
LambdaPix technical report 2009-02, March 2009 (minor revisions July 19, 2013) 1

Beautiful Differentiation
(extended version)

Conal M. Elliott
LambdaPix

conal@conal.net

Abstract
Automatic differentiation (AD) is a precise, efficient, and conve-
nient method for computing derivatives of functions. Its forward-
mode implementation can be quite simple even when extended to
compute all of the higher-order derivatives as well. The higher-
dimensional case has also been tackled, though with extra complex-
ity. This paper develops an implementation of higher-dimensional,
higher-order, forward-mode AD in the extremely general and ele-
gant setting of calculus on manifolds and derives that implementa-
tion from a simple and precise specification.

In order to motivate and discover the implementation, the paper
poses the question “What does AD mean, independently of imple-
mentation?” An answer arises in the form of naturality of sampling
a function and its derivative. Automatic differentiation flows out
of this naturality condition, together with the chain rule. Graduat-
ing from first-order to higher-order AD corresponds to sampling all
derivatives instead of just one. Next, the setting is expanded to arbi-
trary vector spaces, in which derivative values are linear maps. The
specification of AD adapts to this elegant and very general setting,
which even simplifies the development.

Categories and Subject Descriptors G.1.4 [Mathematics of Com-
puting]: Numerical Analysis—Quadrature and Numerical Differ-
entiation

General Terms Algorithms, Design, Theory

Keywords Automatic differentiation, program derivation

1. Introduction
Derivatives are useful in a variety of application areas, including
root-finding, optimization, curve and surface tessellation, and com-
putation of surface normals for 3D rendering. Considering the use-
fulness of derivatives, it is worthwhile to find software methods that
are

• simple to implement,
• simple to prove correct,
• convenient,
• accurate,
• efficient, and
• general.

One differentiation method is numeric approximation, using
simple finite differences. This method is based on the definition
of (scalar) derivative:

d f x ≡ lim
h→0

f(x+ h)− fx
h

(1)

d (u+ v) ≡ d u+ d v
d (u · v) ≡ d v · u+ d u · v
d (−u) ≡ −d u
d (eu) ≡ d u · eu

d (log u) ≡ d u/u
d (
√
u) ≡ d u/(2 ·

√
u)

d (sinu) ≡ d u · cosu
d (cosu) ≡ d u · (− sinu)

d (sin−1 u) ≡ d u/
√

1− u2

d (cos−1 u) ≡ −d u/
√

1− u2

d (tan−1 u) ≡ d u/(u2 + 1)
d (sinhu) ≡ d u · coshu
d (coshu) ≡ d u · sinhu

d (sinh−1 u) ≡ d u/
√
u2 + 1

d (cosh−1 u) ≡ −d u/
√
u2 − 1

d (tanh−1 u) ≡ d u/(1− u2)

Figure 1. Some rules for symbolic differentiation

(The left-hand side reads “the derivative of f at x”.) The approxi-
mation method uses

d f x ≈ f(x+ h)− fx
h

for a small value of h .
While very simple, this method is often inaccurate, due to

choosing either too large or too small a value for h . (Small val-
ues of h lead to rounding errors.) More sophisticated variations
improve accuracy while sacrificing simplicity.

A second method is symbolic differentiation. Instead of using
the limit-based definition directly, the symbolic method uses a
collection of rules, such as those in Figure 1

There are two main drawbacks to the symbolic approach to dif-
ferentiation. One is simply the inconvience of symbolic methods,
requiring access to and transformation of the source code of com-
putation, and placing restrictions on that source code. A second
drawback is that implementations tend to be quite expensive and in
particular perform redundant computation.

A third method is the topic of this paper (and many others),
namely automatic differentiation (also called “algorithmic differen-
tiation”), or “AD” (Wengert 1964). There are forward and reverse
variations (“modes”) of AD, as well as mixtures of the two. This pa-
per considers only the forward-mode. The idea of AD is to simulta-
neously manipulate values and derivatives. Overloading of the stan-
dard numerical operations makes this combined manipulation as
convenient and elegant as manipulating values without derivatives.
Moreover, the implementation of AD can be quite simple as well.
For instance, Figure 2 gives a simple, functional (foward-mode)

2 Beautiful differentiation

data D a = D a a deriving (Eq ,Show)

constD :: Num a ⇒ a → D a
constD x = D x 0

idD :: Num a ⇒ a → D a
idD x = D x 1

instance Num a ⇒ Num (D a) where
fromInteger x = constD (fromInteger x)
D x x ′ + D y y ′ = D (x + y) (x ′ + y ′)
D x x ′ ∗D y y ′ = D (x ∗ y) (y ′ ∗ x + x ′ ∗ y)
negate (D x x ′) = D (negate x) (negate x ′)
signum (D x) = D (signum x) 0
| D x x ′| = D |x | (x ′ ∗ signum x)

instance Fractional x ⇒ Fractional (D x) where
fromRational x = constD (fromRational x)
recip (D x x ′) = D (recip x) (−x ′ / sqr x)

sqr :: Num a ⇒ a → a
sqr x = x ∗ x

instance Floating x ⇒ Floating (D x) where
π = constD π
exp (D x x ′) = D (exp x) (x ′ ∗ exp x)
log (D x x ′) = D (log x) (x ′ / x)
sqrt (D x x ′) = D (sqrt x) (x ′ / (2 ∗ sqrt x))
sin (D x x ′) = D (sin x) (x ′ ∗ cos x)
cos (D x x ′) = D (cos x) (x ′ ∗ (−sin x))
asin (D x x ′) = D (asin x) (x ′ / sqrt (1− sqr x))
acos (D x x ′) = D (acos x) (x ′ / (−sqrt (1− sqr x)))

. . .

Figure 2. First-order, scalar, functional automatic differentiation

AD implementation, packaged as a data type D and a collection
of numeric type class instances. Every operation acts on a regular
value and a derivative value in tandem. (The derivatives for | · | and
signum need more care at 0.)

As an example, define

f1 :: Floating a ⇒ a → a
f1 z = sqrt (3 ∗ sin z)

and try it out in GHCi:

*Main> f1 (D 2 1)
D 1.6516332160855343 (-0.3779412091869595)

To test correctness, here is a symbolically differentiated version:

f2 :: Floating a ⇒ a → D a
f2 x = D (f1 x) (3 ∗ cos x / (2 ∗ sqrt (3 ∗ sin x)))

Try it out in GHCi:

*Main> f2 2
D 1.6516332160855343 (-0.3779412091869595)

This AD implementation satisfies most of our criteria very well:

• It is simple to implement. The code matches the familiar laws
given in Figure 1. There are, however, some stylistic improve-
ments to be made in Section 4.

• It is simple to verify informally, because of its similarity to the
differentiation laws.

• It is convenient to use, as shown with f1 above.

• It is accurate, as shown above, producing exactly the same result
as the symbolic differentiated code, f2.

• It is efficient, involving no iteration or redundant computation.

The formulation in Figure 2 does less well with generality:

• It computes only first derivatives.
• It applies (correctly) only to functions over a scalar (one-

dimensional) domain.

Moreover, proving correctness is hampered by lack of a precise
specification. Later sections will address these shortcomings.

This paper’s technical contributions include the following.

• A prettier formulation of first-order and higher-order forward-
mode AD using function-based overloading (Sections 2, 3
and 4).

• A simple formal specification for AD (Section 5).
• A systematic derivation of first-order and higher-order forward-

mode AD from the specification (Sections 5.1 and 6).
• Reformulation of AD to general vector spaces including (but

not limited to) Rm → Rn, from the perspective of calculus
on manifolds (CoM) (Spivak 1971), and adaptation of the AD
derivation to this new setting (Section 10).

• General and efficient formulations of linear maps and bases of
vector spaces (using associated types and memo tries), since the
notion of linear map is at the heart of CoM (Appendix A).

2. Friendly and precise
To start, let’s make some cosmetic improvements, which will be
carried forward to the more general formulations as well.

Figure 1 has an informality that is typical of working math
notation, but we can state these properties more precisely. For now,
give differentiation the following higher-order type:

d :: (a → a)→ (a → a) -- first attempt

Then Figure 1 can be made more precise. For instance, the sum rule
is short-hand for

d (λx → u x + v x) ≡ λx → d u x + d v x

and the log rule means

d (λx → log (u x)) ≡ λx → d u x / u x

These more precise formulations are tedious to write and read.
Fortunately, there is an alternative to replacing Figure 1 with more
precise but less human-friendly forms. We can instead make the
human-friendly form become machine-friendly. The trick is to add
numeric overloadings for functions, so that numeric operations
apply point-wise. For instance,

u + v ≡ λx → u x + v x

log u ≡ λx → log (u x)

Then the “informal” laws in Figure 1 turn out to be well-defined and
exactly equivalent to the “more precise” long-hand versions above.
The Functor and Applicative (McBride and Paterson 2008) in-
stances of functions (shown in Figure 3) come in quite handy.

