Steel Sheet Piling RETAINING WALL COMPARISON TECHNICAL REPORT Prepared by EIC Group, Inc., LLC

heet piling , permanent , retaining walls , cos offective , hot rolled steel sheet piling ,perma ent , steel sheet piling ,proven stability , stee heet piling , readily available , steel sheet piling environmental , fastest , steel sheet piling , permanen valls , sheet piling , readily available , steel beet piling , environmental , steel sheet pil

NORTH AMERICAN STEEL SHEET PILING ASSOCIATION

May 2006 <u>Revised October 2009</u>

NARRATIVE

Comparison Retaining Wall Design and Cost Study Steel Sheet Piling vs. Various Walls

Prepared By:

NARRATIVE

We are pleased to present herein the results of our comparison study of steel sheet piling vs. various wall types for the North American Steel Sheet Piling Association (NASSPA). The purpose of this work was to determine the feasibility of utilizing permanent steel sheeting for retaining walls that traditionally used concrete, slurry, or other materials. The following walls were studied:

- Tied Back Steel Sheet Piling
- Reinforced Concrete Cantilever
- Concrete Modular Unit
- Mechanically Stabilized Earth
- Soldier Pile and Concrete Lagging
- Slurry Wall

A hypothetical retaining wall case study was developed based on conditions that often occur in practical situations. The proposed wall has an exposed face of 19 feet and retains dense fine sand with no water table present. Above the wall, the embankment slopes up at an 18-degree angle. The study assumed the walls were to be built in a cut situation with available space for open excavation. The cost of the cut in front of the wall is common to all cases and not included.

The above listed wall options were designed for the case study. Design criteria are based on AASHTO Standard Specifications for Highway Bridges, 17th Edition, 2002, ASD. No temporary retaining system during construction was assumed for any option. Drawings depicting the proposed configurations were developed along with engineering calculations. The excavation required in front of the walls to obtain the desired cut configuration was not included in the comparison since it was necessary for all options and not dependent on the wall type. A complete listing of quantities is given in the following summary tables.

Costs and construction durations were computed for each option. Reference data was taken from the current edition of "RS Means Heavy Construction Cost Data" and then compared to bid prices for recent NJDOT and NJTA projects for reasonableness. Cost estimates and construction durations are given in the following tables.

The results of the study reveal the following:

- The steel sheet pile option provides a minimum 35% cost savings over other wall type options. It provides a 65% savings over a traditional cast-in-place concrete wall.
- The steel sheet pile option has the shortest construction duration of all options.

It should also be noted that although the modular unit wall option was closest in cost to the sheet pile wall, it is often not feasible for situations where groundwater is present in the retained soil. Therefore, it may not be appropriate in many situations. In summary, the results of the study indicate that for the appropriate site conditions, a permanent steel sheet piling retaining wall is the least costly option over the other walls studied and has a significantly shorter construction duration.

Retaining Wall Study Calculations

Table of Contents

1. Summary

- 1.1. Conceptual Model
 - 1.1.1. Soil and Site Parameters
- 1.2. Cost and Construction Duration for All Walls
- 1.3. Cost and Construction Duration for Each Wall

2. Tied Back Steel Sheet Pile Wall

- 2.1. Design Calculations
 - 2.1.1. Sheet Pile Design
 - 2.1.2. Grouted Soil Anchors
 - 2.1.3. Waler Design
 - 2.1.4. SPW911 Computer Model
- 2.2. Quantity Calculations
 - 2.2.1. Sheet Pile
 - 2.2.2. Grouted Anchor and Tie Rods
 - 2.2.3. Waler
 - 2.2.4. Excavation and Backfill

3. Cast-in-Place Reinforced Concrete Wall

- 3.1. Design Calculations
 - 3.1.1. Stability
 - 3.1.2. Heel Design
 - 3.1.3. Toe Design
 - 3.1.4. Stem Design
- 3.2. Quantity Calculations
 - 3.2.1. Concrete
 - 3.2.2. Reinforcement
 - 3.2.3. Excavation and Backfill

