[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

[Wieg91] Garry Wiegand and Bob CovéiQOPS Reference Manual, Version 3tBaca Software, 1991.

[Wiss90] Peter Wisskirche@bject-Oriented Graphics: From GKS and PHIGS to Object-Oriented Systems.
Springer-Verlag, Berlin Heidelberg, 1990.

[XGL92] Solaris XGL 3.0 Reference Manu8un Microsystems, Inc., 1992.

Functional 3D Graphics in C++ 20

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

The presented interface poses some interesting challenges to the implementation. We have described our current
implementation and explained how it supports the interface in both a time- and space-efficient manner, and how we
provide general extensibility. In particular, a multiple dispatching facility that accounts for the inherent extensibility
and much of the computational efficiency of our approach was explained in depth.

We have also discussed a number of interesting features of our system including embedded lights and shadow planes,
support for interaction, integration with sound, and aspects of TBAG's transparent support for network distribution.

9 Acknowledgments

Thanks go to Leon Shirman, Srikanth Subramaniam, Ajay Sreekanth, and Tom Meyer for their help developing, com-
menting on, and using the TBAG system. Doug Gehringer, Randy Pausch, Russell Pflughaupt, and Matthias Wloka
commented on earlier drafts of this paper. We'd also like to thank Matt Peréz for his support of this project.

References

[Arya86] Kavi Arya. A Functional Approach to Animation. Gomputer Graphics Forun®b(4):297-311, December
1986.

[Cham91] Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of Self, a Dynamically-Typed
Object-Oriented Language Based on Prototypekisimand Symbolic Computatiof, 243-281, 1991.

[Dann91] Roger B. Dannenberg, Christopher Lee Fraley, and Peter Velikonja. Fugue: A Functional Language for
Sound Synthesis. IEEE ComputerJuly 1991.

[Doré91]Doré Programmer’'s Guide, Release Sdubota Pacific Computer, Inc., 1991

[Elli94] Conal Elliott, Greg Schechter, Ricky Yeung, and Salim Abi-Ezzi. TBAG: A High Level Framework for
Interactive, Animated 3D Graphics Applications. To appe&dmputer Graphics (SIGGRAPH ‘94
Proceedings)volume 28(2), July 1994,

[Fiel88] A.J. Field and P.G. HarrisoRunctional ProgrammingAddison-Wesley, Reading, Mass., 1988.

[Goss93] Rich Gossweiler, Chris Long, Shuichi Koga, and Randy Pausch. DIVER: A Distributed Virtual
Environment Research Platform.IBEE Symposium on Research Frontiers in Virtual Redlittober,
1993.

[Keen89] Sonya E. Keen@®bject-Oriented Programming in Common Ligaldison Wesley, 1989.

[Kove93] Larry Koved and Wayne L. Wooten. GROOP: An object-oriented toolkit for animated 3D graphics. In
OOPSLA ‘93 Proceeding®ctober 1993.

[PHIG89] Programmer’s Hierarchical Interactive Graphics System (PHIGS). International Standard ISO/IEC 9592.

[Stra92] Paul S. Strauss and Rikk Carey. An Object-Oriented 3D Graphics Toolkitmiputer Graphics
(SIGGRAPH ‘92 Proceedingsjolume 26(2), July 1992.

[Stro92] Bjarne Stroustrup and Dmitry Lenk&uyn-Time Type Identification for C++ (Revised yet agaiNSI
document x3j16/92-0121, WG21/N0198, 1992.

[Tarl92] Mark A. Tarlton and P. Nong Tarlton. A framework for dynamic visual applicatioi®92 Symposium on
Interactive 3D Graphicspages 161-164, 1992.

Functional 3D Graphics in C++ 19

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

Figure 5. The SoundScape Application

* Remote tutoringa professor is teaching a undergraduate physics course and presents an electronic illustration of
spring forces in action. Students are watching this experiment live from their dorm rooms, their homes, or around
the world may interact with the experiment on their computers, to get a better understanding of the physics of
springs.

Not only are the distribution and collaboration aspects of these types of applications simple to construct in TBAG, but
they also execute quite efficiently, using very little network bandwidth.

[Elli94] discusses the implementation strategy for achieving this description of distribution and collaboration. How-
ever, to make it work, a requirement is placed on the Geometry-specific layer. Namely, all “values” described in
Section 3 need to be able to “print” themselves into a machine-independent representation that can be interpreted on a
remote machine. The interpretation of this machine-independent representation will create a new value whose behav-
ior is indistinguishable from the old value.

The immutability of values makes providing the machine-independent printed representation somewhat easier. This

is because the printed representation of a value is essentially an encoding of the expression that was evaluated to con-
struct the value in the first place. If the values were mutable, then the expression that led to the value’s creation would
not necessarily reflect its current state.

8 Conclusion

In this paper, we've described the geometry layer of the TBAG system. We have presented a simple and general func-
tional interface for programming 3D graphics that is fully accessible from C++. We've also described the design prin-
ciples that underlie the interface, and discussed the advantages gained in succinctness and comprehensibility by
presenting a functional interface to the programmer. In addition, we've shown how the interface is used from within
the TBAG framework to create interactive, animated programs.

Functional 3D Graphics in C++ 18

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

> T «.sy,

Figure 4. Scene with Lights and Shadow Planes

creates a Sound value representing a bird chirphigifg_sound should be thought of as a constant Sound, in
the same manner thatbe is a constant Geometry), attributed with attributes stating that the sound should play back
20% faster than normal, and with an amplitude of 80% of normal.

A Sound may be incorporated into a Geometry viastled_at_origin construction functiorsound_at_ori-

gin takes a Sound and returns a Geometry representing the specified sound at the 3D origin. This geometry can then
be transformed to other places in the usual manner. The rendering of the resultant geometry takes into account the
current “Listening Transform” (akin to the 3D graphics notion of viewing transform), and plays the sound in such a
way that the listener experiences an approximation of the sound actually coming from the specified location.

We have used this facility to create an application that presents a 3D landscape of about 30 different sounds, each
associated with a 3D icon (see Figure 5). The user has the ability to navigate a pair of microphones through this land-
scape, hearing the sounds that are in the proximity of the microphones through stereo headphones.

