Beautiful differentiation

Conal Elliott

LambdaPix

1 September, 2009 ICFP

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

1/32

Differentiation

Differentiation

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 2/32

Differentiation

Derivatives have many uses.

For instance,

optimization

>

» root-finding
» surface normals
|

curve and surface tessellation

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 3/32

Differentiation

There are three common differentiation techniques.

» Numeric
> Symbolic

» “Automatic” (forward & reverse modes)

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 4 /32

Differentiation

What's a derivative?

For scalar domain:
d:: Scalar s = (s —s) — (s — s)

f(x+e)—fFfx

dfx=Ilim
£e— 3

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

5/ 32

Differentiation

What's a derivative?

For scalar domain:
d:: Scalar s = (s —s) — (s — s)

f(x+e)—fFfx

dfx=Ilim
£e— 3

What about non-scalar domains?
Return to this question later.

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

5/ 32

Differentiation

Aside: We can treat functions like numbers.

instance Num 3 = Num (a — (3) where
ut+tv=X Xx—-ux+vx
U*xV=AX—UX%VX

instance Floating (3 = Floating (o — 3) where

sin u= Ax — sin (u x)
cos u = Ax — cos (u x)

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

6/ 32

Differentiation

We can treat applicatives like numbers.

instance Num 3 = Num (a — 3) where
(+) = liftAs (+)
(%) = liftAs (x)

instance Floating (3 = Floating (o — 3) where
sin = fmap sin
cos = fmap cos

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

7/32

Differentiation

What is automatic differentiation?

» Computes function & derivative values in tandem
» “Exact” method

» Numeric, not symbolic

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009

ICFP

8/ 32

Differentiation

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:
dataDa=Daa«

For instance,

Dad+Dbb =D (a+ b)(d+Vb)
Daad «Dbb =D (ax b)(bxa+a xb)
sin (Daad) =D(sin a)(a *cos a)

D (sqrt a) (3’ / (2 * sqrt a))

sqrt (D ad) =

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

9/32

Differentiation

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:
dataDa=Daa«

For instance,

Dad+Dbb =D (a+ b)(d+Vb)

Daad «Dbb =D (ax b)(bxa+a xb)
sin (Daad) =D(sin a)(a *cos a)
sqrt (D ad) =D (sqrta)(a' /(2x*sqrt a))

Are these definitions correct?

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

9/32

Differentiation

What is automatic differentiation — really?

» What does AD mean?
» How does a correct implementation arise?

» Where else might these answers take us?

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

10/ 32

What does AD mean?

What does AD mean?

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 11/ 32

What does AD mean?

What does AD mean?

dataDa=D o«

toD :: (¢ — a) — (a — D «)
toD f = x — D (f x) (d f x)

Spec: toD combinations correspond to function combinations, e.g.,

toD u + toD v = toD (u+ v)
toD u x toD v = toD (u * v)

recip (toD u) = toD (recip u)

sin (toD u) = toD (sin u)

cos (toD u) = toD (cos u)
l.e., toD preserves structure.

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

12 /32

How does a correct implementation arise?

How does a correct implementation arise?

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 13 / 32

How does a correct implementation arise?

How does a correct implementation arise?

Goal: Yu. sin (toD u) = toD (sin u)

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 14 / 32

How does a correct implementation arise?

How does a correct implementation arise?
Goal: Yu. sin (toD u) = toD (sin u)
Simplify each side:

sin (toD u) = Ax — sin (toD u x)
= Ax — sin (D (u x) (d u x))

toD (sinu) = Ax — D (sinu x) (d (sin u) x)
= Ax — D ((sino u) x) ((d u* cos u) x)
=X — D (sin (ux)) (duxx*cos(ux))

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

14 /32

How does a correct implementation arise?
How does a correct implementation arise?
Goal: Yu. sin (toD u) = toD (sin u)
Simplify each side:
sin (toD u) = Ax — sin (toD u x)

= M — sin (D (u x) (d u x))

toD (sinu) = Ax — D (sinu x) (d (sin u) x)
= Ax — D ((sino u) x) ((d u* cos u) x)
=X — D (sin (ux)) (duxx*cos(ux))

Sufficient:

sin (D ux dux) = D (sin ux) (dux * cos ux)

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

14 /32

Where else might these answers take us?