4. Concrete Modular Unit Gravity Wall

- 4.1. Design Calculations
 - 4.1.1. Stability
 - 4.1.2. Bearing Capacity
- 4.2. Quantity Calculations
 - 4.2.1. Modular Units
 - 4.2.2. Footing
 - 4.2.3. Excavation and Backfill

North American Steel Sheet Piling Association

Retaining Wall Study Calculations

Table of Contents (Cont'd)

5. Mechanically Stabilized Earth Wall

- 5.1. Design Calculations
 - 5.1.1. Stability and Reinforcement
 - 5.1.2. Bearing Capacity
- 5.2. Quantity Calculations
 - 5.2.1. Concrete
 - 5.2.2. Reinforcement
 - 5.2.3. Excavation and Backfill

6. Soldier Pile and Lagging Wall

- 6.1. Design Calculations
 - 6.1.1. Pile
 - 6.1.2. Lagging
 - 6.1.3. Grouted Anchors
- 6.2. Quantity Calculations
 - 6.2.1. Piles
 - 6.2.2. Lagging
 - 6.2.3. Reinforcement
 - 6.2.4. Excavation and Backfill

7. Slurry Wall

- 7.1. Design Calculations
 - 7.1.1. Cantilever Wall Design
 - 7.1.2. Wall Reinforcement Design
- 7.2. Quantity Calculations
 - 7.2.1. Concrete
 - 7.2.2. Reinforcement
 - 7.2.3. Excavation and Backfill

8. Appendices

- 8.1. Appendix A: Pay Items
- 8.2. Appendix B: References
- 8.3. Detailed Wall Drawings (11x17)

CHAPTER 1 Summary

Notes:

1. All design performed utilizing the Service Load Method.

2. Designs performed in accordance with the AASHTO Standard Specifications for Highway Bridges, 17th Edition 2002, ASD.

The designs presented herein are conceptual in nature to illustrate and compare construction methods and costs for the various walls studied. They should not be used for actual construction.

1.1 Conceptual Model

Wall Properties

H := 19 ft	Exposed Wall height
L := 100.ft	Wall Length

1.1.1 Soil and Site Parameters

Retained Soil - Existing above Excavation Level

$\gamma := 120 \cdot \text{pcf}$	Soil Density
φf ≔ 30·deg	Angle of internal friction
δ := 0	Angle of friction between soil and wall or per AASHTO table 5.5.2B
$\beta := 90 \cdot deg$	Batter of Wall, where 90 degrees is vertical except at Concrete Modular
$\alpha := 18 \cdot \deg$	Units Slope of Retained Soil (approx 1:3 slope)
c := 0	Soil Cohesion

Foundation Soil - Below Excavation Level - same as Retained Soil above Excavation Level

Design Standard - AASHTO Standard Specifications for Highway Bridges - 17th Edition 2002 - Allowable Strength Design Determine Coulomb's Passive Earth Pressure Coefficient, Kp

$$Kp := \frac{\left(\sin(\beta - \phi f)\right)^{2}}{\sin(\beta)^{2} \cdot \sin(\beta + \delta) \cdot \left[1 - \left(\sin(\phi f + \delta) \cdot \frac{\sin(\phi f + \alpha)}{\sin(\beta + \delta) \cdot \sin(\beta + \alpha)}\right)^{0.5}\right]^{2}}$$

Kp = 5.33 Coulomb's passive earth pressure coefficient

Determine Coulomb's Active Earth Pressure Coefficient, Ka

$$Ka := \frac{\sin(\beta + \phi f)^{2}}{\sin(\beta)^{2} \cdot \sin(\beta - \delta) \cdot \left[1 + \sqrt{\left(\sin(\phi f + \delta) \cdot \frac{\sin(\phi f - \alpha)}{\sin(\beta - \delta) \cdot \sin(\alpha + \beta)}\right]^{2}}\right]^{2}}$$

Ka = 0.424 Coulomb's active earth pressure coefficient for fill material

Where:

 $\beta = 90 \circ \text{deg} \qquad \delta = 0 \circ \text{deg}$ $\phi f = 30 \circ \text{deg} \qquad \alpha = 18 \circ \text{deg}$