We intend to integrate 2D imaging (and thus video, as time-varying 2D images), into our system in a similar fashion.
This will allow arbitrary combinations of imaging and graphics media to be easily expressed. For example, texture
mapping a wall in a 3D scene with an image produced from compositing a source image with the rendering of another
3D scene will be straightforward to express in our system. (Seeing that it can execute quickly on today’s graphics and
imaging hardware is another story!)

7.5 Network Distribution

TBAG provides a very simple way to create distributed, collaborative applications. Examples of such applications
include:

¢ Collaborative designthree designers are all viewing the same geometry on workstations around the country.
Modifications that any of the three make are witnessed by the other two, as they are happening.

Functional 3D Graphics in C++ 17

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

XGL. As an example, a comparison was done between rendering 500 spheres each tessellated into 50 quadrilaterals.
On a SPARCstation 10ZX, the geometry specified in terms of TBAG operations rendered within 3% of the speed of
the geometry specified more directly in terms of the underlying graphics library.

7 Additional Features

The geometry layer of the TBAG system has some additional interesting features that we have not seen in other sys-
tems. This section describes some of them.

7.1 Embedded Lights

Lights are first-class Geometry values in our system. Thus, they can be embedded directly in geometry expressions
and have attributes applied to them in the same way that any other geometry can. In particular, they can be trans-
formed along with the geometry. As an example, consider the expression:

(cube + positional_light(yellow)) * xIt(1,1,1)

Here,positional_light(yellow) creates a positional light at the origin (all positional lights are initially at the
origin and may be transformed from there) that emits yellow light. It is combined with a cube, and the entire com-
pound geometry is translated to (1,1,1). Thus, we have a cube with a yellow light in the center of it, all at (1,1,1).

Most other interactive 3D graphics systems either force lights to be specified in world coordinates, thus they cannot
be part of the model itself (PHIGS takes this approach), or, as is the case with Inventor, lights only affect the objects
that come after them in the display hierarchy. This latter approach forces geometry description to be order-dependent
(thus eliminating opportunities for optimizations based on primitive re-ordering), and hence non-declarative.

7.2 Embedded Shadow Planes

We also provide a “shadow plane” geometry that, like a light, may be trivially combined with other geometries. A
shadow plane should be thought of as an invisible plane initially dhmane atz = 0. It may be transformed from

that position into other positions. For each light source in the scene, every other geometry casts a shadows onto each
shadow plane. On a SPARCstation 10ZX, this is all accomplished at interactive frame rates for reasonably complex
scenes.

Figure 4 shows a scene composed of 9 geometries combined together using the “+” operator described in Section 3.4:
a shadow plane, two directional lights, two geometries that provide a visual representation of each light, and four
canonical shapes. Note the shadows cast onto the shadow plane by each pair of shape and light.

7.3 Support for Interaction

TBAG supports the specification of geometry values that have their own behavior under intévizstipalators

are packaged up as Attributers, and may be used to attribute geometry (just as colors and transforms attribute geome-
try) so that the geometry behaves in a way dictated by the manipulator when it is interacted with. Most other systems
decouple the behavior of an object under interaction from the specification of the appearance of that object, making
for less declarative applications. Inventor is a notable exception, as it allows interaction nodes to be part of its graphs.

7.4 Integration of Sound

We have integrated audio support into our system in a manner entirely consistent with our geometry system, and
sound and geometry can easily be combined together to create intriguing applications. For instance, the expression:

chirping_sound * frequency(1.2) * amplitude(0.8)

Functional 3D Graphics in C++ 16

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

cube * xIt(1,1,1) * rot(y_axis, pi/3); (2)

creates a Geometry value by translating each point in the vertex lists representing the cube by (1,1,1), then rotating
each point around théaxis byr/3. Such an approach would be computationally prohibitive for non-trivial geome-
tries, would not take advantage of the property that transforms compose with each other, and would not utilize any
on-board graphics acceleration hardware that can deal with transforms directly.

Our system does not take this obvious approach. Rather, the expression in (2) above effectively evaluates into the
binary tree shown in Figure 3. When, for example, this representation is rendered into an XGL context, the translation

rot(y_axis, pi/3)

Figure 3. Representation of Expression (2)

and rotation transformations are composed and sent into the graphics hardware, making the best use of the available
computational facilities. If this expression is part of a graphics animation, and the rotation amount is changing each
frame, then a new binary tree will be built each frame. It turns out that, because of its simplicity, building such a tree
is very inexpensive and, as explained earlier, all memory used in building it will be reclaimed the following frame.

6.6 Static Geometry Optimization

Consider rendering the expressiae * xlIt(1,1,1) + cube * rot(y_axis, pi/4) to an XGL context.

Such an operation involves setting the modeling transform to the translation, drawing a cube, setting the modeling
transform to the rotation, and drawing another cube. This does not make particularly good use of the underlying
graphics hardware, which is geared more for accepting large, batched geometric primitives. However, if we explicitly
ask for this geometry to be “optimized”, it will be converted into a single “multi-simple polygon”, a batched set of
individual polygons. This is done by “pushing through” the transforms into the primitives themselves, and coalescing
the resultant primitives into a single primitive. Not only does this make optimal use of the underlying graphics hard-
ware, but it is also an optimization that a programmer would probably be unwilling to perform manually.

Note that this optimization is feasible only because we do not allow editing of a geometry value. If we did, then the
original geometry would need to be retained, and any changes to it would somehow need to be forwarded to the opti-
mized version.

In our current system, geometry optimization has to be invoked explicitly by the programmer, by applying the func-

tion optimize_geometry to a Geometry value. In the future, we intend to have this be implicit. Specifically, when a
geometry becomes constant (e.g., a user was manipulating the geometry, but has since released it), the system will
automatically invoke optimization. This is similar to the dynamic compilation that the Self system [Cham91] per-

forms after a function has been executed a suitable number of times, thus suggesting that the future usage pattern war-
rants accepting the cost of compiling that function, and will be a fairly straightforward addition to our system.