Figure 4 shows the instances needed to make Figure 1 well-
defined and correct exactly as stated, by exploiting the Functor
and Applicative instances in Figure 3. In fact, these instances work
for any applicative functor—a point that will become important in
Section 10.

We’ll soon see how to exploit this simple, precise notation to
improve the style of the definitions from Figure 2.

LambdaPix technical report 2009-02, March 2009 (minor revisions July 19, 2013) 3

instance Functor ((→) t) where
fmap f g = f ◦ g

instance Applicative ((→) t) where
pure = const
f ~ g = λt → (f t) (g t)

Consequently,

liftA2 h u v ≡ λx → h (u x) (v x)
liftA3 h u v w ≡ λx → h (u x) (v x) (w x)
. . .

Figure 3. Standard Functor and Applicative instances for func-
tions

instance Num b ⇒ Num (a → b) where
fromInteger = pure ◦ fromInteger
negate = fmap negate
(+) = liftA2 (+)
(∗) = liftA2 (∗)
| · | = fmap | · |
signum = fmap signum

instance Fractional b ⇒ Fractional (a → b) where
fromRational = pure ◦ fromRational
recip = fmap recip

instance Floating b ⇒ Floating (a → b) where
π = pure π
sqrt = fmap sqrt
exp = fmap exp
log = fmap log
sin = fmap sin

. . .

Figure 4. Numeric overloadings for function types

3. A scalar chain rule
Many of the laws in Figure 1 look similar: d (f u) = d u ∗ f ′ u
for some function f ′. The f ′ is not just some function; it is the
derivative of f . The reason for this pattern is that these laws follow
from the scalar chain rule for derivatives.

d (g ◦ f) x ≡ d g (f x) ∗ d f x

Using the (∗) overloading in Figure 4, the chain rule can also be
written as follows:

d (g ◦ f) ≡ (d g ◦ f) ∗ d f

All but the first two rules in Figure 1 then follow from the chain
rule. For instance,

d (sin u)
≡ { sin on functions }

d (sin ◦ u)
≡ { reformulated chain rule }

(d sin ◦ u) ∗ d u
≡ { d sin ≡ cos }

(cos ◦ u) ∗ d u
≡ { cos on functions }

cos u ∗ d u

The first two rules cannot be explained in terms of the scalar
chain rule, but can be explained via the generalized chain rule in
Section 10.

We can implement the scalar chain rule simply, via a new infix
operator, (./), whose arguments are a function and its derivative.

infix 0 ./
(./) :: Num a ⇒ (a → a)→ (a → a)→ (D a → D a)
(f ./ f ′) (D a a ′) = D (f a) (a ′ ∗ f ′ a)

This chain rule removes repetition from our instances. For in-
stance,

instance Floating x ⇒ Floating (D x) where
π = D π 0
exp = exp ./ exp
log = log ./ recip
sqrt = sqrt ./ λx → recip (2 ∗ sqrt x)
sin = sin ./ cos
cos = cos ./ λx → −sin x
asin = asin ./ λx → recip (sqrt (1− sqr x))
acos = acos ./ λx → −recip (sqrt (1− sqr x))

. . .

4. Prettier derivatives via function overloading
Section 2 gave numeric overloadings for functions in order to
make the derivative laws in Figure 1 precise, while retaining their
simplicity. We can use these overloadings to make the derivative
implementation simpler as well.

With the help of (./) and the overloadings in Figure 4, the code
in Figure 2 can be simplified to that in Figure 5.

5. What is automatic differentiation, really?
The preceding sections describe what AD is, informally, and they
present plausible implementations. Let’s now take a deeper look at
AD, in terms of three questions:

1. What does it mean, independently of implementation?

2. How do the implementation and its correctness flow gracefully
from that meaning?

3. Where else might we go, guided by answers to the first two
questions?

5.1 A model for automatic differentiation
How do we know whether this AD implementation is correct? We
can’t even begin to address this question until we first answer a
more fundamental one: what exactly does its correctness mean? In
other words, what specification must our implementation obey?

AD has something to do with calculating a function’s values and
derivative values simultaneously, so let’s start there.

toD :: (a → a)→ (a → D a)
toD f = λx → D (f x) (d f x)

Or, in point-free form,

toD f = liftA2 D f (d f)

thanks to the Applicative instance in Figure 3.
We have no implementation of d , so this definition of toD will

serve as a specification, not an implementation.
Since AD is structured as type class instances, one way to spec-

ify its semantics is by relating it to a parallel set of standard in-
stances, by a principle of type class morphisms, as described in (El-
liott 2009b,a), which is to say that the interpretation preserves the
structure of every method application. For AD, the interpretation

4 Beautiful differentiation

instance Num a ⇒ Num (D a) where
fromInteger = constD ◦ fromInteger
D x0 x ′ + D y0 y ′ = D (x0 + y0) (x ′ + y ′)
x@(D x0 x ′) ∗ y@(D y0 y ′) = D (x0 ∗ y0) (x ′ ∗ y + x ∗ y ′)

negate = negate ./ −1
| · | = | · | ./ signum
signum = signum ./ 0

instance Fractional a ⇒ Fractional (D a) where
fromRational = constD ◦ fromRational
recip = recip ./ −sqr recip

instance Floating a ⇒ Floating (D a) where
π = constD π
exp = exp ./ exp
log = log ./ recip
sqrt = sqrt ./ recip (2 ∗ sqrt)
sin = sin ./ cos
cos = cos ./ −sin
asin = asin ./ recip (sqrt (1− sqr))
acos = acos ./ recip (−sqrt (1− sqr))
atan = atan ./ recip (1 + sqr)
sinh = sinh ./ cosh
cosh = cosh ./ sinh
asinh = asinh ./ recip (sqrt (1 + sqr))
acosh = acosh ./ recip (−sqrt (sqr − 1))
atanh = atanh ./ recip (1− sqr)

Figure 5. Simplified derivatives using the scalar chain rule and
function overloadings

function is toD . The Num , Fractional , and Floating morphisms
provide the specifications of the instances:

toD (u + v) ≡ toD u + toD v
toD (u ∗ v) ≡ toD u ∗ toD v
toD (negate u) ≡ negate (toD u)
toD (sin u) ≡ sin (toD u)
toD (cos u) ≡ cos (toD u)

. . .

Note here that the numeric operations are applied to values of type
a → a on the left, and to values of type a → D a on the right.

These (morphism) properties exactly define correctness of any
implementation of AD, answering the first question:

What does it mean, independently of implementation?

5.2 Deriving an AD implementation
Equipped with a simple, formal specification of AD (numeric type
class morphisms), we can try to prove that the implementation
above satisfies the specification. Better yet, let’s do the reverse, us-
ing the morphism properties to derive (discover) the implementa-
tion, and prove it correct in the process. The derivations will then
provide a starting point for more ambitious forms of AD.

5.2.1 Constants and identity function
Value/derivative pairs for constant functions and the identity func-
tion are specified as such:

constD :: Num a ⇒ a → D a
idD :: Num a ⇒ a → D a

constD x ≡ toD (const x) ⊥
idD ≡ toD id

To derive implementations, expand toD and simplify.

constD x
≡ { specification }

toD (const x) ⊥
≡ { definition of toD }

D (const x ⊥) (d (const x) ⊥)
≡ { definition of const and its derivative }

D x 0

idD x
≡ { specification }

toD (id x)
≡ { definition of toD }

D (id x) (d id x)
≡ { definition of id and its derivative }

D x 1

In (Karczmarczuk 2001) and elsewhere, idD is called dVar and
is sometimes referred to as the “variable” of differentiation, a term
more suited to symbolic differentiation than to AD.