		Т	'otal Cost				
Retaining Wall Type	Construction Duration (Days)	fo	or 100 ft. Wall	Ι	Cost per Linear Ft.	C Sq	Cost per Juare Ft.
Grouted Anchor Steel Sheet Pile Wall	13	\$	90,607	\$	906.07	\$	47.69
Cast-In-Place Reinforced Concrete Wall	47	\$	258,572	\$	2,585.72	\$	136.09
Concrete Modular Unit Gravity Wall	31	\$	144,741	\$	1,447.41	\$	76.18
Mechanically Stabilized Earth Wall	35	\$	181,593	\$	1,815.93	\$	95.58
Soldier Pile and Lagging Wall	26	\$	171,856	\$	1,718.56	\$	90.45
Slurry Wall*	64	\$	400,145	\$	4,001.45	\$	210.60

*Concept model - not typical application for slurry wall but included in study to give comprehensive range of options

Grouted Anchor Steel Sheet Pile Wall

Pay Item					Daily Output			
No.	Item		Unit	Quantity	(unit/day)	Time (day)	Unit Cost	Cost
5	Grouted Anchors - 1" Dia		LF	286.0	120	3	\$ 20.20	\$ 5,777.20
02	Sheet piling, 19 ft deep excavation	19.3 psf, left in place	TN	29.0	12.95	3	\$ 1,950.00	\$ 56,550.00
03	Wales, connections & struts	0	TN	1.5	NA	-	\$ 300.00	\$ 459.00
04	Anchors		TN	0.4	NA	-	\$ 2,700.00	\$ 958.50
07	Backfill structural	105 H.P., 150 ft haul, sand & gravel	LCY	211.0	670	-	\$ 2.02	\$ 426.22
08	Borrow loading	Select granular fill	BCY	211.0	NA	-	\$ 13.86	\$ 2,924.46
09	Compaction, riding vibrating roller	12 in lift, 2 passes	ECY	-	5200	-	\$ 0.23	\$-
	Compaction, walk behind vibrating							
10	plate	12 in lift, 2 passes	ECY	211.0	560	1	\$ 0.78	\$ 164.58
		14 ft to 20 ft deep, 1.5 cy hydraulic						
12	Excavation, trench, common earth	backhoe	BCY	211.0	480	1	\$ 3.86	\$ 814.46
	Driven piles, complete pile driving							
15	setup	Mobilization, large	EA	1.0	0.27	4	\$ 22,000.00	\$ 22,000.00
		Fabric, laid in trench, adverse						
16	Geotextile for subsurface drainage	conditions	SY	244.4	1600	1	\$ 2.18	\$ 532.79
	Totals					13		\$ 90,607.21

906.07

Cost per LF \$ Cost per SF \$ 47.69

	euse in Fluce Reinforceu Concret							
Pay Item					Daily Output			
No.	Item		Unit	Quantity	(unit/day)	Time (day)	Unit Cost	Cost
07	Backfill structural	105 H.P., 150 ft. haul, sand &gravel	LCY	4,100.0	670	6	\$ 2.02	\$ 8,282.00
08	Borrow loading	Select granular fill	BCY	4,100.0	NA	-	\$ 13.86	\$ 56,826.00
09	Compaction, riding, vibrating roller	12 in. lift, 2 passes	ECY	4,100.0	5200	1	\$ 0.23	\$ 943.00
	Compaction, walk behind vibrating							
10	plate	12 in. lift, 2 passes	ECY	144.0	560	1	\$ 0.78	\$ 112.32
		14 ft to 20 ft deep, 1.5 cy hdraulic						
12	Excavation, trench, common earth	backhoe	BCY	4,100.0	480	9	\$ 3.86	\$ 15,826.00
18	Forms in place, footing	Continuous wall, plywood, 2x	SFCA	950.0	440	3	\$ 2.80	\$ 2,660.00
19	Forms in place, footing	Integral starter wall, to 4 in.	LF	100.0	400	1	\$ 5.55	\$ 555.00
20	Steel framed plywood	16 ft to 20 ft high	SFCA	4,300.0	400	11	\$ 8.15	\$ 35,045.00
21	Reinforcing steel, A615 Gr 60	10 - 50 ton job #3 to #7 bars	TN	21.3	2.1	10	\$ 2,825.00	\$ 60,172.50
23	Concrete, ready mix	Normal weight, 3500 psi	CY	540.0	NA	-	\$ 114.00	\$ 61,560.00
25	Placing concrete, footings	Continuous, shallow pumped	CY	330.0	150	3	\$ 28.00	\$ 9,240.00
26	Placing concrete, walls	15 in thk, pumped	CY	210.0	120	2	\$ 35.00	\$ 7,350.00
	Totals					47		\$ 258.571.82

