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Abstract

This dissertation explores the problem of unification in various typed A-calculi, developing
and proving the correctness and completeness of unification algorithms for various calculi
within a single general framework, and then demonstrating the practical importance of these
algorithms by means of example applications.

We begin by presenting our general framework for unification, based on transformations of
unification problems. Then, in this framework, we develop a new unification algorithm for
a A-calculus with dependent function (II) types. This algorithm is especially useful as it
provides for mechanization in the very expressive Logical Framework (LF). The development
involves significant complications not arising Huet’s corresponding algorithm for the simply
typed A-calculus, primarily because it must deal with ill-typed terms. We then extend this
algorithm first for dependent product (X) types, and second for implicit polymorphism. In
the latter case, the algorithm is incomplete, though still quite useful in practice.

The last part of the dissertation provides examples of the usefulness of the algorithms. The
general idea is to use a A-calculus as a meta-language for representing various other languages
(object-languages). The rich structure of a typed A-calculus, as opposed to traditional, first-
order abstract syntax trees, allows us to express rules, e.g., program transformation and
logical inference rules, that are more succinct, more powerful, and easier to reason about.
We can then use unification in the meta-language to mechanize application of these rules.
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Chapter 1

Introduction

This dissertation addresses the problem of performing unification in various typed A-calculi.
It was motivated by and builds upon two areas of research whose importance is becoming
increasingly recognized in computer science. The first of these is the mechanization of
fragments of higher-order logic by means of higher-order unification, i.e., unification in the
typed A-calculus (modulo (n-conversion). The second area is the use of rich type theories
for formalizing theorem proving and program development.

The primary contribution of this thesis is to combine the advantages of mechanizability
of the simply typed A-calculus with the increased expressive power of these richer calculi, by
developing new unification algorithms for calculi with dependent function types, products
(again a dependent version, sometimes referred to as “strong sum” or simply “¥” types),
and implicit polymorphism. These new algorithms have important applications in the gen-
eral area of formal language analysis and manipulation, for example, mechanically assisted
theorem proving in a wide range of logics, automated or semi-automated type inference or
type checking in various typed languages, and mechanically assisted program transforma-
tion. Of course, these various forms of applications have been implemented before for various
languages (including logics). Our algorithms provide a general tool that can be more easily
applied to a variety of languages than previously existing tools.

As a secondary contribution, we offer a new presentation of this kind of algorithm, which
we hope serves to clarify the issues involved in these and other problems and algorithms.

Although many of the important ideas in our algorithms have their roots in Huet’s
algorithm for higher-order unification [36], there are serious technical difficulties that arise
only in extensions to richer calculi. One is the necessity to deal with ill-typed terms during
the unification process. Our technique for dealing with ill-typedness significantly complicates
the proofs, but fortunately requires little additional complexity in the algorithms.
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1.1 Higher-order Unification

The development of (first-order) unification, first studied by Herbrand [31], had a major
impact on the field of automated theorem proving in first-order logic, because it was the key
component of the new mechanization procedure resolution, due to Robinson [67, 66] (who
also reintroduced unification). Because of the success of resolution, much work was focused
on the efficient implementation of unification. (See [39] for a survey.) Another significant
development was the observation that a subset of first-order logic, now called Horn logic,
could serve as an elegant programming language, for which interpretation was performed
by a restricted form of resolution known as SLD resolution (which is complete for Horn
logic) [75]. Colmerauer and Roussel first implemented the programming language Prolog

based on this idea [9].

In 1940, Church had formulated a higher-order logic, based on the incorporation of simple
types in his A-calculus. Formulas and proofs in higher-order logic can be much more succinet
than their corresponding versions in first-order logic.

Given the success of first-order resolution in mechanizing first-order logic, it was natural
to consider the possibility of higher-order resolution for mechanizing higher-order logic. This
form of resolution depends on being able to enumerate complete sets of unifiers (CSUs) in
the simply typed A-calculus (A-). Guard [27] pointed out that CSUs must sometimes be in-
finite, and the general problem of unifiability was shown to be undecidable by Lucchesi [40],
Huet [35], and Goldfarb [26]. Goldfarb showed undecidability for even a restriction of the
problem to second-order unification, with a single binary function constant. In contrast,
Huet [34, 37] showed second-order matching to be decidable, and Farmer [21] showed decid-
ability of monadic second-order unification. Decidability of higher-order matching is still an
open problem. A complete algorithm for enumerating CSUs was presented by Jensen and
Pietrzykowski [38], but it had the problem of being extremely undirected for certain kinds of
problems. Huet showed that it is impossible in general to enumerate minimal (nonredundant)

CSUs [34].

In [34], Huet presented a pre-unification algorithm that avoids some of the problems of
undirectedness and redundancy. The key new idea was to postpone unification subproblems
of a certain form, called “flexible-flexible”. He noted that these subproblems were the source
of unification’s extreme undirectedness, and, importantly, proved that when all but flexible-
flexible subproblems are eliminated, the remainder must always be unifiable. Thus a pre-
unification algorithm suffices for unifiability. It also turns out to suffice for resolution, in
which the remaining flexible-flexible subproblems are saved to be added to future unification
problems. The addition of these new unification constraints often cause some of the flexible-
flexible subproblems to be instantiated into forms in which they can be further reduced.

While the original purpose of higher-order unification was higher-order resolution, many
diverse applications followed. Andrews developed the technique of matings for automated
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theorem proving in higher-order logic [1]. Huet and Lang showed how to use a fragment
of A, to encode program transformation rules and then use second-order matching and
substitution to automatically apply them [37].

Just as first-order unification and first-order resolution led to Prolog, Nadathur applied
higher-order unification and higher-order resolution in the design of a new programming
language AProlog [53]. Although first based on a higher-order Horn logic, Miller et al. gen-
eralized the logic to higher-order hereditary Harrop formulas, which include use of explicit
existential and universal quantification and implication [49, 47]. This extra expressiveness
has proved extremely useful in many applications dealing with the manipulation of pro-
grams and formulas [50]. Some other applications of AProlog have been computational
linguistics [46], specifying and implementing theorem provers for various logics [22, 23], pro-
gram analysis [28], partial type inference in the w-order polymorphic A-calculus [59], and
explanation based generalization (EBG) [16]. Donat and Wallen [17] also used higher-order
unification for EBG. Paulson’s Isabelle system for theorem proving in logics encoded in
higher-order logic [56, 57] is similar in spirit to the AProlog work of Felty and Miller.

1.2 Richer Type Theories

Many of the applications of higher-order unification listed above involve the use of A_
for representing (encoding) various formal languages, in particular logics and programming
languages.! Another area of research has been the exploration of richer type theories and
their application to formalizing theorem proving and program development. One very im-
portant paradigm is that of “formulas as types” introduced by Curry [13] and Howard [32],
who observed a correspondence between types and terms of a given type on the one hand,
and formulas and proofs of a given formula on the other. This correspondence has been
further pursued in the work of deBruijn’s group [15], Martin-Lof (e.g., [42]), NuPrl [10], and
the Calculus of Constructions (CoC) [11].

More recently, a related but different approach has been proposed for representing logics
within a type theory. The Logical Framework (LF), based on A, extended with dependent
function (II) types, makes a correspondence between types families (functions from terms to
types) and the fundamental units of inference systems, called judgements (following Martin-
Lof [43]). Logical formulas are encoded as terms rather than types, and the judgment
type families are applied to these terms. The intent of LF is different from the previous
formalisms, since it is intended for supporting not just one, but a wide range of logics,
even nonconstructive ones. It is thus presented as a “first step towards a general theory of
interactive proof checking and proof construction.” A crucial property of LF, due to the rich
representations allowed by dependent types, is that proof checking in appropriately encoded

!Variations on this general idea have also been suggested by Martin-Lof as a “system of arities” [43], and
by Pfenning and Elliott as “higher-order abstract syntax” [60].
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languages is reduced to type checking in the representing typed A-calculus, and thus the
decidability of type-checking is vital. As pointed out in [30], this is of great practical value,
because it allows for the implementation of general tools, e.g., an interactive proof editor,
that work for a variety of logical systems. In comparison with CoC, the LF type theory
is very weak, having the same computational power as the simply typed A-calculus. The
problem of unification in CoC’s type theory seems to be significantly harder than unification
in LF’s type theory.

The enhanced representational ability of extending the A_, with product types and im-
plicit polymorphism (free type variables) has been demonstrated in [60]. The usefulness of
these extensions comes from the fact that many languages contain constructs that are made
up of a variable number of components (e.g., a parallel “let” binding expression, as in ML
or Lisp). The addition of dependent function types also allows the direct representation of
the typing systems of various languages. This was observed in the LF encoding in [30] of
Church’s higher-order logic, and is explored in Chapter 7 of this thesis.

Pfenning has designed a programming language Flf [58] that combines the ideas of LF
and AProlog. There is an implementation of it in Standard ML [19].

1.3 Overview of the Thesis

1.3.1 The Calculus A\

We begin in Chapter 2 by presenting the calculus “Ary”, which is an extension of the A, in
two ways: First, in place of a simple function type A— B, the type of the result of applying
a function in A may depend on the term to which the function is applied. These types
are written “Ilv: A. B”, where B may depend on (contain free occurrences of) v. Second,
in order for such a B to depend on the variable v, the base types of A_, are generalized to
type families, as indexed by zero or more appropriately typed terms. This calculus is the
one used by the Logical Framework (LF) [30] (which itself is derived from members of the
AUTOMATH family of languages [15]) for the purpose of encoding the syntax, rules and
proofs of a wide class of logics.

After presenting the syntax of the terms, types, and kinds of Ay and their associated
typing rules, we go on to present our somewhat unconventional definition of substitutions
and their composition operation. Our definition has the advantage of eliminating temporary
variables, which arise frequently in unification. We demonstrate by example the difference
between the conventional definition and ours, and show how to make our notion of sub-
stitution practical, by giving a compact representation and a method for composition of
substitutions using this representation.
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The conversion rules of Arp are the 3 and n rules at the level of terms and the level of
types. These are extended in the usual way to the one-step and multi-step subterm reducing
relations —5, and —7% . and to the convertibility relation «% . The Church-Rosser (CR)
property for A with 1 as well as § has, for some time, been generally believed to be true.
This conjecture has only recently been verified and the proof is quite complex [68]. We
describe two alternatives to relying on CR. The importance of CR, together with the strong
normalization property (SN), which is fairly easy to show, is that they reduce the question
of convertibility (of well-typed terms and types) to equivalence (modulo a-conversion) of
normal forms.

1.3.2 An Approach to Unification

Chapter 3 presents our framework for specifying unification in various calculi and develop-
ing and proving the correctness and completeness of algorithms for pre-unification in these
calculi. Our approach is related to the transformation-based approaches of Martelli and
Montanari for first-order unification [41] and of Snyder and Gallier for higher-order and
equational unification [70, 69], which was itself inspired by the work of Martelli and Monta-
nari [41]. However, as discussed below, unlike these works, our approach makes the important
distinction between two kinds of “nondeterminism” present in the search for unifiers. This
distinction is necessary to formulate an algorithm for enumerating complete and minimal
sets of solutions (as defined in the chapter).

We begin by defining the notion of a wunification problem, which encapsulates the infor-
mation gained in making progress toward a subset of possible unifiers of an original pair of
terms or types. Next, we define the set of all solutions of a unification problem, and then
minimal complete sets of pre-unifiers (uCSPs). For us, a pre-unifier is not a substitution,
but rather a special kind of unification problem (solved form), whose set of solutions is a
subset of the set of solutions of a given unification problem.

We then present the notion of transformations on unification problems, central to our
framework, which are relations between unification problems and sets of unification prob-
lems. Each particular pre-unification algorithm is given (in later chapters) as a collection
of transformations. These transformations are required individually to have the property
of wvalidity and collectively to have the property of completeness. The purpose of such a
collection of transformations is to be able to ultimately transform a unification problem into

a pCSP.

We then define how a collection of transformations generates a set of pre-unifiers of a
given unification problem by means of a nondeterministic search process. There are two
kinds of choices are made in this process: first which unification problem to work on next,
and second which transformation to apply and how to apply it. It turns out that the second
kind of choice may be made completely arbitrarily, but, in order to have completeness, the
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first kind must be done in a fair way. Finally, we prove that collections of transformations
satisfying the validity and completeness properties do generate pCSPs.

1.3.3 A Pre-unification Algorithm

Chapter 4 presents the development of an algorithm for HOUp, i.e., pre-unification in Ar, as
a collection of transformations. The algorithm we construct is similar to Huet’s algorithm for
HOU_, (pre-unification in Ary). Under additional assumptions about the control structure, it
behaves almost exactly the same on the subset of Ajp corresponding to A_,. However, there
are considerable technical difficulties in the justification of the algorithm that do not arise
in HOU,,.

Normal forms play a vital role in the development, and we begin by defining one that
will be needed later in the chapter. This is the § weak head normal form (WHNF), whose
purpose is to reveal just the top level structure of the 8 normal form of a term or type.
Interestingly, the role of n is quite different from (. In contrast, Huet used a long normal
form (LNF), based on -reduction and n-expansion.

Then we develop several useful properties of convertibility. Each of these properties may
be interpreted as a decomposition method, in the following sense: Given any pair of well-
typed terms or types of the same type or kind, one of the defined methods either shows
that they are not convertible, or constructs a set of pairs of terms and/or types that (a)
has the same set of (simultaneous) unifiers, (b) satisfies a certain relative well-typedness
property, and (c) is, in a sense defined in the chapter, “smaller” than the given pair. One
application of this set of decomposition methods is as an algorithm to test for convertibility.
(In fact, it is a specialization of our HOUy algorithm when there are no unification variables.)
However, the main purpose is to lay the groundwork for the formulation and justification of
the transformation rules.

Next we examine some of the issues that arise in HOUp. Of particular importance is
the need to deal with ill-typedness during pre-unification (unlike HOU_,, where it is easily
avoided). Managing ill-typedness is a major consideration in our transformations and their
justification. Fortunately however, the extra complexity is more in the proofs than in the
transformations themselves. We define an invariant on unification problems called “accept-
ability”, on which the transformations depend and which they maintain. The main feature
of an acceptable unification problem is that the ill-typedness present is “accounted for”, as
ensured by the existence of a certain kind of partial order on the pairs being unified.

With this background, we are ready to construct the transformations that make up our
algorithm and prove their correctness. The decomposition methods defined previously yield
with little additional work three transformations, which we call the “redex”, “abstraction”,
and “rigid-rigid” transformations. The idea in each of these transformations is to either



1.3. OVERVIEW OF THE THESIS 7

show nonunifiablity or to replace a chosen disagreement pair (pair of terms or types be-
ing unified) with a finite collection of simpler disagreement pairs. These cases correspond
roughly to Huet’s SIMPL phase [36]. The final transformation deals with “flexible-rigid”
disagreement pairs. In this case we deduce a useful constraint on the possible unifiers of the
chosen disagreement pair. We then show how to use this constraint to instantiate the unifi-
cation problem into a finite collection of alternate unification problems. This transformation
corresponds to Huet’s MATCH phase. Each of the transformations is proved valid, and the
collection is proved complete. They thus define an algorithm for enumerating yCSPs, as
described in Chapter 3.

The value of pre-unification in A_, is that solved disagreement sets (ones containing only
flexible-flexible pairs) are always unifiable, and so pre-unifiability implies unifiability [36].
By making vital use of our definition of acceptability, we can generalize Huet’s constructive
proof of this fact to acceptable solved-form unification problems in Ar;. For the simply typed
subset of A, the substitution that we construct specializes to Huet’s.

Finally we demonstrate an application of our unification algorithm, to perform automatic
“term inference”. This problem has two important applications. One is making our unifi-
cation algorithm more widely applicable. The other is to provide automatic type inference
in encoded languages, as described in Chapter 7. As in many type inference algorithms,
the basic idea is to combine type-checking and unification, in this case, HOU. A similar
problem is dealt with by Coquand and Huet [12, 33] and by Pollack [61] under the name of
“argument synthesis”.

We reported on a slightly different algorithm for HOUpy in [18].

Pym has reported an independent development of an algorithm for HOUyy as well [64].

1.3.4 Products

Chapter 5 extends the pre-unification algorithm developed in the previous chapter to the
calculus “Appy”, which is A enriched with a dependent version of Cartesian product types,
often called “strong sum types”, or simply “¥ types”. We begin by presenting the extensions
to the language, notion of substitutions, conversion rules, and the new weak head normal
form. We then develop decomposition methods analogous to those of the previous chapter.
Interestingly, the rule of surjectivity for pairs turns out to play a role similar to that of 7.
With the exception of the flexible-rigid case, the transformations are quite similar to the
ones for HOUyy, using the new decomposition methods. The flexible-rigid case uses the same
basic ideas as in HOUp, but there are some interesting differences. It is also simplified by
the addition of a new transformation for eliminating pair-producing unification variables.
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1.3.5 Polymorphism

Chapter 6 extends the pre-unification algorithm for Ay to a calculus “Apys” with implicit
polymorphism, i.e., type variables but no explicit type abstraction, and a very limited form
of type application. The resulting algorithm is incomplete, but quite useful.

The transformations for handling weak head redices, abstraction and pairs, and pair-
producing variables carry over unchanged from the previous chapter. The only change in
the rigid-rigid transformation is the need to handle the type arguments of polymorphic
constants. It is worth pointing out here that the analysis is greatly simplified by our use of
weak head normal form instead of the long normal form. There is now a flexible-rigid case
for types as well as terms, but it is simpler and does not cause branching in the search for
pre-unifiers. The flexible-rigid case for terms contains the source of incompleteness of our
algorithm. Considerable experience with applications programmed in AProlog, which uses an
analogous treatment for unification in A_, extended with implicit polymorphism, has shown
it to be very useful in practice. For many unification problems of interest, the algorithm
does indeed construct pCSPs.

1.3.6 Applications

Chapter 7 explores applications of our pre-unification algorithms. These applications all have
in common that they use a typed A-calculus as a meta-language, i.e., a calculus in which to
encode other languages, which we will call object-languages. The rich structure of a typed
A-calculus as opposed to traditional, first-order abstract syntax trees allows us to express
rules, e.g., program transformation and logical inference rules, that are more succinct, more
powerful, and easier to reason about. We can then use unification in the meta-language to
mechanize application of these rules.

We begin by giving some examples of the difficulties in using weak representation for-
malisms such as abstract syntax trees. These difficulties include consideration of variable
capturing and shadowing, variable occurrence conditions, contexts, and object-language typ-
ing.

We then give an example of a representation of a simple typed expression language, and
use it to illustrate our claim that our meta-language term inference algorithm directly yields
object-language type inference (in simple enough object-languages). We then extend the
language with new constructs, including programs defined by mutually recursive function
definitions. These extensions show the value of products and implicit polymorphism.

Finally, we give several examples of transformation rules for our language, which are
easily expressed because of the rich meta-language, and can be applied automatically by
using HOUpys.



Chapter 2

The Calculus A\

In this chapter, we present the calculus Ar;. After presenting the syntax of the terms, types,
and kinds of Arp, we go on to present our somewhat unconventional definition of substitutions
and their composition operation. The conversion rules of Ay are the § and n rules at the
level of terms and the level of types. The Church-Rosser property for 571 reduction on well-
typed terms and types in Aq, although generally believed to be true, has not been rigorously
proved. For the purposes of this thesis, one can either accept it as a working hypothesis, or
modify the definition of convertibility, as discussed in this chapter. Finally, we present the
typing rules of the calculus and some of their important properties.

2.1 The Language

The calculus App is the one used by the Logical Framework (LF) [30], which itself is derived
from members of the AUTOMATH family of languages [15]. The language of terms (called
“objects” in [30]) in this calculus has the same structure as the simply typed A-calculus
(A=) [8]. In place of simple function types “A—B” we have dependent function types',
“ITv: A. B”, in which the type B of the result of a function may depend on the value v of the
term to which it is applied. Along with types, there are type families, which are instantiated
by applying them to terms. (They are thus different from, e.g., the type constructors of
ML [29], which are instantiated by applying them to types.) Types and type families are
classified by their kind. Letting the meta-variables M and N range over terms, A and B

!These are also sometimes called “dependent product types”. We prefer to use that term for the ¥ types
introduced in Chapter 5, which are sometimes called “strong sum types”.
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over types (and type families), and K over kinds, the language is as follows:

M == c constant
| v variable
|  Av:A. M abstraction
| MN application
A = ¢ constant
| Ilv:A. B dependent function type
|  Av:A. B type family formation
| AM type family instantiation
K = Type types of terms

|  Ilv:A. K type family

We will often use the abbreviation “A—B” for “llv: A. B” when v is not free in B, and
similarly for kinds. As usual, application is left associative, i.e., M M’ M" is the same
as (M M')M". Also, in an abstraction, the scope of the dot reaches to the next closing
parenthesis (or the end of the expression). We will sometimes use the meta-variable U to
range over terms and types, and occasionally kinds.

For the most part, we will ignore the issues of a-conversion (bound variable renaming) and
variable capture. In implementations, we prefer de Bruijn’s “nameless” representation [14],
in which bound variable occurrences are integers denoting the number of X’s between the
occurrence and its binding A. The mechanics of substitution in this representation are
described well in [33, Section 8.3]. For purposes of presentation, however, the conventional
named representation is much easier to work with.

2.2 Substitution

Substitution is a fundamental notion in the study of unification. Our approach is somewhat
unconventional, in that we associate every substitution with two sets of variables. Prag-
matically, the most important difference is the way that composition of substitutions works.
Our definition has the advantage of eliminating temporary variables, which arise frequently
in higher-order (and equational) unification. It also eliminates the need for idempotence
requirements.

First, we need two preliminary notions:
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Definition 2.1 The set of free variables of a term, type, or kind U, written “F(U)”, is
given by the following. First for terms,

Fle) = {1}
Fv) = {v}
FMN) = F(M)UF(N)
F(Av:A. M) FA)U(F(M) —{v})

then for types,

Fle) = {}
F(Ilv:A. B) = F(A)U(F(B)—A{v})
FAM) = F(A)UF(M)
F(Av:A.B) = F(A)U(F(B)—A{v})

and finally for kinds

= {
F(llA K) = F(A)U(F(K)—{v})

Definition 2.2 Given a variable set V, the set “N;” contains just those terms, types, and
kinds having free variables in V, i.e.,

{UeM | FU)CV}

Definition 2.3 Given variables sets V and V', the set of substitutions from V to V', written
“OV' 7, is the set of functions from V to N .

As a convention, we will use the meta-variable “0”, possibly subscripted and/or primed, to
range over substitutions.

Later, we will introduce the more restrictive notion of a “well-typed” substitution.

Definition 2.4 Given a variable set V, the set of substitutions over V, written Oy, is the
union over all variable sets V' of O

Of particular interest are the identity substitutions:

Definition 2.5 For any variable set V, the identity substitution over V, “0i¢”, is defined
by 0if € OF and 0ifv = v for allv e V.
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As is customary, we now extend substitutions to functions over A};. This extension is
more complicated than in first-order languages because of variable binding. We first need
one technical device:

Definition 2.6 Given variable sets V and V', and a variable v & VUV’ let 07" be the
unique member of @guu{{uu}} such that

0ty = 0Ov forveV

0ty = wu

Definition 2.7 Given variable sets V and V', and a substitution § € ©Y', let 0 be the
function from N\ to Ny satisfying the following properties. First for terms,

fc = ¢
v = bv ifveV
O(MN) = (OM)(ON)
0w A. M) = duw:0A.0r=M ifugVuv’

The condition in the last case is for simplicity. We can always satisfy it by a-conversion.
Then for types,

e = ¢
O(Mlu: A. B) = Tw0A. 0B ifugVuv’
O(AM) = (0A)(OM)
O(\u: A. B) Muz0A. 0+ B ifugVuv’
Finally, for kinds,
OType = Type
O(Muw: A. K) = Tw0A. 0TK ifugVuv’

2.2.1 Composition

Composition of substitutions is an important operation, and is closely related to composition

of functions.?

Definition 2.8 Given variable sets V and V', and substitutions § € O and ¢ € O}/,
define

Note then that ' x 0 € ©)".

?We use funtional order composition, i.e., (fog)x = f (g ).
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The following theorem relates this notion of composition with standard notion of func-
tional composition:

Theorem 2.9 Let 0 and 0" be as above. Then 0/ x0 =@ o 0.
To prove the theorem, we will first need some lemmas:
Lemma 2.10 Let § € O, and u,u’ € VUV, with u # u'. Then (§74)¥¢ = (§T+')+v,

Proof: We will show that these substitutions yield the same result when applied to members
of VU {u,u}.

o Case v € V: (07)t%v» = 91y = v, by Definition 2.6. Similarly, (01 ) v = fv.

o Case u: (07)Tu = 0%y = u. Also, (07 )y = u.

e Case u’: Dual to the previous case.

Lemma 2.11 Let 0 € OV, u & VUV, and U € \;. Then 0+°U = U .

Proof: We prove that for all U/, and for V, V", such that U € A}, and for all § € ), we
have §+ul/ = OU. The proof is by structural induction on /. We will only show the cases
for terms, since types and kinds are handled analogously.

e Variable v: Let V.V’ and @ be such that v € A} and 6§ € ©}'. Then v € V, so
Fuy = 0Ty = Hv = Ov.

e Constant ¢: O+uc = ¢ = fc.

e Application (M N):

FF(MN) =

_l_
) (gN) by the induction hypothesis (see below)

We can apply the induction hypothesis here, since F(M) C F(M N) and F(N) C
F(M N).
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o Abstraction Au’: A. M: Let V, V', and 0 be such that (Au': A. M) € A\l and 0 € O/,
where we assume v’ € V U V' U {u}. Then

W(Au’:A. M) = A:0teA (0T M

= Au:0FeA (0T M by the previous lemma
= \:0A 0+ M by the induction hypothesis (see below)
= O\ A. M)

We may apply the induction hypothesis here, since M € )\Ku{u/} and 1 € @g;u{{uu}/}.

a

Lemma 2.12 Let € ©Y and 0’ € @‘LThen (0"« )T = 0"t % 0% (Equivalently, by the
definition of “¢”, we have (0" o)™ = ' +v o 61*,)

Proof: We will show that these substitutions yield the same result when applied to members

of VU {u}.

e Case v € Vi (0 x 0) v = (0' x 0)v = 0'(Ov). Also, OF=(0T4v) = 0"+ (Ov) = 0'(v),

because of the previous lemma (and since u & F(6v) C V').

o Case u: (0 +0)™u = u. Also 0'+*(0+ u) = 'y = u.