5.2.2 Addition
Specify addition on D by requiring that toD preserves its structure:

toD (u + v) ≡ toD u + toD v

Expand toD , and simplify both sides, starting on the left:

toD (u + v)
≡ { definition of toD }

liftA2 D (u + v) (d (u + v))
≡ { d (u + v) from Figure 1 }

liftA2 D (u + v) (d u + d v)
≡ { liftA2 on functions from Figure 3 }
λx → D ((u + v) x) ((d u + d v) x)
≡ { (+) on functions from Figure 4 }
λx → D (u x + v x) (d u x + d v x)

Then start over with the right-hand side:

toD u + toD v
≡ { (+) on functions from Figures 3 and 4 }
λx → toD u x + toD v x
≡ { definition of toD }
λx → D (u x) (d u x) + D (v x) (d v x)

We need a (+) on D that makes these two final forms equal, i.e.,

λx → D (u x + v x) (d u x + d v x)
≡
λx → D (u x) (d u x) + D (v x) (d v x)

An easy choice is

D a a ′ + D b b′ = D (a + b) (a ′ + b′)

This definition provides the missing link, completing the proof that

toD (u + v) ≡ toD u + toD v

5.2.3 Multiplication
The specification:

toD (u ∗ v) ≡ toD u ∗ toD v

Reason similarly to the addition case. Begin with the left hand side:

LambdaPix technical report 2009-02, March 2009 (minor revisions July 19, 2013) 5

toD (u ∗ v)
≡ { definition of toD }

liftA2 D (u ∗ v) (d (u ∗ v))
≡ { d (u ∗ v) from Figure 1 }

liftA2 D (u ∗ v) (d u ∗ v + d v ∗ u)
≡ { liftA2 on functions from Figure 3 }
λx → D ((u ∗ v) x) ((d u ∗ v + d v ∗ u) x)
≡ { (∗) and (+) on functions from Figure 4 }
λx → D (u x ∗ v x) (d u x ∗ v x + d v x ∗ u x)

Then start over with the right-hand side:

toD u ∗ toD v
≡ { (∗) on functions }
λx → toD u x ∗ toD v x
≡ { definition of toD }
λx → D (u x) (d u x) ∗D (v x) (d v x)

Sufficient definition:

D a a ′ ∗D b b′ = D (a ∗ b) (a ′ ∗ b + b′ ∗ a)

5.2.4 Sine
The specification:

toD (sin u) ≡ sin (toD u)

Simplify the left-hand side:

toD (sin u)
≡ { definition of toD }

liftA2 D (sin u) (d (sin u))
≡ { d (sin u) }

liftA2 D (sin u) (d u ∗ cos u)
≡ { liftA2 on functions }
λx → D ((sin u) x) ((d u ∗ cos u) x)
≡ { sin , (∗) and cos on functions }
λx → D (sin (u x)) (d u x ∗ cos (u x))

and then the right:

sin (toD u)
≡ { sin on functions }
λx → sin (toD u x)
≡ { definition of toD }
λx → sin (D (u x) (d u x))

So a sufficient definition is

sin (D a a ′) = D (sin a) (a ′ ∗ cos a)

Or, using the chain rule operator,

sin = sin ./ cos

The whole implementation can be derived in exactly this style,
answering the second question:

How does the implementation and its correctness flow
gracefully from that meaning?

6. Higher-order derivatives
Let’s now turn to the third question:

Where else might we go, guided by answers to the first two
questions?

Our next destination will be higher-order derivatives, followed in
Section 10 by derivatives over higher-dimensional domains.

Jerzy Karczmarczuk (2001) extended the D representation
above to an infinite “lazy tower of derivatives”.

data D a = D a (D a)

The toD function easily adapts to this new D type:

toD :: (a → a)→ (a → D a)
toD f x = D (f x) (toD (d f) x)

or

toD f = liftA2 D f (toD (d f))

The definition of toD comes from simplicity and type-correctness.
Similarly, let’s adapt the previous derivations and see what arises.

6.1 Addition
Specification:

toD (u + v) ≡ toD u + toD v

Simplify the left-hand side:

toD (u + v)
≡ { definition of toD }

liftA2 D (u + v) (toD (d (u + v)))
≡ { d (u + v) }

liftA2 D (u + v) (toD (d u + d v))
≡ { induction for toD / (+) }

liftA2 D (u + v) (toD (d u) + toD (d v))
≡ { definition of liftA2 and (+) on functions }
λx → D (u x + v x) (toD (d u) x + toD (d v) x)

and then the right:

toD u + toD v
≡ { (+) on functions }
λx → toD u x + toD v x
≡ { definition of toD }
λx → D (u x) (toD (d u x)) + D (v x) (toD (d v x))

Again, we need a definition of (+) on D that makes the LHS and
RHS final forms equal, i.e.,

λx → D (u x + v x) (toD (d u) x + toD (d v) x)
≡
λx → D (u x) (toD (d u) x) + D (v x) (toD (d v) x)

Again, an easy choice is

D a0 a ′ + D b0 b′ = D (a0 + b0) (a ′ + b′)

The “induction” step above can be made more precise in terms
of fixed-point introduction or the generic approximation lemma
(Hutton and Gibbons 2001). Crucially, the morphism properties are
assumed more deeply inside of the representation.

6.2 Multiplication
Simplifying on the left:

toD (u ∗ v)
≡ { definition of toD }

liftA2 D (u ∗ v) (toD (d (u ∗ v)))
≡ { d (u ∗ v) }

liftA2 D (u ∗ v) (toD (d u ∗ v + d v ∗ u))
≡ { induction for toD / (+) }

liftA2 D (u ∗ v) (toD (d u ∗ v) + toD (d v ∗ u))
≡ { induction for toD / (∗) }

liftA2 D (u ∗ v) (toD (d u) ∗ toD v +
toD (d v) ∗ toD u)

≡ { liftA2, (∗), (+) on functions }
λx → liftA2 D (u x ∗ v x) (toD (d u) x ∗ toD v x +

toD (d v) x ∗ toD u x)

6 Beautiful differentiation

and then on the right:

toD u ∗ toD v
≡ { definition of toD }

liftA2 D u (toD (d u)) ∗ liftA2 D v (toD (d v))
≡ { liftA2 and (∗) on functions }
λx → D (u x) (toD (d u) x) ∗D (v x) (toD (d v) x)

A sufficient definition is

a@(D a0 a ′) ∗ b@(D b0 b′) = D (a0 + b0) (a ′ ∗ b + b′ ∗ a)

because

toD u x ≡ D (u x) (toD (d u) x)

toD v x ≡ D (v x) (toD (d v) x)

Note the new element here. The entire D value (tower) is used
in building the derivative.

6.3 Sine
As usual sin shows a common pattern that applies to other unary
functions. Simplifying on the left-hand side:

toD (sin u)
≡ { definition of toD }

liftA2 D (sin u) (toD (d (sin u)))
≡ { d (sin u) }

liftA2 D (sin u) (toD (d u ∗ cos u))
≡ { induction for toD / (∗) }

liftA2 D (sin u) (toD (d u) ∗ toD (cos u))
≡ { induction for toD / cos }

liftA2 D (sin u) (toD (d u) ∗ cos (toD u))
≡ { liftA2, sin , cos and (∗) on functions }
λx → D (sin (u x)) (toD (d u) x ∗ cos (toD u x))

and then the right:

sin (toD u)
≡ { definition of toD }

sin (liftA2 D u (toD (d u)))
≡ { liftA2 and sin on functions }
λx → sin (D (u x) (toD (d u) x))

To make the left and right final forms equal, define

sin a@(D a0 a ′) ≡ D (sin a0) (a ′ ∗ cos a)

6.4 A higher-order, scalar chain rule
The derivation above for sin shows the form of a chain rule for
scalar derivative towers. It is very similar to the formulation in
Section 3. The only difference are that the second argument (the
derivative) gets applied to the whole tower instead of a regular
value, and so has type D a → D a instead of a → a .

infix 0 ./
(./) :: (Num a)⇒ (a → a)→ (D a → D a)→ (D a → D a)
(f ./ f ′) a@(D a0 a ′) = D (f a0) (a ′ ∗ f ′ a)

With this new definition of (./), all of the chain-rule-based defini-
tions in Figure 5 (first-order derivatives) carry over without change
to compute infinite derivative towers. For instance,

instance Floating a ⇒ Floating (D a) where
exp = exp ./ exp
log = log ./ recip
sqrt = sqrt ./ recip (2 ∗ sqrt)
sin = sin ./ cos
cos = cos ./ −sin
. . .

Now the operators and literals on the right of (./) are overloaded
for the type D a → D a . For instance, in the definition of sqrt ,

2 :: D a → D a
recip :: (D a → D a)→ (D a → D a)
(∗) :: (D a → D a)→ (D a → D a)

→ (D a → D a)

7. Optimizing zeros
The derivative implementations above are simple and powerful, but
have an efficiency problem. For polynomial functions (constant,
linear, quadratic, etc), all but a few derivatives are zero. Consider-
able wasted effort can go into multiplying and adding zero deriva-
tives.