Where else might these answers take us?

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 15 / 32

Where else might these answers take us?

Where else might these answers take us?

In this talk
» Prettier definitions
» Higher-order derivatives

» Higher-dimensional functions

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009

ICFP

16 / 32

Where else might these answers take us? Prettier definitions

Digging deeper — the scalar chain rule

d(gouyx=dg(ux)«xdux

For scalar domain & range. Variations for other dimensions.
Define and reuse:

(g >1dg) (D ux dux) = D (g ux) (dg ux * dux)
For instance,

sin = sin X cos
€cos = cos X AX — —sin x
sqrt = sqrt <1 A\x — recip (2 * sqrt x)

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

17/ 32

Where else might these answers take us? Prettier definitions

Function overloadings make for prettier definitions.

instance Floating o = Floating (D o) where
exp = exp D exp
log = log < recip
sqrt = sqrt < recip (2 sqrt)
sin = sin 1 cos
cos = cos I —sin

acos = acos < recip (—sqrt (1 — sqr))
atan = atan < recip (1 + sqr)

sinh = sinh > cosh

cosh = cosh > sinh

Sqr X = X % X

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 18 / 32

Where else might these answers take us? Higher-order derivatives

Scalar, higher-order AD

Generate infinite towers of derivatives (Karczmarczuk 1998):
dataDa =D a (D a)
Suffices to tweak the chain rule:

(g > dg) (D uxg dux) = D (g uxo) (dg uxg * dux) -- old
(g > dg) ux@(D uxg dux) = D (g uxo) (dg ux *dux) -- new

Most other definitions can then go through unchanged.
The derivations adapt.

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 19 / 32

Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

For scalar domain:
f(x+e)—fFfx

dfx=Ilim
e— 3

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 20 / 32

Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

For scalar domain:
f(x+e)—fFfx

dfx=Ilim
e— 3

Redefine: unique scalar s such that

im f(x+e)—Ffx
e—0 €

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

20 / 32

Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

For scalar domain:
f(x+e)—fFfx

dfx=Ilim
e— 3

Redefine: unique scalar s such that

lim M —s=0
e—0 e
Equivalently,
im f(x+e)—Ffx—s 550
e—0 g
or . .
lim) ol U E)EO

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

20 / 32

Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 21 /32

Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

f(x+e)—(fx+s-¢)

lim =0
e—0 €
Now generalize: unique linear map T such that:
f —(f T
Iim| (x+¢e)—(f x+ €)|EO
Lt e

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

21 /32

Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

f(x+e)—(fx+s-¢)

lim =
e—0 €
Now generalize: unique linear map T such that:
f —(f T
Iim| (x+¢e)—(f x+ €)|EO
Lt e

Derivatives are linear maps.

Captures all “partial derivatives” for all dimensions.
See Calculus on Manifolds by Michael Spivak.

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

21 /32

Where else might these answers take us? Higher-dimensional functions

The chain rules all unify into one.

Generalize from
d(gou)x=dg(ux)xdux

etc

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 22 /32

Where else might these answers take us? Higher-dimensional functions

The chain rules all unify into one.

Generalize from
d(gou)x=dg(ux)xdux

etc to
d(gouyx=dg(ux)odux

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

22 /32

Where else might these answers take us? Higher-dimensional functions

Generalized derivatives

Derivative values are linear maps: o« —o (3.

d :: (Vector s a, Vector s [3)
= (@ = F) = (¢ = (a— f))

First-order AD:
dataa> (=D (o —)
Higher-order AD:

data a* =D ((ad(a — f))
~ B x (o —) x (a0~ (@ = B)) X ...