6.7 Implementation Statistics

The TBAG system is the result of approximately three calendar years and ten person-years of design and implemen-
tation. TBAG’s geometry layer is a robust, mature, consistent, and full-featured system. It consists of 34 different
Geometry subclasses, 12 Transform subclasses, 14 Context subclasses, over 100 Attributer subclasses, and over 15
other abstract data types. The geometry layer consists of about 20,000 lines of C++ code, all of which is consistent
with the principles laid out in this paper. The system performs very well on both medium- and high-end graphics
hardware — particularly on the SPARCstation 10ZX. Graphics performance is comparable to programs hand-coded in

Functional 3D Graphics in C++ 15

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

where the filled in cells represent registered methods. Now, if we invoke a generic function with arguments of types C
and Y, the inheritance semantics will cause method selection to search the table and comeetpSvithowever,
during this initial lookup, we fill in all the empty cells we encounter, and end up with this table:

A B C D
X meth3 | meth5| meth5
Y meth5 | meth5| meth9
Z meth?7

with the italicized cells being newly filled in witheth5 . Now, subsequent calls with arguments of type C and Y (or
C and X, or B and Y) will not require any table searching.

We are able to perform this optimization because of a rather benign restriction we place on the system: No methods
may be registered with a generic function after that generic function has been invoked for the first time. If we didn't
have this restriction, the eager filling in of the sparse table would have incorrect semantics in the event that a new
method was registered later on. We have yet to encounter a situation where this restriction was troublesome.

As a measure of the computational efficiency of our approach, we examined the assembly code resulting from com-
piling our multiple dispatching facility. We found that, after the first invocation, a double dispatch requires just 53
SPARC instructions to find the appropriate method. If deemed necessary, this number can be halved by making
changes that would result in a small decrease of flexibility.

6.4 Memory Management Techniques

As discussed in Section 5, one constructs an interactive animation in TBAG by using constrainables as arguments to
functions. Consider displaying a cube that is being scaled by the absolute value of the sine of time and whose hue is
varying with time:

cube * hsv_color(Time, 1, 1) * uniform_scale(fabs(sin(Time)))

If this is displayed starting at time t = 10.0, at a rate of 20 frames per second, the first five displayed frames would
consist of the following geometries, respectively:

cube * hsv_color(10.00, 1, 1) * uniform_scale(fabs(sin(10.00)))
cube * hsv_color(10.05, 1, 1) * uniform_scale(fabs(sin(10.05)))
cube * hsv_color(10.10, 1, 1) * uniform_scale(fabs(sin(10.10)))
cube * hsv_color(10.15, 1, 1) * uniform_scale(fabs(sin(10.15)))
cube * hsv_color(10.20, 1, 1) * uniform_scale(fabs(sin(10.20)))

Given the earlier description of how geometry values are constructed, it should be clear that each of these expressions
creates four new values — one Transform, one Color, ané&mo Geometries (via the operator). If values are

allocated and constructed every frame, one would expect that an excessive amount of garbage will be created, and
memory usage and allocation would become a major problem.

We avoid this potentially fatal problem by recognizing that, because of our functional, immutable approach, every
value that is constructed during a frame is only needed for the duration of that frame. After the frame is displayed, the
values are no longer needed. To exploit this fact, all TBAG objects derive from a base class that redefines the C++
new operator to, when appropriate, allocate from a “transient store”. Thus, while in “transient mode”, all TBAG
objects are allocated sequentially from a small number of large chunks of memory. At the end of a frame, all of the
created objects are collected simply by resetting a few pointers in the transient store. The next frame writes over the
same chunks of memory.

6.5 Techniques for Computational Efficiency

A reader may understandably get the impression that evaluating the expression

Functional 3D Graphics in C++ 14

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

not have been registered for every combination of argument types. It is the inheritance mechanism that determines
which method to call if an empty table cell is reached by the dispatching facility. Consider the following simplified
method table:

B D
X 6
Y 5 3
4

Here, with “P~ Q" meaning “P inherits from Q”, we haveZ Y ~ Xand D— C « B « A. If we call a doubly
dispatching function with arguments of type Y and of type C, conceptually the system will search for methods start-
ing at #1 above, continuing in order to #6, stopping only when a method is found.

In practice, we use inheritance extensively. For instance, the method to r&udéma object is the same regardless

of the subclass of context used — simply render the left component into the supplied context, then render the right
component into that context. Thus, we only defiga@ion rendering method on the abstr@ohtext class, relying

on inheritance to select this method for all other contexts.

As another example, consider thehere class. For rendering into &glDrawingCtx , we inherit from the&aram-
eterizedSurf class, which renders as a quadrilateral mesh. Since XGL doesn’t support direct rendering of spheres,
we can't do any better than renderin§phere as a parameterized surface. However, we do provide a method for
rendering &phere into aRaylIntersectPickingCtx , Since performing ray intersection against a sphere is much,
much faster than performing it against a general parameterized surface.

Our extensibility goals set forth in the introduction are easily met by the approach we have chosen to take. Adding
both new geometry subclasses and new contexts (embodying new styles of rendering) have been shown to be
straightforward. The inheritance features described here also make it straightforward to re-use existing code.

6.3.5 Implementing Inheritance Efficiently

The previous discussion about the method table and the method selection process may lead the reader to believe that
our implementation’s computational complexity in method selectionmeiOgith m being the number of arguments

that we are dispatching off of (2, for double dispatching),rarepresenting the average length of the inheritance

chain that needs to be traversed for each argument until a registered method is found or until the root of the inherit-
ance chain is hit.

In our implementation, this is not the case, and we achiew g@fformance, linear with the number of arguments
being dispatched off of. We do this by eagerly filling in a sparse inheritance table during method selection. Specifi-
cally, if, prior to doing method selection, we have the following table:

A B C D
X meth3 | meth5
Y meth9
Z meth7

Functional 3D Graphics in C++ 13

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

DECLARE_TAG(Geometry, ParameterizedSurf);
h

DEFINE_TAG(Sphere, ParameterizedSurf);

Note that our inheritance specification currently supports only single inheritance. We have yet to find a requirement
for multiple inheritance in our system, and multiple inheritance is a facility whose usefulness has been called into
guestion many times in the past.

It's regrettable that we need to specify inheritance and declare tags at all, since this information is already known to
the C++ compiler. However, as mentioned before, there is no portable way to access this information, thus we need to
duplicate the information. Even more unfortunately, the proposed C++ extensions for run-time type identification
[Stro92] do not provide all of the information that we need to support multiple dispatching (specifically, information
about inheritance relationships is not accessible).