Consider, for instance, multiplying a constant by a sin function.
Let’s look first at the situation with first-order derivatives:

2 ∗ sin (idD x)
≡ D 2 0 ∗ sin (D x 1)
≡ D 2 0 ∗D (sin x) (1 ∗ cos x)
≡ D (2 ∗ sin x) (0 ∗ sin x + (1 ∗ cos x) ∗ 2)

In this case there is a wasted sin x , multiplication by zero,
and addition to zero. The situation is much worse with higher
derivatives:

2 ∗ sin (idD x)
≡ D 2 0 ∗ sin (D x 1)
≡ D 2 0 ∗D (sin x) (1 ∗ cos (idD x))
≡ D (2 ∗ sin x) (0 ∗ sin (idD x) + (1 ∗ cos (idD x)) ∗ 2)

In the derivative part of this last expression, every factor is an
infinite derivative towers: 0, 1, 2, sin (idD x) and cos (idD x).

Jerzy Karczmarczuk (2001) and others suggest using two con-
structors, one for constants and one for non-constants. In other
words, one for zero derivative and one for non-zero derivative. In-
stead, let’s have only one D constructor but have the derivative part
be optional.

For simplicity, consider the first-order case. Replace

data D a = D a a -- first-order, non-optimized

with

data D a = D a (Maybe a) -- first-order, optimized

The constant and identity cases change accordingly:

constD :: Num a ⇒ a → D a
constD x = D x Nothing

idD :: Num a ⇒ a → D a
idD x = D x (Just 1)

In order to keep the numeric instances simple, define versions
of addition and multiplication on these optional derivatives.

infixl 6 +̊
(+̊) :: Num a ⇒ Maybe a → Maybe a → Maybe a
Nothing +̊ b′ = b′

a ′ +̊ Nothing = a ′

Just a ′ +̊ Just b′ = Just (a ′ + b′)

infixl 7 ∗̊
(̊∗) :: Num a ⇒ Maybe a → a → Maybe a
Nothing ∗̊ = Nothing
Just a ′ ∗̊ b = Just (a ′ ∗ b)

The (+̊) definition mirrors the Monoid instance of Maybe (Sum a);
while the (̊∗) definition is a fmap using the Functor instance of
Maybe .

LambdaPix technical report 2009-02, March 2009 (minor revisions July 19, 2013) 7

The changes required for AD are minimal: simply replace addi-
tion of derivatives and multiplication by derivatives with (+̊) and
(̊∗) in the chain rule

infix 0 ./
(./) :: (Num a)⇒ (a → a)→ (a → a)→ (D a → D a)
(f ./ f ′) (D a a ′) = D (f a) (a ′ ∗̊ f ′ a)

and in the derivative of sums and products

D a a ′ + D b b′ = D (a + b) (a ′ +̊ b′)
D a a ′ ∗ D b b′ = D (a ∗ b) (a ′ ∗̊ b +̊ b′ ∗̊ a)

Optimizing higher-order differentiation is just as easy, using
these same replacements. The new representation:

data D a = D a (Maybe (D a)) -- higher-order, optimized

8. What is a derivative, really?
Section 6 showed how easily and beautifully one can construct
an infinite tower of derivative values in Haskell programs, while
computing plain old values. The trick (from (Karczmarczuk 2001))
was to overload numeric operators to operate on the following
(co)recursive type:

data D b = D b (D b)

This representation, however, works only when differentiating
functions from a one-dimensional domain. The reason for this
limitation is that only in those cases can the type of derivative
values be identified with the type of regular values.

Consider a function f :: R2 → R. The value of f at a do-
main value (x , y) has type R, but the derivative of f consists of
two partial derivatives. Moreover, the second derivative consists of
four partial second-order derivatives (or three, depending how you
count). A function f :: R2 → R3 also has two partial derivatives at
each point (x , y), each of which is a triple. That pair of triples is
commonly written as a three-by-two matrix.

Each of these situations has its own derivative shape and its own
chain rule (for the derivative of function compositions), using plain-
old multiplication, scalar-times-vector, vector-dot-vector, matrix-
times-vector, or matrix-times-matrix. Second derivatives are more
complex and varied.

How many forms of derivatives and chain rules are enough?
Are we doomed to work with a plethora of increasingly complex
types of derivatives, as well as the diverse chain rules needed to
accommodate all compatible pairs of derivatives? Fortunately, not.
There is a single, simple, unifying generalization. By reconsidering
what we mean by a derivative value, we can see that these various
forms are all representations of a single notion, and all the chain
rules mean the same thing on the meanings of the representations.

Let’s now look at unifying view of derivatives, which is taken
from calculus on manifolds (Spivak 1971). To get an intuitive sense
of what’s going on with derivatives in general, we’ll look at some
examples.

8.1 One dimension
Start with a simple function on real numbers:

f1 :: R→ R
f1 x = x2 + 3 ∗ x + 1

Writing the derivative of a function f as d f , let’s now consider
the question: what is d f1? We might say that

d f1 x = 2 ∗ x + 3

so e.g., d f1 5 = 13. In other words, f1 is changing 13 times as fast
as its argument, when its argument is passing 5.

Rephrased yet again, if dx is a very tiny number, then f1 (5 +
dx) − f1 5 is very nearly 13 ∗ dx . If f1 maps seconds to meters,
then d f1 5 is 13 meters per second. So already, we can see that the
range of f (meters) and the range of d f (meters/second) disagree.

8.2 Two dimensions in and one dimension out
As a second example, consider a two-dimensional domain:

f2 :: R2 → R
f2 (x , y) = 2 ∗ x ∗ y + 3 ∗ x + 5 ∗ y + 7

Again, let’s consider some units, to get a guess of what kind of
thing d f2 (x , y) really is. Suppose that f2 measures altitude of
terrain above a plane, as a function of the position in the plane.
(So f2 is a height field.) You can guess that d f (x , y) is going to
have something to do with how fast the altitude is changing, i.e. the
slope, at (x , y). But there is no single slope. Instead, there’s a slope
for every possible compass direction (a hiker’s degrees of freedom).

Now consider the conventional answer to what is d f2 (x , y).
Since the domain of f2 is R2, it has two partial derivatives:

d f2 (x , y) = (2 ∗ y + 3, 2 ∗ x + 5)

In our example, these two pieces of information correspond to two
of the possible slopes. The first is the slope if heading directly east,
and the second if directly north (increasing x and increasing y ,
respectively).

What good does it do our hiker to be told just two of the
infinitude of possible slopes at a point? The answer is perhaps
magical: for well-behaved terrains, these two pieces of information
suffice to calculate all (infinitely many) slopes, with just a bit of
math. Every direction can be described as partly east and partly
north (negatively for westish and southish directions). Given a
direction angle ϑ (where east is zero and north is 90 degrees), the
east and north components are cos ϑ and sin ϑ, respectively. When
heading in the direction ϑ, the slope will be a weighted sum of the
north-going slope and the east-going slope, where the weights are
these north and south components.

Instead of angles, our hiker may prefer thinking directly about
the north and east components of a tiny step from the position
(x , y). If the step is small enough and lands dx to the east and dy to
the north, then the change in altitude, f2 (x +dx , y+dy)−f2 (x , y)
is very nearly equal to (2 ∗ y + 3) ∗ dx + (2 ∗ x + 5) ∗ dy . If we
use (<·>) to mean dot (inner) product, then this change in altitude
is d f2 (x , y)<·> (dx , dy).

From this second example, we can see that the derivative value
is not a range value, but also not a rate-of-change of range values.
It’s a pair of such rates plus the know-how to use those rates to
determine output changes.

8.3 Two dimensions in and three dimensions out
Next, imagine moving around on a surface in space, say a torus, and
suppose that the surface has grid marks to define a two-dimensional
parameter space. As our hiker travels around in the 2D parameter
space, his position in 3D space changes accordingly, more flexibly
than just an altitude. The hiker’s type is then

f3 :: R2 → R3

At any position (s, t) in the parameter space, and for every choice
of direction through parameter space, each of the coordinates of
the position in 3D space has a rate of change. Again, if the function
is mathematically well-behaved (differentiable), then all of these
rates of change can be summarized in two partial derivatives. This
time, however, each partial derivative has components in X , Y ,
and Z, so it takes six numbers to describe the 3D velocities for all
possible directions in parameter space. These numbers are usually
written as a 3-by-2 matrix m (the Jacobian of f3). Given a small

8 Beautiful differentiation

parameter step (dx , dy), the resulting change in 3D position is
equal to the product of the derivative matrix and the difference
vector, i.e., m ‘timesVec‘ (dx , dy).