_ Proofof Theorem 2.9: By definition, 8« § = 0’ o 0, so we will show that (6"« 0)U =
§'(0U), for all terms, types, and kinds U. Again, we will change the order of universal
quantifiers in the claim, proving that for all U, and for V, V', V", such that U/ € A}, and for

all 0 € ©) and 0 € ©Y,, we have (§/ 0 0)UU = 0/(0U). The proof is by structural induction
on U. Again, we will only show the cases for terms.

e Variable v: Let V be such that v € A, and choose V', V", § € O} and ¢ € 07, .

Then v € V, 50 (070 0)v = (0 o 0)v = §/(Ov) = 0(Ov).

e Constant c: (§’ o 0)c = ¢, by Definition 2.7. Also, 8/(fc) = #'c = c.
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o Application (M N): Let V be such that (M N) € A%, and choose V', V", 0 € ©F and
0 c OV, . Then M € A and N € A\, so

(@ 0)(M N) =

(
))( ’(gN)) by the induction hypothesis

I
2|

e Abstraction Au: A. M: Let V be such that (Au: A. M) € A\, and choose V', V", 0 € OV
and 0 € ©7,. Then

(00 0)( A A. M) = duw:((07 0 0)A). (07 0 0)F*) M)
= M ((0700)A). (07 o 0t )M by the Lemma above
= AwO(0A). 0«0+« M) by the induction hypothesis
= (M w0A. 0+=M)
= 0(0(A\w: A. M)

We may use the induction hypothesis since M € AV U {u}, 0+ € @g;u{{;}}, and

" V'u{u
= ®V’U{{u}}

Now that we have proved this close relationship between the two kinds of composition,
we will no longer make explicit the difference between substitutions and their extensions to
operate on A\j. Thus, we will use “0” in place of “0”, “©}” in place of “{0 | 0 € OV }”,
and “0" o 0”7 in place of “6' x §”. Moreover, we will generally omit the explicit addition of a
variable to the domain of a substitution, choosing to write “6”, in place of §1*, where the u
is clear from the context.

2.2.2 Notation

Although our notion of substitution is not the standard one, we will want to adopt something
like the standard notation for writing down substitutions as collections of variable/term pairs.
Since many of the substitutions used in practice are the identity on many of the variables in
their domains, we want a notation that will allow these variables to be elided.

Definition 2.13 Given variable sets V and V', variables x, ..., x,,, and terms My, ..., M,
such that {xy, ..., 0, } TV, V —{ay,...;xn } SV, and, for 1 <i<m, F(M;) C V', we
will use “{ My /xy,..., My [z, V7 to mean the unique substitution § € OV such that (a) for
1 <i<m, 0x; = M,;, and (b) for each v € V —{@1,..., 2, }, fv=10.

(see below)
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2.2.3 Comparison to the Standard Notion of Substitutions

To appreciate the advantage of our notion of substitutions over the standard one, one must
understand something of how substitutions and composition are used in higher-order (and
equational) unification. Unifiers are constructed incrementally, using free variables as place
holders to be filled in later via composition. For instance, a unifier [ga/x ] might be built
in two steps: first we try gy for = where y is a new free variable, and then we try a for y.
Expressed as a composition of substitutions this is

[a/y]olgy/e]

However, the conventional meaning given to this composition is [a/y , ga/x]. After com-
position, one has to eliminate or explicitly ignore “temporary variables” like y.

By keeping track of the contexts involved, he temporary variables are eliminated as soon
as they become unnecessary. For instance,

[a/y]l) o lgu/=]l = [ga/z]{),

To make this approach to substitutions computationally useful, we have to show how in
general to compute a representation 6’ o § from a representation of 6 and ¢'.

Proposition 2.14 For substitutions given by
0 = [Ml/l'l,. . 7Mm/$m ]gl

0/ = [M{/xllvarln’/x;n’]“;;/

Let
0// = [N1/y1,- . 7Nn/yn ]“;”

where the set of pairs { (N, y;) | 1 <i<n} is
{{0'M;, z;) | 1§i§m}U{<M]{,x;> | x;EV—{xl,...,xm}}
Then
0/00:0//

Proof: We show (6’0 8)v = 0"v for all v € V. Consider the possible v € V:

o Ifv=u,forl <i<m,then v = M;, so (6'o0)v=0"M,; = 6"v.

e lfv=u0,e€V—{a,...,2, } then v =v,50 (0 0 O)v = v =M, = 0"v
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e lfveV —{a,....¢n,Y1,...,yn } then v =v and 0'v = v, so (§' 0 O)v = v = §"v.

Example 2.15 Given the substitutions

0=lgy/*1{0]
0 =[aly, bw/ulv}
Then

0 o0=[gax, bw/u]g:ﬁ}

2.3 Conversion

In this section, we define the convertibility relation as used in the definitions of typing and
unification. We start out with the basic reduction relations:

Definition 2.16 The 3 and n relations for terms and types are the smallest relations satis-

fying
(A:A.M)N [ [N/v]M
At A Mo n M if vg F(M)

(M:A.B)N 3 [N/v]B
AtA.Bv n B if v ¢ F(B)

Convention 2.17 Given basic reduction relations py,pz, we will denote their union by
“o1p27. For example, “Bn” is BUn.

These top level relations extend to one-step and multi-step subterm reducing relations, and
convertibility relations:

Definition 2.18 For a relation p on terms and types, the relation —, is given by,

UplU’
U=, U
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and then for kinds,
A—, A

Hv: A K —, [Tv: A K

K —, K
A K —, [To: AL K/

then for types,
A—, A

AM —, AAM
M —, M
AM —, AM
A—, A
Hv:A. B —, [lv:A'. B
B—, DB
Mv:A. B —, [v: A. B’

and finally for terms,
A—, A

At A M —, A AL M
M —, M
At AL M —, Ao AL MY
M —, M
MN —, M'N
N —, N’

MN —, M N

Definition 2.19 The relation — is the reflexive transitive closure of —,, and % is the
equivalence closure of —,.

This gives us our notion of convertibility:
Definition 2.20 The convertibility relation =, is <7, .
The following properties will be important:

Definition 2.21 A binary relation p on terms, types, and kinds, is said to be substitutive
iff given any U, U’ such that U p U’, it is the case that (0U) p (QU") for any substitution 6.
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Proposition 2.22 The reduction relations 3 and n are substitutive.

The proof for the 3 rule will use the following fact:
Lemma 2.23 We have ([ N/v M) =[0N/v |(6M).

Proof: Simple induction on the structure of M. a

Proof of Proposition 2.22:  We will treat only # and n at the level of terms, since the
arguments for relations on the level of types is analogous. the Consider § € O}'. For 3, we
reason as follows: If M 3 M’, then M and M’ are of the form (Av: A. M) N and [ N/v]M
respectively (where v € V.U V’). Then

OM = 0((A\v: A. M) N)
= (Av:0A.OM)(ON) by Definition 2.7
B LON) /v (0M)
= O([N/v]|M) by the lemma
= oM

Next, if M n M’, then M and M’ are of the form Av: A. Mv and M respectively, where
v F(M) (and v ¢ VUV'). Then

~

OM = (A v:A. M)
AviOA. (M) (6v)

= MvfA (OM)v since v € V
n oM since v ¢ F(M) and v ¢ V'
= (M)

Proposition 2.24 If p; and py are substitutive, then pips (i.e., p1 U ps) is substitutive.

Proof: Let U, U’ be such that Up;p,U” and let § € OV for variables sets V and V’. Then
either U p; U’ or U py U'. Assume the former. By substitutivity of py, (0U) p1 (8U"), and so
(OU)p1p2(0U"). Similarly, if U py U'. O

Proposition 2.25 If p is substitutive, then —,, —7

o, and <% are substitutive.
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Proof: Let U, U’ be such that U —, U’ and let § € OV for variable sets V and V’. We
will prove that (8U) —, (8U’) by induction on the derivation D of U —, U’, following
Definition 2.18:

o If D consists simply of an instance of the first rule in Definition 2.18, then U p U’, and
the result is immediate from substitutivity of p.

e If D ends in an instance of the second rule, then U = Iv:A. K, U = llv: A" K,
and there is a subderivation of D ending in A —, A’. By induction, we may assume

0A —,0A". Then
U = O(llv: A K)
= Jlv:0A 0K
—, A 0K
= O(Ilv: A K)
= U

e The other cases are all quite similar.

Given this, substitutivity of —7 and <7 follows by a simple induction. O

Corollary 2.26 The convertibility relation =, is substitutive.

2.4 Typing

To define the typing rules, we will need devices to declare the types and kinds of constants
and the types of variables.

Definition 2.27 A signature is a sequence of pairs associating constants with types or kinds.
We write a signature, typically denoted by 3., as

<C1§A1,...,Cn§An>

(where here the U; stand for types and kinds). We write “dom(X)” for the domain { c1,..., ¢, }
of X2, and “Y & c:U” to mean the result of extending the signature ¥ by adding c: U to the
end.
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Definition 2.28 Similarly, a context is a sequence of pairs associating variables with types
(but not kinds). We write a context, typically denoted by I', as

[vi: A, .00t A

and write “dom(I')” for its domain, and “T' & v: A” for its extension. Occasionally, we will
also use “ran(I')” for the range Ay,..., A, of T

Following [30], we then define five judgments:

Definition 2.29 The five basic typing judgments are defined below. We read (a) “+ X sig”
as ¥ is a valid signature, (b) “Fy I' context” as I' is a valid context given X, (¢) “I' b5
K kind” as K is a valid kind given ¥ and I', (d) “I'ty A € K7 as A has kind K given ¥
and ', and (e) “I' by M € A” as M has type A given ¥ and I'. The typing rules below are
taken from [30], and depend on the notions of substitution and of convertibility.?

Signatures
() sig
F X sig []Fy K kind ¢ ¢ dom(Y)
FYdak sig
F Y sig []Fs A€ Type ¢ ¢ dom(Y)
FY®cAsig

Thus valid signatures assign types and kinds to distinct constants, and these types and kinds
must be valid in the part of the signature preceding their use.

Contexts

F Y sig
Fs [ ] context

Fs I' context 'ty A € Type v ¢ dom(I")
Fv I' @ v: A context

Thus valid contexts assign types (but not kinds) to distinct variables, and these types must
be valid in the current signature and the part of the context preceding their use. Also, note
that no context is valid in an invalid signature.

3This dependence is why we presented substitution and conversion before typing.
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Kinds
Fv I' context
I' 5 Type kind
I't5 A € Type ' oAby K kind
I't5 v A, K kind

Note that no kind is valid in an tmvalid context.

Types

Fv I' context ck el
Fyce K

I't5 A € Type I'Gv:Aly B € Type
I' 5 Hov: A. B € Type
I't5 A € Type 'gvAky Be K
'y Mt A Bellv A K
'y AellvB. K I's MeB
I'Fy AMe [ M/v]|K
'ty Ace K 'ty K kind K =, K’
'y Ae K’

Note that there is no ambiguity in the first rule. If ¥ contained two different kind assignments
for c, then X would not be a valid signature, so I' would not be a valid context with respect

to Y. In the last rule, the condition “I' s K' kind” is necessary because a valid kind can be
convertible to an invalid one.

Terms

Fv ' context cAeX
'Fyce A

Fv ' context vAel
I'Fyve A
'y A€ Type 'gvArFy M e B
'y ot A Melle: A B

'y M ellv:A. B 'y Ne A
'ty MN e[N/v]B
I McecA 'y B € Type A= B
'y MeB

Again, there is no ambiguity in the rules for typing constants or variables.
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Proposition 2.30 In any context, every term has at most one type, modulo convertibility.

More precisely, given a context I', term M and types A, A', if T'Fy M € Aand ' F, M € A,
then A =\ A'. Similarly for types and their kinds.

Proof: The reason is that to any term, only two rules might apply, one of which is the
conversion rule. Moreover, the other rule, specific to the given form of term assigns at most
one type. For instance, consider an application M N in a context I'. A typing derivation
for M N must end in an instance of the application typing rule, followed by zero or more
instances of the conversion typing rule. Let the following be the instance of the application
typing rule:
'y M ellA B 'y Ne A
'ty MN e[N/v]B

By induction on the structure of the terms being typed, we may assume that every type of
M in I' is convertible to 1lv: A. B, and every type of B in I is convertible to A. Therefore,
every typing of M N must end in this same instance, modulo convertibility, of the application
typing rule, followed by some number of type conversions, and hence concludes in a type for

M N that is convertible with [ N/v |B. 0

We will have use of some simple properties of this calculus. Many of these properties are
proved in [30] for a very similar calculus based on 3 convertibility.

Proposition 2.31 (Strengthening) If (a) 'y T3ty M € A, (b)) v & dom(I'y § 1'3), and
(¢c) Ty s A€ Type, then Ty G v A Ty by M € A, Similarly for types and their kinds.

Proof: Simple induction on the derivation of I'y & 'y Fy, M € A. O

Proposition 2.32 (Weakening) If (a) 1 G v:AG Ty by M € B, and (b)) 'y F5 N € A,
then

Iy [N/olly by [N/o]M € [ N/v]B

Proof: The proof is by induction on the derivation D of I'y v: Ap 'y by M € B, making
use of the derivation Dy of I'y Fy N € A. The idea is to replace every use of the typing v: A
in D by Dy. As usual, we only treat the case of terms.



24 CHAPTER 2. THE CALCULUS An

e If D consists of the rule for typing variables, then either M = v, M € dom(I'y), or
M € dom(I'y). If M = v, then [N/v]M = N, and B = A. Also v ¢ dom(I'y) and
F(A) € dom(I'y), so [N/v]A = A. But we already know that I'y -y N € A. If
v € dom(I'y), then [ N/v]M = M and [ N/v|B = B (since again, F(B) C dom(I'y)).
Otherwise, for some variable v and type €', M = v and w: C' € [';. Then, [ N/v |M = u,
and w:[ N/v |C € [ N/v]l'g, so the result follows.

o If D ends in a constant typing then the treatment is similar to the above.

o If D ends in an iAnstanAce of the application typing rule, then M is an application
M N and B = [ N/v]B, where D contains subderivations of (a) I'y G v: A &[5 k5
Mellv A Band Iy Bv:Ad Ty by N € A, By induction, we may assume that
(a) Ty & [N/o]ly Fy [N/v]M € [N/o](IIv: A. B), and (b) Ty @& Iy F, [N/v]N €
[ N/v]A. However, [ N/v](Ilv": A. B) = Ilv":[ N/v]A. [ N/v]B, so by the application
typing rule, Iy & [ N/v Ty by ([N/v]M) ([ N/v]N) € [([N/U]N)/U’]B Then, since
([N/oIM)([N[v]N) = [N/v]M, and [([N/o]N)/v']B = ([N/v]e [N/o'])B =
[ N/v]B, the result follows.

e The abstraction typing case is similar.

e Finally, assume that D ends in an instance of the conversion typing rule. Then D has
a subderivation of I'y Fv: AG Ty by M € B, where I'y G v: A @ 'y F B’ € Type, and
B’ =, B. By the induction hypothesis then, we may assume that (a) I'y & [ N/v |I'y by
[N/v|M € [N/v]|B', and (b) I't & [ N/v|I'y by [ N/v|B" € Type. (The latter holds
because [ N/v |Type = Type.) However, since B’ =) B, we have [ N/v|B' =\ [ N/v|B
by Corollary 2.26, so the result follows by the conversion typing rule.

We will also need a variant of weakening

Proposition 2.33 If (¢) Ty @ v:Ad Ty by M € B, and v & F(T'y) UF(M) U F(B), then
Iy IlyFy MeB.

Proof: Similar to the previous proposition. We cannot simply appeal to that proposition,
however, since there might not exist a term N such that I'y Fy N € A. O

Proposition 2.34 [f 'y, M € A then ' -y A € Type, and if I' Fy A € K then I'
K kind.
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Proof: Simple induction on the derivation of ' =y M € Aor I' -y A € K, using weakening
in cases the derivation ends in an instance of the term or type application rule. a

2.4.1 Typing and Conversion

For A, it is well known that — g, has the strong normalization (SN) and Church-Rosser
(CR) properties for well-typed terms, guaranteeing the existence and uniqueness of normal
forms[63]. For well-typed terms in Ar, SN is fairly simple to show [30, Theorem A.7]. The
CR property for A with n as well as 3 has, for some time, been generally believed to be
true. This conjecture has only recently been verified and the proof is quite complex [68].
The importance of CR, together with the strong normalization property (SN) is that they
reduce the question of convertibility (of well-typed terms and types) to equivalence (modulo
a-conversion) of normal forms. An alternative to relying on CR for — 3, would be to use
just —p, for which CR has been shown (even for ill-typed terms) [30]. The algorithm we
develop in Chapter 4 could be modified to perform unification for this calculus by following
the reasoning behind Huet’s 3 unification algorithm for A_,. However, this does not seem
worthwhile, because the n rule is necessary for language representation, on which most
applications of interest depend.

As another alternative to relying on CR, we could redefine convertibility in terms of a
particular deterministic process of comparing terms. This process is defined and discussed
in Section 4.2. Then our unification procedure is guaranteed correct with respect to this
notion of convertibility. The CR conjecture (together with SN) implies that this notion is
equivalent to the conventional notion of convertibility.

Another important property is the following:

Definition 2.35 A relation p on A is said to preserve typing iff for any I', M, M', and
A, if Uy M e A and M p M', then I' =y M' € A, and similarly for types and their kinds.

Proposition 2.36 (“Subject reduction”) The reduction relations 3 and n preserve typing.

We will first need a lemma:

Lemma 2.37 [f ' by A\t A. M € C and C =, Mlv: A" B', then (a) A =\ A’, and (b)
I'Gv:Aby M € B'. Similarly for types and kinds.
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Proof: Consider a derivation D of I' by Av: A. M € C, where C =) [lv: A’. B’. The only

two possible final rules are the abstraction and type conversion ones.

o If D ends in an instance of the conversion rule, then it contains a subderivation of
I'ty Av: A. M € ¢ for some C’ such that I' by, C’ € Type, and C' =, C, so that C' =)
[v: A”. B'. By derivation induction, we have (a) A =) A, and (b) Gv: Aty M € B,

which is what we are proving.

o If D ends in an instance of the abstraction rule, then C' itself is of the form Ilv: A. B, so
part (a) is immediate. Part (b) is also immediate because D contains a subderivation

of ' ©viAbys M € B.

Now we can prove that # and n preserve typing.

Proof of Proposition 2.36: We will begin with 3 and will only treat the term cases, since
the type cases are analogous. Assume that there is a derivation D of I' by (Av: A. M) N € C
for some type C'. There are two cases to consider:

e Assume D ends in an instance of the conversion typing rule. Then D has subderivations
of (a) 'ty (At A. M)N € C" and (b) I' k5 C7 € Type, where C’ =, C. By derivation
induction, we may assume that I' by [ N/v]M € C’. However, we can then use the
conversion rule again to conclude I' Fy, [ N/v M € C.

e Assume D ends in an instance of the application typing rule. Then for some A’ and
B, C has the form [ N/v]B, and D contains subderivations of (a) I' by Av: A. M €
Hv: A" B, and (b) I' Fy N € A’. By the lemma above, we know that A =, A’, so
'y N e A and ' v: Ay M € B, so that, by weakening (Proposition 2.32),
I'Fy [N/o]M € [N/v]Bie, 'y [N/v]M € C.

For n, there are again two cases, this time depending on whether the derivation D of
I' by A A. Mo € C ends in an instance of the conversion or abstraction typing rule.
The reasoning in the conversion rule case is exactly as above. Otherwise, (' has the form
IIv: A. B and D contains a subderivation Dy, of ' D v: A By Mv € B. Recall that we
want to show I' G v: A -y M € llv: A. B, from which we will conclude by Proposition 2.33
that I' by M € Huv: A. B since v ¢ F(M) and v € F(Ilv: A. B). Again there are two cases,
depending on whether Dys, ends with an instance of the conversion or application typing
rule. The conversion case is handled as usual. Otherwise, there are subderivations of Dy,

of the form (a) G v: A by M € I A" B and (b) G v: Ay v € A, and we have
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B =[v/v']|B'. Therefore, A=, A’ and so ' Dov: Ay, M € llv: A. B". However, Ilv": A. B’
is a-equivalent to lv: A. B, since B = [v/v"]|B’, so the result follows by weakening. O

Proposition 2.38 [f the relations py and py preserve typing, then pipsy (i.e., p1 U ps) does.
If p preserves typing, then —, and =7 do.

Proof: The first claim is immediate, since Mp1pos M’ ift M py M' or M py M’. The second
follows by induction on the derivation of M —, M’ and the third follows by induction on
the number of —, steps. O

However, it is not necessarily the case that <7 preserves typing.

Example 2.39 Consider a signature ¥ containing type constants i,0, and a term constant
ci. Then (Ax:o.x)c —p ¢, and so ¢ &5 (Axio. x)c, but (Az:o. x)c is ill-typed.

On the other hand, we do have the following:

Proposition 2.40 Assume that p preserves typing, and that —, is CR on well-typed terms,
and let U and U" be well-typed terms or types such that U <5 U'. Then U and U’ have the
same type or kind.*

Proof: By CR, there is some U such that U = U and U’ = U. By Proposition 2.38

however, {7 has the same type or kind as both U and U’ and therefore U and U’ have the
same type or kind. a

2.4.2 Well-typed Substitutions

In unification over a typed calculus, we are given not just the set of variables to be instan-
tiated during unification, but also their types, i.e., the types of the terms that must be
assigned to these variables.

*More precisely, any type or kind that U has, U’ also has. This distinction becomes important in calculi
like that of Chapter 5, which do not have unique typing.
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Definition 2.41 For contexts I' and 1”, the set of well-typed substitutions from I' to I,

written “OL' 7, is the set of 0 € 63228:/)) such that for any variable v and type B,

v:Bel = I"'ky0veldB

(Note that we do not assume I' to be valid, but that the validity of I" is implied by this
condition if I' is nonempty, since, by the typing rules, no term has a type in an invalid
context.)

éof »

Definition 2.42 For a context I, the set of well-typed substitutions over I', written “O7,
is the union over all contexts I' of OF



Chapter 3

An Approach to Unification

In this chapter, we present our approach to unification. Although several details are calculus-
dependent, the properties used are quite weak and apply to the calculi in later chapters as
well as other problems, e.g., equational unification. A related approach, by Snyder and Gal-
lier, for HOU,, (unification in the simply typed A-calculus, AL, ), and equational unification,
is presented in [70, 69], which was itself inspired by the work of Martelli and Montanari [41].
However, as discussed below, unlike these works, our approach makes the important dis-
tinction between two kinds of “nondeterminism” present in the search for unifiers. This
distinction is necessary to formulate an algorithm for enumerating complete and minimal
sets of solutions (as defined in this chapter).

3.1 The Specification

Our formulation of higher-order unification is a generalization of the usual formulation,
designed for exposition of the algorithm.

Definition 3.1 For a context I', a disagreement pair over I' is a triple (U, U, U’), where U
and U’ are both terms or both types, ¥ is a “universal context”, typing those variables not to
be substituted for, such that dom(I') Ndom(W) = { }, and all of the variables occurring in U
and U’ are in dom(T")Udom(W).! We will use the meta-variable P to range over disagreement
pairs.

!There is no conceptual difficulty in allowing kind disagreement pairs as well, but it does not appear to
be useful.

29
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The wunification context I' and the universal context W serve quite different purposes here:
I' serves to enumerate and provide types for the variables that may be instantiated during
unification, while ¥ enumerates and provides types for the variables that are not subject
to instantiation. These latter, universal, variables arise because at a certain point in each
of our algorithms, binding constructs are removed, e.g., an abstraction term Av: A. M is
replaced by M. The W’s record the types of these variables, which would otherwise be lost.?
In contrast, Huet’s presentation [36] maintains explicit A abstractions, which accumulate
during execution of his algorithm. A potential disadvantage of our approach is that with
a traditional representation for the calculus that uses variable names, we would have to
perform a-conversion, before removing binding constructs. This disadvantage is removed by
adopting de Bruijn’s index based representation [14].

Definition 3.2 A disagreement set over I' is a finite multiset of disagreement pairs over I'.?
We will use the meta-variable D to range over disagreement sets.

Definition 3.3 A unification problem is a triple (I',0q, D) consisting of a context T, a

substitution 6y € ngmgi

use () to range over unification problems.

| for some context Iy, and a disagreement set D over I'. We will

Usually one presents unification as taking simply a pair of terms having some free variables.
The extra complexity here is motivated by the transformation-based framework developed
in this chapter. In practice, one begins with an initial unification context, I', the identity
substitution, 0 over I, and a single disagreement pair, ([ ], M, M') whose free variables are
all contained in dom(I'). Then, in a search process described in general terms later in this
chapter, progress is made incrementally towards unifiers. In this process, substitutions are
performed (as in Huet’s MATCH phase), and disagreement pairs are decomposed into sets
of disagreement pairs (as in Huet’s SIMPL phase). We compose the individual substitutions
leading toward a unifier and keep them as the 6y component of a unification problem. By
comparison, in [36], the individual substitutions are kept in the edges of a “matching tree”.
We do not wish to emphasize this difference, as it seems to be mostly one of convenience of
presentation.

An important point here, which we will discuss in detail later, is that we do not assume

that 0y is well-typed, and thus we say 0, € 63228:())) rather than 0y € @FO. Similarly, we do

not say in this definition that the disagreement pairs in D relate well-typed terms or types
of the same type or kind. There is however a somewhat weaker condition which we will

?In fact, the ¥’s are used only in the proofs and are never examined by the algorithm itself. They could
thus be removed as an optimization.

3We will use conventional set-like notation for these multisets, with the exception of using W instead of
U.
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call “acceptability” of a unification problem @), written “A(Q)”. This condition is required
and maintained as an invariant by the unification process described in general terms in this
chapter and specifically in later chapters. There we will also show how to initially establish
the invariant. The meaning of acceptability is not made precise until Definition 4.38, since
it involves technical details developed in Chapter 4. As an approximation, the reader may
think of acceptability as saying that all of the disagreement pairs relate well-typed terms or
types of the same type or kind.

Definition 3.4 Given a context I, a substitution § € Op, and a disagreement pair P =
(U, U, U over I', we say that § unifies P iff 0U =, OU'. For a disagreement set D over I,
we say that 6 unifies D iff 0 unifies every P € D.

Given a unification problem (I', 6y, D), we are interested in the result of composing 6y
(representing what has already been learned about the original unification problem) with
well-typed unifiers of D.

Definition 3.5 The set of solutions of a unification problem (I', 8y, D) is
UL, 00, D)) = {0 ] 30.0=,0000A0¢€ Op A0 unifies D}

In general, to avoid confusion, we will use 0 to refer to potential solutions of unification

N

problems, and 0 for potential unifying substitutions, where for a given 0y, 8 =, 6 o 0.