6.3.3 Registering Methods

In order for multiple dispatching to do the work we want it to do, we need to register methods to be executed with
particular subclasses. We do this viaR&SISTER_DOUBLE_DISPATCH_METH®@Tcro. For instance, to register a
method that extracts the bounding box out 8pkere , we use:

REGISTER_DOUBLE_DISPATCH_METHOD(render_geometry_in_context,
BboxCtx, Sphere,
render_sphere_into_bbox_ctx);

A few comments:

* The first argumentender_geometry_in_context() , is the generic function that this method is being regis-
tered for. It has been declared as a generic function elsewhere.

* Method registration occurs at system initialization time, prior to any generic functions being invoked.

* render_sphere_into_bbox_ctx is most appropriately thought of as a member function of botBuidneCtx
class and th&phere class, and should have the same access privileges that actual member functions of these
classes have. However, since C++ does not recognize these methods as member functions, we need to define our
classes such that instance data is declargit: |, thus allowing these methods access to that data. This is why
Gunion 's left andright data members were declared public in Section 6.1.

Therender_sphere_into_bbox_ctx function may be defined as:

static void
render_sphere_into_bbox_ctx(Sphere& geo, BboxCtx& ctx)

{

/I sphere’s are always unit dimensioned.
ctx.swallow_bounding_box(unit_bounding_box);

6.3.4 The Method Table and Inheritance

Conceptually, registering double dispatching methods oretlier_geometry_in_context() generic function
fills in a two-dimensional table of methods, with one axis representing the specific Geometry subtype and the other
axis representing the specific Context subf/plae method table may be sparsely populated, in that methods may

5In fact, our multiple dispatching facility is not restricted to just two dispatching arguments. A generic function that dispatched off
of three arguments would conceptually have a 3D volume of methods.

Functional 3D Graphics in C++ 12

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

Multiple dispatching is essential for TBAG to be able to be a truly extensible system. An extender of the system

needs to be able to add both new Geometry subclasses and add new ways in which Geometry gets rendered (i.e., add
new Context subclasses). If we only supported single dispatching, then we would either have to define our Geometry
abstract class to have a member function per type of rendering we wanted to support:

class Geometry {
public:
virtual void render_to_xgl(XgIDrawingCtx& ctx) = 0O;
virtual void render_for_bbox(BBoxCtx& ctx) = 0;

h

Or we would have to define our Context abstract class to have a member function per type of geometry subclass we
wanted to support:

class Context {
public:
virtual void render_gunion(Gunion& geo) = 0;
virtual void render_stroke_text(StrokeText& geo) = 0;

h

Both of these alternatives are completely unacceptable for a truly extensible system, since, in C++, it is impossible to
add methods to an existing abstract class without altering header files and recompiling the entire system. So, we have
created an efficient multiple dispatching facility that we use throughout the system.

Contrast this approach to extensibility with those offered by most other graphics systems. Most other systems only
allow the introduction of new primitives and (occasionally) attributes via the subclassing of existing primitives and
attribues. It is generally not possible for a system extender to add in a new type of operation.

We use multiple dispatching for more than justrémeler_geometry_in_context generic function. For example,
compose_transforms takes two Transforms and composes them, returning a new Transform whose representation
is dependent upon the argument’s run-time types. For example, a rotation composed with a rotation yields another
rotation, while a rotation composed with a scale returns a Transform represented by a 3x8amatsse_trans-

forms determines which method to invoke by multiply dispatching off of its two arguments.

Additionally, we use multiple dispatching to control the processing of attributes in contexts. For instance, the process-
ing of a color may be ignored in a ray-intersection context, but must be honored in an XGL rendering context.

6.3.2 Type tags

Since standard C++ doesn’t currently expose any facility for portably retrieving run-time type information (RTTI),
we need to provide our own facility for generating and accessing such information, in a portable fashion. The
DECLARE_TAG(AbstractClass) andDEFINE_TAG(Class, ParentClass) macros used in conjunction with
class definitions provide a per-class static “tag” that is unique across all tags declared to bébp@atilass

It also informs our run-time type facility thBarentClass is the most direct ancestor of the class in which the dec-
laration is being made. In our implementation, the tag is simply a small integer. The static staithoaty()

may be invoked on the class itself to retrieve the type tag of the class, while the tag@hodnay be used to

retrieve the type tag of an object. Thus, to check if an object is obtyqgen , we could say:

Boolean is_gunion = (Gunion::static_tag() == obj->tag());

We need to supplyarentClass to theDEFINE_TAGmacro in order for multiple dispatching to correctly reflect
inheritance relationships amongst classes. As another example of the use of these macros, consider the declaration of
theSphere class, pictured in the class hierarchy in Figure 1.

class Sphere : public ParameterizedSurf {
public:

Functional 3D Graphics in C++ 11

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

BBoxCtx

RaylntersectPickC@

PickCtx

Context

HardwarePickCtx>

DrawingCtx

XglDrawingCtx)

Figure 2. Partial class hierarchy for theContext type

A few notes:

* A BBoxCtx calculates the bounding box of the Geometry that's rendered into it.

¢ An XglDrawingCtx is a subclass of DrawingCtx, and uses SunSoft's XGL immediate mode 3D graphics library
[XGL92] to do the rendering into a frame buffer. Other subclasses may be added to use alternate 3D rendering
engines.

* There are a couple of different approaches for picking. One uses the underlying hardware support (accessible
through XGL), while the other does ray-intersection based picking. In our experience, ray intersection picking is
both faster and is capable of providing more complete results, including surface intersection point and normal.

The representation of a Context includes member data reflecting the current state of the Geometry traversal. For
instance, the BBoxCtx is expressed roughly as:

class BBoxCtx : public Context {
public:
DECLARE_TAG(Context);

void swallow_bounding_box(BoundingBox& bbox);
BoundingBox *current_bbox;

h
DEFINE_TAG(BBoxCtx, Context);

Theswallow_bounding_box() method updatesurrent_bbox to include the specified bounding box. When tra-
versal of a Geometry is completesrent_bbox holds the Geometry’s bounding box.