8.4 A unifying perspective
The examples above use different representations for derivatives:
scalar numbers, a vector (pair of numbers), and a matrix. Common
to all of these representations is the ability to turn a small step in
the function’s domain into a resulting step in the range.

• In f1, the (scalar) derivative c means (c∗), i.e., multiply by c.
• In f2, the (vector) derivative v means (v<·>).
• In f3, the (matrix) derivative m means (m‘timesVec‘).

So, the common meaning of these derivative representations is
a function, and not just any function, but a linear function–often
called a “linear map” or “linear transformation”.

Now what about the different chain rules, saying to com-
bine derivative values via various kinds of products (scalar/scalar,
scalar/vector, vector/vector dot, matrix/vector)? Each of these prod-
ucts implements the same abstract notion, which is composition of
linear maps.

9. The general setting: vector spaces
Linear maps (transformations) lie at the heart of generalized differ-
entiation. Talking about linearity requires a few simple operations,
which are encapsulated in the the abstract interface known from
math as a vector space.

Vector spaces specialize the more general notion of a group
which as an associative and commutative binary operator, an iden-
tity, and inverses. For convenience, we’ll specialize to an additive
group which provides addition-friendly names:

class AdditiveGroup v where
0 :: v
(+) :: v → v → v
negate :: v → v

Next, given a field s , a vector space over s adds a scaling
operation:

class AdditiveGroup v ⇒ Vector s v where
(·) :: s → v → v

In many cases, we’ll want to add inner (dot) products as well, to
form an inner product space

class Vector s v ⇒ InnerSpace s v where
(<·>) :: v → v → s

Instances include Float , Double , and Complex , as well as tuples
of vectors, and functions with vector ranges. (By “vector” here, I
mean any instance of Vector , recursively). For instance, here are
instances for functions:

instance AdditiveGroup v ⇒ AdditiveGroup (a → v) where
0 = pure 0
(+) = liftA2 (+)
negate = fmap negate

instance Vector s v ⇒ Vector s (a → v) where
(·) s = fmap (s·)

These method definitions have a form that can be used with any
applicative functor.

Other useful operations can be defined in terms of these meth-
ods, e.g., subtraction for additive groups, and linear interpolation
for vector spaces.

Several familiar types are vector spaces:

• Trivially, the unit type is an additive group and is a vector space
over every field.

• Scalar types are vector spaces over themselves, with (·) ≡ (∗).
• Tuples add and scale component-wise.
• Functions add and scale point-wise, i.e., on their range.

Appendix A gives an efficient representation of linear maps via
an associated type (Chakravarty et al. 2005) of bases of vector
spaces. Without regard to efficiency, we could instead represent lin-
ear maps as a simple wrapper around functions, with the invariant
that the contained function is indeed linear:

newtype u (v = LMap (u → v) -- simple & inefficient
deriving (AdditiveGroup,Vector)

Assume the following abstract interface, where linear and lapply
convert between linear functions and linear maps, and idL and (◦·)
are identity and composition.

linear :: (Vector s u,Vector s v)⇒ (u → v)→ (u (v)

lapply :: (Vector s u,Vector s v)⇒ (u (v)→ (u → v)

idL :: (Vector s u)⇒ u (u

(◦·) :: (Vector s u,Vector s v)⇒
(v (w)→ (u (v)→ (u (w)

Another operation plays the role of dot products, as used in com-
bining partial derivatives.

(�) :: (Vector s u,Vector s v ,Vector s w)⇒
(u (w)→ (v (w)→ ((u, v) (w)

Semantically,

(l �m) ‘lapply ‘ (da, db) ≡ l ‘lapply ‘ da + m ‘lapply ‘ db

which is linear in (da, db). Compare with the usual definition of
dot products:

(s ′, t ′)<·> (da, db) = s ′ · da + t ′ · db

Dually to (�), another way to form linear maps is by “zipping”:

(?) :: (w (u)→ (w (v)→ (w ((u, v))

which will reappear in generalized form in Section 10.3.

10. Generalized derivatives
We’ve seen what AD means and how and why it works for a
specialized case of the derivative of a → a for a one-dimensional
(scalar) type a . Now we’re ready to tackle the specification and
derivation of AD in the much broader setting of vector spaces.

Generalized differentiation introduces linear maps:

d :: (Vector s u,Vector s v)⇒
(u → v)→ (u → (u (v))

In this setting, there is a single, universal chain rule (Spivak 1971):

d (g ◦ f) x ≡ d g (f x) ◦· d f x

where (◦·) is composition of linear maps. More succinctly,

d (g ◦ f) ≡ (d g ◦ f) ◦̂· d f

using lifted composition:

(◦̂·) = liftA2 (◦·)

10.1 First-order generalized derivatives
The new type of value/derivative pairs has two type parameters:

data a . b = D b (a (b)

LambdaPix technical report 2009-02, March 2009 (minor revisions July 19, 2013) 9

As in Section 5.1, the AD specification centers on a function,
toD , that samples a function and its derivative at a point. This time,
it will be easier to swap the parameters of toD :

toD :: (Vector s u,Vector s v)⇒ u → (u → v)→ u . v
toDx f = D (f x) (d f x)

In Sections 5 and 6, AD algorithms were derived by saying that
toD is a morphism over numeric types. The definitions of these
morphisms and their proofs involved one property for each method.
In the generalized setting, we can instead specify and prove three
simple morphisms, from which all of the others follow effortlessly.

We already saw in Figure 4 that the numeric methods for func-
tions have a simple, systematic form. They’re all defined using
fmap, pure , or liftA2 in a simple, regular pattern, e.g.,

fromInteger = pure ◦ fromInteger
(∗) = liftA2 (∗)
sin = fmap sin

. . .

Numeric instances for many other applicative functors can be
given exactly the same method definitions. For instance, Maybe a ,
Either a b, a → b, tries , and syntactic expressions (Elliott
2009a).

Could these same definitions work on a . b, as an implementa-
tion of AD?

Consider one example:

sin = fmap sin

For now, assume this definition and look at the corresponding
numeric morphism property, i.e.,

toDx (sin u) ≡ sin (toDx u)

Expand the definitions of sin on each side, remembering that the
left sin is on functions, as given in Figure 4.

toDx (fmap sin u) ≡ fmap sin (toDx u)

which is a special case of the Functor morphism property for
toDx. Therefore, proving the Functor morphism property will
cover all of the definitions that use fmap.

The other two definition styles (using pure and liftA2) work out
similarly. For example, if toDx is an Applicative morphism, then

toDx (fromInteger n)
≡ { fromInteger for a . b }

toDx (pure (fromInteger n))
≡ { toDx is an Applicative morphism }

pure (fromInteger n)
≡ { fromInteger for functions }

fromInteger n

toDx (u ∗ v)
≡ { (∗) for a . b }

toDx (liftA2 (∗) u v)
≡ { toDx is an Applicative morphism }

liftA2 (∗) (toDx u) (toDx v)
≡ { (∗) on functions }

toDx u ∗ toDx v

Now we can see why these definitions succeed so often: For
applicative functors F and G , and function µ :: F a → G a , if
µ is a morphism on Functor and Applicative , and the numeric
instances for both F and G are defined as in Figure 4, then µ is a
numeric morphism.

Thus, we have only to come up with Functor and Applicative
instances for (.) u such that toDx is a Functor and Applicative
morphism.

10.2 Functor
First look at Functor . The morphism condition (naturality), η-
expanded, is

fmap g (toDx f) ≡ toDx (fmap g f)

Using the definition of toD on the left gives

fmap g (D (f x) (d f x))

Simplifying the RHS,

toDx (fmap g f)
≡ { definition of toD }

D ((fmap g f) x) (d (fmap g f) x)
≡ { definition of fmap for functions }

D ((g ◦ f) x) (d (g ◦ f) x)
≡ { generalized chain rule }

D (g (f x)) (d g (f x) ◦· d f x)

So the morphism condition is equivalent to

fmap g (D (f x) (d f x)) ≡ D (g (f x)) (d g (f x) ◦· d f x)

Now it’s easy to find a sufficient definition:

fmap g (D fx dfx) = D (g fx) (d g fx ◦· dfx)

This definition is not executable, however, since d is not. Fortu-
nately, all uses of fmap in the numeric instances involve functions
g whose derivatives are known statically and so can be statically
substituted for applications of d . To make the static substitution
more apparent, refactor the fmap definition, as in Section 3.

instance Functor ((.a)) where fmap g = g ./ d g

(./) :: (Vector s u,Vector s v ,Vector s w)⇒
(v → w)→ (v → (v (w))→ (u . v)→ (u . w)

(g ./ dg) (D fx dfx) = D (g fx) (dg fx ◦· dfx)

This new definition makes it easy to transform the fmap-based
definitions systematically into effective versions. After inlining this
definition of fmap, the fmap-based definitions look like

sin = sin ./ d sin
sqrt = sqrt ./ d sqrt

. . .