Cast-In-Place Reinforced Concrete Wall

5 of 78

Cost per LF \$ 2,585.72 Cost per SF \$ 136.09

	Concrete Modular One Gravity W	all						
Pay Item					Daily Output			
No.	Item		Unit	Quantity	(unit/day)	Time (day)	Unit Cost	Cost
07	Backfill structural	105 H.P., 150 ft. haul, sand &gravel	LCY	2,791.0	670	5	\$ 2.02	\$ 5,637.82
08	Borrow loading	Select granular fill	BCY	2,724.0	NA	-	\$ 13.86	\$ 37,754.64
09	Compaction, riding, vibrating roller	12 in. lift, 2 passes	ECY	2,724.0	5200	1	\$ 0.23	\$ 626.52
	Compaction, walk behind, vibrating							
10	plate	12 in. lift, 2 passes	ECY	117.0	560	1	\$ 0.78	\$ 91.26
		14 ft to 20 ft deep, 1.5 cy hdraulic						
12	Excavation, trench, common earth	backhoe	BCY	2,944.0	480	7	\$ 3.86	\$ 11,363.84
		Fabric, laid in trench, adverse						
16	Geotextile for subsurface drainage	conditions	SY	300.0	1600	1	\$ 2.18	\$ 654.00
18	Forms in place, footing	Continuous wall, plywood, 2x	SFCA	400.0	440	1	\$ 2.80	\$ 1,120.00
21	Reinforcing steel, A615 Gr 60	10 - 50 ton job #3 to #7 bars	TN	21.5	2.1	10	\$ 2,825.00	\$ 60,737.50
23	Concrete, ready mix	Normal weight, 3500 psi	CY	146.5	NA	-	\$ 114.00	\$ 16,701.00
24	Placing concrete, footings	Continuous, shallow, direct chute	CY	128.0	120	2	\$ 21.00	\$ 2,688.00
25	Placing concrete, footings	Continuous, shallow pumped	CY	18.5	150	1	\$ 28.00	\$ 518.00
27	Placing concrete	with crane	CY	128.0	95	2	\$ 53.50	\$ 6,848.00
	Totals					31		\$ 144,740.58

Concrete Modular Unit Cravity Wall

Cost per LF \$ 1,447.41

Cost per SF \$ 76.18

	Meenameany Stabilized Earth wa	14						
Pay Item					Daily Output			
No.	Item		Unit	Quantity	(unit/day)	Time (day)	Unit Cost	Cost
07	Backfill structural	105 H.P., 150 ft. haul, sand &gravel	LCY	3,593.0	670	6	\$ 2.02	\$ 7,257.86
08	Borrow loading	Select granular fill	BCY	3,593.0	NA	-	\$ 13.86	\$ 49,798.98
09	Compaction, riding, vibrating roller	12 in. lift, 2 passes	ECY	3,593.0	5200	1	\$ 0.23	\$ 826.39
	Compaction, walk behind, vibrating							
10	plate	12 in. lift, 2 passes	ECY	117.0	560	1	\$ 0.78	\$ 91.26
		14 ft to 20 ft deep, 1.5 cy hdraulic						
12	Excavation, trench, common earth	backhoe	BCY	3,593.0	480	8	\$ 3.86	\$ 13,868.98
		Fabric, laid in trench, adverse						
16	Geotextile for subsurface drainage	conditions	SY	438.9	1600	1	\$ 2.18	\$ 956.80
21	Reinforcing steel, A615 Gr 60	10 - 50 ton job, # 3 to # 7 bars	TN	7.1	2.1	4	\$ 2,825.00	\$ 20,057.50
22	Welded wire fabric	6x6, W4xW4, 58psf/csf	CSF	193.0	27	8	\$ 94.00	\$ 18,142.00
23	Concrete, ready mix	Normal weight, 3500 psi	CY	11.1	NA	-	\$ 114.00	\$ 1,265.40
25	Placing concrete, footings	Continuous, shallow pumped	CY	600.0	150	4	\$ 28.00	\$ 16,800.00
29	Precast concrete wall panels	10 in. thick	SF	2,100.0	1550	2	\$ 22.68	\$ 47,628.00
30	Galvanizing steel in shop	1 ton to 20 tons	TN	5.6	NA	-	\$ 875.00	\$ 4,900.00
	Totals					35		\$ 181,593.17