Note that when 6 is an identity substitution and D is of the form {([ |, M, M')}, we have
the usual problem of simply unifying two terms (except for the additional well-typedness
condition on #). An important use of U is

Definition 3.6 A unification problem () has a solution iff U(Q) # { }.

In the problem of first-order unification, it is well known that when two terms have a
unifier, they have a most general unifier (MGU), of which all other unifiers are instances. (In
particular, every MGU is an instance of every other MGU, so in that sense they are unique.)
There are many efficient algorithms to decide whether a first-order unification problem has
a unifier, and if so, to produce an MGU. (See [39] for a survey.)

With higher-order unification (and equational unification), MGUs no longer exist. How-
ever, we can still look for a complete set of unifiers (CSU), whose instances forms the set of
all unifiers [20]. One would also like to have the property of minimality (non-redundancy),
saying that the enumerated unifiers have no instances in common. However, as shown in [34],
even for A_,, it is not generally possible to enumerate minimal CSUs.
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Huet’s idea of pre-unification [34] (implicit in [36]) solved this difficulty. For this, we
need the notion of a unification problem being in solved form. (We have borrowed this
term from [70].) The precise meaning of this property varies from one calculus to another
and is motivated by considerations in developing the pre-unification algorithms. The precise
meaning of this property will be given as Definition 4.46. For now we need only the following:

Assumption 3.7 The solved form property satisfies

1. It is decidable whether a unification problem is in solved form.
2. A unification problem whose disagreement set is empty is in solved form.

3. Fvery acceptable unification problem in solved form has a solution.

For us, a “pre-unifier” is not a substitution, but rather a special kind of unification
problem:

Definition 3.8 A unification problem ()" is a pre-unifier of a unification problem Q) iff
UQ') CUQ) and Q' is in solved form.

An important property of pre-unification is
Proposition 3.9 An acceptable unification problem has a solution iff it has a pre-unifier.

Proof: Let () = (', 00, D) be a unification problem, and assume that @ has a solution
0 € @11:; Then, by the substitutivity property of convertibility (Proposition 2.25), and

part 2 of Assumption 3.7, <F’,é,{ }) is a pre-unifier of (). Next, assume that ) has a pre-
unifier @', Since @' is in solved form, it has a solution ¢ by part 3 of Assumption 3.7, but
UQ') CU(Q), so § is also a solution of Q). O

Given a unification problem, we will want to compute a representative subset of its
unifiers, in the following sense:

Definition 3.10 Let Q) be a unification problem and Q be a set of unification problems.
Then Q is a minimal complete set of pre-unifiers (uCSP) of @ iff

1. Fvery Q' € Q is acceptable.
2. Fvery Q' € Q is a pre-unifier of Q (i.e., it is in solved form and U(Q') CU(Q)).

3. Q is complete with respect to (), i.c., for any solution 0 of Q, there is a Q' € Q such
that § € U(Q').

4. Q is minimal, i.e., for any two distinct members ', Q" of Q, U(Q)NUQ") ={ }.
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3.2 Transformations on Unification Problems

The unification algorithms in the following chapters are presented as collections of (nonde-
terministic) transformations on unification problems. This allows us, for the most part, to
ignore issues of control structure and focus on the main ideas. The transformations map
unification problems to sets of unification problems, preserving sets of unifiers. The goal of
the transformations is to eventually construct only pre-unifiers.

Definition 3.11 A transformation is a relation between unification problems and finile sets
of unification problems.

Definition 3.12 Let ) be an acceptable unification problem and Q be a set of unification
problems. We say that the transition “Q) — Q7 is

e acceptable iff every Q' € Q is acceptable,

o correct iff U(Q) = UgreoU(Q'),
e minimal iff for any two distinct Q',Q" € Q, U(Q)NUQ")={ }, and

o valid iff it is acceptable, correct, and minimal.

Definition 3.13 A transformation p is acceptable, correct, minimal, or valid, if for any
acceptable unification problem @), and set of unification problems Q such that Q) p Q, the
transition Q) — Q s respectively acceptable, correct, minimal, or valid.

A simple but useful fact is

Proposition 3.14 The union of acceptable, correct, minimal, or valid transformations is
respectively an acceptable, correct, minimal, or valid transformation.

Proof: Trivial from Definition 3.13. O
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3.3 Algorithms from Transformations

Given a collection of transformations, we will now describe a search process that operates
on a set of unification problems and enumerates a set of pre-unifiers. Informally, the process
goes as follows: If there are no unification problems left, stop. Otherwise, choose a unification
problem to work on next. If it is in solved form, output it as a pre-unifier. Otherwise, apply
one of the transformations, in some way, to replace the unification problem by a finite set of
new unification problems. Then continue.

Note that two kinds of choices are made in this process. First, there is the choice of which
unification problem to work on next, and second, there is the choice of which transformation
to apply and how to apply it. It turns out that the second kind of choice may be made
completely arbitrarily, but, in order to have completeness, the first kind must be done in a
fair way.* As pointed out in [36], this allows for various strategies. Huet formulated this
difference by constructing “matching trees”, in which the nodes are disagreement sets and
the edges are substitutions, and then showed that all matching trees are complete. His
pre-unifiers are constructed by composing substitutions along edges that form a path from
the original disagreement set to one in solved form. In our formulation, these composed
substitutions are part of the unification problem.

Definition 3.15 For a transformation p and a unification problem @), a p search tree from
Q is a (possibly infinite) tree T' of unification problems such that

o The root of T is ().

o For every node ()' in T, the set of children of Q" in T is either empty if Q" is in solved
form, or is some Q satisfying Q' p Q if Q' is not in solved form.

Definition 3.16 For a transformation p, we define the relation p** as follows: @) p** Q iff
there is some p search tree from () whose set of solved form nodes is Q.

We will want our combined transformations to be sufficient to find any unifier, in the following
sense:

Definition 3.17 A transformation relation p is complete iff for any acceptable unification
problem Q) and any Q such that Q p™ Q, and any 0 € U(Q), there is some Q' € Q such that
6 clU(Q).

4Tn implementation terms, this means that we can use e.g., breadth-first secarch or depth-first search with
iterative deepening, but not simple depth-first search.
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We can then show the following

Proposition 3.18 Let p be any valid complete transformation relation, () be an acceptable

unification problem, and Q be any set of unification problems such that () p™ Q. Then Q is
a pCSP of ().

Proof: The completeness requirement (part 3 of Definition 3.10) is immediate from Defi-
nition 3.17.% To see why the other three requirements are satisfied, let 7' be a p search tree,
the set of whose solved form nodes is @, and let Q)" € Q, so that ()’ lies on some path in
T (of finite length) from . For each parent and child, @, and Q., in T, if A(Q,), then
(a) A(Q.) (by the acceptability of p), and (b) we have U(Q.) C U(Q,) (by correctness of
p). Thus, by induction on path length, (a) U(Q') C U(Q), and (b) A(Q’). But also, ) is
in solved form by definition of p**, so ()’ is a pre-unifier. The remaining condition, mini-
mality of @, follows from minimality of p: Let @', Q" be distinct members of Q. Then @)’
and )" have a common ancestor (), in 7' that is a descendant of all of the other common
ancestors of ', Q)”. Then there are distinct children @, Q" of Q),, which are ancestors of
@' and Q" respectively. By minimality of p, U(QL) NU(QY) = { }. But U(Q') CU(Q") and

C

UQ") CUQT), so UQ) NUQ") = { }. B

The following will be useful in proving completeness.

Definition 3.19 Let p be a transformation relation, and assume that for any substitution
0 thete is a well founded ordering “~;” such that for any acceptable unification problem ()
with § € U(Q), and set of unification problems Q', with @ p Q', and any Q' € Q', we have
Q >; Q. Then we say that p is decreasing.

Proposition 3.20 Euvery correct, acceptable, decreasing transformation relation is complete.

Proof: Let p be a correct, acceptable, decreasing transformation relation, and let () be an
acceptable unification problem with b€ U(Q), and Q be such that @ p™ Q. We will show
that there is a (); € Q such that f e U(Q;). Using the definition of p**, let T be a p search
tree from () whose set of solved form nodes is Q. Consider a sequence, finite or infinite,
of unification problems (); defined as follows. Let Q)9 = ). Then for a given @Q;, if @); is
not in solved form, let Q;4; be a child of ¢); in T" such that 0 c U(Qit1). (It exists and is
acceptable, by induction, given the correctness and acceptability of p, and is unique if p is
minimal.) Then Qg >; Q1 >, ---, and since >, is a well founded ordering, the sequence is

finite, ending with some @),,. But then @, € @ and 0 e UQ.). O

If p were not assumed to be complete, we could take it to be the trivially valid transformation that
relates every unification problem @ to the set {Q}.



Chapter 4

A Pre-unification Algorithm

In this chapter we develop an algorithm for HOUyy in the framework established in Chapter 3,
i.e., as a collection of transformations on unification problems. The algorithm we end up
with is quite similar to Huet’s algorithm for HOU_,, and in fact behaves almost exactly the
same on the subset of Ap corresponding to A_,. However, there are considerable technical
difficulties in the justification of the algorithm that do not arise in HOU ;.

We begin by presenting a useful normal form, the 8 weak head normal form, and then
use it to reduce convertibility of terms or types to convertibility of simpler terms or types.
Next we point out some of the complications arising in HOUp that are not present in HOU_,.
In particular, we are forced to deal with ill-typed terms. These considerations serve to mo-
tivate the development of our algorithm and, in particular, the definition of “acceptability”,
an invariant maintained by the transformations, constraining the ill-typedness present in
unification problems. We then go on to develop a collection of transformations that suffice
for pre-unification. The next two sections prove completeness of the set of transformations,
and unifiability of solved form unification problems. Finally, we show how our algorithm
allows for a simple type checking/“term inference” algorithm. This problem is not only
useful in its own right, but also allows for performing unification on terms that may become
well-typed only after substitution.

4.1 Weak Head Normal Forms

Convertibility, as defined in Section 2.3 is an undirected notion. However, the CR and SN
properties allow us to replace convertibility by reducibility to common normal form. In
higher-order unification, we are considering convertibility after substitution, and as we will
see, it is sufficient to normalize just enough to reveal the ultimate “top level structure” of
the fully normalized term.

36
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The reduction rules # and n will turn out to play quite different roles. Our use of 7 is
more in the spirit of extensionality than reduction.

Definition 4.1 The ([3) weak head reduction relation “whg” is a restriction of — 5, applying
G only “at the head”:

Upu
U whg U’
where U and U’ range over terms and types. Then for types,
Awhg A’
AM whg A M

and then for terms,
M Whﬁ M’
M N whg M' N
Additionally, we define a weak head redex to be any term or type U such that there is some
U’ for which U whg U’.

Example 4.2 The following weak head reductions hold (using the first and third rules re-
spectively):
(Aazi.c(cx))b whg c(ch)
((Aati.c(ca))b)b whg c(cb)b

Note that another way of expressing whg would be to say

(Av: A. MYN Ny ---N, why ([N/v]M)N;---N,
(Av:A. BYN Ny--- N, whg ([N/v]B)Ny---N,

for n > 0. The form we have chosen extends better to the calculus of the next chapter.
Proposition 4.3 [f U whg U’ then U —5 U'.

Proof: A simple induction of the derivation of U whg U’. O

Corollary 4.4 whg preserves typing.

Proposition 4.5 whg is substitutive.
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Proof: Again, a simple induction on the derivation of U whg U’, this time using the substi-
tutivity of 3, and the distributive properties of substitution with respect to application. O

Definition 4.6 A term or type U is in (3) weak head normal form (WHNF) iff there is no
U’ such that U whg U’.

We now focus on a subset of the WHNF terms and types:

Definition 4.7 A body is ¢ WHNF term or type (not necessarily well-typed) that is not an
abstraction.

Proposition 4.8 A well-typed term body (i.e., a body at the level of terms) is either

o «a variable,

® a constant, or

o M N for a well-typed body M '
and a well-typed type body is either

® a lype constant,
o [Iv:A. B, or

o AM for a well-typed body A that is not a Il type.

Proof: Follows easily from Definitions 4.6 and 4.1. The restriction of well-typedness insures
that, in AM, A is not a Il type. a

The following will be convenient:
Definition 4.9 An atom is a term constant or variable.

Definition 4.10 An atomic type is one of the formc Ny --- N, for somec,n, and Ny,..., N,.

Then the previous proposition can be restated to say that (a) a well-typed term body has
the form a M; - - - M, for some atom «, and (b) a type body is either a Il type or an atomic

type.

LOf course, N is also well-typed, but we want to emphasize that this proposition applies recursively to

M.
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4.2 Some Useful Properties of Convertibility

The development of our algorithm is divided into two main parts. In this section, we present
the first part, which consists of revealing some useful properties of convertibility (as opposed
to unifiability). The properties will play a key role in the second part of the development,
which forms and justifies of the transformations that make up the pre-unification algorithm..

We will construct various methods by which to decompose questions of convertibility of
pairs of terms or types to convertibility of “simpler” pairs. It will be convenient even at
this stage to use disagreement pairs, even though we are dealing with conversion and not
unification. First, the following definitions will be useful.

Definition 4.11 Given a substitution 6 € @“;l and a universal context W = [v;: Ay, ... v Ay,
by “OU” we mean the context [vy:0Ay, ..., v,:0A,1%. Forsimplicity, we assume that {vy,... v, }
is disjoint from V U V'. Similarly for unification contexts.

Definition 4.12 For a context I' and a disagreement pair P = (W, U, U’) over I, the set
of free variables of P, written “F(P)”, is

(F(UYUFU")) — dom(W)

(This will be a subset of dom(I').) Similarly, for a disagreement set D, “F(D)” is Upep F(P).

Definition 4.13 For a disagreement pair P = (U, U, U') and a substitution 0, by “9P”,
we mean the disagreement pair (0W , U, U'). Note that we may have to a-convert P (i.e.
rename some of the variables in W and perform the corresponding renaming in U and U').
For a disagreement set D, by “0D”, we mean the multiset {OP | P € D }.

Definition 4.14 Given a unification context I', we will say that a disagreement pair (¥, U, U")
is well-typed over I' iff U and U’ have the same type or kind (and are therefore well-typed)
in the context I' ® V. A disagreement set D is well-typed iff every disagreement pair P € D
is well-typed.

Definition 4.15 Given a disagreement pair P, we will write “eq,(P)”, to mean that P

Y

relates convertible terms or types, i.e., P = (W, U, U"), where U =, U’.

2To be more precise, 0W = [vy: Ay, ve: 0TV Ay, o v, 0TV TUn-1 4]
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In our eventual use of these properties of convertibility, the pairs of terms or types whose
convertibility is in question is the result of applying a substitution # to a disagreement set P
being unified, since, by definition, § unifies P iff eq,(0P). Although our disagreement sets
may contain ill-typed terms, it will turn out that we will only need to consider substitutions
6 that instantiate a given disagreement pair to be well-typed. Thus it will suffice in this
section to consider only well-typed disagreement pairs (in the sense of Definition 4.14).

To show that our decomposition methods make progress, we will need a notion of size:

Definition 4.16 Given a term or type U in 3 normal form, we define the size of U, written
“size(U)”, as follows. First for terms,

size(c) = 1
size(v) = 1
size(Av: A. M) = size(A) +size(M) + 1
size(M N) = size(M) + size(N)

Then for types,

= 1

size(A) + size(B) + 1
size(A) + size(B) + 1
size(A) + size(M)

24
N
[0]
—~
p
B N
vy
~— e e
Il

Then we extend this notion to all terms and types that are well-typed in some context by
saying that for an arbitrary well-typed term or type U, size(U) = size(U), where U is the 3
normal form of U. (Note that CR and SN of 3 for well-typed terms and types makes this
well-defined. )

We also extend this notion to well-typed disagreement pairs by
size((W, U, U")) = size(U) + size(U’)

but not to disagreement sets.
We will also need a measure of how far from being head-normalized a term or type is:

Definition 4.17 Given a term or type U, well-typed in some context, we write “dn(U)” to
mean the number of weak head 3 reductions required to convert U to weak head normal form.
More precisely, it is the number n such that there is a sequence Uy, ..., U, for which (a)
Up=U, (b) U, is in B weak head normal form, and (¢) U; whg Uiyq for 0 < i < n. (Note
that SN and the determinacy of whg ensure that dn(U) is well-defined.) We extend dn to
disagreement pairs as with size.



4.2. SOME USEFUL PROPERTIES OF CONVERTIBILITY 41

Our various decomposition methods will be concrete ways of satisfying the following
abstract requirement (explanation follows):

Definition 4.18 Given a disagreement pair P, and a “disagreement sequence’ D= (P,...
both over a unification context I', P is decomposable to D written “P < D” iff

1. eq,\(P) iff for 1 < i <k, we have eq,(P/), and

2. Fach P! is well-typed (in the sense of Definition 4.14) relative to the convertibility of

the preceding sequence of Pl i.e., for 1 <1 < 'k, P/ is well-typed if for 1 < 5 <1,
GQA(P]()-

3. For 1 <1 <k, either (a) size(P) < size(P), or (b) size(P/) = size(P) and dn(F/) <
dn(P).

4. No new free variables are introduced, i.e., F(P!) C F(P), for 1 <i < k.

The first part is the fundamental property, stating that the question of convertibility before
decomposition is equivalent to the question of convertibility after. The second says that,
while we may construct ill-typed disagreement pairs (ill-typed terms or types or even well-
typed terms or types of different types or kinds), this only happens if one or more of the
preceding disagreement pairs is not convertible. Note that, in particular, if £ > 1, it requires
P| to be well-typed. The third part says that the decomposition is making a kind of progress.
Given any tree of disagreement pairs, where each node is decomposable to a sequence of its
children, this part says that the tree can only have finite paths. Finally, the fourth part is
a technical condition needed for later proofs. Note that since P and the P/ are over I'; the
free variables referred to are in dom(I').

It is interesting to note that the decomposition methods defined below form a complete
recursive algorithm for deciding whether two well-typed terms or types are convertible. After
decomposing, we would (recursively) first test earlier P/ for convertibility and, only if they
succeed, then test later ones. Then part 1 guarantees correctness, part 2 guarantees that
each disagreement pair that is tested is well-typed, and part 3 guarantees termination. One
might think that we could do something similar for unification, and thus avoid dealing with
ill-typed terms or types, but in fact, there will be other, conflicting, requirements on the
order in which disagreement pairs are processed.

The following sections develop decomposition methods that together apply to all possible
forms of well-typed terms and types. The cases come from the fact that for a well-typed
disagreement pair P = (U, U, U'), either

o U or U is a weak head redex,

e U or U’ is an abstraction, or

e Both U and U’ are (well-typed) bodies.

P
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4.2.1 Weak head redices

Convertibility of terms or types subject to weak head reduction is handled by the following
method.

Definition 4.19 The decomposition method (relation) ~»,, is given by

U whg V
(U, U, U") ~o (O, V,U7)))

U why V/
(U, U, U) ~or (O, U, V7))

Then we have

Proposition 4.20 Let P be a well-typed disagreement pair and D a disagreement sequence
such that P ~,, D. Then P4 D.

Proof: Letting D = {( P ), note that P and P’ are of the form (U, U, U’) and (¥, V, V")
respectively where either (a) U whg V and U’ = V' or (b) U =V and U’ whyz V'. In either
case, by Proposition 4.3, U =, V and U’ =, V'. Therefore, if U =, U’ then by transitivity
and reflexivity of =\, V' =, V'. By the same argument, if V =, V' then U =, U’. The
second requirement, well-typedness of P’, follows from Corollary 4.4. For the third require-
ment, we have size( P’) = size(P) and dn(P’) < dn(P), because P’ results from a  weak
head reduction of U or U’. Finally, the fourth condition is satisfied because reduction does
not introduce new free variables. O

4.2.2 Abstractions

Convertibility involving abstractions is reduced via the following method. (Note here the

role of W.)

Definition 4.21 The decomposition method ~»1y is given by
(U, Av: A. M, X' Al M’> ~n{((Whv: A, M, [U/U/]M/> )

(U, Av: A. B, Av's AL B'} ~n{{ (Veav: A, B, [U/U/]B/> )
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M' is a body
(U, Av: A. M, M"Y~ (U A, M, M'v) )

M is a body
(U, M, Av: A. M’> ~on (W v:A, Mo, M’> )

B’ is a body
(U, Av: A. B, B ~n (U oA, B, B'v) )

B is a body
(U, B, \v: A. B’} ~n (W v A, Bo, B’} )

Proposition 4.22 Let P be a well-typed disagreement pair and Da disagreement sequence
such that P~y D. Then P D.

(Proof below.)

Example 4.23 Suppose P = ([ ], Ax:i. x, Ay:i.y). Then

Poon (([a:i], @, 2))

which can be handled by the next decomposition method. It is important to note that in this
rule we do not have to compare the types of the abstracted variables. This is precisely because
well-typedness of P guarantees them to be convertible.

Example 4.24 Suppose P = ([ fri—=i], Az:i. fa, f). Then

Peon ( ([ frimt, ai], fa, fa)))

This decomposition method is strongly reminiscent of the rule of extensionality. As we
will see in the proof below, the justification for this decomposition relies on the n rule. In fact
the unification algorithm (as well as the convertibility algorithm implicitly defined by this
collection of decomposition methods) performs no other form of 1 conversion. In contrast,
Huet’s algorithm, in the case of 1, performs n-expansion to put terms into long normal form
(LNF). Our development shows that these expansions are sometimes unnecessary. Another,
more fundamental difficulty with LNF, or even long head normal form, is that its definition
involves considerations of whether certain subterms are of functional type. In HOUp, how-
ever, as we have remarked, we will be forced to deal with terms that are ill-typed, and so
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the concept of long normal form would need careful reconsideration. This was the approach
we took in [18], using the notion of “approximate well-typedness”.

We can also make a comparison to the use of 1 in the standard method for testing
convertibility of well-typed terms, which is to completely 3 and 1 normalize them, and then
test the result for a-equivalence. Instead, we perform 3 reductions and some n-expansions.

We can now explain why we use weak head normal forms, as opposed to the more common
“head normal form”, which requires some beta-reductions even inside an abstraction [3, page
41]. The reason is simply that we know how to decompose a disagreement pair involving an
abstraction, regardless of the reductions that apply inside the abstraction.

Proof of Proposition 4.22: We will treat only two of the six cases, since the others are
analogous.

Let P~ lA)Aby the first rule. Then P = (¥, Av: A M, " A’.M:> and D = {( P")), where
P = (Vv A, M, [v/v"|M'). First assume that eq,(P), i.e. Av: A.M =, A"t A".M'. Then by
a-conversion, Av: A. M =, Av: A’ [v/v' ]M'. Therefore, (Av: A. M)v =, (Mv: A" [v/v' |M") v
50, by B-reduction, M =, [v/vf ]M’, i.e., eq,(P"). The converse, that eq,(P’) implies eq,(P),
follows from the abstraction rule of Definition 2.18, and «a-conversion.

For the second requirement, we must show that P’ is well-typed. Since P is well-typed,
there must be some B such that Av: A. M and Mo A". M’ both have type B in I' @ W. But
then B must be convertible to Hv: A. B for some B such that I OV v Atbs M = B 3 and
B must also be convertible to IIv": A’. B’ for some B’ such that Favao: A by M e B’. By
COHSlderatlon of normal forms, we have A =, A’ and B = N ]B’ Therefore, I' & ¥ & v:

Fy [v/of ]M’ € B, i.c., P’ is well-typed.
For the third requirement, we have

size(P') = size M) —|—5|ze([v/v M)
M) + 5|ze(M') by a simple induction

vi A. M) + size(Mv's A" M)

A
v v
NN
o o

The fourth condition, that there are no new free variables, is immediate.

Next, let P~ D by the third rule. Then P = (U, v A. M, M) where M’ is a body,
and D = ( P")), where P = (VG v: A, M M’ v). First assume that Av: A.AM =, M'. Since
(Av: A. M)v —3 M, we then have M =) M v, i.e., eq,(P’). Next, assume M =, M'v. Then

Av: A. M =, hv: A. M’ v. Since Av: A. M is well-typed in [ ¥, we know that v ¢ dom(I'p ),

3This is because any derivation of T' . Av: A. M € B ends in an instance of the abstraction typing rule
followed by zero or more instances of the conversion typing rule.
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and then because M’ is well-typed in ' & ¥, v & F(M'). Thus Av: A. M'v —, M', so
Avi A. M =, M'. This shows that the first requirement for < is satisfied.

For the second requirement, that P’ is well-typed, the reasoning is similar to the first
case.

For the third requirement, we will again show that size( P’) < size(P).

size(P') = size(M) + size(M’ v)
= size(M) + size(M') + 1 since M’ is a body
< size(Av: A. M) + size( M) since size(Av: A. M) > size(M) + 1
= size(P)
The fourth requirement is immediate. a

4.2.3 Bodies

The only remaining case to consider is a disagreement pair relating two bodies. We will use
the following facts:

Proposition 4.25 If U, U’ are bodies well-typed in a context I (though not necessarily of
the same type or kind), then U =, U’ iff one of the following holds. First for terms:
o U and U’ are the same atom, or
e U=MN and U = M'N', for bodies M, M" well-typed in T, such that M =, M’ and
N =, N

and for types

o U and U’ are the same type constant,

o U =AM and U = A M’', for bodies A, A" well-typed in I, such that A = A" and
M =, M’', or

o U/ =1Iv:A B and U =1lv: A". B’, such that A=, A" and B =, B'.
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To prove this proposition, we will need the following fact.*

Lemma 4.26 The §n normal form of a body is a body. In particular, let U be a body. Then
for terms,

o U =a, for some atom a, tff the Bn normal form of U is a.

o U = M N iff the pn normal form of U is MN, where M and N are the On normal
forms of M and N respectively.’

and for types,

o [fU = c, the Bn normal form of U is c.

o [fU = AM, the Bn normal form of U is AM, where A and M are the 0On normal
forms of A and M respectively.

o [fU = llv: A. B, the By normal form of U s Ilv: Al B, where A and B are the 0On

normal forms of A and B respectively.

Proof: A simple induction on the structure of U. O

Proof of Proposition 4.25: The “if” part is immediate. The “only if” part follows from
considering the possible forms of well-typed bodies, listed in Proposition 4.8, and their gn
normal forms, described in the lemma. For example, if U is M N, then the 37 normal form
of U 1s MN where M and N are the fn normal forms respectively of M and N. Let U
be the (n normal form of U’. Since U =, U’ though, U = MN But then by the lemma,
U= M' N’ for some M’ and N’ whose 1 normal forms are M and N respectively, which
says that M =, M’ and N =, N'. O

This proposition gives rise to a decomposition method, almost giving a sufficient condition
for 1. The only problem is the relative well-typedness condition on the new disagreement
pairs, as is demonstrated in the following.