Every remaining use of d is applied to a function whose derivative
is known, so we can replace each use.

sin = sin ./ cos
sqrt = sqrt ./ recip (2 ∗ sqrt)
. . .

Now we have an executable implementation again.

10.3 Applicative/Monoidal
Functor is handled, which leaves just Applicative (McBride and
Paterson 2008):

class Functor f ⇒ Applicative f where
pure :: a → f a
(~) :: f (a → b)→ f a → f b

The morphism properties will be easier to demonstrate in terms of
a type class for (strong) lax monoidal functors:

class Monoidal f where
unit :: f ()
(?) :: f a → f b → f (a, b)

For instance, the function instance is

10 Beautiful differentiation

instance Monoidal ((→) a) where
unit = const ()
f ? g = λx → (f x , g x)

The Applicative class is equivalent to Functor+Monoidal
(McBride and Paterson 2008, Section 7). To get from Functor and
Monoidal to Applicative , define

pure a = fmap (const a) unit
fs ~ xs = fmap app (fs ? xs)

where

app :: (a → b, a)→ b
app (f , x) = f x

I’ve kept Monoidal independent of Functor , unlike (McBride and
Paterson 2008), because the linear map type has unit and (?) but
is not a functor. (Only linear functions can be mapped over a linear
map.)

The shift from Applicative to Monoidal makes the specifica-
tion of toD simpler, again as a morphism:

unit ≡ toDx unit
toDx f ? toDx g ≡ toDx (f ? g)

Filling in the definition of toD ,

unit ≡ D (unit x) (d unit x)

D (f x) (d f x) ?D (g x) (d g x)
≡ D ((f ? g) x) (d (f ? g) x)

The reason for switching from Applicative to Monoidal is that
differentiation is very simple with the latter:

d unit ≡ const 0

d (f ? g) ≡ d f ?̂ d g

The (?̂) on the right is a variant of (?), lifted to work on functions
(or other applicative functors) that yield linear maps:

(?̂) = liftA2 (?)

We cannot simply pair linear maps to get a linear map. Instead, (?)
pairs linear maps point-wise.

Now simplify the morphism properties, using unit and (?) for
functions, and their derivatives:

unit ≡ D () 0

D (f x) (d f x) ?D (g x) (d g x)
≡ D (f x , g x) (d f x ? d g x)

So the following simple definitions suffice:

unit = D () 0

D fx dfx ?D gx dgx = D (fx , gx) (dfx ? dgx)

The switch from Applicative to Monoidal introduced fmap app
(in the definition of (~)). Because of the meaning of fmap on u.v ,
we will need a derivative for app. Fortunately, app is fairly easy to
differentiate. Allowing only x to vary (while holding f constant),
f x changes just as f changes at x , so the second partial derivative
of app at (f , x) is d f x . Allowing only f to vary, f x is linear in
f , so it (considered as a linear map) is its own derivative. That is,
using ($) as infix function application,

d ($ x) f ≡ linear ($ x)

d (f $) x ≡ d f x

As mentioned in Section 9, (�) takes the place of dot product for
combining contributions from partial derivatives, so

d app (f , x) = linear ($ x) � d f x

There is an alternative to using app. Recall that app was intro-
duced in interpreting (~) from the Applicative interface in terms
of fmap and (?). The numeric instances only use (~) indirectly,
via liftA2. We can instead define liftA2 more directly:

liftA2 h as bs = fmap (uncurry h) (as ? bs)

Now we need to differentiate uncurry h instead of app, which is
equivalent to taking the two partial derivatives of h . For instance,

d (uncurry (+)) ≡ dAdd
d (uncurry (∗)) ≡ dMul

where

dAdd (x , y) = idL � idL

dMul (x , y) = linear (∗y) � linear (x∗)

The usual derivative rules for (+) and (∗) follow from the
liftA2-based definitions, and so needn’t be programmed explicitly.

D x x ′ + D y y ′

≡ liftA (+) (D x x ′) (D y y ′)
≡ fmap (uncurry (+)) (D x x ′ ?D y y ′)
≡ fmap (uncurry (+)) (D (x , y) (x ′ ? y ′))
≡ D (uncurry (+) (x , y)) (d (uncurry (+)) (x , y) ◦·(x ′ ? y ′))
≡ D (x + y) (d (uncurry (+)) (x , y) ◦·(x ′ ? y ′))
≡ D (x + y) ((idL � idL) ◦·(x ′ ? y ′))
≡ D (x + y) (x ′ + y ′)

D x x ′ ∗D y y ′

≡ liftA (∗) (D x x ′) (D y y ′)
≡ fmap (uncurry (∗)) (D x x ′ ?D y y ′)
≡ fmap (uncurry (∗)) (D (x , y) (x ′ ? y ′))
≡ D (uncurry (∗) (x , y)) (d (uncurry (∗)) (x , y) ◦·(x ′ ? y ′))
≡ D (x ∗ y) (d (uncurry (∗)) (x , y) ◦·(x ′ ? y ′))
≡ D (x ∗ y) ((linear (∗y) � linear (x∗)) ◦·(x ′ ? y ′))
≡ D (x ∗ y) (x ′ ∗ y + x ∗ y ′)

10.4 Fun with rules
Let’s back up to our more elegant method definitions:

(∗) = liftA2 (∗)
sin = fmap sin
sqrt = fmap sqrt

. . .

Section 10.2 made these definitions executable in spite of their
appeal to the non-executable d by (a) refactoring fmap to split
the d from the residual function (./), (b) inlining fmap, and (c)
rewriting applications of d with known derivative rules.

Now let’s get the compiler to do these steps for us. Figure 6 list
the derivatives of known functions as rewrite rules (Peyton Jones
et al. 2001), minus rule names. Notice that these definitions are
simpler and more modular than the standard differentiation rules,
as they do not have the chain rule mixed in. For instance, compare
(a) d sin = cos , (b) d (sin u) = cos u ∗ d u , and (c)
d (sin u) x = cos u x ∗ d u x . With these rules in place, we can
use the incredibly simple fmap-based definitions of our methods.

The definition of fmap must get inlined so as to reveal the d
applications, which then get rewritten according to the rules. For-
tunately, the fmap definition is tiny, which encourages its inlining.
One could add an INLINE pragma for emphasis.

The current implementation of rewriting in GHC is somewhat
fragile, so it may be a while before this sort of technique is robust
enough for every day use.

LambdaPix technical report 2009-02, March 2009 (minor revisions July 19, 2013) 11

{- RULES

d (uncurry (+)) = dAdd
d (uncurry (∗)) = dMul
d negate = − 1
d | · | = signum
d signum = 0
d recip = − sqr recip
d exp = exp
d log = recip
d sqrt = recip (2 ∗ sqrt)
d sin = cos
d cos = − sin
d asin = recip (sqrt (1− sqr))
d acos = recip (−sqrt (1− sqr))
d atan = recip (1 + sqr)
d sinh = cosh
d cosh = sinh
d asinh = recip (sqrt (1 + sqr))
d acosh = recip (−sqrt (sqr − 1))
d atanh = recip (1− sqr)

-}

Figure 6. Derivatives as rewrite rules

10.5 A problem with type constraints
There is a problem with the Functor and Monoidal (and hence
Applicative) instances derived in above. In each case, the method
definitions type-check only for type parameters that are vector
spaces. The standard definitions of Functor and Applicative in
Haskell do not allow for such constraints. The problem is not in the
categorical notions, but in their specialization (often adequate and
convenient) in the standard Haskell library. For this reason, we’ll
need a variation on these standard classes, either specific for use
with vector spaces or generalized. The definitions above work with
the following variations, parameterized over a scalar type s:

class Functor s f where
fmap :: (Vector s u,Vector s v)⇒

(u → v)→ (f u → f v)

class Functor s f ⇒ Monoidal s f where
unit :: f ()
(?) :: (Vector s u,Vector s v)⇒

f u → f v → f (u, v)

While we are altering the definition of Functor , we can make
another change. Rather than working with any function, limit the
class to accepting only differentiable functions. A simple represen-
tation of a differentiable function is a function and its derivative:

data u ↪→ v = FD (u → v) (u → (u (v))

This representation allows a simple and effective implementation
of d :

d :: (Vector s u,Vector s v)⇒
(u ↪→ v)→ (u → (u (v))

d (FD f ′) = f ′

With these definitions, the simple numeric method definitions (via
fmap and liftA2) are again executable, provided that the functions
passed to fmap are replaced by differentiable versions.