Machanically Stabilized Farth Wall

Totals

Cost per LF \$ 1,815.93

Cost per SF \$ 95.58

	Soluter File and Lagging Wan							
Pay Item					Daily Output			
No.	Item		Unit	Quantity	(unit/day)	Time (day)	Unit Cost	Cost
05	Grouted Anchors 1" dia		LF	350.0	120	3	\$ 20.20	\$ 7,070.00
04	Anchors		TN	0.5	NA	-	\$ 2,700.00	\$ 1,269.00
07	Backfill structural	105 H.P., 150 ft. haul, sand &gravel	LCY	2,266.0	670	4	\$ 2.02	\$ 4,577.32
08	Borrow loading	Select granular fill	BCY	2,266.0	NA	-	\$ 13.86	\$ 31,406.76
09	Compaction, riding, vibrating roller	12 in. lift, 2 passes	ECY	2,266.0	5200	1	\$ 0.23	\$ 521.18
	Compaction, walk behind vibrating							
10	plate	12 in. lift, 2 passes	ECY	106.0	560	1	\$ 0.78	\$ 82.68
		6 ft to 10 ft deep, 1.5 cy hydraulic						
11	Excavation, trench, common earth	backhoe	BCY	968.0	600	2	\$ 3.10	\$ 3,000.80
		14 ft to 20 ft deep, 1.5 cy hydraulic						
12	Excavation, trench, common earth	backhoe	BCY	1,298.0	480	3	\$ 3.86	\$ 5,010.28
14	Driven piles, H sections	HP14x89 to 50 ft length	VLF	420.0	510	1	\$ 76.50	\$ 32,130.00
	Driven piles, complete pile driving							
15	setup	Mobilization, large	EA	1.0	0.27	4	\$ 22,000.00	\$ 22,000.00
		Fabric, laid in trench, adverse						
16	Geotextile for subsurface drainage	conditions	SY	233.3	1600	1	\$ 2.18	\$ 508.59
21	Reinforcing steel, A615 Gr 60	10 - 50 ton job, # 3 to # 7 bars	TN	7.5	2.1	4	\$ 2,825.00	\$ 21,187.50
29	Precast concrete wall panels	10 in. thick	SF	1,900.0	1550	2	\$ 22.68	\$ 43,092.00
	Totals	· · · · ·				26		\$ 171,856.11

Soldier Pile and Lagging Wall

Cost Per LF \$ 1,718.56

Cost Per SF \$ 90.45

	Slurry Wall								
Pay Item	Itom		I.I.a.:4	Ouentitu	Daily Output	Time (day)	Unit Cost	(Cost
INO.	Itelli		Unit	Quantity	(unit/day)	Time (day)	Unit Cost	<u> </u>	JOSI
									