6.3 The Multiple Dispatching Facility

6.3.1 Why we need multiple dispatching

The functionrender_geometry_in_context works bymultiply dispatchingpff of its two argumentgyeo and

ctx . Multiple dispatching (sometimes referred tavadtiple polymorphisnor multi-methodpallows the code that
actually gets selected to be executed (the “method”) to be dependent upon the run-time types of two or more argu-
ments of the “generic” function that was invoked. We borrow this terminology from CLOS, the CommonLisp Object
System [Keen89]. The “generic” function being discussed heeadsr_geometry_in_context

C++ supports only single dispatching, meaning that, given a virtual furigtion the expression
obj->func(arg)

selects the particuléunc method to be executed based solely upon the run-time typg o he run-time type of
arg can play no part in determining whiftinc gets selected. In TBAGender_geometry_in_context must
choose the particular method to execute by taking into account the run-time typesgebbatiolctx .

Functional 3D Graphics in C++ 10

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

StrokeText
RegularPolygon

(QuadMesh Y~ parameterizedSu(f
HollowCylinder >

Figure 1. Partial class hierarchy for theGeometry type

Geometry,

Primitive

Remember, as discussed in Section 4.3, that this hierarchy is not visible to those programming in TBAG. It is visible
solely to implementers and extenders.

As an example of how a Geometry value gets created, consider the combinational ogefdisrussed in
Section 3.4) applied to two Geometries to create a new Geom@rglefined as:

Geometry&
operator+(Geometry& left, Geometry& right)

{
}

return *new Gunion(left, right);

and theGunion subclass is defined as:

class Gunion : public Geometry {
public:
Gunion(Geometry& |, Geometry& r) : left(l), right(r) {}
DECLARE_TAG(Geometry);

Geometry& left;
Geometry& right;
h

DEFINE_TAG(Gunion, Geometry);

There are a few items to take note of here:

* Generally, construction and combination functions return references to new instances of Geometry subclasses.

* TheDECLARE_TAG(Geometry) andDEFINE_TAG(Gunion, Geometry) declarations are used to provide run-
time type information. The reason for this will be described further in Section 6.3.2.

* Note that there are no methods defined omamion class. All interesting functionality will be provided via
methods selected by multiple dispatching.

* TheGattr subclass shown in the figure is similar to ®mion subclass, but represents attribution, and is con-
structed via the operator on a Geometry and an Attributer.

6.2 Contexts and their representation

A “context” is a program entity that accumulates state during the processing (traversal) of a Geometry value. The sys-
tem contains a number of different context types, each specialized for a different type of “rendering”. Here is a partial
class hierarchy:

Functional 3D Graphics in C++ 9

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

/I xf1, xf2 will automatically get the inverse trajectory, and thus both
/I block_with_balls in geo will start moving.
assert(xfl == rot(y_axis, Time) *

uniform_scale(fabs(sin(Time)) *

xlt(sin(Time), cos(Time * 3.0), sin(Time * -7.0))

Interaction is specified in much the same way as animation. The mouse, for instance, is abstracted as a time varying
Point2D-valued constrainable. Asserting a constraint between the position of a geometry and the mouse constrainable
causes the geometry to move when the mouse moves. Discrete events (for instance, a mouse button press) are mod-
eled by retracting some constraints and asserting others. For instance, when a mouse button is released, the constraint
tying the geometry to the mouse can be retracted, and a constraint tying the geometry to its current position will be
asserted.

These techniques for expressing relationships between different program entities, and the relationship between differ-
ent entities and time, frees the programmer from having to concern himself with any notion of flow control. He does
not need to write an animation loop, nor does he need to receive timer events or mouse motion events, he simply
expresses relationships for the system to maintain.

Hopefully these examples make the point that the features available for constructing static geometry are available for
creating interactive, animated geometry as well. Because of our approach, we do not need the editing facilities that
most graphics systems provide (these are the same editing facilities that make the systems considerably more com-
plex). For example, rather than replacing a transform within a hierarchical structure to affect animation, we simply
express the animation up front, and the system conceptually creates an entire new geometry value at each frame. (It's
important to realize that this construction of an entire new geometry value at each frame is purely conceptual. The
actual implementation is smarter than that.)

6 Implementation of the Interface

We now turn our attention to how the interface described in the preceding sections is implemented. Remember that
none of what we discuss here is visible to the application programmer. The primary implementation concept for the

geometry layer of TBAG, from which most of the other implementation concepts flow, is taatiefing When we

speak of rendering, we mean in it in the broadest possible sense. Rendering refers to the processing of a geometry
value in order to achieve some result. As mentioned earlier, we use rendering to draw geometry values into a frame
buffer, perform ray intersection, extract bounding boxes, etc.

There is a single function, declared as
extern void render_geometry_in_context(Geometry& geo, Context& ctx);

that embodies all the rendering possibilities we are faced with. The specific action taketebyeometry_-
in_context is dependent upon the specific typegeaf andctx .

To understand how this single function can be used to control all rendering possibilities, one must understand how
Geometry and Context values are created and represented in the system, and how the multiple dispatching facility
operates. The following sections discuss these issues, as well as the memory management techniques that we use to
make our approach feasible, some non-obvious techniques that make good use of available computational power, and
some geometry-specific optimizations we are able to perform because of the approach we take.

6.1 Representation of Geometry values

Let's consider how geometry values are represented in the system. There is a class hierarchy extending from the
Geometry abstract class that embodies all forms of geometry that may be created in the system. Here is a partial view
of this hierarchy:

Functional 3D Graphics in C++ 8

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

ing of geometry, and this introduces considerable complexity into the entire interface. Another aspect of the answer is
that our use of the syntactic features available in C++ make expression of Geometry quite natural.

5 Integration of the Geometry Layer into TBAG

The description of the geometry construction interface above focuses on creating static geometry values. A reader
would be reasonably concerned about how this interface, with immutable values and no editing facilities, could be
used to construct interactive, animated geometry. This section addresses that concern by describing the TBAG system
itself. TBAG is a client of the Geometry-specific layer, and addresses issues that would be experienced by any system
that built on top of the interface described above. TBAG provides mechanisms that let ondiexpremying(i.e.,

animated and/or interactive) geometry in ways virtually identical to expressing static geometry values. We provide a
very brief description of the facilities available in TBAG for doing this. The reader is encouraged to consult [Elli94]

for more information.