10.6 Generalized derivative towers
To compute infinitely many derivatives, begin with a derivative
tower type and a theoretical means of constructing towers from a
function:

data u .∗ v = D v (u .∗(u (v))

toD :: (Vector s u,Vector s v)⇒ u → (u → v)→ u .∗ v
toDx f = D (f x) (toDx (d f))

The naturality (functor morphism) property is

fmap g ◦ toDx ≡ toDx ◦ fmap g

As before, let’s massage this specification into a form that is easy
to satisfy. First, η-expand, and fill in the definition of toD :

fmap g (D (f x) (toDx (d f)))
≡ D ((fmap g f) x) (toDx (d (fmap g f)))

Next, simplify the right side, inductively assuming the Functor
and Applicative morphisms inside the derivative part of D .

D ((g ◦ f) x) (toDx (d (g ◦ f)))
≡ { Generalized chain rule }

D (g (f x)) (toDx ((d g ◦ f) ◦̂· d f))
≡ { liftA2 morphism, (◦̂·) ≡ liftA2 (◦·) }

D (g (f x)) (toDx (d g ◦ f) ◦̂· toDx (d f)))
≡ { fmap ≡ (◦) on functions }

D (g (f x)) (toDx (fmap (d g) f) ◦̂· toDx (d f)))
≡ { fmap morphism }

D (g (f x)) (fmap (d g) (toDx f) ◦̂· toDx (d f))

Summarizing, toDx is a Functor morphism iff

fmap g (D (f x) (toDx (d f)))
≡ D (g (f x)) (fmap (d g) (toDx f) ◦̂· toDx (d f))

Given this form of the morphism condition, and recalling the defi-
nition of toD , it’s easy to find a fmap definition for (.∗):

fmap g fxs@(D fx dfx) = D (g fx) (fmap (d g) fxs ◦̂· dfx)

The only change from (.) is (◦̂·) in place of (◦·).
Again, this definition can be refactored, followed by replacing

the non-effective applications of d with known derivatives. Alter-
natively, replace arbitrary functions with differentiable functions
(u ↪→ v), as in Section 10.5, so as to make this definition exe-
cutable as is.

The Monoidal derivation goes through as before, adding an
induction step. The instance definition is exactly as with (.) above.
The only difference is using (?̂) in place of (?).

instance Vector s u ⇒ Monoidal s ((.∗) u) where
unit = D () 0
D u u ′ ?D v v ′ = D (u, v) (u ′ ?̂ v ′)

To optimize out zeros in either u . v or u .∗ v , add a Maybe
around the derivative part of the representation, as described in Sec-
tion 7. The zero-optimizations are entirely localized to the defini-
tions of fmap and (?). To handle the Nothing vs Just , add an
extra fmap in the fmap definition, and add another liftA2 in the
(?) definition. For instance,

data u .∗ v = D v (Maybe (u .∗(u (v)))

fmap g fxs@(D fx dfx) =
D (g fx) (fmap (fmap (d g) fxs ◦̂·) dfx)

11. Related work
Jerzy Karczmarczuk (2001) first demonstrated the idea of an infi-
nite “lazy tower of derivatives”, giving a lazy functional implemen-
tation. His first-order warm-up was similar to Figure 2, with the

12 Beautiful differentiation

higher-order (tower) version somewhat more complicated by the
introduction of streams of derivatives. Building on Jerzy’s work,
this paper implements the higher-order case with the visual sim-
plicity of the first-order formulation (Figure 2). It also improves on
that simplicity by means of numeric instances for functions, lead-
ing to Figure 5. Another improvement is optimizing zeros without
cluttering the implementation (Section 7). In contrast, (Karczmar-
czuk 2001) and others had twice as many cases to handle for unary
methods, and four times as many for binary.

Jerzy’s AD implementation was limited to scalar types, al-
though he hinted at a vector extension in (Karczmarczuk 1999),
using an explicit list of partial derivatives.

These hints were later fleshed out for the higher-order case in
(Foutz 2008), replacing lists with (nested) sparse arrays (repre-
sented as fast integer maps). The constant-optimizations there com-
plicated matters but had an advantage over the version in this paper.
In addition to having constant vs non-constant constructors (and
hence many more cases to define), each sparse array can have any
subset of its partial derivatives missing, avoiding still more mutipli-
cations and additions with zero. To get the same benefit, one might
use a linear map representation based on partial functions.

Pearlmutter and Siskind (2007) also extended higher-order
forward-mode AD to the multi-dimensional case. They remarked:

The crucial additional insight here, both for developing the
extension and for demonstrating its correctness, involves re-
formulating Karczmarczuk’s method using Taylor expan-
sions instead of the chain rule.

The expansions involve introducing non-standard “ε” values, which
come from dual numbers. Each ε must be generated, managed,
and carefully distinguished from others, so as to avoid problems
of nested use described and addressed in (Siskind and Pearlmutter
2005, 2008). In contrast, the method in this paper is based on the
chain rule, while still handling multi-dimensional AD. I don’t know
whether the tricky nesting problem arises with the formulation in
this paper (based on linear maps).

Henrik Nilsson (2003) extended higher-order AD to work on
a generalized notion of functions that includes Dirac impulses,
allowing for more elegant functional specification of behaviors
involving instantaneous velocity changes. These derivatives were
for functions over a scalar domain (time).

Doug McIlroy (2001) demonstrated some beautiful code for
manipulating infinite power series. He gave two forms, Horner and
Maclaurin, and their supporting operations. The MacLaurin form is
especially similar, under the skin, to working with lazy derivative
towers. Doug also examined efficiency and warns that “the product
operators for Maclaurin and Horner forms respectively take O(2n)
and O(n2) coefficient-domain operations to compute n terms.” He
goes on to suggest computing products by conversion to and from
the Horner representation. I think the exponential complexity can
apply in the formulations in (Karczmarczuk 2001) and in this paper.

I am not aware of work on AD for general vector spaces, nor on
deriving AD from a specification.

12. Future work
Reverse and mixed mode AD. Forward-mode AD uses the chain
rule in a particular way: in compositions g ◦ f , g is always a primi-
tive function, while f may be complex. Reverse-mode AD uses the
opposite decomposition, with f being primitive, while mixed-mode
combines styles. Can the specification in this paper be applied, as
is, to these other AD modes? Can the derivations be successfully
adapted to yield general, efficient, and elegant implementations of
reverse and mixed mode AD, particularly in the general setting of
vector spaces?

Richer manifold structure. Calculus on vector spaces is the foun-
dation of calculus on rich manifold strucures stitched together out
of simpler pieces (ultimately vector spaces). Explore differentiation
in the setting of these rich structures.

Efficiency analysis. Forward-mode AD for Rn → R is described
as requiring n passes and therefore inefficient. The method in this
paper makes only one pass. That pass manipulates linear maps
instead of scalars, which could be as expensive as n passes, but
it might not need to be.

13. Acknowledgments
I’m grateful for comments from Anonymous, Barak Pearlmutter,
Mark Rafter, and Paul Liu.

References
Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton-

Jones. Associated type synonyms. In ICFP ’05: Proceedings
of the tenth ACM SIGPLAN international conference on Func-
tional programming, pages 241–253. ACM Press, 2005.

Conal Elliott. Denotational design with type class morphisms.
Technical Report 2009-01, LambdaPix, March 2009a. URL
http://conal.net/papers/type-class-morphisms.

Conal Elliott. Push-pull functional reactive programming. In
Proceedings of the Haskell Symposium, 2009b.

Jason Foutz. Higher order multivariate automatic dif-
ferentiation in haskell. Blog post, February 2008.
URL http://metavar.blogspot.com/2008/02/
higher-order-multivariate-automatic.html.

Ralf Hinze. Generalizing generalized tries. Journal of Functional
Programming, 10(04):327–351, 2000.

Graham Hutton and Jeremy Gibbons. The generic approximation
lemma. Information Processing Letters, 79(4):197–201, 2001.

Jerzy Karczmarczuk. Functional coding of differential forms. In
Scottish Workshop on Functional Programming, 1999.