07	Backfill structural	105 H.P., 150 ft. haul, sand &gravel	LCY	515.9	670	1	\$ 2.02	\$	1,042.12
08	Borrow loading	Select granular fill	BCY	515.9	NA	-	\$ 13.86	\$	7,150.37
	Compaction, walk behind vibrating								
10	plate	12 in. lift, 2 passes	ECY	515.9	560	1	\$ 0.78	\$	402.40
		14 ft to 20 ft deep, 1.5 cy hydraulic							
12	Evacuation, trench, common earth	backhoe	BCY	515.9	480	2	\$ 3.86	\$	1,991.37
		Fabric, laid in trench, adverse							
16	Geotextile for subsurface drainage	conditions	SY	288.9	1600	1	\$ 2.18	\$	629.80
	Slurry Trench, excavated in wet	Backfilled w/3ksi concrete, no							
17	soils	reinforcement	CF	11,691.0	333	36	\$ 23.50	\$ 2	274,738.50
20	Steel framed plywood	16ft to 20ft high	SFCA	2,000.0	400	5	\$ 8.15	\$	16,300.00
21	Reinforcing steel, A615 Gr 60	10 - 50 ton job, # 3 to # 7 bars	TN	32.7	2.1	17	\$ 2,825.00	\$	92,377.50
23	Concrete, ready mix	Normal weight, 3500 psi	CY	37.0	NA	-	\$ 114.00	\$	4,218.00
26	Placing concrete, walls	15 in thk, pumped	CY	37.0	120	1	\$ 35.00	\$	1,295.00
	Totals					64		\$ 40	00,145.07

Cost Per LF \$ 4,001.45

CHAPTER 2 TIED BACK STEEL SHEET PILE WALL

2.1 Design Calculations

Wall Properties

H := 19·ft	Exposed Wall height
L := 100 ·ft	Wall Length

Soil Properties

Retained Soil

γ := 120·pcf	Soil Density
¢f ≔ 30·deg	Angle of internal friction
δ := 0	Angle of friction between soil and wall
$\beta := 90 \cdot \text{deg}$	Batter of Wall, where 90 degrees is vertical
$\alpha \coloneqq 18 \cdot \deg$	Slope of Retained Soil
c := 0	Soil Cohesion

Determine Coulomb's Passive Earth Pressure Coefficient, Kp

$$Kp := \frac{\left(\sin(\beta - \phi f)\right)^2}{\sin(\beta)^2 \cdot \sin(\beta + \delta) \cdot \left[1 - \left(\sin(\phi f + \delta) \cdot \frac{\sin(\phi f + \alpha)}{\sin(\beta + \delta) \cdot \sin(\beta + \alpha)}\right)^{0.5}\right]^2}$$

Kp = 5.33 Coulomb's passive earth pressure coefficient

Determine Coulomb's Active Earth Pressure Coefficient, Ka

$$Ka := \frac{\sin(\beta + \phi f)^{2}}{\sin(\beta)^{2} \cdot \sin(\beta - \delta) \cdot \left[1 + \sqrt{\left(\sin(\phi f + \delta) \cdot \frac{\sin(\phi f - \alpha)}{\sin(\beta - \delta) \cdot \sin(\alpha + \beta)}\right]^{2}}\right]^{2}}$$

Ka = 0.424 Coulomb's active earth pressure coefficient

Where:

$$\beta = 90 \circ \deg \qquad \delta = 0 \circ \deg$$

$$\phi f = 30 \circ \deg \qquad \alpha = 18 \circ \deg$$

See program results on pp 18 - 21.

2.1.1 Sheet Pile Design

Determine required Section Modulus

	M := 30.91 ·kip ·ft	Maximum Mo	oment from Computer Output (See Section 2.1.4)
	Use A572 Steel	Fy := 50·ksi	
	Fb := 0.55 ·Fy	Fb = 27 ksi	Allowable Stress AASHTO table 10.32.1A
	$Sx := \frac{M}{Fb}$	$Sx = 13.74in^3$	Required Section Modulus
Use	e Sx	$= 22.3 \cdot in^3$	

Consider Deflection of Sheet Pile

 $\Delta \max := \frac{H}{360}$ $\Delta \max = 0.63 \circ in$ Allowable deflection

Where:

 $H = 19 \circ ft$ Exposed Wall Height

$$\Delta := 0.70 \cdot in$$
 with I := 132.8 $\cdot in^4$ From Computer Output
Say OK