TBAG is based on a very efficient local-propagation constraint solver, that, although it is by no means completely
general, can solve an interesting and very useful subset of constraint problems. TBAG exposes the motien of a
strainable which is an entity that may be involved in a constraint relationship. Constrainables are parameterized
according to the type of the value they hold, and this type parameterization is expressed with C++ templates. There is
a primitive Real-valued constrainable calféale that represents absolute time in seconds, and it may be used in con-
structing other constrainables. Some examples:

/I cone rotating about the Y axis by 1 radian per second
Constrainable<Geometry&> geo = cone * rot(y_axis, Time);

/I Pulsating block with ball whose hue is determined by Time, and whose

/I scale is determined by the absolute value of the sine of Time. This makes

/I use of the function we defined in Section 4.4.

Constrainable<Geometry&> geo =
block_with_ball(uniform_scale(fabs(sin(Time))), hsv_color(Time, 1, 1))

/I Constrainables may be parameterized as other types as well. Here, we construct
I/l a time-varying Point whose Band @are time-varying.
Constrainable<Point&> pt = spherical_point(Time, Time * 0.164, 1.0)

Note that many of the value construction functions that we saw in Section 3.3 are being used with constrainables as
arguments. Eveblock_with_ball , a function defined by an application programmer, is being used with constrain-
ables. How does this work in a statically typed language like C++? TBAG provides a tool that processes header files
and creates overloaded versions of the functions in the header files. These overloaded versions are chosen by the C++
compiler if constrainables are provided as arguments to them. This tool allows sets of functions that were written
without TBAG in mind to be used from TBAG, with TBAG constrainables.

In addition to being able to be expressed in ternTnad , constrainables may be put into constraint relationships
with other constrainables. The system maintains the constraint, even when the contents of one of the constrainables
involved in the relationship changes. This is accomplished via the “assert” function. Some examples:

Constrainable<Transform&> xf1;
Constrainable<Transform&> xf2;

/I Assert that the combination of xf1 and xf2 is the identity transformation.
/I This guarantees xf1 and xf2 to be inverses of each other.
assert(xfl * xf2 == identity_trans);

/I Create a geometry of two blocks_with_ball’s, where one always has the

Il inverse transform of the other.

Constrainable<Geometry&> geo = block_with_ball(xf1, red) +
block_with_ball(xf2, blue);

/I Give xf1 an interesting trajectory. Because of its relationship to

Functional 3D Graphics in C++ 7

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

by the color of the ball and the transformation that gets applied to the entire geometry. Rather than introducing a new
mechanism into our system that allows for the parameterization of geometry, such as PHIGS structures or Inventor
Node Kits, we simply use functions that may be defined in the host language (in this case, C++):

Geometry&
block_with_ball(Transform& xform, Color& color)

{

return (cube * scale(1,4,1) * color /I appropriately colored cube
+ sphere * xIt(0,2,0) * yellow) // + yellow sphere
* xform; /I all transformed by xform

}

We now have a standard C++ function that represents the desired parameterized geometry.

4.5 Expressiveness of the Interface

As a measure of expressiveness, it's useful to compare how one would achieve a comparable result through a number
of different systems. Consider creating a geometry that consists of a cube with edges turned on and a blue sphere, all
of which are designated as unpickable. In TBAG, this would be expressed quite naturally and succinctly as:

(cube * edges_on + sphere * blue) * unpickable Q)
Note that in this expression, we spedififatthe geometry is, rather than specifyhawvto draw it.
In a traditional graphics system, like PHIGS, Hoops, or Doré, the Geometry in (1) would be expressed roughly as:

push pickability

set unpickable

push current edge flag
set edges on
execute cube

pop current edge flag
push current color
set color to blue
execute sphere

pop current color
pop pickability

Aside from being quite verbose, this latter expression forces the programmer to think in terms of a machine model of
a graphics context and forces a descriptionovfto draw the geometry.

The newer crop of object-oriented graphics systems, such as Inventor, GEO++, and GROOP, would express the
Geometry (1) more like:

¢ = new Cube;
c->set_edges_on(True);

s= new Sphere;
s->set_color(Blue);

g = new Group;

g->add(c); /[add the cube to the group
g->add(s); /I add the sphere to the group
g->set_pickable(False); // make the entire group unpickable

While this is considerably more understandable than the PHIGS style, it is still quite verbose and less comprehensible
when compared with TBAG'’s expression of the geometry. It also leaves less room for the implementation to transpar-
ently perform geometry optimizations.

Why is TBAG so much more succinct and expressive than other systems? One aspect of the answer is that we don't
have to worry about being able to edit geometry. All of the other cited systems have mechanisms that allow the edit-

Functional 3D Graphics in C++ 6

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

try that represents a red cube. This is a key feature of the functional programming paradigm - values are constructed,
not altered.

We say that our values aremutablein that, once constructed, there is no way to alter them. Thus, unlike most
object-oriented graphics systems, these values are not “objects” in the traditional sense — they do not have mutable
state nor do they have the corresponding methods to alter that mutable state. While at first this may seem like a debil-
itating restriction, we shall see in Section 5 why this is not the case. In fact, we shall see how this approach allows
programs to be more succinct, more comprehensible, more amenable to both multithreading and aggressive optimiza-
tion techniques, and provide straightforward support for network distribution. This approach may also introduce

major concerns about efficiency. We shall show how our implementation overcomes these concerns.

4.2 Simplicity and Efficiency for Multithreaded Applications

Many multithreaded or re-entrant software systems become considerably more complex when they start having to
deal with issues of mutual exclusion and locking around critical code sections in order to maintain a consistent shared
state. In addition to the complexity of adding code to ensure consistency, such code also tends to decrease the level of
concurrency achievable in such systems, since all other threads are locked out while one thread is in a critical section
of code.

The functional approach of producing immutable values considerably simplifies the writing of multithreaded code
that manipulate such values. Since the values are immutable, any number of threads can simultaneously access the
same value without any fear of inconsistency or corruption. As a result, very high levels of concurrency may be
achieved.