Jerzy Karczmarczuk. Functional differentiation of computer pro-
grams. Higher-Order and Symbolic Computation, 14(1), 2001.

Conor McBride and Ross Paterson. Applicative programming with
effects. Journal of Functional Programming, 18(1):1–13, 2008.

M. Douglas McIlroy. The music of streams. Information Process-
ing Letters, 77(2-4):189–195, 2001.

Henrik Nilsson. Functional automatic differentiation with Dirac
impulses. In Proceedings of the Eighth ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 153–164,
Uppsala, Sweden, August 2003. ACM Press.

Barak A. Pearlmutter and Jeffrey Mark Siskind. Lazy multivariate
higher-order forward-mode AD. In Proceedings of the 2007
Symposium on Principles of Programming Languages, pages
155–60, Nice, France, January 2007.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing
by the rules: rewriting as a practical optimisation technique in
ghc. In In Haskell Workshop. ACM SIGPLAN, 2001.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Perturbation con-
fusion and referential transparency: Correct functional imple-
mentation of forward-mode AD. In Implementation and Appli-
cation of Functional Languages, IFL’05, September 2005.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Nesting forward-
mode AD in a functional framework. Higher Order Symbolic
Computation, 21(4):361–376, 2008.

http://conal.net/papers/type-class-morphisms
http://metavar.blogspot.com/2008/02/higher-order- multivariate-automatic.html
http://metavar.blogspot.com/2008/02/higher-order- multivariate-automatic.html

LambdaPix technical report 2009-02, March 2009 (minor revisions July 19, 2013) 13

Michael Spivak. Calculus on Manifolds: A Modern Approach
to Classical Theorems of Advanced Calculus. HarperCollins
Publishers, 1971.

R. E. Wengert. A simple automatic derivative evaluation program.
Communications of the ACM, 7(8):463 – 464, 1964.

A. Efficient linear maps
A.1 Basis types
A basis of a vector space V is a subset B of V , such that the ele-
ments of B span V and are linearly independent. That is to say, ev-
ery element (vector) of V is a linear combination of elements of B ,
and no element of B is a linear combination of the other elements
of B . Moreover, every basis determines a unique decomposition of
any member of V into coordinates relative to B .

Since Haskell doesn’t have subtyping, we can’t represent a ba-
sis type directly as a subset. Instead, for an arbitrary vector space v ,
represent a distinguished basis as an associated type (Chakravarty
et al. 2005), Basis v , and a function that interprets a basis repre-
sentation as a vector. Another method extracts coordinates (coeffi-
cients) for a vector with respect to basis elements.

class (Vector s v ,Enumerable (Basis v))
⇒ HasBasis s v where

type Basis v :: ∗
basisValue :: Basis v → v
coord :: v → (Basis v → s)

The Enumerable constraint enables enumerating basis ele-
ments for application of linear maps (Section A.2). It has one
method that enumerates all of the elements in a type:

class Enumerable a where enumerate :: [a]

There are instances for (), scalars, and sums of enumerable types.

A.1.1 Primitive bases
Since () is zero-dimensional, its basis is the Void type.

The distinguished basis of a one-dimensional space has only
one element, which can be represented with no information. Its
corresponding value is 1.

instance HasBasis Double Double where
type Basis Double = ()
basisValue () = 1
coord s = const s

A.1.2 Composing bases
Given vector spaces u and v , a basis element for (u, v) will be one
basis representation or the other, tagged with Left or Right . The
vectors corresponding to these basis elements are (ub, 0) or (0, vb),
where ub corresponds to a basis element for u , and vb for v . As
expected then, the dimensionality of the cross product is the sum
of the dimensions. The decomposition of a vector (u, v) contains
left-tagged decompositions of u and right-tagged decompositions
of v .

instance (HasBasis s u,HasBasis s v)
⇒ HasBasis s (u, v) where

type Basis (u, v) = Basis u ‘Either ‘ Basis v
basisValue (Left a) = (basisValue a, 0)
basisValue (Right b) = (0, basisValue b)
coord (u, v) = coord u ‘either ‘ coord v

Triples etc, can be handled similarly or reduced to nested pairs.

Basis types are usually finite and small, so the decompositions
can be memoized for efficiency, e.g., using memo tries (Elliott
2009a).

A.2 Linear maps
Semantically, a linear map is a function f :: a → b such that, for
all scalar values s and “vectors” u, v :: a , the following properties
hold:

f (s · u) ≡ s · f u
f (u + v) ≡ f u + f v

By repeated application of these properties,

f (s1 · u1 + . . .+ sn · un) ≡ s1 · f u1 + . . .+ sn · f un

Taking the ui as basis vectors, this form implies that a linear
function is determined by its behavior on any basis of its domain
type.

Therefore, a linear function can be represented simply as a func-
tion from a basis, using the representation described in Section A.1.

type u (v = Basis u → v

The semantic function converts from (u (v) to (u → v). It
decomposes a source vector into its coordinates, applies the basis
function to basis representations, and linearly combines the results.

lapply :: (Vector s u,Vector s v)⇒
(u (v)→ (u → v)

lapply uv u = sumV [coord u e · uv e | e ← enumerate]

or

lapply lm = linearCombo ◦ fmap (first lm) ◦ decompose

The inverse function is easier. Convert a function f , presumed
linear, to a linear map representation:

linear :: (Vector s u,Vector s v ,HasBasis u)⇒
(u → v)→ (u (v)

It suffices to apply f to basis values:

linear f = f ◦ basisValue

The coord method can be changed to return v (s , which is the
dual of v .

A.2.1 Memoization
The idea of the linear map representation is to reconstruct an entire
(linear) function out of just a few samples. In other words, we
can make a very small sampling of function’s domain, and re-use
those values in order to compute the function’s value at all domain
values. As implemented above, however, this trick makes function
application more expensive, not less. If lm = linear f , then each
use of lapply lm can apply f to the value of every basis element,
and then linearly combine results.

A simple trick fixes this efficiency problem: memoize the linear
map. We could do the memoization privately, e.g.,

linear f = memo (f ◦ basisValue)

If lm = linear f , then no matter how many times lapply lm is
applied, the function f can only get applied as many times as the
dimension of the domain of f .

However, there are several other ways to make linear maps,
and it would be easy to forget to memoize each combining form.
So, instead of the function representation above, ensure that the
function be memoized by representing it as a memo trie (Hinze
2000; Elliott 2009a).

type u (v = Basis u
M→ v

14 Beautiful differentiation

The conversion functions linear and lapply need just a little tweak-
ing. Split memo into its definition untrie ◦ trie , and then move
untrie into lapply . We’ll also have to add HasTrie constraints:

linear :: (Vector s u,Vector s v
,HasBasis s u,HasTrie (Basis u))⇒
(u → v)→ (u (v)

linear f = trie (f ◦ basisValue)

lapply :: (Vector s u,Vector s v
,HasBasis s u,HasTrie (Basis u))⇒
(u (v)→ (u → v)

lapply lm =
linearCombo ◦ fmap (first (untrie lm)) ◦ decompose

Now we can build up linear maps conveniently and efficiently
by using the Functor and Applicative instances for memo tries
(Elliott 2009a). For instance, suppose that h is a linear function of
two arguments (linear in both, not it each) and m and n are two
linear maps. Then liftA2 h m n is the linear map that applies h to
the results of m and n .

lapply (liftA2 h m n) a = h (lapply m a) (lapply n a)

Exploiting the applicative functor instance for functions, we get
another formulation:

lapply (liftA2 h m n) = liftA2 h (lapply m) (lapply n)

In other words, the meaning of a liftA2 is the liftA2 of the mean-
ings.

	Introduction
	Friendly and precise
	A scalar chain rule
	Prettier derivatives via function overloading
	What is automatic differentiation, really?
	A model for automatic differentiation
	Deriving an AD implementation
	Constants and identity function
	Addition
	Multiplication
	Sine

	Higher-order derivatives
	Addition
	Multiplication
	Sine
	A higher-order, scalar chain rule

	Optimizing zeros
	What is a derivative, really?
	One dimension
	Two dimensions in and one dimension out
	Two dimensions in and three dimensions out
	A unifying perspective

	The general setting: vector spaces
	Generalized derivatives
	First-order generalized derivatives
	Functor
	Applicative/Monoidal
	Fun with rules
	A problem with type constraints
	Generalized derivative towers

	Related work
	Future work
	Acknowledgments
	Efficient linear maps
	Basis types
	Primitive bases
	Composing bases

	Linear maps
	Memoization