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

23 /32

Where else might these answers take us? Higher-dimensional functions

What's a linear map?

Preserves linear combinations:

h(51~U1+...+Sn-un)ESl-hU1+...+Sn-hun

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 24 / 32

Where else might these answers take us? Higher-dimensional functions

What's a linear map?

Preserves linear combinations:

h(Sl-U1+...+Sn-un)ESl~hU1+...+Sn-hun

Fully determined by behavior on basis of a, so
.M
type o — (8 = Basis a — f3

Memoized for efficiency.

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 24 / 32

Where else might these answers take us? Higher-dimensional functions

What's a linear map?

Preserves linear combinations:

h(Sl~U1+...+Sn-un)ESl~hU1+...+Sn-hun

Fully determined by behavior on basis of a, so
. M
type o — (8 = Basis a — f3
Memoized for efficiency.

Vectors, matrices, etc re-emerge as memo-tries.
Statically dimension-typed!

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 24 / 32

Where else might these answers take us? Higher-dimensional functions

What's a basis?

class Vector s v = HasBasis s v where
type Basis v :: x
coord 2 v — (Basis v — s)
basisValue :: Basis v — v

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 25 /32

Where else might these answers take us? Higher-dimensional functions

instance HasBasis Double Double where
type Basis Double = ()
coord s =A)—s
basisValue () =3

instance (HasBasis s u, HasBasis s v)
= HasBasis s (u, v) where
type Basis (u, v) = Basis u ‘Either' Basis v
coord (u,v) = coord u ‘either' coord v
basisValue (Left a) = (basisValue a,0)
basisValue (Right b) = (0, basisValue b)

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

26 / 32

Automatic differentiation — naturally

Automatic differentiation — naturally

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 27 / 32

Automatic differentiation — naturally

Can we make AD even simpler?

Recall our function overloadings:

instance Num 3 = Num (a —) where
(+) = liftAs (+)
(%) = liftAs (x)

instance Floating (3 = Floating (o — 3) where
sin = fmap sin
cos = fmap cos

These definitions are standard for applicative functors.
Could they work for D?

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

28 / 32

Automatic differentiation — naturally

Automatic differentiation — naturally

Could we simply define AD via the standard
sin = fmap sin

etc? What is fmap? Require toD, be a natural transformation:
fmap g o toDyx = toDy o fmap g

where
toDy u= D (u x) (d u x)

Define fmap from this naturality condition.

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

29 /32

Automatic differentiation — naturally

Derive AD naturally

toDy (g o u)
D ((g o u) x) (d (g ou)x)
D (g (ux))(dg(ux)odux)

toD, (fmap g u)

fmap g (toDy u) = fmap g (D (u x) (d u x))
Sufficient definition:
fmap g (D ux dux) = D (g ux) (d g ux o dux)

Similar derivation for liftA; (for (+), (x), etc).

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP

30 / 32

Automatic differentiation — naturally

Sufficient definition:
fmap g (D ux dux) = D (g ux) (d g ux o dux)

Oops. d doesn’t have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known
derivative.

Solution B: Generalize Functor to allow non-function arrows, and replace
functions by differentiable functions.

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 31/32

Automatic differentiation — naturally

Conclusions

Specification as a structure-preserving semantic function.
Implementation derived systematically from specification.
Prettier implementation via functions-as-numbers.
Infinite derivative towers with nearly no extra code.

Generalize to differentiation over vector spaces.

vV vV V. v Vv Y

Even simpler specification/derivation via naturality.

Conal Elliott (LambdaPix) Beautiful differentiation 1 September, 2009 ICFP 32 /32

	Differentiation
	What does AD mean?
	How does a correct implementation arise?
	Where else might these answers take us?
	Prettier definitions
	Higher-order derivatives
	Higher-dimensional functions

	Automatic differentiation – naturally