4.3 To Subtype or Not To Subtype?

We mentioned earlier that the programmer is not exposed to any subtyping or inheritance relationships between the
types available in the system. Subtyping of an interface, when used properly, has the effect of extending the set of
methods (protocol) available. From the point of view of the TBAG application programmer, subtyping is not useful,
because all of our values are immutable (so they needn’t have methods that alter their properties), and because they
are all capable of responding to the base protocol defined by the abstract type itself. Moreover, introducing subtypes
encourages the introduction of functions and methods that can only operate on values of that subtype, thus making the
interface less general. Our approach of not exposing subtyping increases the amount of information hiding or encap-
sulation in the system, bringing along the accompanying well-known benefits of information hiding.

Clearly, however, subtyping is a useful tool to be taken advantage of when it comes to extending a system. It is desir-
able to re-use as much interface and implementation as is possible. So how do we provide this advantage and still not
expose subtyping to the programmer? The answer lies in our insistence on a strong separation between the needs of
the application programmer and the needs of the system extender. We believe that with any successful system, while
extensibility has to be straightforward, it is not as important as usability for the user who is not interested in extending
the system. Thus, a system should not complicate the programmer’s model for the sake of the extender. A successful
system will have a large community of users, the majority of whom do not extend the system, while a minority do
extend the system.

To be consistent with this separation, we do not expose the programmer to any subtyping or inheritance relationships,
but the system extender does have access to this information, and can do his or her own further subclassing when
appropriate, thus re-using both interface and implementation.

4.4 Leveraging of Programming Language Facilities

As a design principle, we leave support for generally useful facilities to the host programming language wherever
possible, thus distilling geometry support into as simple a form as possible, while allowing great flexibility and ease
of expression. Consider creating a rectangular block with a ball on top of it, and having this geometry parameterized

Functional 3D Graphics in C++ 5

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

/I Attributer creation
extern Attributer& front_color(Coloré& col); /I create a front coloring Attributer
extern Attributer& model_xform(Transform& xf); // create a modeling transform Attributer

/I Geometry creation
extern Geometry& stroke_text(char *text, Point& position,

Vector& horizontal_vec, Vector& vertical_vec);
extern Geometry& regular_polygon(int num_sides);

Note that there are often multiple ways to construct values of a given type. For instance, a Color may be created by
specifying either RGB values or HSV values, a Vector may be created by specifying either Cartesian coordinates or
spherical coordinates, etc. The internal representation of the values is completely hidden from the programmer.

3.4 Combination Functions

The geometry layer of TBAG derives much of its expressiveness from the way in which values may be combined to
create new values. The two primary combination functions pragdesgationandattribution:

extern Geometry& operator+(Geometry& left, Geometry& right);
extern Geometry& operator*(Geometry& geo, Attributer& attr);

The “+” operator allows two Geometries to be combined into a new Geometry, ard thgetator allows an
Attributer to be applied to a Geometry and result in a new Geometry. Some examples:

cube + line_segment + cone /I combination of cube, line segment, and cone
cube * front_color(red) /I ared cube

cube * model_xform(xlt(1,1,1)) // a translated cube

cube * front_color(red) * model_xform(xIt(1,1,1)) // a translated red cube

/I a translated, rotated red cube
cube * front_color(red) * model_xform(xlt(1,1,1))
* model_xform(rot(y_axis, pi/4)

Since attributing Geometry with a color or with a modeling transformation is such a common operation, we provide
additional overloadings for” that allow a Colot or a Transform to be specified directly, rather than forcing them to
be turned into Attributer’s. This allows the last example to be rewritten as a more manageable:

cube * red * xlt(1,1,1) * rot(y_axis, pi/4)

Notice how these operations may be chained, and they compose as one would expect.

4 Design Principles Underlying the Interface

The above section described the interface to our system, without discussing any of the issues that influenced our
design choices. Here we discuss these issues, and attempt to convey why we think the functional approach to specify-
ing geometry is more concise, comprehensible, and amenable to optimization than other approaches we have seen,
while retaining the useful flexibility that other systems possess.

4.1 Immutability of Values

One of the most important aspects of our system is that operations on values always construct new values, rather than
altering existing values. Thugjbe *red does not change the coloranbe to red, rather it creates a new geome-

“In fact, the overloading df on applying a Color to a Geometry results in setting the front color, back color, line color, and text
color.

Functional 3D Graphics in C++ 4

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

When a value of type Attributer is applied to a Geometry value, a new Geometry value is created attributed with the
Attributer. For example, if we attribute a cube geometry with the Attriledtgsrs_on , the resulting geometry will be
a solid cube with visible edges. The attribution operation is further discussed in Section 3.4.

Values of type Transform represent a geometrical transformation that can be applied to Geometry values to create a
transformed geometry value. Unlike most systems, ours does not require Transforms to have a 4x4 matrix representa-
tion — in fact, the internal representation is completely hidden from the programmer. This allows our system to be
extended to include new types of transformations, such as deformations, that cannot be represented as a 4x4 matrix.

In addition to Geometry, Attributer, and Transform, the system also provides types such as Color, Point, Vector, Axis,
Quaternion, etc. From the point of view of the application programmer, types do not have a subclassing or inheritance
relationship with other types. This is unlike most object-oriented graphics systems, and the reason for this will be
explained in Section 4.3.

3.2 Constant values

Following are some declarations of constant values of various types. (TBAG is fully accessible through C++, and all
of the examples in this paper are given in C&+.)

extern Geometry& cube;

extern Geometry& sphere;
extern Geometry& line_segment;
extern Color& red;

extern Attributer& invisible;

extern Transform& identity_trans;
extern Point& origin;

extern Vector& X_vector;

Note that C++ references (denoted by the ampersand) are used for most of the values. We find this preferable to using
pointers. (Additionally, pointer values cannot be used with overloaded operators in C++ — a facility we make consid-
erable use of.)

New values are created either by using a construction function or a combination function, as described below.

3.3 Construction Functions

Here are C++ declarations for a few construction functions:

/I Color creation
extern Color& rgb_color(float r, float g, float b);
extern Color& hsv_color(float hue, float saturation, float value);

/I Vector creation
extern Vector& rect_vector(float x, float y, float z);
extern Vector& spherical_vector(float theta, float phi, float rho);

Il Axis creation
extern Axis& axis_along_vector(Vector& vec);

/I Transform creation

extern Transformé& xlt(float x, float y, float z); // translation

extern Transform& scale(float x, float y, float z); // non-uniform scaling
extern Transformé& rot(Axis& axis, float angle); /I rotation

extern Transform& rot_from_quat(Quaternion& quat); // rotation

3The geometry interface is also completely accessible through standard C, with the exception of the overloaded aperators
for which other functions must be substituted.