Example 4.27 Let our signature be a small fragment of the one given in [30] for encoding
first-order logic:
(0:Type , i: Type , V:(i—0)—o0, to—o0, T:0)

*The usefulness of the lemma is based the CR property. Alternatively, we would take Proposition 4.25
as part of the definition of convertibility.

®More precisely, the “if” direction of this statement should be that if the 81 normal form of (the body)
Uis M N, then there are terms M, N with 7 normal forms M and N respectively such that U = M N.
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and consider the two terms ¥ (Ax:i.T) and = T, both well-typed bodies (even of the same type).
From the preceding proposition, we know that these terms are convertible iff (a) ¥V =\ =, and
(b) Aa:i. T =\ T. However, it is not the case that

1V T), =Ty (], Y, =) (L], Ai T, T) )
since both of these new disagreement pairs are ill-typed (in that they relate terms of different

types.)

To avoid this problem, we instead use the following more complicated decomposition
method:

Definition 4.28 The decomposition method ~+,, is given as follows. First for term bodies,®
(W, v, v)~e ()
(W e, )~ ()

A

(U, M, M"Y~ D
(O, MN, M'N") ~., D& (¥, N, N')

and then for type bodies,
(W e, )~ ()
(U, A, A"y ~, D
(U, AM, A’M") ~,, D& (U, M, M")
(U, Hu: A. B, IIv: A" B') ~o, (0, A, A (W Do A, B, [v/v"]B) )

Definition 4.29 Given a disagreement pair P = (U, U, U'), we say that “topeq(P)” iff
there is a D such that P ~»,, D. From the definition of ~».., we can see that the choice of
U is irrelevant. We will thus say that two terms or types U and U’ have the same top level
structure, written U ~ U'”, iff topeq((V , U, U')), where ¥ is an arbitrary context.

Proposition 4.30 Given bodies U and U', U =~ U’ iff one of the following holds: First for
terms,

o U and U’ are the same atoms, or

e U=MN and U = M' N’ for bodies M, M’ and terms N, N' such that M ~ M';

6We use the notation “D @ P”  for a disagreement sequence D and a disagreement pair P, to mean the
disagreement sequence that results from adding P onto the end of D.
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and for types

o U and U’ are the same constant, or
e U=AM and U' = A" M’ for bodies A, A" and terms M, M’ such that A~ A’, or

o U and U are both 11 types.

Proof: The “if” part is a direct consequence of the definition of ~»,.. The “only if” part
follows by induction on the derivation of (¥, U, U’) ~,, D. O

Two simple consequences are as follows:
Proposition 4.31 “x” is an equivalence relation.

Proof: Each of reflexivity, transitivity and symmetry, follows by induction on the structure
of the bodies involved, given Proposition 4.30. O

Proposition 4.32 Let P be a well-typed disagreement pair. If eq,(P) then topeq(P).
(Hence, if ~topeq(P) then —EQ,(P).)

Proof: By induction on U, using Propositions 4.25 and 4.30. O

Example 4.33 Return to the previous example, where P = ([ ], V(Aa:i. T), = T). Then
—topeq(P), and indeed ¥ (Ax:i. T) #\ —~ T.

Proposition 4.34 Let P be a disagreement pair relating well-lyped lerms or types (though
not necessarily of the same type or kind), and let D be such that P~ D. Then P < D.

(Proof below.)
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Example 4.35 Let P = {([],qM N,qM' N’) be a well-typed disagreement pair in a signature
including
(a:Type , bra—Type , c:Type, q:llz:a. (bx)—c)
Note that both terms have type c. Then
Py (L], M, M) ([], N, N') )

By our assumption that P is well-typed, M and M’ both have type a, while N and N' have
types (b M) and (b M") respectively. If however, M =, M’, then these types are convertible.

Proof of Proposition 4.34: We will use induction on the derivation D of P ~», D.

o If D consists of an instance of one of the first two rules, then P relates the same variable
or constant, and D = (). Then eq,(P) and so the first part of Definition 4.18 is
trivially satisfied. The second and third parts are vacuously true. For the fourth part,
note that F(D) = { }.

e Next, assume D ends in an instance of the third rule. Then P = (¥, M N, M’ N'),
and for some [’ such that D = D' & (U, N, N'), there is a subderivation of D showing
that (U, M, M') ~, D'. Since M N and M’ N’ are well-typed in '@ W, M and M’ are
well-typed. Therefore, by the induction hypothesis, we have (U, M, M') <« D Letting
D= ( P,..., Pl ), we have D= ( P{y..., Pl ), where P, = (¥, N, N'). For

part 1 of Definition 4.18, we reason

e,(P) & MN=,MN

&S M= M AN=N by Proposition 4.25
& eqy (PN~ Neqy(PL)ANN =, N by the induction hypothesis
S eqy(P) A Neqy(Plyy) by definition of P}, ,

For part 2, given the induction hypothesis, all that remains to show is that if eq,(F})
for 1 < j <K', then P}, i.c., (¥, N, N'), is well-typed. By the above, this is the
same as saying that if M =, M’ then (U, N, N') is well-typed. Assume M =, M.
Since M and M’ are well-typed, and —4, is CR for well-typed terms, M and M’ have
the same type, by Proposition 2.40. Also, since M N and M’ N’ are well-typed, M and
M have some type [lv: A. B, and N and N’ have the same type A. Thus (¥, N, N')

is well-typed.

For the third requirement of <, we show size( P!) < size(P), for 1 < i < K/, reasoning
as follows. For 1 <17 <K/,

size(P)) < size((W, M, M')) by the induction hypothesis
< size(P)
and, finally, size( P, ;) = size((¥ , N, N')) < size(P).

The fourth requirement follows by induction and since F((V , M, M')) C F(P) and
F(¥, N, N') CF(P).
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e If D consists of an instance of the fourth rule (involving a type constant), the argument
is analogous to the first case.

e If D ends in an instance of the fifth rule (involving a type application), the argument
is analogous to the second case.

e Finally, suppose that D consists of an instance of the last rule (involving II types).
Then P = (¥, [lv: A. B, [Iv": A’. B") and D= ((U, A A, (v A, B, [v/v]B)).
The first part of Definition 4.18 follows immediately from Proposition 4.25. For the
second, since Ilv: A. B and IIv": A". B" are well-typed in I' & ¥, A and A’ are both of
kind Type in ' ¥ and if A =, A’ then B and B’ have kind Type in ' & ¥ & v: A. The

third and fourth parts are trivial.

4.3 From Conversion to Unification

The previous section developed a collection of methods for decomposing questions of con-
vertibility of a given pair of terms or types into the question of convertibility of a finite
set of pairs of terms or types. In this section, we prepare for the second main part of our
development, which is the construction and justification of the transformations that form
our pre-unification algorithm.

Huet’s algorithm for HOU_, relies on and maintains an important invariant on the unifi-
cation problems under consideration, namely that their disagreement sets are well-typed (in
the sense of Definition 4.14, being made up of only disagreement pairs relating well-typed
terms of the same type). As we will demonstrate, we cannot maintain this invariant for
HOUy, and so we use a more complicated one. Fortunately, the additional complexity is not
as much in the final algorithm as in its justification.

One of the ways in which ill-typedness can enter our unification problems is illustrated
in the following:

Example 4.36 Consider again the disagreement pair in Frample 4.35. As we shall justify in
Section 4.4.4, this disagreement pair is unified by any unifier of { ([ ], M, M"),{[], N, N') }.
However, unless M and M’ are convertible (not just unifiable), the disagreement pair ([ ], N, N')
is ill-typed in the sense that it relates terms of different types (b M) and (b M'").
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Recall that the same kind of ill-typedness arose in the discussion of convertibility. There
we were able to avoid comparing (b M) and (b M’) until insuring that they have the same
type (by first finding that M =, M’). This suggests a similar treatment when performing
unification: First unify M and M’. If this succeeds with some unifier 0, i.e., M =, M’
then continue by unifying §N and ON’. These terms have types (b M) = b (M) and
O(b M'") = b (0M') respectively, but since M =, OM’, these types are convertible. Thus we
might think we could avoid ever dealing with ill-typed disagreement pairs. The fatal flaw
in this approach is that it relies on doing full unification instead of pre-unification. Trying
the analogous approach with pre-unification does not always eliminate all of the differences

between the types (b M) and (b M").

Another source of ill-typedness comes from the fact that, as mentioned following Defini-
tion 3.3, our algorithm builds up unifiers incrementally by composing certain substitutions
and applying them to appropriate disagreement sets. These substitutions are the natural ex-
tensions of the imitations and projections used in the MATCH phase of Huet’s algorithm. In
that algorithm, certain potential projections are ruled out immediately, because they would
be of the wrong type. The test for allowable projections consists simply of a comparison of
type constants. In HOUy, however, the situation is much more difficult, because the types
we would have to compare contain terms. Since they are therefore subject to instantiation,
determining possible type correctness of the substitution requires unifying these types, which
is as difficult as unifying terms. As mentioned above, in pre-unification, we cannot simply
perform a full unification before continuing.

Our solution to this problem is simply to carry out the possibly ill-typed substitution,
and to add a disagreement pair relating the types that would have to be unified to make
the substitution well-typed. However, this raises an issue that requires careful treatment:
Applying an ill-typed substitution can result in an ill-typed term, which may therefore fail
to be strongly normalizing, or even weakly head normalizing. We will explain following
Definition 4.38 of acceptability why this possibility does not jeopordize completeness.

Another potential problem with allowing ill-typedness in our unification problems is that,
if unrestricted, it would destroy the crucial property that solved form unification problems,
as we shall define them, have solutions (as expressed in Assumption 3.7).

The way we avoid these potential problems is to carefully restrict the structure of ill-
typedness involved in acceptable unification problems. For this we need

Definition 4.37 Given a unification problem @ = (I', 6y, D), an accounting for Q) is a strict
partial order (i.e., a transitive, antisymmetric, nonreflexive relation) “C7, between D and
DUran(T)", such that (a) for any X € DUran(T'), and unifier € Op of {P €D | PC X },
0X is well-typed, and (b) for any I'y,v, A, Ty such that ' =T1 G v: A& 'y, and any P € D,

“To be more precise: “C” does not relate disagreement pairs with disagreement pairs and types, but
rather occurrences of these.
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if P C A, we have F(P) C dom(I'y). For X € D Uran(T'), define “D%7 to be the set
{PeD | PC X}. Wewilloften refer to D% as the set of pairs that account for (the
ill-typedness of ) X.

Definition 4.38 A unification problem Q) = (I',0y, D) is acceptable iff the following condi-
tions hold:

1. There is an accounting for ().
2. 0y is permanent. See Definition .39 below.

3. I is weakly valid. See Definition 4.43 below.

It is important to note that our algorithm only maintains the ezistence of accountings, but
never actually constructs them.

Now we can informally explain why we do not need to avoid non-normalizing terms.
More rigorous justification is contained in the validity and completeness proofs of the trans-
formations in Section 4.4. Suppose a disagreement set contains some disagreement pair P,
containing a term M that is not strongly normalizing. Then for any substitution 8, §M is
also not strongly normalizing, since by substitutivity we can parallel reduction sequences
from M by reduction sequences from § M. By the SN property for well-typed terms, we can
then conclude that M is ill-typed for all §. However, we know by acceptability that there
is a subset D5 of D all of whose unifiers instantiate P, and therefore M, to be well-typed.
Therefore D%, and hence D has no unifier. In summary, if an acceptable unification problem
contains a non-SN term then it is nonunifiable. Completeness, however, makes no claims
about unification problems with no solutions. This is one reason we choose to treat one-step
weak head reduction as a transformation, rather than taking normalization for granted as is
usually done in HOU,, (e.g., [36] and [70]). In [18], we described an optimization based on
the idea of approximate well-typedness that allows us to avoid ever constructing terms that
are not strongly normalizing.

Given a pair of terms M and M’ to unify, we can satisfy the invariant initially in either of
two ways. The first is to simply check that M and M’ are well-typed and have the same type.
The second method, defined in Section 4.7, is much more flexible, allowing for disagreement
pairs that will become well-typed after substitution.

The property of a substitution being permanent, mentioned in Definition 4.38 will be
used to show minimality of our transformations (in the sense of Definition 3.13) and hence
of the sets of pre-unifiers enumerated by the algorithm (in the sense of Definition 3.10). We
adopted the word from the notion of a “permanent occurrence” in [48].
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Definition 4.39 [or contexts I'y and I', a substitution 0y € 63228:2) is permanent ff for
any substitutions 6,0 € Op, we have

Oobyg=1000, = 0=,0

One trivial example of a permanent substitution is the identity substitution over any
given variable set.

Example 4.40 Given the signature ¥ = (i: Type , cii—i—1), and the contexts I'g = [ z:1]
and I' = [@:i, y:i], the substitution g = [cay/z 1, is permanent. To see this, consider
any two substitutions 0,0" € Or.

0000 :/\0/000

& (Bobp)z =) (0" 00y)z since dom(f o 6p) = {=}

& 0(boz) =) 0(0p2) by definition of composition

& Olcary)=)0(cay)

& c(bx)(Oy) =\ c(0x)(0y) by Definition 2.7

S fOr =\ 0x N0y =0y by Proposition 4.34

& 0=\ since dom(f) = dom(#') = { =,y }

Example 4.41 Given the signature ¥ = (i: Type , a:i, b:i), and the contexts 'y = [ z:1]
and I' = [ fri—i], the substitution Oy = [ f ©/z |p, is not permanent. Let 0 = [ (\v:i.c)/f , ajx ]%]
and 0 = [(Avi.c)/f . bja | Then 000y = [c/z 1 = 0 < 0y, but 0 4, 0.

Since our #y are built up by composition, we will need

Proposition 4.42 The composition of permanent substitutions is permanent

Proof: For contexts I'g,I'y, ', let 0y € (93228:;; and 6, € %Zﬂg% be permanent substi-

tutions and 6,6 € O be such that § o (61 0 6y) =\ 0" o (61 0 §y). Then by associativity of
composition, (6o 6y)0by =) (6'00;) 00, But then by permanence of 6y, 606, =) 6 06y, and
then by permanence of 0, § =, 0'. O

Although we will not rely on maintaining valid unification contexts (in the sense of
Definition 2.29), we will need a weaker property in the proofs of our transformations:

Definition 4.43 A context I' = [x1: Ay, ... 250 A, ] is weakly valid iff for each i with
1 <@ < n, we have (a) F(A;) C {a1,...,2,21}, and (b) A; is reducible to the form
Hyy: By. - - yg: Bi. Bo, where By is an atomic type. (For example, By cannot be an abstrac-
tion.)
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4.4 The Transformations

For unification, we will need to distinguish between two forms of bodies.

Definition 4.44 The head of a body, which is an atom or the symbol 11, is given by, first
for terms,

e head(v) =,

e head(c) =c,

o head(M N) = head(M),

and then for types

e head(c) =c,
o head(AM) = head(A),
o head(llv: A. B) =11,

Then we have

Definition 4.45 Given a unification context I' and a body U, we say that U is flexible if
head(U) € dom(I'). Otherwise, U is rigid.

To know the goal of the transformations, we need to define the solved form property. It
turns out that we can use exactly the same criterion as in Huet’s algorithm for HOU;:

Definition 4.46 A unification problem is in solved form iff ils disagreement set contains
only flexible-flexible (term) disagreement pairs.

Clearly, this definition satisfies parts 1 and 2 of Assumption 3.7. We will prove part 3,
unifiability of acceptable solved form unification problems, in Section 4.6.

The transformations making up our algorithm come from considering all possible forms
of disagreement pairs other than flexible-flexible ones, and is guided by the properties of
convertibility developed in Section 4.2. If no transformation applies to a given unification
problem, it is in solved form.
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4.4.1 Preliminaries

Some of the transformations have the form of replacing a given disagreement pair P by the
members of a sequence D of disagreement pairs. Clearly such a transformation would be
correct (in the sense of Definition 3.13) if the set of unifiers of P is equal to the set of unifiers
of D. However, this will turn out to be too strong a requirement. We must make use of
the accounting for acceptable unification problems, as the proof of the following proposition
shows.®

Proposition 4.47 Let Q = (I',00, D W { P }) be acceptable, D be such that 0P < 0D, for
any 0 € O for which OP is well-typed, and let Q" be (T',0y, D W D).? Then the transition
Q — {Q'} is valid (i.e., correct, acceptable, and minimal).

Proof: Let C be an accounting for @), and let D, = (D W { P })5. Consider an arbitrary
§ € Op such that 9P is well-typed. To show correctness (in the sense of Definition 3.13),
consider two cases:

e § does not unify D,: Then, since D, C D (by nonreflexivity of ), 6 does not unify
D w{P}. However, for the same reason, such a 6 does not unify D W D.

e 0 unifies D,: Since [ is an accounting, 0P is well-typed. But then P < Gb, so by part
1 of Definition 4.18 of <, 6 unifies P iff § unifies D. Then expanding the definition of
U, we see

UQ) O =2000yN0 € Op A0 unifies DU{P}}

| 30
| 30.0 =, 0060, A0 € Op A0 unifies D& D}

Il
N
—~ > >

Thus, in either case, the transition () — {Q'} is correct.

To see the first condition, we construct an accounting for Q": Let D= ( Pl,..., P ).
In the new ordering, the role of P will be shared by the P/, and each P/ will be below later
ones. More precisely, define ' by

e PC'XifP+P, X#P, and PC X;

o P’ Pllor 1 <i<k,if PCP

8For a disagreement sequence D = { Pf,..., P, ), we write “9D” to mean the disagreement sequence
{OF],....0P ).

9For a disagreement multiset D and a disagreement sequence D, we write “DW D” to mean the multiset
union of D and the (multiset of) members of D.
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o PP Xforl <:<EkifPCX

« PIC/Plif1<i<j<k

It is straightforward, though rather tedious to see that C' is a strict partial order.'® To show
that C’ is an accounting for @), consider first an arbitrary X € D Uran(I'). There are two
cases:

1. PZ X. Then DY = D% and therefore since CC is an accounting for (), any unifier of
D)':(l instantiates X be well-typed.

2. P X. Then DY = (D% — {P})w D. Let 6 be a unifier of DY. Since P C X,
D% C D% — {P}, so because [ is an accounting for @), P is well-typed. Therefore,
by Definition 4.18, of <, since # unifies ﬁ, it unifies P. But we already knew that 6
unifies DT C D% — {P}, so it follows that # unifies D%, so 6X is well-typed.

Next, consider P; for 1 <1 < k. We can see that D]El,/ =DEW{P,....,P_,} Let §bea
unifier of D]Ei/. Then § unifies D, and hence §P is well-typed. Then the definition of <,
since @ also unifies P[,..., P/_,, it follows that 0 F; is well-typed.

To show the second requirement of ' to be an accounting, let I' = T'y @ v: A @ 'y, and
assume for some P € DW D that P ' A. Then either (a) Pe D, in which case Pr A, so
.7:(]5) C dom(I'y), because [ is an accounting for @, or (b) P = P! for some i, in which case
also P C A, so F(P!) C F(P) < dom(I'y).

The second and third conditions for acceptability (Definition 4.38) are trivially satisfied,
since neither the unification context I' nor the substitution 6y changes.

Finally, minimality is vacuously true. a

4.4.2 Redices

The idea here is very simple — if a member of a disagreement pair is a weak head redex,
perform a reduction.

Proposition 4.48 Let I' be a context, P be a disagreement pair over I', and Da disagree-
ment set such that P ~»,, D. Then for any 0 € Op, 0P ~, 0D, and in particular if 0P is
well-typed then 6P 1 0D .

10Given we really mean relating occurrences of disagreement pairs.
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Proof: From Definition 4.19 of ~,, we have P = (¥, U, U’) and D= ( (¥, V, V")),
where either (a) U whg V and U’ = V', or (b) U =V and U’ whg V'. We will consider the

first case only, as the second is analogous:

6P = (0V, 90U, 0U")
" wh << <0\I; , OV, 9V’> >> by Proposition 4.5 and V =V’
TR A
= 6D
The final conclusion follows from Proposition 4.20. 0

Transformation 4.1 A Let Q = (I',00, DW{ P }) and let D be such that P ~», D. Then

make the transition'!

Q ~ {(I'6,De D)}
Proposition 4.49 Transformation 4.1 is valid.

Proof: Immediate from Propositions 4.48 and 4.47. O

4.4.3 Abstractions

The key to handling a unification problem that contains a disagreement pair including at
least one top-level abstraction is the following:

Proposition 4.50 Let I' be a context, P be a disagreement pair over I', and Da disagree-
ment set such that P~ D. Then for any 0 € O, 0P ~p 0D, and in particular if 0P s
well-typed then 6P 1 0D .

Proof: From Definition 4.21 of ~»yy, we can see that there are four cases to consider. We
will treat just the first and third cases, since the others are similar. Let 6 € @11:/, and as
always, assume that v, v’ ¢ dom(I") U dom(I").

HThe intended interpretation of this is to define Transformation 4.1 to be the transformation relation that
relates @ to {(T',0q, DW D)} for all Q,T,0y, D, P, and D such that @ = (T',0y, DW { P}) and P ~, D.
Recall from Definition 3.13 that validity refers only to acceptable Q.
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Let P ~p D by the first rule of Definition 4.21. Then P = (¥, Av: A. M, Mo Al M’>
and D = {(( P")), where PP = (Ve v:A, M, [v/v'|M'). Thus

0P = 0(T, hvi A M, ' A M)
= (00, Av:0A. OM, \':0A". 0N
~n (00 @ oA, OM, [v/v"](0M")) )
= << (O & v A), OM, O([v/v" M) ) since v, v’ € dom(I') U dom(I")

B)

Next, let P~y D by the third rule of Definition 4.21. Then P = (¥, Av: A. M, M),
and D = {( (W wv:A, M, M'v) ). Thus

oP = 6V, Avi A, M, M’>

(0 | Av:fA. oM, (9M’>
~n {((((0¥) D v:dA, QM, (OM")v) ) by Definition 4.21
= (¥ Duv:A) ,AQM, O(M'v)) ) since v € dom(W)
= 0<<A<\II@U:A,M, M'v) )
= 0D

The final conclusion follows from Proposition 4.22. a

Transformation 4.2 Let Q) = (I',0p, DWW { P }), and let D be such that P~y D. Then

make the transition

Q ~ {(I'6,De D)}
Proposition 4.51 Transformation 4.2 is valid.

Proof: Immediate from Propositions 4.47 and 4.50. O

This case does not correspond directly to anything in Huet’s algorithm. There, A’s simply
accumulate in the normal form.
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4.4.4 Rigid-rigid
The treatment of this case will be much like the previous ones. The key is

Proposition 4.52 Let U be a rigid body with respect to I', and let § € Op. Then U is a
body and OU ~ U. (See Definition 4.29.)

Proof: Simple induction on U, using Proposition 4.8 and Definition 2.7. O

Proposition 4.53 Let I' be a context and P be a rigid-rigid disagreement pair over I'. If
—topeq(P), then P is nonunifiable. If P ~», D, then for all § € Op, 0P ~,, 0D, and in
particular when 0P is well-typed, we have 6P <1 6D,

Proof: Suppose that —~topeq(P), where P = (U, U, U’). If P is unifiable then for some 6 &
O, U =, U’, and hence by Proposition 4.32, 0U ~ 0U’. However, from Proposition 4.52,
U ~ U, and U’ ~ U’, so by transitivity and reflexivity of ~ (Proposition 4.31), U ~ U’,
which is a contradiction. Next assume that P ~+, D. We will prove by induction on the

derivation D of P~ D that 0P ~ 0D.

o If D consists solely of an instance of the first rule in Definition 4.283 (involving variables),
then P = (¥, v, v) and D = { )). Since P is rigid-rigid, v ¢ dom(l'), so 0P =
(OU , v, vy~ () =6D.

e If D consists solely of an instance of the second rule (involving constants), the argument
is analogous.

e If D endsin an instance of the third rule (involving applications) then P = (¥, M N, M’ N')

and D= ﬁ’@@/, N, N}, where there is a subderivation of D ending in (¥, M, M') ~,
D'. By induction, we may assume that (W, M, M') = (0¥, M, OM') ~,, 6D'. But

then
oP = (0V,0(M N), 6(M' N'"))
= (0W, (0M)(ON), (0M") (ON"))
sy 0D B (0W, ON, ON') by the induction hypothesis
= 4D

o If D consists of or ends in an instance of the rules for a type constants or application,
the argument is analogous to the first two cases.
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e Finally, if D consists of an instance of the last rule (involving II types), then P =
(U, llv:A. B, [Tv: A By and D =(( (U, A, A), (VG v:A, B, B') )). Thus

6P = (0V, 0(1lv: A. B), (11v: A". B"))
= (U, [Mv:0A. 0B, llv:0A". 0B')
o (O, 0A, QA" ((0V) B v:0A, OB, 6B') )
= 0( (U, A A (VauvA, B, BY)
= 0D
The final conclusion follows from Proposition 4.34. O

Transformation 4.3 Let Q = (I',8y, D W{ P }) where P is rigid-rigid. If —=topeq(P) then

make the transition
Q = {}

Otherwise, let P ~»,, b, and make the transition

Q + ([,00,DD)
Proposition 4.54 Transformation 4.3 is valid.

Proof: Immediate from Propositions 4.47 and 4.53. O

This case corresponds to one step of Huet’s SIMPL phase.

4.4.5 Flexible-rigid

In the preceding cases we either showed nonunifiablity, or replaced the chosen disagreement
pair by a finite collection of other disagreement pairs. In this case, the strategy is different.
Here we deduce a useful constraint on the possible unifiers of the chosen disagreement pair,
and hence the whole disagreement set. We then show how to use this constraint to instan-
tiate the unification problem into a finite collection of alternate unification problems. This
corresponds to Huet’s MATCH phase. Although we refer to this case as “flexible-rigid”, it
also handles the symmetric rigid-flexible case.
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For the analysis of this case, assume that our acceptable unification problem @ is (I', 6y, D),
where D contains a flexible-rigid disagreement pair P = (¥, M, M’) or a rigid-flexible dis-
agreement pair P = (¥, M’, M).'* Let the unification variable v be the head of M, and «’
be the head of M’. Since M’ is rigid, a’ is either a constant, or a variable in dom(W). Let
I'=T1 &v:Acg Ty, where by part three of Definition 4.38 for acceptability, A is reducible
to the form Iz Ay, - - - Ilx,,: A, Ag, for an atomic Ag. To determine the possible structure
(modulo =)) of §v, we will need the following fact:

Proposition 4.55 For some I, M, Tiyeoo, T, AL, ..., A, suppose that

I' M e Haq: Ay - Uz A Ag

for an atomic Ag. Then for some atom b, and terms Ny,..., N,, we have

~

M=\ Azt A - dAe A . BN - N,

where the right hand side is well-typed in I'.
Proof: By induction on m:

o If m = 0, let M’ be the whg normal form of M. Then I' by, M’ € Ay (by Proposi-
tion 4.4). M’ cannot be an abstraction, since otherwise Ag would be convertible to a
II type, which contradicts Proposition 4.25. Thus, since M’ is in whg normal form, it

has the form 6 N, --- N,,.

o Assume m > 1. Without loss of generality, assume z; ¢ dom(I'), and so z; ¢ f(M)
By strengthening (Proposition 2.31), I'bay: Ay by M € Hay: Ay, - - Ty, A Ao. Also,
I'® xy: Ay by 2y € Ay, Thus, by the application typing rule,

I @ay: Ay by May € Tag: Ay, - Ty Ay Ag
and then by the abstraction typing rule,

Db Az A Mooy € Hap Ay - T A Ao
and Azy: A M ay is well-typed in I'. Also, since

I @ay: Ay by May € Tag: Ay, - Ty Ay Ag
we may assume, by the induction hypothesis, that

Ml‘l =\ Azg Ag. - Azt AL DN - N,
where the right hand side is well-typed. Thus,
M =\ Azt Al Ml‘l =\ Az: Ay Az AL DN - N,

which is well-typed.