AASHTO Section 5.7

Fa = Force per unit length of wall = $4.09 \text{ k/ft} @ 8' \text{ spacing} = 32.7^k$ AASHTO Table 5.7.6.2 A

 F_u = Presumptive Ultimate Load Transfer in Soil - 13 k/Lf in Dense Sand

Min Length of Grouted Anchor = $\lg = \frac{(Fa \cdot SF)}{Fu}$

SF = Safety Factor = 2.50

$$\lg := \frac{(32.7 \cdot 2.50)}{13.0} = 6.3' \text{ use } 6.5' \text{ min}$$

Anchor Steel - ASTM722 Grade 150 $fa = 0.55 \times 150 = 82.5 \text{KSI}$

Asmin = 32.7/82.5 = 0.40 in² use 1" ϕ Rod min

Assume no corrosion protection required.

2.1.3 Waler Design

$$w = 5.0 \underline{kip}_{ft}$$
 Uniform Load on waler
s = 8ft Tie Rod spacing
2

$$Mw := \frac{w \cdot s^{-}}{8} \qquad Mw = 40.0 \text{ kip ft} \qquad Maximum \text{ moment}$$
$$Vw := \frac{1}{2} \cdot w \cdot s \qquad Vw = 20.0 \text{ kip} \qquad Maximum \text{ Shear}$$

$$Sw := \frac{Mw}{0.55 \cdot 50 \cdot ksi}$$
 $Sw = 17.5 in^3$ Reqired section Modulus

$$Aw := \frac{Vw}{0.4 \cdot 50 \cdot ksi}$$
 $Aw = 1.0 in^2$ Required Web Area

Use 2-C10x15.3 Sw :=
$$2 \cdot 13.5 \cdot in^3$$
 Sw = $27.0 \cdot in^3$
Aw := $2 \cdot 10 \cdot 0.240 \cdot in^2$ Aw = $4.8 \cdot in^2$ OK

2 pcf Side 0.00	Side Kpc 0.00 0.00 10.67 Pile 70.67 29.67 10.67 29.67 10.67 15.11 ft 15.11 ft 15.00 ft 19.00 ft .01b/ft 4.00 ft	SPW911, V2.20
Water Density = 62.43 Minimum Fluid Density = 31.85 Active S $a (pst) \phi(°) \delta(°) K_a K_{ac} K_p$ 0.0 30.0 0.0 0.42 0.00 5.33 (Baseline Same Passive Same 2a (psf) φ(°) δ(°) Kac Kpac 0.0 30.0 0.0 0.33 0.00 3.00 Maximum Bending Maximum Bending Maximum (ftb/ft) Upstand (ft) 1 Moment (ftb/ft) Upstand (ft) 0.00 3.00 0 Maximum Bending Maxim Maxim 0.00 0.00 Deflection 52137.8 0.00 0 Perssure 848 Shear Force 848	420 Route 46 East, Suite 1 Fairfield, NJ Fax: 973.227.8661
Input DataOf Active Water = 100.00 ftrTOO.00 ftr γ (pcf) γ' (pcf)C (psf)rrr	Y (pcf) Y (pcf) C (psf) 106.28 68.73 0.0 106.28 68.73 0.0 1106.28 501ution 10000 1156.90 3.04E+07 23.20	
Depth Of Excavation = 19.00 ft Depth Surcharge = 0.0 psf Depth O Slope (active) = 18.0 degrees Soil Profile Depth (ft) Soil Name 0.00 Loose Coarse Sand	Soil Profile Depth (ft) Soil Name 0.00 Loose Coarse Sand Sheet Sheet Name Load Model: Area Distribution Supports Depth (ft) Type 1.00 Waler 5103.4	EIC Group,
Client: North American Sheet Pile Association Site: Austin, TX Title: Permanent Retaining Wall Comparison Study Designer: MHM / RCK Ref: NASPA Page: 2 Date: 4.1.08	Pressure: Coulomb Toe: Free Earth Support	16 of 78