Functional 3D Graphics in C++ 3

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

While TBAG provides sophisticated support for modeling interaction and time, for network distribution, and for the
construction of collaborative applications, detailed discussion of these aspects is beyond the scope of this paper. The
reader is encouraged to consult [Elli94] for more information on the aspects of TBAG not discussed here.

We believe that our approach of providing one programming paradigm (hamely, the functional paradigm) to best
meet the needs of the community using the interface, and another programming paradigm (the object-oriented para-
digm) to best meet the needs of the extenders and implementers of the system is rare, and possibly unique, in the
world of 3D graphics systems. In what is perhaps a somewhat heretical position to take within the object-oriented
graphics community, we shall attempt to show why we feel that the functional approach is more appropriate for the
user of the interface we provide, and how a functional interface can be provided while still retaining an efficient
object-oriented approach for extension and implementation.

2 Related work

Easing the construction of interactive 3D applications has been a primary goal of a number of commercial and
research systems. Traditional display list systems such as PHIGS [PHIG89], HOOPS [Wieg91], and Doré [Doré91]
have existed for up to ten years and are available on a wide range of computers and operating systems. The design of
these systems was largely driven by the capabilities of the graphics hardware that existed at the time. Thus, these sys-
tems are not known for their expressiveness or their simplicity.

More recent advances in object-oriented graphics systems have produced Mirage [Tarl92], Inventor [Stra92], GEO++
[Wiss90], and GROOP [Kove93]. These systems go a long way towards simplifying the conceptual model presented
to the programmer. However, we don't believe that they afford as simple a representation of geometry as our system
does, nor do they allow the same opportunities for aggressive optimization.

[Arya86] describes a functional approach to specifying discrete frames of an animation, but doesn'’t address the issue
of constructing geometry. The Fugue system [Dann91], takes a functional approach to describing computer-generated
music similar to our functional approach used for describing geometry, but invents its own language in the process.
We know of no other system that provides a functional interface for geometry construction, let alone one that is tar-
geted at building interactive applications using an accepted production language such as C++.

Inventor supports a multiple dispatching facility similar to the one described in Section 6.3. These facilities were
developed independently and achieved similar results (although the facility presented here can be used in arbitrary
places, unlike Inventor’s). Mirage and DIVER [Goss93] provide for a declarative specification of lights, similar in
result, if not in form, to that described in Section 7.1.

3 Programmer’s Interface to the TBAG Geometry layer

The geometry layer is accessed through a functional programming interface that defines a number of abstract data
types, constant values of these types, functions for creating values of these types (“construction functions”), and func-
tions for combining values of these types into new values (“combination functions”). Note that there are no mecha-
nisms provided to alter these values once they have been constructed. This primtipietabilityresults in many

of the simplifications we have achieved, without sacrificing flexibility or efficiency. As mentioned in the introduction,

we know of no other functional interface for constructing 3D geometry, let alone an interface in as commonly
accepted a language as C++.

3.1 Types and their meanings

Values of type Geometry simply represent three-dimensional geometry. Some of the operations in our system allow
Geometry values to be rendered into a frame buffer, to be intersected with a ray (in order to perform picking), to have
their bounding box calculated, to have their shadow geometry created, etc.

Functional 3D Graphics in C++ 2

[1994 Eurographics Object-Oriented Graphics Workshop - Preprint Version]

Functional 3D Graphics in C++ — with an Object-Oriented,
Multiple Dispatching Implementation

Greg Schechter, Conal Elliott, Ricky Yeung, and Salim Abi-Ezzi
Integrated Media Platform Software
SunSoft, Inct

{gds,conal,ryeung,salim}@eng.sun.com

Abstract

Constructing interactive, animated 3D graphics applications has been notoriously difficult for well
over twenty years. Even though significant advances in the state-of-the-art have been made, this sit-
uation persists. The system described here simplifies the programmatic construction of geometry in
ways that we have not seen elsewhere, and does so within the framework of an accepted production
language, C++. It has been our experience that the resulting programs are quite succinct and com-
prehensible, and execute efficiently. The programmer is presented with a simple, general interface
that is both declarative and conforms to the functional programming paradigm. Pursuing a func-
tional interface for developing interactive 3D applications is a novel concept that, in our experi-
ence, has been successful in providing a simple, powerful interface and a relatively straightforward
implementation. The implementation of the system is highly object-oriented, relying heavily upon
multiple dispatching. The system itself is extensible and adding new geometric primitives and oper-
ations is straightforward. Entirely new media types, such as sound and image, may be (and have
been) added to the system.

Keywords: interactive, animated 3D graphics; geometry construction; functional programming; object-oriented
graphics; multiple dispatching; multimedia; network distribution.

1 Introduction

This paper has two primary goals. The first is to describe the programmer’s interface to the geometry-specific layer of
the TBAG system, and communicate the level of expressiveness that can be achieved by using this interface. The sec-
ond is to describe an efficient implementation of the interface that also allows for straightforward extensibility of the
system.

TBAG is a general framework for creating interactive, time-varying integrated media applications, and is discussed in
detail in [Elli94]. The geometry layer is a C++ interface for constructing and processing geometry “values”. This
interface conforms to the functional programming paradigm [Fiel88] and is very simple, yet general and powerful. It
has been our experience that programs written with this interface are more succinct, comprehensible, and amenable to
aggressive optimization techniques when compared with programs written using any other system we have seen.

Our interface has an efficient, highly object-oriented implementation. Furthermore, thezéyﬂfﬁghly extensible

in the sense that it is straightforward to add new geometric primitives and attributes as well as new operations to be
performed on geometry values. The system may be, and has been, further extended to support additional media types,
such as sound and image.

12550 Garcia Avenue, M/S MTV10-228, Mountain View, CA 94025 USA

2In this paper, when we refer to “the system”, “the interface”, or “the implementation”, we mean the geometry-specific layer of the
TBAG framework. When we are referring to TBAG itself, we will explicitly say “TBAG”.

Functional 3D Graphics in C++ 1