I2There are no flexible types, so P must relate terms.



62 CHAPTER 4. A PRE-UNIFICATION ALGORITHM

a

Now we return to the problem of determining the possible top level structure of §v. Recall
from the definition of @11:/ that for 0 € @11:/, we have [V kg v € O(Ilzq: Ay - - Tl A Ao),
so that for some types A},..., Al | atom b, and terms Ny, ..., N,, v is convertible to a term
of the form

Argr A dept ALBNy - N,

for some atom b, by the Proposition we just proved. We are interested in the possibilities
for b when 6 is a unifier.

Proposition 4.56 Let 0 be as above. If 0 unifies P then b is either

o d, if a' is a constant (rather than a variable in dom(W)), or

e some x;, for1 <1< m.

Proof: If b is not one of the x;, then the head of any 3 normal form of #M is b. How-
ever, the head of §M’ is ' for any 6, so if § unifies P, then, by Proposition 4.32, b must
be a’. The reason that b cannot be a variable in dom(W) is that if b is a variable, then
be F(Ov),i.e.,bec dom(I), where § € OF, but we assume that (possibly after a-conversion),
dom(W¥) N (dom(I') Udom(I)) ={ }. O

Definition 4.57 Let H be this sel of possible values of b.
Next we see how possible values of b translate into “approximating substitutions”.

Definition 4.58 Let I',v, A, I'y, etc. be as above. Let b € H and let B be the type of b
according to ¥ or [ x1: Ay, ..., xm: Ay |, where B = lyy: By. -+ - lly,: B,. By for an atomic By.
Note that either b: B € X, or for some k, b = v, and so B = Ay. Let

Ny = dap A - A A b(vr g xg) - (Vg1 -+ T4)

where the v; are new variables, i.e., {vy,...,v, } N (dom(I'1) U dom(I'y) Udom(W)) = { }.
Then define the approximating substitution

0[) — [ Nb/v ]jgmg?;)U{vl ..... Un }Udom(FQ)

For the types of the new variables vy, ..., v,, let

C; = Hap Ay - Hag Ap [ (0121 2m) Y1y - oy (Vjm1 @1 2m) Jy-1 | By
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for 1 <5 <n. Then we define the new context
Fb = Fl@[vl:cl,...,vn:cn]@(Gng)

(The reason we have to apply 0, to U's is that the types assigned in 'y might contain the
variable v.)

Finally, for the type of Ny, let

Cy, = HapAp - ag A [(vizr @) /Yty - oo (Va1 2m) [ yn | Bo

Proposition 4.59 For any b € H and § € O, Ov is convertible to a term of the form
Axq: Ay dwt AL BNy - N,

iff there is a 0" such that § =) 0" o 0,.

Proof: Assume 0v is as stated. We need to construct a 6’ such that § =, 0’ o 8,. Let

{01,...,0,} =dom(I'1) Udom(I'y) and 00, = Mi, for 1 < <. It is easy to check that the
following suffices for ¢':

[(Azp: AL - Aar ANy Jog, oo, (e AL - A AL NG oy Ml/ﬁl,...,Ml/ﬁl]

The reverse implication follows from the fact that the body of N, (i.e., the result of stripping
off the X’s) is rigid. O

The following fact will also be useful:

Lemma 4.60 For any 1" and 0" € @11:;, if I" by A € Type, then (a) for 1 < j < n,
[V 0'C; € Type, and (b) 1" 5 0'Cy, € Type.

Proof: Assume IV -y 0’A € Type, and let B be as in Definition 4.58. Since B is either
some A; or the type of a constant, we know that

V& [ap0 Ay, 2 0'A | By 0B € Type
and, since B = llyy: By. -+ - lly,: B,. By, we have
U@ (a0 Ay, w0 Ay ) O [y 0By, .. yj—1:0'Bj—1 | by 0'B; € Type
for 1 <3 < n, and also

'@ (a0 A 2 0'AL @ [y 0By, .. y.: 0’ B, )y 0/ By € Type
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The result follows, using weakening (Proposition 2.32) n times and the II typing rule m
times. O

In order to show that the flexible-rigid transformation makes progress, we will need a

notion of height of a term:!3

Definition 4.61 The height of a well-typed term M with respect to a context T, wrilten
“height (M) 7, is given by

o [f M whg M’ for some M', then height (M) = height-(M').

o If M = v:A. M' for some v, A, M', then height;.(M) = heighty,.,(M').

If M is a body and I' =5 M € lv: A. B, then height (M) = height(Av: A. M v).

If M is an atom not of 11 type in ', then heightp(M) = 1.

If M is an application M' N' not of 1 type, then heightr(M) = max(heightr(M'), 1 +
height(N")).

(Note that this is well-defined for well-typed terms because of the SN and determinacy prop-
erties of whg and unicity of types.**)

It will be important to note that height is invariant under conversion.

Proposition 4.62 Given two terms M and M', well-typed in a context I, such that M =,
M, we have height (M) = height(M').

Proof: By induction on the structure of M and M’, using the properties proved in Sec-
tion 4.2, recalling that either (a) M or M’ is a weak head redex, (b) M or M’ is an abstraction,
and if the other is not then it has II type, or (¢) both M and M’ are bodies. a

Then to compare substitutions, we will use a multiset ordering based on height:

I3The reason we cannot simply use size is that we must not take into account the A’s and abstracted
variable types.
1Tt will be important to note that we only use here unicity of types for bodies.
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Definition 4.63 Given contexts I',1" and two substitutions 0,0' € OF', define 0 > 0" iff
there is an integer h such that

[{veV | heightp,(dv) =h}| > |{v eV | heightp(0'v) =h}
but for each k > h,
[{veV | heightp,(fv) =k }|=|{veV | heightp(0'v) =k}

Proposition 4.64 In Proposition 4.59, 8" can be chosen such that 6 > 0'.

Proof: The ¢ in that proof suffices, since the difference between § and ' is the re-
placement of one substitution term by a collection of substitution terms with strictly smaller
heights. (Note that heighty (Azy: A7 - Az AL DNy - -+ N,) = maxi<i<, (1 +heightp (N;)) >
heightp, (N;), for 1 < j <n.) O

For minimality of the transformation defined below, we will need
Proposition 4.65 For cach b € H, 0, is permanent.

Proof: For some I, let 0,0, be arbitrary substitutions in @11:; such that 000, =\ 050 0,.
We will show that, therefore, ; =, 03, i.e., for every u € dom(I'), 61u =) fyu.

e Assume u € dom(I'y) U dom(I'z). Then (61 o 6p)u = b1u, and (3 o Oy)u = Oru, so

(91u = QQU.

e Assume u = v; where 1 < i < n. Note that for some A},... A and AY,... A" we

have

(0100[))1) = ele
= drp A A AL b((Bron)ey e w) o (Brv)an e 2)

and

((9200[))1) = eng
= N A X AL (Baa)r ) (o) )

Applying the abstraction and body decomposition methods (Definitions 4.21 and 4.28), we
find that for 1 <17 < mn, (61v;) 21 ay =5 (020;) 21 -+ - 2y, and thus
Avpr A Ao A (O1v) @ - =0 Ao Are - Aug A (B20) 2y - - 1,

The result then follows from 7 reduction. O
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Proposition 4.66 For distinct b,b" € H, 0, and 0y have no common instances, i.e., there
is no 0,0 such that 000, =, 0" o 0.

Proof: Assume otherwise, so that for some distinct b,6' € H and substitutions 0, ', we
have 608, =\ 6 o 0y. Then, in particular, (6 o8;)v =) (8" o0y )v, i.e., 0N, =\ §' Ny. However,
N, and Ny are both rigid bodies, so by Proposition 4.52, § N, ~ N, and 0N}, ~ Ny, and by
Proposition 4.32, 0N, ~ 6’ N,. We thus have N, &~ N, which is plainly false since b # /. O

Now we will see how to use this fact to transform our unification problem. The following
steps are mostly symbol manipulation, but the point to keep in mind is that we are trying

to re-express U(Q)) as Upey U(Qp) for some {Q, | b € H}, since by Definition 3.12, this

constitutes a correct transformation.
First, expand the definition of (@) in a somewhat more explicit form:
{0 130.0=,00007A0cO AV(U, U, U e D.OU=,0U"}

Now from Propositions 4.56 and 4.59, we know that the condition on 8 implies the additional
condition

dbe H.30.0=20" -6,

so we can conjoin this condition without changing the meaning of the set expression. Next
perform some quantifier manipulation to get

{0 | e H.30.30.0=,0000A0=0 00, N0 c O AV, U, U eD.OU=,0U"}
Next, eliminate 6 by replacing it by 6’ o 8, and change the 3b into a set union

{0 | 300 =, (008,) 000 A (0 00) €O AV, U, U') € D00 0,)U =, (60 60,)U"}

beH

Now, in a key step, re-associate the compositions

{0 | 300 =20 0(8,000) A0 00,) €O AV(T, U, U'Y € D.(,U) =, 9'(6,U") }

beH

This is almost in the form we want, i.e., Upeyg U(Q) for some family {@Q, | b € H}. The
only obstacle is the condition ¢ o 0, € O, where we need a condition involving §' € Or.,.

From Definition 2.42 of O, we know that the condition §'0 8, € O means that for some
context [”, and all variables v € dom(I') and types B,

vw:Bel = I Fs 0’(05u) € (9/((953)

There are three cases of interest, depending on the position of u relative to v in I':
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o If u € dom(I'y), then fyu = v and 6, B = B (since, by weak validity of I', v does not
occur in B). Therefore the type condition is equivalent to [ -y §'u € §'B.

o If u € dom(I'y), then yu = u, so the typing condition is equivalent to I Fy #'u €

A

0 (0,B), i.e., I 5 0'u € 8'B, where B is the type assigned to u by 6,1';.
o If u =v then also B = A and §yu = N, and 8, B = B = A. Thus the typing condition
is equivalent to IV 5, 0N, € §' A.

For analyzing the latter case, we will need the following:

Lemma 4.67 Given a context 1, a type A, and a (possibly ill-typed) substitution §' €
Q9™ e have I by O'Ny € 0'A iff (a) I by 0'A € Type, (b) 0'A =, 0'Cy, and (c) for

dom(T;)’
1<j<n, by 00 € 0C;.

Proof: Using the definition of N, and properties of substitution, we have
0N, = dep:0' Ay - Ay 0 A, b ((0'v1)ay -+ x) -+ - ((0'vp)ay - - )
Recall that b is either a constant or one of the z;, so
@[zl A, o0 A, e be 0B

where B is as in Definition 4.58. Therefore, O N}, is well-typed in I iff for 1 < 5 < n,

UVp[a0' A, .oy em @Ay s (Q0) 2y 2 € [(001) 212 fy1y ooy (00j_1) 21+ 2 [yj—1 [(0B))

By appealing to the abstraction typing rule m times, n-reducing, and recalling the definition
of the (';, we can see that this is equivalent to the conjunction, for 1 < 3 <n, of

I kg 00 € 0'C
Also, if this is the case, then

Ity N, € 0'Cy
We can now show the equivalence stated in the lemma.

Let A be an arbitrary type. First assume that IV F 0'N, € 6’ A. Then, since §' N, is
well-typed in 1", by the argument above, we have 1" F; #'v; € 0'C; for 1 < 5 < n, and
I Fy &N, € §'Cy. Then by unicity of types (Proposition 2.30), /A =, §'Cy. Finally,
Iy 0’ A € Type by Proposition 2.34.

Next, assume that the conditions (a), (b), and (c) hold. By condition (c¢), we have
[" 5 0'Ny € 0'Cy, and the result follows by the conversion typing rule, given conditions (a)
and (b). O
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Combining the first two cases of interest above, with this analysis of the third case, results
in the new condition that (a) #’A =, §'C}, and (b) for all variables u and types B

u:Bely, = 'k, 0ueldB
This latter condition is just 0" € @F; Since this applies to any I, we conclude that

0/0 0[) E ®F = 0/ E @Fb /\ 0/14 =\ (9/05

Returning to our problem of re-expressing U(()), we now have

L0 | 300 =, 0s(04006)N0" € O AW, U, U") € D.O'(0U) =\ 0'(0U" )N A =\ 0'Cy }

beH

which can also be written as

L0 | 300 =,00(0,000) A0 €O, A0 unifies (0D W {{[], A, C)}) }

beH

and then collapsing the definition of U gives the equivalent form

U U(<Fb,95 °00705D & {<[ ] ’ Av Cb>}>)

beH
These considerations motivate the following definition:

Definition 4.68 For cach b € H define the unification problem

Qr = (I, 0p000,0,DW{([], A, Cy)})

Transformation 4.4 Let Q, H, and {Q), | b € H } be as above. Then make the transition

Q — {Qy | beH}
Proposition 4.69 Transformation 4.4 is valid.

Proof: Correctness (in the sense of Definition 3.13) follows from the reasoning above.

To prove acceptability, we must first show how to construct new accountings out of an
old one. Let C be an accounting for (). For each b € H, define C} by'?

5Recall that [ = Ty @ v: A B Ls, and Ty = Ty b [v1:C4, ..., 00:C ] B (0512).
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o 0,P L 0, X if PC X and X € D Uran(Ty);

0,P Ct B if PC B and B € ran(T'), in which case, F(P) C dom(T';), so 0,P = P;

0, P IIZIZr Cifor 1 <i:<nif PC A, in which case, §,P = P,

0,PCt ([], A, Cb) if PC A, in which case, 0,P = P;
o ([], A C) b O,Pif PIZ A; and

° <[ ] , A, Cb> [lf)r 0,B for B € ran(Fg).

It is straightforward to check that C}, is a strict partial order.

To show that T2, is an accounting, consider an arbitrary X € 0, DW{{[], A, C})}Wran(T}).
For the first part of Definition 4.37 of an accounting, we will need to show that for any unifier

0" € O, of D)E(fbr, 0' X is well-typed. There are four cases:

e X = 0,P for some P € D such that P — A. Then F(P) C dom(I'y) (by Defini-
b
tion 4.37), so X = 6,P = P, and D)E(fr = 0,D5 = D5. (By transitivity, P ©— P =
P A, so F(P') Cdom(I'y).) The result then follows, since C is an accounting.

X = 0,P for some P € D such that P £ A. Then D)E(fbr =0,D5W{{[], A, Cy)}. Let

b
0" € O, be a unifier of D)E(“. Then ¢’ o 8, unifies DF, and, since §'A =, 6'C,, from the
conclusion following Lemma 4.67, §' 0 §, € Op. Therefore, since C is an accounting,

(0" 0 0,) P is well-typed. But (6" 0 8,)P = ¢'(6,P) = ' X, so the result follows.

o X =([],A Cy) or X =C; forl <1 < m. Then D)E(fbr = 0,D5 = DY, since
F(DT) C dom(I'y) by Definition 4.37. The result then follows from Lemma 4.60.

e X =B €cran(l'y). Then, D)E(fbr = 0D% = D%, so the result follows as in the first case.

X =0,B, for B € ran(I'y). Then D)E(fbr =0,D5 W {{[], A, Cy)}. The reasoning is the

same as in the second case.

The permanence condition of Definition 4.38 follows from permanence of the 8, (Propo-
sition 4.65) and the closure of permanence under composition (Proposition 4.42).

The third condition of acceptability, i.e., weak validity of I'y, follows easily from weak
validity of I', with the additional considerations that (a) .7-1(@) Cdom(I'1)U{wv,...,vi-1 },
and (b) letting 'y = [wy: By, ..., up: By ], we have F(0B;) C dom(I'y) U {vy,...,v,} U

{ulv"'vui—l}‘
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We will show minimality by contradiction: Assume that for some distinct b,6' € H, there
is some unifier § € U(Qy) NU(Qp). Then there are 8" and §” such that 6 o (6, 0 6y) =) =,
0" o (0y 00q), i.e., (0 00y) 06y =y (0"080)08y. But since 0y is permanent, 8’ o 0, =) 6" o Oy
However, 6, and 6, have no common instances, so this is a contradiction. a

Example 4.70 Consider the unification problem Q = (.01 {([ ], fT, trivT)}) in the
stgnature

(0:Type , Ho—Type , T:o, Dxo—o0—o , triv:lIpo. - (D pp))
where the unification context 1" is

[ f:Hpo. H (D pT)]

In A, a unification problem like this (replacing the types by simple types) would have two
solutions, with possible instantiations for f being Az:o. triv T and Az:o. trivz. However,
neither of these terms has the type required by U'. Our transformations correctly fail to
find a solution. We can apply the flexible-rigid transformation (4.4). Trying the projection
substitution 0, = [ Ap:o. p/f ] yields

(1,00, {([], T, trivT),([], Mpro. = (D pT), lipo.o)})

for which applications of the rigid-rigid transformation (4.3) eventually indicate failure (i.e.,
make a transition to { }). Trying instead the imitation substitution Oy, = [ Apro. triv (fip)/f ]
yields ([ fir0—=0], 044y, D1), where Dy is

{1 v (A T), triv T, ([], Hpro. = (D pT), Upro. = (D (fip) (fip)))}

Four applications of the rigid-rigid transformation (4.3) lead to the the disagreement set
{<[ ] ’ fl T? T> ’ <[p20] )y Py f1p> ’ <[p20] ’ Ta f1p>}

This will lead to failure, since fi is constrained by the second disagreement pair to be Ap:o. p
and by the third disagreement pair to be Ap:o. T.

4.5 Completeness

In this section we show that the transformations developed in the previous section together
form a complete transformation relation in the sense of Definition 3.17, and hence yield
a complete pre-unification algorithm. The main ideas in our completeness argument are
essentially the same as Huet’s.
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Definition 4.71 Let the transformation relation p' be the union of Transformations 4.1

through 4./.
Proposition 4.72 p' is valid (correct, minimal and acceptable).

Proof: Immediate from validity of the transformations, using Proposition 3.14. O

More substantial is
Proposition 4.73 p" is complete.

Proof: We will use Proposition 3.20. Given a substitution é, define the ordering -, as
follows. Let @ = (I',0y, D) and @' = (I, 6, D) be two unification problems having 0 as
a solution, and let § and " be such that 0=, 000yand =, 0o 6;. (These are uniquely
determined up to convertibility because of the permanence of 6y and 6f.) Then @ >; @
iff either (a) § > ¢, or (b) 0 = 0 and 0D >, 0D', where >g,e is the multiset ordering
of disagreement sets based on size.'® Then »; is clearly a well founded ordering (being the
lexicographic combination of two well-founded orderings).

Now, let Q = (I, 0o, D) and Q' = (I, 0}, D’) be such that for some Q’, we have @ p"! Q’
and ()’ € Q’, thus satisfying the conditions of Proposition 3.20. We will show that @ >, @',
from which it follows that p is decreasing. Let 6 and 6§’ be substitutions such that 0=, 000,
and 0 =, 0o ). (Again, these are unique up to convertibility.) There are two cases,
depending on which of our transformations was used in making the transition from @) to Q"

e Other than the flexible-rigid transformation. Then for some D, P and b, D=Dw
{P}, IV =T, 0, =06y, and D' = D; & D, where 6P <1 §D. Thus § =, ¢'. Also, 6
results from 6D by replacing the disagreement pair 8 P by the disagreement pairs 0D
of strictly smaller size, and thus 6D >, 0.

o The flexible-rigid transformation. Then, by Proposition 4.59, there is a 6, such that
(96 =\ 0, 0(907 0=\ 0(957 and 0 > 0.

15The ordering > is only well-defined because the orderings > and >ize are invariant under conversion.
(See Proposition 4.62 and Definition 4.16.)
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4.6 Unifiability of Solved Form Unification Problems

The value of pre-unification in A, is that solved form disagreement sets (ones containing only
flexible-flexible pairs) are always unifiable, and so pre-unifiability implies unifiability [36]. By
making vital use of the accounting in the definition of acceptability, we can generalize Huet’s
constructive proof of this fact to acceptable solved form unification problems in Ar. For the
simply typed subset of Arp, the unifier that we construct specializes to Huet’s.'”

Definition 4.74 For a weakly valid context I', the canonical unifier 05 over I' is the substi-
tution assigning to each variable

v o Mz A -z, Ay e Ny - Ny

in I, the term

A Ay Az A he Ny-- - N,

where the kind assigned to the constant ¢ is lly: By. - - - ly,: B,. Type, and h¢ is a variable

of type
Hyi: By, -y, By.cyr -+ yy

(Note that in the simply typed subset of Ay, n = 0.)

Proposition 4.75 If () is a acceptable unification problem in solved form with unification
context I', then 05 € U(Q).

Proof: Let C be an accounting for ). Since disagreement sets are finite, C is a well
founded ordering, and thus we will give an inductive argument. Let P = (¥, M, M’) be an
arbitrary member or our disagreement set. (There are no flexible-flexible type disagreement
pairs.) We want to show that #& unifies P. By induction, we may assume that 0 unifies
DS, and so 05 P is well-typed. Let

M = oM ---M,
M = o M- M,
where v and v’ are variables in dom(I') with types
v Mz Ay oo Ay Hwp: - - - Hwp Cpoe Ny - -+ N,
v e AL - el AL T O - Tl Coe Ny -+ - N

"There is another notion of unifiability, sometimes called “closed” (as opposed to “open”) unifiability,
which requires the unifying substitutions to contain only closed substitution terms (i.e., ones with no free
variables). In our terminology, this would require a unifier § € @%]. This problem is discussed for A_
in [48], but is much more difficult in Arj, because determining the existence of closed terms of a given type
is equivalent to general theorem proving [30].
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for

¢ : Iy By. - -y, B,. Type

The reason that the types of both v and v’ must involve the same type constant c, is that
0S5 M and 0X M’ have the same type. To express these two instantiated terms, for 1 < j < n,
let

N

Ny = [(0FMy) /a1, (OF M) /20 |N;
Nio= [(0EM])/xy,... . (0FM],)) [ IN]
and, for 1 < <[, let
Cz = [(elng)/xlv'"7(01@M1)/xl]0i
{o= [OEMY)/at, . (0F M) [ 1O

Then we have X X X X
GIQM = Adwi:Ch. - dwp Cphe N+ - N,
OEM = Ml Clo- i Clohe NI - N

Since 0 P, which is (05U |, 05 M, 05 M'), is well-typed, we have

N

le:él. ---le:él.ch---Nn = Hwi:é{. Hw;é;CN{Né

It then follows that each Nj = NJ’, and also that each C’Z = C’{, so 05 M =, 05 M. O

4.7 Automatic Term Inference

It is well known that first-order unification provides for type inference in A_, with type
variables and in similar languages [51]. Recently, it has been shown that HOU_, is the key
ingredient for the corresponding problem in the w-order polymorphic A-calculus [59]. In Ap
there is another problem of interest, namely term inference, which requires HOUy. This
problem has two important applications. One is making our unification algorithm more
widely applicable, by initially establishing the required invariant, as mentioned at the end
of Section 4.3, and made precise below. The other is to provide automatic type inference in
encoded languages, as described in Chapter 7. As in the type inference algorithms mentioned
above, the basic idea is to combine type-checking and unification, in this case, HOUp. A
similar problem is addressed by Huet [33] and by Pollack [61] under the name of “argument
synthesis”.

Given a signature X, context I') and a term M whose free variables are all typed by I,
it may be the case that M is not well-typed, but it has well-typed substitution instances.
The goal of term inference is to determine exactly which substitution instances (if any) of a
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given term are well-typed. It does this by collecting pairs of types that have to be unified
by any substitution instantiating M to a well-typed term.

We will construct the type checking/term inference algorithm using two mutually recur-
sive operations expressed as an inference system. We define two judgments, “I'; ¥ -y M €
A with D” and “I'; U+, A € K with D7, where D is a disagreement set. For the first
judgment, M will be given and we will compute A and D. In the second, A will be given
and we will compute K and D. Unifiers of D, if any, will lead to instantiations of M and A
(or A and K), as will be made precise below. As usual, I' is the unification context, and W
is a universal context.

There is a Standard ML [29] implementation based on this procedure extended to deal
with type variables [19].

Definition 4.76 Let the judgments “U'; ¥ Fy; A € K with D7 and “T; ¥ F; M € A with D”
be defined by the following inference system.

First for terms,
cAeX
Wk ce Awith {}
vAcl DU
W Fyve Awith { }
[V k. A€ Type with D 'V @v:Ab, M € B with D/
Wby dvc A. M € Tlv: A, B with D D’
Wby M e C with D C whg" llv: A. B [0y N e A with DY
Uy MN e[ N/v]B with {(U, A, AY}wDw D

and then for types,

cK el
[0y ce K with { }
[0k, A€ Type with D IV s v:Aby B € Type with D’
Uy Hov: AL B € Type with D w DY
[V k. A€ Type with D 'V sv:Ab, Be K with D'
Wby Avc A B € llv: AL K with Dw DY
Wby A€ llv:B. K with D Wk, M e B with DY

[;W by, AM € [M/v]K with {(¥, B, B)}& D w D'

Once we construct A and D such that I'; U -y M € A with D, we will want to use our
unification procedure to find unifiers of D, and so it is necessary that the unification problem
(T',0i%, D) be acceptable (in the sense of Definition 4.38).
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Proposition 4.77 Let X be a valid signature, I' and ¥ valid unification and universal con-
texts respectively, and M a (possibly ill-typed) term. Let A and D be such that I'; ¥ 5 M €
A with D, and let Q = (I,0¢, D). Then (a) Q is acceptable, and (b) for every context
IV and solution 0 € OF of Q, it is the case that IV & 0 Fy, OM € 0A (and hence, by
Proposition 2.34, also that 1" & 0V 5 §A € Type). Similarly for types.

