadathur. A logic
programming approach to manipulating formu-
las and programs. In Symposium on Logic
Programming, San Francisco, IEEE, September
1987.



[16] B. Möller. A survey of the project CIP:
Computer-aided, intuition-guided programming.
Technical Report TUM–18406, Institut für In-
formatik der TU München, Munich, West Ger-
many, 1984.

[17] Gopalan Nadathur. A Higher-Order Logic as the
Basis for Logic Programming. PhD thesis, Uni-
versity of Pennsylvania, 1987.

[18] Lawrence Paulson. Natural deduction as higher-
order resolution. Journal of Logic Programming,
3:237–258, 1986.

[19] Thomas Reps and Tim Teitelbaum. The synthe-
sizer generator. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Envi-
ronments, pages 42–48, ACM, New York, April
1984.

[20] David S. Wile. POPART: Producer of Parsers
and Related Tools, System Builder’s Manual.
Technical Report, University of Southern Cali-
fornia, Information Sciences Institute, 1987.