Proof: We will argue by induction on the derivation D of I'; ¥ -y M € A with D:

o If D consists of an instance of the first rule (for constants), then M = c for some
constant c: A € ¥, and D = { }, so @ is vacuously acceptable. (Cf. Definition 4.38
of acceptability, noting that 0j¢ is trivially permanent.) Next, let I be a context, and
0 € OF. (Since D = { }, 0 unifies D.) Then fc = c, and F(A) = { }, so we also have
0A = A, and thus I & 0V -, M € HA.

e If D consists of an instance of the second rule (for variables), then M = v for some
variable v: A € I'pW, and D = { }. The reasoning for part (a) is similar to the previous
case. For part (b), if v € dom(W¥), then the reasoning is the same as the previous case.
Otherwise, v € dom(I'), and, we simply rely on the definition of OF .

e Assume that D ends in an instance of the third rule. Then M is an abstraction
Av: A, M, and A is a type ITo: A. B where for some disagreement sets D and b’,lg
D contains subderivations of (a) I'; \I/ Ly A € Type with D, and (b) I3 ¥ & v: A by
M € B with D', and D = D D’. By the induction hypothesw, Q= (I, i, ﬁ> and
Q' = (r (91’51, D ) are acceptable, so there are accountings [ of Q and ' of ). Then the
union C of C and [’ is an accounting for 0, and thus () is acceptable. To see the second
condition, let I' be a context, and let § € OF be a unifier of D. Since D = Dy b’,
0 unifies D and D' as well. Thus, by the induction hypothesis, [ & U 0A € Type
and IV @00 & v:0A Fy, OM € 0B. Then from the typing rule for abstractions, it follows
that TV & 0 by Av:0A. OM € v 0A. 0B, ie., I 30V by OM € 0A.

e Assume D ends in an instance of the fourth rule. Then M is an application MN,
A= [N/U]B, D = {(V, A, A’>} W D W D', and D contains subderivations of the
form I; ¥ by M € C with D and ;0 by N € A with D', where C whg™ Hov: A. B.
By the induction hypothesis, = <F,01’¥d,D> and Q' = <F,(91’¥d,f)’> are acceptable,
having accountings C and [’ respectively. Also by the induction hypothesis, for any
context I" and unifier § € oL of D and D', we have I' @ 00 +, 0C € Type, and
"GOV 5 0A" € Type. By substitutivity of whs (Proposition 4.5), 6C whs™§(1lv: A. B).
Also, since why preserves typing (Corollary 4.4), we have IV 06U 5 o 9A.0B € Type,
and thus [V & U F, 0A € Type. In other words, D W D' “accounts for” (W, A, A’}, in

the sense of Definition 4.37 of an accounting. Thus we can construct an accounting C

18We are departing here from our convention of using “D” for disagreement sequences.
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A

for Q by P C X iff either (a) PCX, (b) PC'X, or (¢) P € DD and X = (W, A, A"),
and hence () is acceptable.

The second requirement is that for any unifier § € OL of D, we have I @& 0V
G(M N) € 9([N/U]B) By the induction hypothesis, IV & 00 by OM € Lv:0A. B
and 1" & 60 ON € 9A’. Since § unifies D, it unifies, in particular, (¥, A, A’>
i.e., A =, OA’, and so by the conversion typing rule, F’ G o g (9N € 9A. Then,
by the apphcatlon typing rule, IV & 0W (GM) (GN) [QN/U 1(¢ ) However, by

Lemma 2.23, we know that [GN/U ](GB) = 6(] N/v ]B), so the conclusion follows.

The cases for types are analogous. a

The previous proposition states that every solution of the constructed unification problem
leads to a typing of the given term or type. The following says that all possible typings can
be obtained this way.

Proposition 4.78 Let ¥ be a valid signature, I' and ¥ valid contexts, and M a term with
all of its free variables in I @ W. For any context 1", substitution § € OF, and type A’,
if IV 0V Fy OM € A’ then there is a type A and a disagreement set D such that (a)
;U b, M e Awith D, (b) 0 cU((T,0¢, D)), and (c) A" =\ 0A. Similarly for types.

Proof: First consider the case that M is a variable v € dom(I'). Then for some A
have v: A € T' @ W. Therefore, [;W +, v € A with { }, and 8 € U((T, Qlﬁd,{ ).
Definition 2.41 of OF" and strengthenmg (Proposition 2.31), [V @ U F v € 0A. Then by
type unicity (Proposition 2.30), A" =) 0 A, so the result follows with A= A and D = {1

We now proceed by induction on the derivation D of IV @ 0¥ F, §M € A’) under the
assumption that M ¢ dom(I').

o If D consists solely of an instance of the rule for typing constants, then M is some
constant ¢ such that c: A’ € 3. Since M = c and we are assuming M ¢ dom(I'), it
follows that M = c. (Note that we are considering M = ¢ and not 0M =) c.) Then
we have (a) [0 Fy M € A’ with { }, (b) 0 e U((T, 04 { }), and (c) A’ = A’ (since

the types in a valid signature contain no free variables).

o If D consists solely of an instance of the variable typing rule, then M is a variable,
and hence M is a variable u € dom(V) (since M ¢ dom(I')). Then the result follows,
with A being the type of v in W and D = { }.

19Note that we have again relied on type unicity, which does not hold for the calculus Ams of the next
chapter. We will not deal with term inference for Ars.
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e Assume that D ends in an instance of the rule for typing abstractions. Then M is
an abstraction, and since we are assuming that M ¢ dom(I'), M must also be an
abstraction, say M = Av: A. M. Thus M = v:0A. M, A’ = [lv:0A. B' for some B/,
and D contains subderivations of (1) IV & 0V 0A € Type, and (2 ) I 0P &Ev: 0A Fs
oM € B’. By the induction hypothesis, there is a kind K, a type B’ and disagreement
setsDandD’suchthat( )W by A € K with DandF U Po: Al— M € B with D’
(b) 0 € U((T,0i¢, D)) and 0 € U((T,0i¢, D)), and (c) B' =, 0B and Type =) 0K
(i.e., K = Type). Thus we have (a) I; ¥ Fy Av:A. M € Iv: A. B with D@ D (by
Definition 4.76), (b) 6 € U((T, Gfd,D [ D ), and (c) A" = Tlv: 0A. B' =, llv:0A. 0B =
O(1v: A. B) Thus, letting D = D& D’ and A = Ilv: A. B, the conclusion follows.

e Assume that D ends in an instance of the rule for typing applications. Then (smce
M ¢ dom(I')), M is an application M N, so0M is (GM) (GN) where, for some v, A’, B/,
D contains subderivations of I & 60U l— OM € Tlv: A B’ and T @OV Fy (9N c A’
where A" = [GN/U ]B’. By the induction hypothesis, there are types €' and A, and

disagreement sets D and D’ such that (a) [TU kg M e C with D and ;0 -, N €
Awith D', (b) 0 € U((T,0{, D)) and 0 € u<<r 0i¢, D)), and (c) Hu: A" B =, 0C
and A’ =\ 0A. Then C whp™ Ilo: A" B for some A" and B where QA” =, A" and
0B =, B'. Therefore, we have ;W by M N € [N/v ]B with {(V, A", >} WD,
and so the first condition follows, with D = {<\I/ A" AV WD D and A = [N/v]B. ;
The second condition follows since § unifies D and D’ by our induction hypothesis, and
because A" =\ A =) 9A. The thlrd condition, A’ =) 0 A, holds because B =, GB
andsoA’:[GN/v]B’ [GN/U]( ) ([N/v] )—GA.

e Finally (for terms), assume that D ends in an instance of the conversion typing rule,
i.e., D has the form

! ‘ 1" ! ‘ ! A//:AA/
" @00 s OM € A " & 00 by A’ € Type

I"®ov -, M € A
By the induction hypothesis, there are A and D such that (a) I'; ¥ Fy M € A with D,
(b) 0 € U((T,0{4, D)), and (c) A” =, OA. However, since A” =, A’ we have A’ =, 0A,

so the result follows with the same choice of A and D.

Given a term M in a context I' we do type-checking/term inference as follows. If there
is no A, D such that I';[ ] Fy M € A with D, then, by the proposition, M has no well-
typed instance, so we indicate failure. Otherwise, for such an A, D, let Q@ be a uCSP
of (I,0i¢, D). TIf Q is empty, then M has no well-typed instance. Otherwise, for each
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(I, 0", D) € Q, we return the instantiated term #’M and the instantiated type 6’ A, together
with the “constraint” D’. (Depending on the application, if @ has more than one element,
and/or if D" is nonempty for some (I, 0", D') € Q, it may be appropriate to request a user
to provide a more constrained term.)

If on the other hand we have two terms M and M’ to be unified in a context I', we can
proceed as follows: If there is no A, D such that I';[ ] Fy M € A with D or there is no
A’ D" such that I';[ | Fy M' € A’ with D’ then indicate a typing error. Otherwise, for such
an A, D and A’, D', construct a uCSP of (I',0{ {([], M, M}w Dw D' W{([], A, A)}).

In a practical implementation, it is better to exhaustively apply at least the non-branching
transformations (4.1 through 4.3) to the type disagreement pairs produced in this process,
rather than having completely separate collection and pre-unification phases as described
above.



Chapter 5

Products

In this chapter, we extend the pre-unification algorithm developed in the previous chapter
to the calculus “Apy”, which is Ay enriched with a dependent version of Cartesian product
types, often called “strong sum types”, or simply “¥ types”.! The new algorithm then
follows naturally from an analysis of weak head normal form terms and types, as guided by
our development of HOUy. Finally, we present a commonly used notational variation that

will make examples easier to read.

Many of the definitions and propositions carry over from Chapters 2 and 4 to this calculus.
We will point out the extensions needed. In general, the degree of detail presented in this
chapter is lower than the preceding one.

5.1 The Language Extension

Rather than stating the entire calculus, we will only state the new language constructs, typing
rules and conversion rules. The new terms of Afjy are for the construction and decomposition
of pairs:

(A

where “,” associates to the right and binds less tightly than application.

Just as the type of the result of an application can depend on the value of the argument,
the type of the second element of a pair can depend on the value of the first element. The
new types of Ay are for these dependent pairs:

A = YuvA B

!This use of ¥ is not to be confused with the use of ¥ for signatures.

79
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We will often use the abbreviation “A x B” for Ilv: A. B when v is not free in B, and then
“x” associates to the right and binds less tightly than “—”.

All of the typing rules from Ap carry over to Apy. The new typing rules are

Types
'y A€ Type I'pv:Aby B € Type
'y Yv:A. B € Type

Terms
'y M e A 'y Ne[M/v]B
'y MN € ¥v:A. B
'y M eXuvAB

[y fstM e A
'y M eXuvAB

'ty snd M € [fstM/v]B

An interesting feature of Ay not occurring in Apy is that well-typed terms do not have
unique types (modulo =)), as illustrated in the following:

Example 5.1 Let our signature ¥ include
(o0:Type , Ho—Type, Tio, It:F T)
Then in ¥ and the empty context, the term (T,lt) has both types Yp:o. = p and o x (F T).

5.2 Substitution

We need to extend Definition 2.7 of @ given for Ap:

Definition 5.2 Given variable sets V and V', and a substitution 0 € O, let 0 be the
function from M5 to )\K/E satisfying the properties listed in Definition 2.7, together with the
following. First for terms,

O(M,N) = (0M,0N)

Ofst M) = fst(OM)

O(snd M) = snd(OM)

and then for types,

0(XwA.B) = YwfA 0+« B ifugVuv’

The properties of substitution proved in that section carry over directly to Apgs. We will
continue to write “0” in place of “0”, “#' o 6” in place of “#' x 7, and “#”, in place of H7,
where the u is clear from the context.
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5.3 Conversion

In order for the n rules specified in Definition 2.16 to be meaningful in this calculus, the
meaning of F(U) given in Definition 2.1 is extended to our new language constructs in the

obvious way.

The new reduction relations are

fst(M,N) = M
snd(M,N) m N
(fst M,snd M) © M

The last rule is often referred to as “surjectivity”.

Definition 5.3 Given a binary relation p on Ay, the relation —, extends Definition 2.18,
with the following additional cases, first for types,
A—, A
YvA.B—,YvA.B

B—, DB
YA B—, YA B

and then for terms
M —, M
(M, N) =, (M, N)

N —, N’
(M, N) =, (M, N')

M —, M
fst M —, fst M’

M —, M
snd M —, snd M’

The relations —7 and <7 are again the reflexilive transilive closure, and the equivalence
closure, respectively, of —,.

Then we extend our notion of convertibility:

Definition 5.4 The convertibility relation =) is <5, .
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The well-typed terms in the analogous extension “A_—.” of A_, have the important nor-
malization and Church-Rosser properties [62, 73]. Again, we will assume that the proof
can be carried through to Apy, and again, we could eliminate this assumption by redefining
convertibility as discussed in Section 2.3.

We will also need to extend Proposition 2.22, which states the substitutivity of # and n:
Proposition 5.5 The reduction relations 71, 79, and 7 are substitutive.

Proof: Simple consequence of the definition of 4. a

It is also simple to extend the proof of Proposition 2.25 to show that for substitutive

* and H; are substitutive.

relations p, the relations —,, —7,

Finally, we must extend Proposition 2.36, which states that # and n preserve typing, to
the new reduction relations m; and .

Proposition 5.6 The reduction relations m; and wy preserve typing.

Proof:  Of the two, my is the trickier. Let D be a derivation of I' -y snd (M, N) € C
for some type C'. Then D ends in an instance of the typing rule for snd, followed by zero
or more type conversions. Thus for some v, A, B, (a) D contains a subderivation D; of
I'Fy (M,N) € Y0 A. B, and (b) C =, [fst(M,N)/v|B and thus C =, [ M/v |B. Also,
D ends in an instance of the pair typing rule, followed by zero or more type conversions.
Thus for some v, A, B’, (a) D; contains a subderivation of I' by N € [ M/v"|B’, and (b)
Yu:A. B =, vt A'. B'. By consideration of normal forms then, A’ =, A and B’ =, [v'/v]B.
Thus, [ M/v"|B" =\ [M/v" |([v'/v]B)=[M/v]B =) C,so ' -y N € C by the conversion
typing rule. a

5.4 Normal Forms

We need new normal forms to accomodate the new reduction rules. Recall that in HOUp we
used the  rule to weakly head normalize terms and types. In HOUpy we will want to use
the m; and 79 rules also:
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Definition 5.7 The “weak head reduction” relation whg. -, extends why (Definition 4.1) as
follows. In place of the first rule of Definition 4.1, we have

Uﬁﬂ‘lﬂ‘QU’
U whgr -, U’

Then for types,
Awhgr r, A’

AM whprn, A M

and for terms,

M whgr zy, M’
M N whgr ry, M!'N
M whgg,m, M’
fst M whgr, -, fst M’
M whgr zy, M’
snd M whg,, -, snd M’

Proposition 5.8 [f U whgr r, V then U =g, V.

Proof: A simple induction of the derivation of U whg,, ., V. O

Corollary 5.9 whg ~, preserves types.
As in Proposition 4.5, it is easy to show
Proposition 5.10 whg,,,, s substitutive.
Then we have the new version of WHNF and body:

Definition 5.11 A term or type U is in (fmymy) weak head normal form (WHNF) iff there
is no V' such that U whg -, V.
Example 5.12 We have the following reductions

fst (snd (2, (Aw:i. gww))y)z  whgrr, fst((Awii. gww)y)z

fst(Awii.gww)y)z whgr ., fstgyy)z
and the final term ts in WHNF.
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Definition 5.13 A body is a (possibly ill-typed) WHNF term or type that is neither an
abstraction nor pair.

Similarly to Proposition 4.8, we will need the following.

Proposition 5.14 A well-typed term body is either

a variable,

a constant,

M N for a well-typed body M, or

o fst M or snd M for a well-typed body M.
and a well-typed type body is either

® a lype constant,
o [lv:A. B or Yv: A. B, or
o AM for a well-typed body A that is neither a Il nor a X type,
Proof: Follows easily from Definitions 5.11 and 5.7. The restriction of well-typedness en-

sures that, (a) in M N, M is not a pair, (b) in fst M or snd M, M is not an abstraction, and
(c)in AM, Ais not a Il or ¥ type. O

5.5 Some Useful Properties of Convertibility

As in Chapter 4, we present some methods for decomposing questions of convertibility of dis-
agreement pairs into questions of simultaneous convertibility of “simpler” sets of constructed
disagreement pairs.
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Definition 5.15 FExtend the notion of the size of a Bmimy normal form term or type U
(Definition 4.16) by the following. First for types,

size(fst M) = 1+ size(M)
size(snd M) = 1+ size(M)
size((M,N)) = size(M) +size(N) + 1

Then for types,
size(Xv:A. B) = size(A) +size(B) + 1

The definition is extended to well-typed terms and types (not necessarily in normal form),
and to disagreement pairs, as in Definition /.16.

Note that well-typedness is crucial for the notion of size to be well defined.

The meaning of “P <1 D” is as given in Definition 4.18, given this new definition of size.

5.5.1 Weak Head Redices

This case is handled in analogy to Section 4.2.1, using whg,, », instead of whg:

Definition 5.16 The decomposition method ~ ., is given by

Uwhgrr V
<\I}7 U? U/> 7 wh << <\I}7 Vv U/> >>

U whgr - V'
<\I}7 U? U/> 7 wh << <\I}7 U? V/> >>

Then we have

Proposition 5.17 Let P be a well-typed disagreement pair and D a disagreement sequence
such that P ~,, D. Then P4 D.

Proof: The argument goes exactly as with of Proposition 4.20, replacing 3 by fgmimy. O
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5.5.2 Abstractions and pairs

The treatment of pair terms is conceptually similar to the treatment given to abstractions
in Section 4.2.2, and so we treat them together. This is the only form of 1 or m conversion
used by the algorithm.

Definition 5.18 Let the syntactic decomposition relation “~yx” be defined by the union of
the relation ~11 (Definition 4.21) and the relation defined by the following rules:

<\I}7 (MvN)v (MlvN/»MHE << <\I}7 M, M/> ) <\I}7 N, N/> >>
M' is a body
(U, (M,N), M") ~ps (( (W, M, fst M") , (I, N, snd M") ))

M is a body
(U, M, (M',N") ~ny ( (U, fst M, M') , (¥, snd M, N') )

Proposition 5.19 Let P be a well-typed disagreement pair and Da disagreement sequence
such that P ~qx D. Then P 4 D.

(Proof below.)

Example 5.20 Let our signature ¥ = (i: Type , a:i, b:i, i X i), and our unification con-
text I' =[ai, yi]. Let Pr={[], (x,a), ¢). Then

P ~ny (([], z, fste),([], a, sndc) )

Neat, let P, = ([ ], (x,¢), (b,y)). Then

Pyo~ons (0, 2, b), ([, 2, 9) )

Proof of Proposition 5.19: The abstraction cases have already been proved in Propo-
sition 4.22. We will prove the claim for the second pair case. Thus P = (¥, (M, N), M’)
and D = ( (¥, M, fst M"), (¥ , N, snd M’) )), where M’ is a body. To prove that the
first condition of Definition 4.18 of < is satisfied, first assume that (M, N) =, M’. Then
M =) fst(M,N) =, fst M" and N =, snd (M, N) =, snd M'. Next, assume that M =, fst M’
and N =) snd M’'. Then (M, N) =, (fst M’,snd M") =, M.

For the second part, we must show that P| = (W, M, fst M) is well-typed, and that if
M =, fst M’ then Pj = (¥, N, snd M’) is well-typed. Since P is well-typed, there must be
some B such that (M, N) and M’ both have type B in 'é@W¥. But then B must be convertible
to the form Sv: A. B, where (a) T @ Wy, M € A, and (b)) L& U b, N € [ M/v]B. But
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also (a) [ W by fst M’ € A, which shows that P is well-typed, and (b) I' ¥ k5 snd M’ €
[fst M’ /v | B, which shows that if M =, fst M’ then P is well-typed.

The size requirement follows since
size((V, (M,N), M")) = size(M) + size(N) + 1 + size(M')

while
size((VU, M, fst M")) = size(M) + size(M') + 1

(recalling that size(N) > 0 for all N), and similarly for (¥, N, snd M").

The third pair decomposition case is analogous, and the first case is simpler. a

5.5.3 Bodies

To treat bodies, we will need a new version of “~»

Deﬁnltlon 5.21 Guven a disagreement pair P relating bodies, and a disagreement sequence
D P rigidly decomposes to D, written “P ~», D” according to the inference system of
Deﬁmtwn 4.28, plus the followmg new inference rules. First for terms,

A

(U, M, M"Y~ D
(U, fst M, fst M') ~,, D

~

(O, M, M) ~,, D
~. D

(U, snd M, snd M’>
and then for types

(U, Yv:A. B, Yo A By~ (W, A AN (Wbov: A, B, B) )
We define “U ~ U'” and “topeq(P)” as before.

Again we will use

Proposition 5.22 Let P be a disagreement pair relating bodies. If eq,(P), then topeq(P).
Otherwise, let P ~»,, D. Then P4 D.

Proof of Proposition 5.22: Similar to the proofs of Propositions 4.32 and 4.34. O
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Example 5.23 Let the disagreement pair

Po= ([].snd((fstg)ay) =, snd((fotg)uo)w)
Then

P (1] e w) s (L] g, 0) 5 ([ 2 w0) )
Example 5.24 Changing the previous example, let

P o= ([].snd((fstg)ay) =, fot ((sndg) u o) w)

Then —topeq(P).

5.6 The Transformations

The meaning of solved form carries over without change from Definition 4.46.
As in Section 4.4, the following fact will play an important role

Proposition 5.25 Let Q = (I',00, DW{ P }) be acceptable, D be such that for any 6 € O
such that OP is well-typed, 0P <1 0D, and Q' be (T, 6y, DUD> Then the transition Q — {Q'}

s valid.

Proof: The proof of Proposition 4.47, which did not depend on the particulars of Ap,
applies here. a

We will also need an extended notion of head:

Definition 5.26 The head of a body, which is an atom or one of the symbols 11 or X, is
given by, first for terms,

(0) =
e head(c) =
o head(M N) = head(M),
(

o head(fst M) = head(snd M) = head(M),
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and then for types

e head(c) =c,

o head(AM) = head(A),

head(1lv: A. B) =11,

head(Xv: A. B) = X,

Example 5.27 The head of snd ((fst f)xy)z is f.

The meanings of flexible and rigid are as in Definition 4.45 (extending rigid to cover the
possibility of ¥ as a head), given this new notion of head. Another change is to Definition 4.43
of weak validity of a context I' = [uq: By, ..., u,: B, ]. We will require that each B; is of the
form Quy: Ay -+ Qi Ay Ao, where (a) each @ is Il or X, and (b) Ay is atomic.

5.6.1 Redices

The treatment of weak head redices is the same as in HOUy, given the new definition of

P wh

Transformation 5.1 Let Q = (I',0p, D W { P}) and let D be such that P ~,, D. Then

make the transition

Q — {(I6o,Dw D)}

Proposition 5.28 Transformation 5.1 is valid.

Proof: The argument goes as for Transformation 4.1. O
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5.6.2 Abstractions and Pairs

We will treate these two together, extending the treatment given for HOUp.

Proposition 5.29 Let P be a disagreement pair and D a disagreement sequence such that
P ~sns D. Then for any 6 € O, 0P ~ns 0D, and in particular if 0P is well-typed then
0P 0D .

Proof: We have already ftreated the abstraction cases in Proposition 4.50. To treat a dis-
agreement pair involving a pair let P = (U, (M, N), M') and D = {( (¥, M,fst M"), (¥, N,snd M") )),

and reason

0P = oW, (M,N), M)
0w, O(M, N), OM")
00, (0M,0N), 0)M’
s ((OW, OM, fst (OM)), (0% , ON, snd (6M)) )
= {( (0w, 0M, O(fst M")), (0%, ON, O(snd M")) )

(
= A

0D

The final conclusion follows from Proposition 5.19.

The other pair decomposition cases are similar. a

Transformation 5.2 Let Q = (I',00, DW{ P}), and let D be such that P ~sys, D. Then

make the transition

Q ~ {(I'6,De D)}
Proposition 5.30 Transformation 5.2 is valid.

Proof: Immediate from Propositions 5.25 and 5.29. O
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5.6.3 Rigid-rigid

The treatment of this case is exactly as in Section 4.4.4, given the extended meaning of

44 ”
~> .

T

Proposition 5.31 Let P be a rigid-rigid disagreement pair. If =topeq(P), then P is nonunifi-
able. If P~ D, then for all @ € Or, 0P ~, 0D, and in particular if 0P is well-typed, then
0P < 0D, and hence 0P 4 6D.

Proof: Refer to proof of Proposition 4.53. The new cases (fst, snd, and ¥) present no new
difficulties. O

Transformation 5.3 Let () = (I',6y, D W { P }) be acceptable, where P is rigid-rigid. If
—topeq(P) then make the transition

Q — {}

Otherwise, let P ~»,, b, and make the transition

Q ~ {(I'6,De D)}
Proposition 5.32 Transformation 5.3 is valid.

Proof: Immediate from Propositions 5.25 and 5.31. O

5.6.4 Pair-producing Variables

The purpose of this case is just to simplify treatment of the flexible-rigid case, by eliminating
certain types of variables. It is different from the other transformations, in that it is possible
for a unification problem to be in solved form even when this transformation applies.

Definition 5.33 A pair-producing type is one that is convertible to the form
e Ay - Uz, Al 2w A B

where m is possibly zero.
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Consider a unification problem @ = (I',60y, D), where I' contains a variable of pair-
producing type. We will treat this case using a simplification of the ideas in Section 4.4.5,
introducing an approximating substitution, having the effect of replacing a unification vari-
able of pair-producing type by two new variables of simpler type.

Definition 5.34 Given a unification context I' = I'y Gv: ATy, where A is a pair-producing
type convertible to Illxy: Ay, - - la,,: A, Yw: AL B, et

Ne = AxpAr - dep Ame (0121 2, 0221 -+ T4y)
where { v1,ve } N (dom(I'y) Udom(T'y)) = { }. Then define the approximating substitution

L

For the types of the new variables vy, vy, let

C; = Iz Ay "'Hl’m:Am.A
Cy = e Ay M Ap [(vr g+ 2p) /u |B

and define the new context
I'e = [id[oCr, vaCy] & (0:172)

(Note that these are all well-defined up to convertibility.)
Similarly to Propositions 4.59 and 4.64, we will need the following;:

Proposition 5.35 Let Q = (I',0, D), where I' is as above. For any 0 € Op (and in
particular for any such 0 that unifies D), 0 is an instance of 8., i.e., there is a 0" such that
0 =600, Furthermore, we can choose such a 0" such that § > 0" (see Definition 4.63).

Proof: The key observation is that for any 0 € O, fv is convertible to a term of the form
)\1'1: Al. ce )\$m§ Am (Nl, NQ)
and that this is equivalent to saying that § =, €' o 0,., where

v = dxgtAr - A A Ny
Ove = dagtAq - Ax A No

and 0" agrees with ¢ on dom(I') — {v}. In particular, this is true for any unifier § of D. O

Now we can state our transformation:
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Transformation 5.4 Let ) = (', 0y, D) be a unification problem, with I' and 8, as above.
Then make the transition

Q@ — {(I';,0:0600,0.D)}

Example 5.36 Let the signature be
Y = (aType, b:Type, cType, d:Type, gic—a—d)

and the unification context be

I' = [fra=b X (c—=d)]
Let our unification problem be

Q = (0o {{[aza, yic], snd(fa)y, gya)})

Applying Transformation 5.4 gives {(U'x,0,,{P'})}, where

I'y = [fira=b, fora—c—d]
0, = [(Aza. fiz, f22)/[]
Pro= ([a:a, yc], snd((Aza. fiz, f22)2)y, gy )

Then applying Transformation 5.1 for weak head reduction gives the disagreement pair

<[:1;:a ) in] ) foyv gy$>

The proof of validity of this transformation is similar to but simpler than the flexible-rigid
transformation proof in Section 4.4.5. Recall the definition of U(Q) from Definition 3.5:

{01 30.0=,0000A0¢c Op A0 unifies D }
From Proposition 5.35, we know that the condition § € © implies the additional condition
30".0 =, 0 -0,

As before, we can thus add this condition without changing the meaning of the set expression.
Then, by steps similar to those on page 66, we get the equivalent form of U(Q):

{01 30.0=,00(0,900)N0" 00, € Op A0 unifies 0, D}

Again, this is almost in the right form to be collapsed into (I';, 8 06y, 0,.D). The only
problem is the condition #'o 0, € O, instead of § € ©._. Reasoning as before, we can see
that 6 -0, € O iff (a) for each wB €T, excepting u € {v1,v2 }, we have I -, 0'u € 0'B,
and (b) IV Fy &N, € ¢’ A. The following lemma shows that this is exactly what we need.
(Note that, unlike Proposition 4.67, we do not also need to add a type pair.)
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Lemma 5.37 Given 0., Cy, Cy, ... as above, we have I'" 5 O'N, € O'Aiff I F5 0'vy € 0'C,
and I 5 0'vy € 0'C,.

Proof: Note that

ON, = dep:0 Ay - a0 Ay (o) 2y 2, (0'0g) 21+ 1)

and

OA = Hap0'A,. - -z, 0'A, . Swd'A 0B

thus [V by /N, € ' A iff
'@ [ap@ Ay, 0 A, Fs (Qv) 2y ay, € 0'A

and

A

'@ a0 Ay, 0 AL s (Qvg) 2y - 2, € [(001) 2y -2 /u](0'B)

By a simple inductive argument, the latter type is the same as 0'([vy 21 -2 /v ]B) Then
using the abstraction rule and 5 reduction m times, this is equivalent to

I by 00, € a0 Ay -, 0'A,,. 0'A

and

[ by 0'vy € a0 Ay, - T 0 Ay ([0 2y - 200 /A B)

but given the definitions of €] and C5, this is just IV kg 0'vy € 8Cy and 17 =y 0'vy € C,. O

Now we are ready to show the validity of our transformation.

Proposition 5.38 Transformation 5.4 is valid.

Proof: The reasoning is much the same as in the flexible-rigid case for HOUp, but simpler
since there is no branching. Correctness then follows from Proposition 5.35 and Lemma 5.37.
Acceptability is shown as for Transformation 4.4. Finally, minimality is vacuous. a
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5.6.5 Flexible-rigid

Because of the previous transformation, we may specialize the flexible-rigid case to handle
only flexible heads not of pair-producing type. As in Section 4.4.5, assume that our accept-
able unification problem @ is (I', 8y, D), where D contains a flexible-rigid disagreement pair
P =V, M, M) or arigid-flexible disagreement pair P = (¥, M’', M). Let the unification
variable v be the head of M. Let I' = I'; @ v: A @ I'y, where, by weak validity of I', A is
convertible to the form Ilay: Ay, - - Ha,,: A Ao, for an atomic Ag. (Recall we are assuming
A not to be a pair producing type.) Then, for every substitution 6 € O, fv is convertible
to a term of the form

v =, )\:1;1:1211. e )\l’m:Am. N

for some body N. As in Section 4.4.5, our analysis is based on examining the possible
top level structure of N. In Apy, we cannot simply express N in the form bNy--- N,
because there may also be occurrences of fst and snd involved (as in Example 5.12). Let
Iy =[xz Ay, ... 250 Ay | and assume that 0 unifies P. With respect to ', IV is either rigid
or flexible. If rigid (i.e., head(N) & { x1,..., 2 }), then

OM =, (AzpAy. - Az Ay N)(OM)--- (0M,,)
=\ [GMl/xl,,GMm/xm]N%N
But also
OM =, OM' ~ M’
by Proposition 4.52, since M is rigid, so N &~ M’. (The other possibility is that head(N) = «;
for some 1 < ¢ < m.) We will now show how to construct an approximating imitation
substitution reflecting the restriction that N ~ M’. (An example follows.)

Definition 5.39 Given I'1,I'y and ', = [z Ay, ... 200 Ay |, define the relation Y

| - M € B” as follows. (In practice, M will be given, and we will construct the “template”
M and its type B, in which some subterms ofM have been replaced by placeholders of the form
(way ). The constructed context 1., accumulates typings for these new w variables.)

I'yFoveB
v=1]];veEB
[[FyceB
c=[];ceB
M = [hew ; Mc A Awh57r17r2 [v: A. B w ¢ dom(I'y) U dom(I',.,,) U dom(I'y)
MN = T,.. 0wz A v A A M(wxlxm) €El(way--ay)/v]B
M:>Fnew; M e Yv: A B
fst M = [, ; fst M € A
M:>Fnew; M e Xv:A B
snd M =T, ; snd M € [fst M/v]B
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Given I'y,I'y, Iz, and M this definition suggests a simple recursive procedure for con-
structing M B, and I',., such that M — | M € B. Moreover, M B, and I',., a
uniquely determmed, modulo type convertibility and the choice of new Varlable names in

Iew-

Example 5.40 Let our signature include q: (a—b—c x (d—e)) xf. Let I'y; = [y:i, z:0]
and M = snd ((fstq) My My) M3, for some terms My, My, Ms. Then

~

M = T,.,;snd((fstq) (w1 yz)(wayz))(wsyz) Ee
where
[hew = [wiiimo—a, wyi—o—b , wii—o—d]

The property we will make use of is

Proposition 5.41 Let ' =1 Gv: ADT,, where A = M Ay, - - U, A, Ag for an atomic
Ap. Let § € O and suppose

Ov =) Axgt AL - At AN

where N is a body, and for a given body M, N~ M. Suppose for some I'yy, M, and By,
we have (with respect to 'y, Ty and [x1: Ay, .., @m: A ])

M= T,..; M€ By

Let
Oy = [(wriAr - Aapi Ay, 5) fo JomEudom(Eedom(rs)
and
'y = Tl ooyl

Then there is a 8" such that § =y 0" o 0y,. Furthermore ' can be chosen such that § > 0'.

Proof: Similar to the proofs of Propositions 4.59 and 4.64, although the actual construction
of ' is somewhat more complicated. Let {v1,...,v, } = dom(I',..). (The order will be
unimportant.) In the derivation of M = I, . M € By, each v; is introduced in an
instance of the third rule of Definition 5.39, which applies to an application Mj Nj. (This Nj
is replaced by (w; @1+ - xp).) As before, let {01,...,0; } = dom(I'1)Udom(I'z) and 60, = Mi,
for 1 < ¢ <[. Then the following suffices for 6"

[(Azp: AL - Aar AL Ny Jog, ooy (e AL - A AL NG oy Ml/ﬁl,...,Ml/ﬁl]
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The remaining possibilities are where the head of 6v is among { 1,...,2,, }. In HOUj,
each of these possible heads leads to a single projection substitution. This is because in A,
every well-typed body of atomic type with the same head has the same top level structure.
In Apy, however, this is not the case. As a simple example, given a variable x:1 x i, the
two terms fst  and snd x have the same head but different top level structure. Fortunately
though, there is always a finite set of “top level structures”, as the following proposition
makes precise.

Proposition 5.42 Given contexts I' and I, with I'y, containing a typing x;: A;, there is a
finite set M; of terms such that for any body N of atomic type in I' & ', having head z;,

there is exactly one N' € M; for which N =~ N'. Moreover, we can effectively construct such
a MZ

Proof: We use M; = bt(x;, A;), where the function bt (“build template”) is defined as
follows. First let O be an arbitrary term (not necessary well-typed). The idea here is that we
are building up templates, representing top level structure equivalence classes, while reducing

type.

bt(M,A) = bt(M,A) if Awhgr o, A’
bt(M, Ay) = {M} if Ap is atomic
bt(M, lx: A. B) bt(M O, B)

bt(M,YXaz: A. B) = bt(fst M, A) Ubt(snd M, B)

Then we reason by induction on the structure of A;. The reason we can use an arbitrary
term O here is that we will the members M of these constructed M; in applications of
Definition 5.39, where the occurrences of O will be ignored. O

Example 5.43 Let ', =[y:ax b, h:a—b x (c—=d)|. Then we can use

M, = {fsty,sndy}
My = {fst(hDO),snd (D)0}

Definition 5.44 Let the set H of terms be U, <;<,, Mi, together with M’ if head(M') is
a_constant. (Recall that M’ is the rigid body in the chosen disagreement pair.) For each
M € H, let 0y, By, and 'y, be as in Proposition 5.41, and define the unification problem

Qu = (LM, 0y 000, DUL([], A, By)})
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Now we can state our transformation:

Transformation 5.5 Let () and H be as above. Then make the transition

Q ~ {Qy| MeH}
Proposition 5.45 Transformation 5.5 is valid.

Proof: Similar to the validity proof of Transformation 4.4. a

Example 5.46 Let I' = f:a x b—a], and

Q = (00 {lya, =b], fy.2), v)})

Let Ty, =[x:axb] Then H = {fstz,sndz }, and our set of approzimating substitutions is

{[Az:a x b.fstz/f],[Az:a xb.sndz/f]}

The first of these is well-typed and will lead to a solution. The second is ill-typed and does
not.

5.7 Completeness and Unifiability

Now that we have our collection of valid transformations, we have two remaining issues:
completeness of the combined transformation, and unifiability of solved form unification
problems. The completeness proof is similar to the proof of Proposition 4.73.

For unifiability, we have an additional complication over the proof of Proposition 4.75:
Flexible bodies are not necessarily of the form v Mj --- M,,, because v might be of pair-
producing type. Fortunately however, we may appeal to the validity of Transformation 5.4.
Let @ = (I', 6y, D) be in solved form, and suppose that I' contains a variable of pair-producing
type. Let {Q'} result from () by Transformation 5.4. By correctness of that transformation,
() has a solution iff @) does. (In fact they have the same solutions, but this is not relevant.)
We then appeal to this argument until there are no remaining variables of pair-producing
type. At this point, the proof of Proposition 4.75 applies.



Chapter 6

Polymorphism

In this chapter, we informally sketch an extension of the pre-unification algorithm for Ay to
a calculus Ags with implicit polymorphism, i.e., type variables but no explicit type abstrac-
tion, and a very limited form of type application. The resulting algorithm is, unfortunately,
incomplete. However, considerable experience has shown it to be useful in practice. For
many unification problems of interest, the algorithm does indeed construct minimal com-
plete sets of pre-unifiers, and the cases in which the algorithm is incomplete can always be
detected.

6.1 The Language Extension

There are two changes in the language of types. The first is the presence of type variables,
which we denote by v and a. The second is that we generalize type constants to instantiated
type constructors, which we notate by subscripting. To reduce confusion between terms and

types, we will often use “a” instead of “c” for type constructors.

A u= A4,--A,

Similarly, constant terms result from type-instantion of polymorphic constants:

M = CA Ay

Of course, this calculus could be made more uniform by allowing general application of
types to types and terms to types, and by having corresponding abstractions. The resulting
calculus, which would resemble the second- or w-order polymorphic A-calculus [25, 24, 65, 45],
or the Calculus of Constructions [11], is very powerful computationally. However, unification
is a topic for future research.
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6.1.1 Substitution and Conversion

The meaning of applying substitutions to terms, types, and kinds carries over from Defini-
tion 2.7, with the obvious extensions. In particular, for instantiated polymorphic constants,

G(CAlmAn) = C§A1~~~§An
As always, we will generally write “0” in place of “0”.

There are no new reduction rules. The meanings of (a) —% for a reduction relation p,
and (b) whgs, x,, are extended in the obvious way. Weak head normal forms are the same as
before, except that a type body may also be of the form ag4,..4,, and a term body may also
be of the form c4,...4,, .

6.1.2 Typing Rules

Signatures for this language assign kind and type schemas to type constructors and poly-
morphic constants; we write these as “Avy---v,. K7 and “Avy---v,. A” where the only
type variables occurring in K or A are among the ;. The instantiation rules show how these
schema are interpreted. Similarly to our abbreviations with II types and kinds, we will, e.g.,
write “Type—L” in place of “Awv. L” if v & F(L).

Valid Signatures In place of the rules in Definition 2.29 for adding kind and type con-
stants, we have

F Y sig [v1:Type , ..., vp:Type ]ty K € Type a ¢ dom(X)
FY & alAv v K osig

F Y sig [v1:Type , ..., vpType] by A € Type ¢ ¢ dom(Y)
FY®cacAv vy A sig

Valid Types

Fv I' context alAv, -y, KeX 'y A; kind 't A, kind
F|_E aAl...AnE[Al/I/l g ey An/l/n][(
Fy I' context vilype € I'

'y v e Type
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Valid Terms

Fv ' context cAvy . AEY 'y A; kind I' 5 A, kind
I'Fycayon, €[ A1 11, oo, Ayfr, ]A

6.2 The Transformations

Most of the transformations developed for HOUpy are valid for HOUpys as well. Rather
than formally restating and proving every transformation, we will focus on what has to be
changed.

The transformations for handling whg,, -, redices, abstractions and pairs, and pair-
producing types, i.e., Transformations 5.1, 5.2, and 5.4, carry over with their proofs un-
changed.

6.2.1 Rigid-rigid
The rigid-rigid case carries over with one change, which is to the definition of the rigid
decomposition relation ~,, (Definition 5.21). The new rules are, for types,
<\I/ s AA; Ay aAfl...A;) T <\I/ 5 Al, A/1>, ceey <\I/ R An, A;> }
and, for terms,
<\I/ s CA- Ay CAll"'A41> T <\I/ 5 Al, A/1>, ceey <\I/ R An, A%> }
It is then simple to extend the proof of Propositions 4.34 and 5.22 to this new definition
of ~» ..

It is worth pointing out that we benefit here from the use of weak head normal form as
opposed to the long (n and 7 expanded) head normal form. The reason for this is evident
in the following example:

Example 6.1 Consider the rigid-rigid disagreement pair

([gimv], gM, g M)

over a unification context I' with v € dom(L'). If our notion of top level structure depended
on the long head normal form, we could not say that applying a substitution to these rigid
terms leaves the top level structure unchanged. Instantiating v to a functional type, say, 1—1,
followed by the required n-expansion, would result in

([gi—i—i], Az:i.g Mz, Aazi. g M' z)



102 CHAPTER 6. POLYMORPHISM

6.2.2 Type Flexible-rigid

With the addition of type variables, we now have flexible types. Our unification algorithm
must then handle the type flexible-rigid case. This case is simpler than the corresponding
case for terms, because we need only to consider imitations and not projections.

Given a unification problem (I', 8y, D), suppose D contains a flexible-rigid type disagree-
ment pair (¥, A, A’) or rigid-flexible type disagreement pair (U, A’, A). Call this disagreement
pair P. Then A has the form v My --- M,,, where I' = I'y @ v:llap: Ay -+ Ha, A K@ 1.
Also, A’ is either a Il or ¥ type or has the form 333{~~Bl', M- M! . For now, we will assume

the latter. Let 6 € O and let 0v be
Azt Ay Axgt Agap, g, Nvoo- N,
If 0 unifies D, and hence P, then A =, A" ~ A’, so the WHNF of A has head a’.

However, because of the form of 8, the head of §A is a whether or not # is a unifier, so
a = a’. Therefore, a single approximating substitution (an imitation) handles this case. Let

Cr o= dew Ay - AegiAgealy o My My
d 1 V] geeesVn UL gee Ut d 2
0, = [C1/v ]dzmg))U{ mt Judom(T's)

for “new” distinct type variables v4, ..., 1, & dom(I') — {v}, where for 1 < k </

Bk = VX1 "Iy
and for new distinct term variables vy, ..., v, ¢ dom(I'), where, for 1 < 5 <m/,
M]‘ = U]‘ L1 Ly

The kinds Ky,..., K; of vq,... 1, the types Cy,...,C, of vy,..., v, and the kind K of
(7 are constructed similarly to Definition 4.58. Then we define our new context as

Iy = Did[ve Ky, v Ko Cry ooy 0: Cr | @ Ty

For the case that A" is a Il or X type, the construction is simpler. For instance, suppose that

A" = llu: B'. C’. Then we would use

Cr = oAy - dap A Hwvizy o ouzy - x4,
Following the same reasoning as in Section 4.4.5, we get

Transformation 6.1 Let A, 0;, K, and I'; be as above. Then make the transition

Q — {<F[,(9[ o (90,(9[D & {<[ ] R I(, [([>}>}

(Note that we are now adding a kind disagreement pair. This requires an obvious and very
simple extension to the rigid-rigid case, which handles these disagreement pairs immediately.)
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6.2.3 Term Flexible-rigid

We adopt the flexible-rigid transformation from HOUrpy, although it is incomplete in the
presence of polymorphism. In this section, we show under what conditions completeness is
lost. Extensive experience with AProlog [54], which uses a similarly incomplete algorithm
(without dependent types), has shown that these conditions are rare in practice, but do
occur.

Let our disagreement pair be (U, M, M') where M is a flexible term body with head
v and M’ is a rigid term body. Let the unification context I' = I'y @ v: A @ 'y, where
A=Tlz;: Ay - Uz, A, Ao, In Ay, we made the assumption that Ag is atomic,! but it is
no longer helpful to assume this, since Ay might still be instantiated to a II type. For any
0 € O, v is convertible to a term

Arpr AL Ar g AL N

where N is a body or pair, and A =y Uz A}, -1z, AL Ay where Af is atomic.
Again, we consider the possibilities for N when 6 is a unifier: If a pair, then since M’ is a
rigid body (not a pair), and 6 unifies M and M’, N must be convertible to a body. Thus
without loss of generality we can assume that N is a body. Then as in Section 5.6.5, either
(a) N =~ M’ and head(M’) is a constant, or (b) head(N) = z; where 1 < 7 < m+k. However

for m < 3 < m + k, # would not be a unifier, since 3 reduction leaves
ATyt AL Ay A Nl e Nn
but head(M’) is not x;. Thus it is sufficient to consider only the first m projections.

The imitation substitution must be generalized to accomodate polymorphic type con-
stants. The construction is as in the type flexible-rigid case above.

In HOUpy, we were able to re-express these possibilities as an equivalent condition on
unifiers 6 that 6§ =, 6 o 6, for some constructed 4, (Proposition 5.41). A simple example
shows why this is harder with polymorphism.

Example 6.2 Let our signature and unification context be

Y = (cAa. a—a)
I' = [a:Type, f:(i=)—a]

and consider the disagreement set ([ |, f(Az:1. 2), ca). For projections, as we have said, we
need only consider the first. However the following approximating substitution

[(Agii=i. g (f19))/ ]

I'We extend “atomic” to include the form v My - - - M,,.
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is not sufficient, because then we would fail to find the following unifier:
[1=i/a, Agi—=i Ayicg(cy))/f]
Stmilarly, if our approximating substitution were

[(Agri—i.csg) (f19))/f]

then we would miss the solution

[1=i/a, Agi—=i Ayicc(gy))/f]

Thus we see that the flexible-rigid transformation for HOUpy can cause loss of unifiers in
Anizs. Fortunately however, no incorrect unifiers are introduced, and minimality still holds.
Furthermore, we can easily detect the cases that can lead to loss of unifiers. One case that
causes loss of unifiers is as in the example, in which the target type Aq is flexible (has a type
variable as head. The other is when the head b being used to build up the approximating
substitution has a flexible target type.



Chapter 7

Applications

This chapter explores applications of the pre-unification procedures we developed in the
preceding chapters. These applications all have in common that they use a typed A-calculus
as a meta-language, i.e., a calculus in which to encode other languages, which we will call
object-languages. The rich structure of a typed A-calculus as opposed to the traditional,
first-order abstract syntax trees allows us to express rules, e.g., program transformation and
logical inference rules, that are more succinct, more powerful, and easier to reason about.
We can then use unification in the meta-language to mechanize application of these rules.

As we will demonstrate in the examples below, there are three primary benifits of this
kind of meta-language.

o By exploiting the A of the meta-language, and its corresponding functional type, one
can directly capture the scoping rules of many object-languages. As we will see, this
allows for object-language independent mechanisms (3-reduction and a-conversion)
for substitution and bound variable renaming that work correctly for even the binding
constructs of a (correctly encoded) object-language.

e Using dependent types, when the object-language is a logic (an object-logic) one can
capture the theorem/proof relationship, as convincingly demonstrated by the work on
the Logical Framework [30]. This allows for object-logic independent proof checking
and interactive proof construction, but also some degree of automated theorem proving,
given a suitable unification-based language, such as EIf [58].

e Again, using the dependent features of the type system, we can internalize object-
language typing rules, so that only object-language terms that are well-typed according
the the object-language typing rules have meta-language representations that are well-
typed acording to the meta-language typing rules. This property allows for object-
language independent mechanisms for object-language type checking and inference.

105
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We will often refer to this kind of encoding as “higher-order abstract syntax” (HOAS) in
constrast with (first-order) abstract syntax trees, when we are emphasizing the first of these
benefits, and “dependent HOAS” when emphasing the others.

The general idea goes back to Church, who expressed all of the binding constructs of
higher-order logic in terms of the A of the simply typed A-calculus [8]. The use of second-
order matching and substitution for transformation of programs represented in the simply
typed A-calculus was suggested in [37]. In recent years the idea has appeared in several
guises: In Isabelle [56, 57] the syntax of logics are encoded as simply typed terms and their
inference rules are encoded as formulas in intuitionistic higher-order logic. In AProlog the
representation is enriched to include implicit polymorphism, and the logic programming
framework allows one to program control of the selection and application of rules [50]. In
LF [30] a A-calculus with dependent types is used as a meta-logic to encode the “language
of a logic, its axiom and rule schemes, and its proofs”, but unification is not used. In [60]
the value of products together with polymorphism is demonstrated. The basic idea is also
present in Martin-Lof’s system of arities [43].

7.1 Some Motivating Examples

In this section we highlight some of the problems that arise in matching and substitution
due to the presence of binding constructs in a language. Almost all languages have these
binding constructs, though sometimes they are not immediately apparent. For example, in
Prolog the “free” variables in a clause are actually bound over that clause, since they are
clearly distinct from variables with the same name in other clauses. A function definition
stated as f(x) = b actually binds x and f (see the beginning of Section 7.3.2).

The rules we present throughout this paper are stated without any semantic side condi-
tions such as strictness or termination. Depending on the language semantics (in particular,
call-by-name vs call-by-value), such conditions may still be necessary to ensure semantic
equivalence between the transformed programs. However, it should be noted that in all
the examples the syntactic side conditions on the rules disappear without compromising the
validity of the rule.

7.1.1 Correct Matching and Substitution

This problem of variable capture is very common. It appears in two different forms: during
matching and during substitution. Consider the rule of let-conversion':

“let r =eind” & “[e/x]b”

49

'We use quotation marks, “...”, to distinguish concrete syntax from representations.



7.1. SOME MOTIVATING EXAMPLES 107

Here are two incorrect applications of this rule. Note that reading them from right to
left shows the problem of doing correct matching against “[ e/x ]b”.

“let r=yinlety=5inxzxy” < “lety=5iny=x*y”

“letz=5inlet r =z *xzinaz” & “leta=5%5in5"

What is required for correct substitution is recognition of name conflicts and renaming
of bound variables. If this rule is read from right-to-left, it is clear that there are many
possible ways of abstracting an expression from a program, and that therefore straightforward
matching on any representation would be very non-deterministic. In a situation like this the
solution is to partially instantiate the pattern before matching.

7.1.2 Variable Occurrence Restriction

Variable occurrence restrictions again require renaming of bound variables during substitu-
tion, or failure of matching. The following example is taken from a formalization of a natural
deduction system to show the variety of circumstances in which these problems occur.

. I'FP
'-VaP

V] where z not freein ' 7

If this rule is used by matching against the lower line, the restriction on « must be checked
separately. Ideally, * would be renamed to a new variable if x is already free in I'. If the
rule is used in the other direction, it should simply not match if  appears in I'. As we will
see in Section 7.5, rules incorporating occurrence conditions can be formulated easily and
applied correctly using higher-order abstract syntax.

Note that in a system that uses first-order abstract syntax, not only must the rule be
conditional, but the language implementor must somehow define a predicate not-free-in for
the language in question.

7.1.3 Correct Treatment of Contexts

Many program transformation rules can be stated naturally through the use of contexts.
Correct applications of these rules, however, is tricky. For example, a rule propagating
computation into the branches of an if expression could be written as

“C[if p then a else b]” < “if p then Cla] else C[b]”

Consider the following incorrect application.
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“let p = false in if p then 1 else 27 &
“if p
then let p = false in 1
else let p = false in 2”

As noted in [52] syntactic conditions on C' are difficult to formulate if one wishes to
eliminate the possibility of incorrect rule application as in the example. The use of higher-
order abstract syntax solves this problem by allowing the statement of the rule as above,
but automatically prohibiting the incorrect use below without any additional conditions.

7.1.4 Object-language Typing

For typed object-languages, correct formulation of rules often require taking object-types
into account. For example, consider the following rule of existential introduction:

At [t/z]P
A Jeia. P

[44

31 where t has type o ”

To formalize a rule like this without dependent types would require a mechanism for defining
and checking object-language typing. However, even this wold be insufficient in practice. A
very convenient way to use this kind of rule, in a unification based language as discussed
in [23, page 8], is to introduce a new unification variable, which will be instantiated later,
when the desired value for ¢ becomes known. We would like the condition that the in-
stantiation term ¢ must have object-type « to act as a constraint to reduce the possible
instantiations rather than as a filter to reject the choices later, as the latter can lead to much
more search.

7.2 A Convenient Notation

The calculus notation used in the previous chapters works very well for formal manipulation,
but can be improved on for ease of reading and writing. Consider the following the following
function for reversing a pair:

Az:l X o.snd z, fst 2

Many modern functional programming languages provide a convert notation for functions
that operate on structured information [6, 29, 74]. In the fashion of these languages, we can
write the above as

Az, y)i x oy,

We will use such expressions in the examples of this chapter, as an abbreviation for terms
like the previous one (that binds z).
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7.3 Language Representation

In this section we demonstrate how to use Apys as a meta-language for encoding typed
programming languages. (It is simpler to represent untyped languages, which is a degenerate
case.)

7.3.1 A Simple Expression Language

We begin with a simple language of expressions given by the following grammar:

e v
0o]1] ...

true | false | nil

ete | exe | ene | e=e
hd(e) | tl(e) |

if ¢ then ¢ else ¢

For now, types in this language will be simply integer, boolean, and lists of elements of the
same type:

There is a lot of flexibility in choosing how to represent such a language, and we give
one possibility. What we mean by choosing a representation for an object-language L is
constructing a signature ¥y and a correspondence between expressions in [ and terms in
the meta-language (in this case Anns). We will be informal about what this correspondence
is, prefering to describe it by means of examples. First we must choose a representation of
object-language types, and so introduce a (meta-language) type constant

tp : Type
Then, to represent the object-types, add the following new constants?

int,bool : tp
list : tp—tp

For example, the object-type “int list” is represented by (listint).

2For brevity in specifying signatures, we use “c,c¢’: A” as an abbreviation for “c: A ¢’: A”. Also, for
readability, we stack these typings vertically rather than presenting them linearly and separating them by
commas.
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Next we need a type to represent expressions. In fact, we will use a type family, indexed

by object-type:
e : tp—Type

The idea is that the meta-language type (es) is the type of terms representing well-typed
object-language expressions whose object-type is represented by s. As it turns out, it is
important to represent object-language variables directly as meta-language variables. To
construct representations of other expressions, we begin by introducing constants for basic
integer and boolean values. Booleans are straightforward:

true,false : ebool
Number expressions are constructed by a “coercion” constant:
num : integer—eint

where integer is the type of integers (as opposed to integer expressions). The other basic
value, the empty list, exists for all list object-types, so we will use a constant of functional
type. Here we have our first use of dependent function types:

nil : TIls:tp.e(lists)

For instance, the empty integer list is represented by (nilint). Next we add constants for all
of the “built-in” operations of the language, e.g.,

plus,times : eint—eint—eint
gtr : eint—eint—ebool
and,or : ebool—ebool—ebool

Again, we must handle the object-type polymorphism of operators like equality and list cons:

equal : Ils:tp.es—es—ebool
cons : Ils:tp.es—e(list s)—e(lists)

Similarly for conditional expressions:

ite : Ils:tp. ebool—es—es—es

Example 7.1 The expression “if a > b then a else b”, where a and b are integer variables,
is represented
iteint (gtrab)ab

By using dependent types in our representation, we have internalized the typing rules
of the object-language. Thus for each well-typed term s of type tp, there is a one-to-one
correspondence between long normal form terms of type (e s) and well-typed object-language
expressions whose type is represented by s. (See [30] for a definition of these normal forms
and a rigorous account of the correspondence.) A fortunate consequence is that when these
techniques apply, object-language type checking is reduced to meta-language type checking,
which may be implemented once, independently of any object-language. However, in order
to accomplish this, the representation has to contain much more information.
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Example 7.2 The representation of “(1::2::nil) = (2::1 :nil)” is

equal (listint)
(consint (num 1) (consint (num 2) (nilint)))
(consint (num 2) (consint (num 1) (nilint)))

Fortunately, as we will see in Section 7.4, this extra information can usually be automatically
generated.
Now we will add a statically scoped variable binding expression:
e u= letv=cine

It will be important to directly capture the scope of this variable binding. In general, we
do this by using the meta-language A for all statically scoped binding constructs. In the
representation of a let expression, we will need to take into account the object-type of the
expression being bound to the variable and of the whole expression:

let : Ils:tp. li:tp. (es—et)—es—et

Example 7.3 The expression “let x =2 in x > 17 is represented

letint bool (Az:eint. gtr 2 (num 1)) (num 2)

Note that although this let is (object language) polymorphic, it is not “genericly polymor-
phic” as is ML [51, 7].

In languages with this kind of binding construct, such as ML [29], Scheme [72], and
Lisp [71], it is often possible to bind many variables in parallel, so that the general form is
instead

e = letv=e¢,...,v=¢ine

One way of dealing with this flexibility is to have an infinite (or for practical purposes,
reasonably large) family of constants. For each n > 0, we would declare

let, : Ilsy:tp. ---Ils,:tp. Ht:tp. (es1— -+ —es,—et)—res;— - —es,—el

Aside from the general awkwardness of this approach, it has the serious drawback that each
rule for manipulating let expressions must also have an infinite number of versions. These
problems may be avoided by using pair types and polymorphism in our representation:

let : Aca. llt:tp. (a—et)—a—et

where we will instantiate o to a type of the form (es; x --- x es,). (This ability was our
original motivation to explore higher-order unification with pair types.)



112 CHAPTER 7. APPLICATIONS
Example 7.4 The expression “let n =1,b =true in b and n > 07 is represented (using
the varstruct notation introduced in Section 7.2)

leteintxebool OOl (A(72, b):eint X ebool. gtrn (num0)) (num 1, true)
There is a theoretical problem with this representation, however. In the type of let, there
is no simple way to restrict the type parameter a to be instantiated to types of the form
(esy X -+ xes,). As a consequence, there are well-typed LNF meta-language terms of type

(e s) that do not correspond to terms in our object-language. We will show how to eliminate
this problem in Section 7.3.3.

7.3.2 Adding Programs

In the previous section we developed a simple language of typed expressions. We now extend
it to a language of recursive function definitions of a simple form:

p = recov(v,...,v)=¢€,...,0(v,...,v)=¢€
and add a form of expression for invoking a defined function
e = v(e,... €

Observe that a program may involve any number of function definitions, and each function
may take any number of arguments. Again we will use polymorphism:

rec : Aa. (a—a)—a
Example 7.5 Consider the following simple list reversal program

rec rev(l) = ra(l,nil) ,
z

ra(l, z) =if null(/) then z else ra(tl({),hd(l) :: z)
The complete representation (see below for the values of A and B) is

reca (A(rev, ra): A. (A B. ra(l,nil s)) ,
(AM{,2): B x B.ite(lists) (null s{) z (ra(tl s [, cons s (hd s 1) z))))

where s is an arbitrary term of type tp, and

A = (B—B)x(Bx B—B)
B = e(listint)
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7.3.3 Syntactic Judgments

The encodings in the previous section that use polymorphism are too liberal, in that they
allow for well-typed terms that do not correspond to legitimate expressions. Consider again
the constant used in representing parallel binding let expressions:

let : Aca. llt:tp. (a—et)—a—et

Our intent is that the type argument to let be of the form (es; x --- x es,), for object-types
51,...,8,.> How can this intent be enforced, so that non-legitimate let expressions do not
have well-typed encodings?

Our solution is similar to Mason’s technique of “syntactic judgments” used in the encod-
ing of Hoare logic [2, 44]. One problem in representing Hoare logic is that there are boolean
expressions (used in constructing statements of the imperative programming language) and
first-order formulas (used in assertions), and the boolean expressions are identified with the
quantifier-free first-order formulas. Mason’s representation uses a (syntactic) judgment QF
indexed over the type o of formulas, and declares, e.g., the conditional statement constructor
as

if : Ileo. QFe—sw—w—w

where w is the type used for representing statements. That is, if now takes an additional
argument, which is a proof that the first argument is a quantifier-free expression. The
signature is extended to include constant declarations that encode an inference system for
proving formulas to be quantifier-free, e.g.,

QF; : IHeo. QF e—QF (—e)

This constant represents the rule that —e is quantifier-free if ¢ is. He also uses a syntactic
judgment for non-interference conditions.

Our situation is slightly different, because we want to restrict type arguments, rather
than term arguments, but the essential idea is the same. We introduce a syntactic judgment

ok : Type—Type

The intent is that, for a given type «, there is a term of type ok, iff « is of the appropriate
form. This intent is formalized via the following declarations

oke : ILs:tp. ok(es)
okx : Aa . ok,—oks—+ok,yp
We would then replace the old typing for let by

let : Aa.ok,—Ilt:tp. (a—et)—wa—et

3For uniformity, we might like to allow n = 0. This would be neatly handled by introducing the unit
type.
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Example 7.6 Returning to Frample 7.4, the expression
“let n =1,b =true in (b and n > 0)”

is now represented as

Iete intxebool (kae int,e bool (Oke int) (Oke b00|))
bool

(A(n,b):eint x ebool.and b (gtrn (num0)))

(num 1, true)

As discussed in [44] in reference to the representation of quantifier-freeness and inter-
ference, all proofs of a given syntactic judgment (i.e., terms of the representing type) are
convertible, and moreover could be constructed automatically. This is significantly different
from the process of term inference defined in Section 4.7 and illustrated in the next section,
where unification is sufficient for inferring terms. Automatically proving syntactic judgments
requires searching for constants of relevant types and recursively trying to construct their ar-
gument terms. A very elegant framework for this kind of automatic proof term construction
is provided by Pfenning’s programming language FElf, which “unifies logic definition (in the
style of LF') with logic programming (in the style of AProlog)” [58]. (As described in [58], EIf
does not allow polymorphism. However, the implementation currently under development
at Carnegie Mellon University is based on our prototype implementation of HOUs (HOUpgs
without ¥ types), and so does allow polymorphism.)

We can use a similar syntactic judgment for restricting the type argument of rec:
okr : Type—Type

The restriction we want to enforce here is that a given type is of the form a; X -+ X @y,
where each «; is of the form (es; x -+ x es,)—et. Our formalization makes use of the
previous syntactic judgment ok:

okro : Aa. ok, —I1It:tp. okr,—se;
okrx : Aa«af. okr,—okrg—ok, s

The new version of rec is then

rec : Ao okr,—(a—a)—a

7.4 Object-language Type Checking and Inference

The example language encodings in the previous section contain a lot of information that
is not directly present in the concrete syntax. This extra information is in the form of
arguments of type tp, i.e., object-types. Fortunately, these arguments can be synthesized
automatically by using the term inference algorithm defined in Section 4.7. The following
very simple example illustrates how and why this process works.
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Example 7.7 Consider the expression “l ::nil”. We begin by constructing a “partial rep-
resentation”, in which the object-type components are just new distinet unification variables
of type tp:

cons s1 (num 1) (nil s5)

We then apply term inference, which, recall, is a combination of type-checking and unifica-
tion. In this process, we discover the typings

ks conssy € esy—e(list sy)—e(list sy)
F. numl € eint

so we unify (e sy) with (eint). Neat the process discovers that

5 cons int (num1) € e(listint)—e (listint)
Fs nil s2 € e (list s2)

and so we unify e (listint) with e (list s3). We then instantiate our original encoding to
(consint (num 1) (nilint))

which has type (listint).

The previous example required only very simple first-order unifications. An object-
language whose type inference problem requires truly higher-order unification is the poly-
morphic A-calculus [25, 24, 65, 45], which we will refer to as “Ax”.* The undecidability of
this type inference problem for even the second-order polymorphic A-calculus was shown by
Boehm in [4], by reducing it to second-order unification. In [59], Pfenning shows a more gen-
eral converse, namely that partial type inference for the nth order polymorphic A-calculus
reduces to nth order unification. He then gives an implementation in AProlog, based on an
encoding of Aa in A5 (AL plus implicit polymorphism). If instead we encode Aa in Aps, we
can use Ars term and type inference to do Aa type inference. (To encode the second-order
polymorphic A-calculus, meta-language polymorphism is not necessary, so Arp term inference

suffices.)

7.5 Program Transformation

Now that we have explored representing languages, we want to construct and apply pro-
gram transformation rules. To do so, we will also need to introduce concrete syntax for

Note that we mean what is sometimes referred to as “partial type inference”, in which we are only
allowed to fill in types, but not construct new type abstractions and applications.
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the A-calculus abstraction, application, and pairing. We will use the following additional
expressions:

We express the concrete syntax of rules in the form
((LHS?? @ “RHS??
and their meta-language representation as

I'-M & N

where [' provides types for the variables in M and N, which are the representations of LHS
and RHS.

Let Conversion

We start with the rule of let-conversion. It is simply
“let © = ain blz]” <  “bla]”
which is represented as
[o:Type, q:ok, , s:itp, ba—es, axa]blet,gs(Aria.br)a & ba

We can match the left hand side of this rule against, for example, the term from Example 7.6
giving the substitution

[eint x ebool/a ,
(kaeint,e bool (0keint) (oke bool))/q ,
bool/s ,
(A(n,b):eint x ebool. gtrn (num0))/b ,
(num 1, true)/a |

We could even apply this rule from right to left, but we would have to specialize it first
to reduce the nondeterminism to a manageable level. For instance, we could instantiate the
type variable « to e, saying that we want to introduce one variable in the let. (Leaving
s uninstantiated, we leave open the object-type of the introduced variable.) Matching this



7.5. PROGRAM TRANSFORMATION 117

specialization of the RHS against the term 2 4 3 % 2 gives several substitutions, resulting in
the following corresponding instances of the LHS:

let z=24+3%21nax
let z=21Inxz+3x*x
let z=21nx+3%2
let z=3+21n2+ 2
let z=31n2+x*2
let z=21In2+3%*x
let z=ain 2+ 3 %2

Of course this rule assumes a call-by-name semantics. A call-by-value version would have
an attached semantic condition that a terminates or b is strict. Otherwise the rule can gain
termination applied from left to right.

Context Propagation

Let us now return to the example from Section 7.1.3:
“c[if p then a else b]” & “if p then c[a] else ¢[b]”

Using higher-order abstract syntax, the variable ¢ simply becomes a second-order variable.
Higher-order matching ensures that bound variables cannot leave their scope. The represen-
tation of this rule is

[s:itp, titp, aces, bies, piebool , ces—et |t c(itespab) & itesp(ca)(ch)

On the other hand, there are similar conversions that we would like to do, but which are
not covered by this rule. For instance, it is correct to transform the expression

let + = y*yin
let z =z %y in
if y > 0 then z else «

into

ify>0
thenlet t = y*xyinlet z =z *yin 2
elselet r =y*xyinlet z =ax*xyin x
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This does not match the context propagation rule from above, since a substitution like
[ z/a] would be captured by the binding on z. A general solution in a case like this is to
raise the order of the rule through explicit abstraction. This solution is inspired by Paulson’s
V-lifting [56], which was discovered independently by Miller and called raising [48]. Both
increase the order of some of the variables involved. Raising requires that we be able to
explicitly mention the “I” of the [-calculus representation in the pattern. The following is a
raised version of context propagation.

“c[Au.1f p then afu] else b[u]]” < “if p then c[Au. alu]] else c[Au. b[u]]”
[ p [u] [u]] p [ [u]] [Au. blu]]

A match of this pattern against its motivating example is given through the substitution

[eint x eint/a, y>0/p, du,v.v/a, Au,v.u/b,
Af.“let e =y+yinlet z =a*yin flz,y]"/c]

Again note the use of polymorphism in the rule description, and the instantiation of type
variables to product types, to capture the fact that this rule should apply to any number of
bound variables that may appear in the branches of the if, but not in the test p.

This also illustrates how variable occurrence conditions become unnecessary. The fact
that p could not depend on any variable bound in the context is implicit in the formulation
of the rule.

Condition Propagation

Another useful rule that is handled easily in our framework is that of condition propagation:
when evaluating the then branch of a conditional expression, we know that the test suc-
ceeded, and when evaluating the else branch, we know it failed. We can use this to simplify
the subexpressions.

The way we use this idea in an expression “if p then « else 0” is to replace some instances
of p in a by true and some instances of p in b by false.® The higher-order term structure
lets us do this very naturally:

“if p then a[p] else b[p]” & “if p then a[true] else b[false]”

Unfolding

The unfold rule, described in [5], transforms a set of mutually recursive function definitions,
by replacing a call to one of the functions by that function’s body, with formal parameters

5This formulation is due to Tim Freeman.
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replaced by actual parameters. The rule below is a very general version of unfold that
can simultaneously unfold any subset of the defined functions at any subset of their calling
instances. In practice, we would probably want to specialize this rule before applying it. As
always, the validity of all specializations are insured by the validity of the general rule. In
concrete syntax, it is

“rec [ =0b[f][f]” & “rec f=b[[fI[/Lf]

(In a call-by-value semantics, this rule might gain termination.) The way this works is that
the uses of all of the functions (represented en masse by f) will be partitioned in any match
between the first and second argument of b. Its representation is

[a: Type , q:ok, , bba—a—a]Frec,q(Afia.bf f) & recoq(Afia.b(bf f)f)

As an example, consider the following program, which arises partway into the derivation of
an efficient program for list-reversal. We use “/ @ ["” for the result of appending the lists {
and [’, and “a ::[” for the new list made up of a followed by the elements of the list /.

rec rev(u) = if null(v) then nil else rev(tl(u)) @ (hd(w) :: nil) ,
ra(u,v) = rev(u) Qo

The representation of this program is

reca M (A(rev, ra): A. (Auze. ite (null w) nil (app (rev(tla))(cons (hd w)nil))),
(Auze,v:e app (revu)v))

Where
A = (B—B)x(Bx B—B)
B = e(lists)
M = okrx(g—p),BxB—B) (0krop (oke s) s) (okrop s (okxp B (oke s) (okes)) s)

and s is a variable of type tp. We can tell at once that the type part of the unifying
substitution must be

[(B—B) x (B x B—B)/a]

There are two applications of rev and none of ra. There are thus four possible rewritings,
depending on whether each of the two calls is unfolded. The one that unfolds just the second
call gives the new program

) nil)

rec rev(u) = if null(v) then nil else rev(tl(u)) @ (hd(u
U (hd(w) ::nil)) @ v

ra(u,v) = (if null(w) then nil else rev(tl(u)) @

We can then simplify the body of ra using simplification rules for lists.
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7.5.1 Subterm Rewriting

A very useful ability in program transformation and theorem proving is rewriting one or
more subexpressions of a given expression according to a set of simplification rules. For ex-
ample, simple program derivations are often unfolding, followed by simplification, followed
by folding. Similarly, simple proofs are often induction accompanied by simplification [55].
Higher-order abstract syntax and unification provides a simple way to do such subexpres-
sion rewriting. Suppose our simplification rule set consists of the following facts about list
appending:
(al)@! = au=(lQ)
nil@/ = |

We can make these into a single rule, capable of rewriting subexpressions as follows:
“fllazhy@llnil@!")” < “fla: Q)"

Note that we had to rename [ to {” from the second simplification rule to avoid interference
with the first.

This method works, but it has two drawbacks. The first is that it cannot rewrite different
subexpressions of the same LHS pattern. For instance, in the expression

“length(nil @ «) — length(nil @ v)”

we could rewrite “nil @u” to “u” or “nil@v” to “v”, but not both. This problem is not very
serious, since we could just do the subexpression rewriting repeatedly. The second problem,
however, is more serious, and is related to the problem with the simple version of context
propagation for conditionals (Section 7.1.3). Consider an expression like

“let u=1:2:nilin nil Q@ «”

Our rule above cannot match this expression nontrivially because the subexpression “nil@v”
contains a variable, u, that is bound between the top of this expression and the top of the
subexpression. The solution to both problems is, again, to use a third-order rule:

PG AL (@) @ UAL il @17 & “f[Aa. AL A a (1@ )AL 1]

6

We call this the raising of the two first-order rules.® To see how a rule like this works,

consider matching its LHS against the expression
“nil @ (let v = nil @ (1::2 :nil) in (1 ::w) @ (4 :: nil))”
We would get eight possible values for f, one of which is
“Ag. Ah. hllet w = A[1 :: 2 ::nil] in g[1][u][4 :: nil]]”

5The representation of this rule would require f to have three additional tp arguments, which we leave
implicit in the concrete syntax.
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which would cause the RHS to be instantiated to
“let u=1:2unilin 1 : (v @4 ::nil)”

The other seven unifiers result in less simplification. The last of these is a trivial unifier that
leaves the expression unchanged.

Clearly, these raised rules can be highly nondeterministic. In practice, we would want to
interactively specialize them before application.

7.5.2 Generalized Rewriting via Unification

The conventional view of rewriting, as matching against a rule’s LHS, followed by substitu-
tion into its RHS, is subsumed and generalized by unification. For example, take the rule of
associativity of addition:

Lﬁ(x_l_y)_l_Z” <:> Lﬁx_l_(y_l_z)”

We can internalize the rewriting relation, <, into the expression language and use the single
expression

ety +tzeat+(y+z)

Then, to rewrite a given expression, say “(3 +4) 4+ 5", we unify our rule expression against
the expression

“B+4)+dHe 2

where z is a new variable that will get bound by unification to the desired result.

In this simple use of unification, the second expression is always of the form “e; < e3”
where €; is completely instantiated and es is completely uninstantiated (i.e., a variable). But
now we have the freedom to make e; and ey instantiated or uninstantiated to any degree.
Taking the opposite extreme (e; uninstantiated and ey instantiated) is equivalent to using a
rewrite rule backwards.

One possibility this approach suggests is doing transformation on program schema, i.e.,
programs with free variables that are subject to instantiation. Then the two-way nature
of unification, as opposed to matching, would allow the application of a transformation or
simplification rule to partially instantiate the program it is transforming as well as the rule
it is using. A natural example of how program schema come into existence is the rule of
case-introduction:

“w < if p then w else w”

Note that the variable p is not mentioned on the LHS. This rule is useful when the com-
putation of a expression can be optimized in the presence of an assertion p or its negation.
(Interestingly, this rule turns out to be a instance of the context propagation rule

“c[if p then « else b] & if p then c[d] else ¢[b]”
by taking ¢ to be Az. w for a variable w.)
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7.6 Theorem Proving

Another general area of application for the unification algorithms developed in the preceding
chapters is theorem proving in various logics. In [30], the Logical Framework (LF) is presented
as a “first step towards a general theory of interactive proof checking and proof construction.”
The key ingredients are the calculus A and the judgments as types principle, forming the
basis of a very elegant and expressive system encompassing the syntax, rules, and proofs
for a wide class of object-logics. Our unification algorithms allow us to go beyond purely
interactive theorem proving, to do automated (and semi-automated) theorem proving in LF
encoded logics. These theorem provers could be expressed, e.g., in a AProlog based on Ay (or
Az or Anys ), or in Elf, a language for logic definition and verified meta-programming [58].
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Al Dependent calculus without products or polymorphism, 9
M, N Meta-variables ranging over terms, 9
A B Meta-variables ranging over types, 9
K Meta-variable ranging over kinds, 10
U Meta-variable for terms and types, and occasionally kinds, 10

F(U) Set of free variables in U, 10
M Terms, types, and kinds with free variables in V', 11

V Set of variables, 11

ey’ Substitutions from V to V', 11
0 Meta-variable ranging over substitutions, 11
Oy The set of substitutions over variable set V', 11
0id Identity substitution over V, 11
ot Extension of § to map u to u, 12
0 Extension of  to terms, types, and kinds, 12
Y Composition of substitutions, 12
[ My/xy, ..., My 2 1V Substitution specified by images of a subset of its domain, 15
G,n Conversion rules for Ar, 17
—p The one step subterm rewriting extension of p, 17
= Transitive closure of —,, 18

129



130

=
(cr:Ury..oyen:Uy)
dom(Y)

YovA

[vir Ay, vt Ay
dom(I)
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Equivalence closure of —,, 18

Convertibility, 18

Signature, 20

Domain of a signature, 20

Signature extension, 20

Context, 21

Domain of a context, 21

Range of a context, 21

Context extension, 21

Y is a valid signature, 21

I' is a valid context given X, 21

K is a valid kind given ¥ and I', 21

A has kind K given ¥ and I', 21

M has type A given ¥ and I, 21

The set of well-typed substitutions from I' to IV, 28
The set of well-typed substitutions over I', 28
Disagreement pair, 29

Universal context, 29

Disagreement pair, 29

Disagreement set, 30

Unification problem, 30

Unification problem, 30

() is acceptable, 31

Set of solutions of (), 31

Potential solution of a unification problem, 31

Minimal complete set of pre-unifiers, 32
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P«»Hb
P«»Hﬁ
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topeq(P)

head(U)
height (M)
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Ty, Moy T

P’\’}HED

Transformation relation closure, 34

( weak head reduction, 37

Weak head normal form, 38

Substitution applied to context, 39

Free variables of a disagreement pair, 39

Free variables of a disagreement set, 39
Substitution applied to disagreement pair or disagreement set, 39
P relates convertible terms or types, 39

Size of a term, type, ete., 40

Measure of distance to weak head normalization, 40
P is decomposable to ﬁ, 41

Decomposition via weak head reduction, 42
Decomposition based on an abstraction., 42

P rigidly decomposes to b, 47

Appending to a disagreement sequence, 47

P relates terms or types with the same top level structure, 47
U and U’ have the same top level structure, 47
Members of D that “account for” P, 51

Strict partial order forming an accounting, 51

The head of the term or type body U., 54

The height of a term., 64

Substitution height comparison, 65

Anr enriched with ¥ types, 79

Additional conversion rules for Apy, 81

Decomposition based on an abstraction or pair, 86
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acceptable, 52
transformation, 33
transition, 33
unification problem, 31

accounting, 51

atom, 38

atomic type, 38

body, 38

Church-Rosser, 25
complete, 34
transformation relation, 34
composition of substitutions, 12
context, 21
correct, 33
transformation, 33
transition, 33
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de Bruijn’s representation, 10
decomposable to, 41
decreasing, 35

disagreement pair, 29
disagreement set, 30

flexible, 54

free variables, 10
of a disagreement pair, 39
of a disagreement set, 39

head, 54
height of a term, 64

identity substitution, 11

minimal complete set of pre-unifiers, 32

transformation, 33
transition, 33

permanent substitution, 53
preserve typing, 25

rigid, 54

signature, 20

size, 85

Size of a term, 40
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solutions of a unification problem, 31
solved form, 32, 54
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strong normalization, 25
substitution, 11

well-typed, 28
substitutive, 18

top level structure, 47
transformation, 33

unification problem, 30
unify, 31
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a disagreement set, 31
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transformation, 33
transition, 33
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