depth
(in) (#lb/#) (in)
1.1 0.0 0.0
0.2 0.2 0.2
24.3 1.3
35.3 3.9
47.5 9.2
59.6 18.0
70.6 29.8
82.8 47.6
93.8 69.0
106.0 99.
118.1 136.
129.1 178.
141.3 232.
153.4 297.7
164.5 366.2
176.6 452.8
187.6 -566.
199.8 -1818.
211.9 -3056
223.0 -4168
235.1 -5376.
247.3 -6567.2
258.3 -7740.4
270.4 -8895.1
281.5 -9927.
293.6 -11044.
305.8 -12140
316.8 -13117
328.9 -14170.
340.0 -15106
352.1 -16114
364.3 -17183
375.3 -18051
387.4 -18980.0
399.6 -19880.
410.6 -20674.
422.8 -21519.7
433.8 -22261

- 5

2.2 Quantity Calculations

2.2.1 Sheet Pile Quantity

Sheet Piling (Pay Item 02)

Lp := 30.ft	Length of Sheet Pile

 $H = 19 \circ ft$ Height of Retained Soil

Proposed Sheet Pile Properties

W := $30.3 \cdot in$	Width

 $Ht := 13.52 \cdot in$ Height

wt = 19.31psf

Sx :=
$$23.2 \cdot \frac{\text{in}^3}{\text{ft}}$$
 Section Modulus

Ix :=
$$156.9 \cdot \frac{\text{in}^4}{\text{ft}}$$
 Moment of Inertia

Total Weight of Sheet Piling (Pay Item 02)

 $Wt := L \cdot Lp \cdot wt$ Wt := 29.0 Ton

Where :

$L = 100 \circ ft$	Wall Length
$Lp = 30 \circ ft$	Pile Length
wt = 19.31 psf	Pile Weight/sf

2.2.2 Grouted Anchor and Tie Rod Quantity

Grouted Anchor (Pay Item 01)

12 Spaces (a) 8' Spacing + 2' (a) Each end = 100'

Install 13 Units @ (15' + 7') = 286LF

Anchor Rod Quantity (Pay Item 04)

$D := 1 \cdot in Rod I$	Diameter
$ab = 0.85 in^2$	Area of Rod
wb := $3.01 \cdot \frac{\text{lbf}}{\text{ft}}$	Weight of Rod
$Lt := 22 \cdot ft$	Length of Rod

Determine Number of Rods

 $N := \frac{L}{s} + 1$ N = 13.5 Use N := 13 Rods Where : $L = 100 \circ ft$ Wall Length

Determine Total Rod Weight (Pay Item 04)

Wt := $N \cdot Lt \cdot wb$ Wt = 0.43 Ton

2.2.3 Waler Quantity (Pay Item 03)

Use 2-C10x15.3 Walers

w := $15.3 \cdot \frac{\text{lbf}}{\text{ft}}$ Weight of each waler Determine Total Weight of Walers (Pay Item 03)

 $Wt := 2 \cdot W \cdot L \qquad Wt = 1.53 \text{ Ton}$

Where : $L = 100 \circ ft$ Wall Length

2.2.4 Excavation and Backfill

Refer to Figure 2-2

Additional Excavation for drainage stone

 $A3 = 3x19 = 57ft^2$ Cross-sectional area of drainage stone

 $Vd := A3 \cdot L$ $Vd = 211yd^3$ Volume of stone for drainage behind wall

Total Excavation

V := V + Vd $V = 500yd^3$

Excavation Related Pay Items

Item 07 - Backfill Structural	$V = 0yd^3$
Item 08 - Select Granular Fill	$V = 211yd^3$
Item 09 - Compaction, Roller	$V = 0yd^3$
Item 10 - Compaction, Plate	$V10 := 3 \cdot ft \cdot 19 \cdot ft \cdot L \qquad V10 = 211 \cdot yd^3$
Item 12 - Excavation	$V = 211 y d^3$
Item 16 - Geotextile	A16 := $(3 \cdot ft + 19 \cdot ft) \cdot L$ A16 = 244.4 • yd ²

Figure 2-1 Grouted Anchor Configuration

Figure 2-2 Excavation and Backfill Diagram

CHAPTER 3 CAST-IN-PLACE REINFORCED CONCRETE WALL

3.1 Design Calculations, Refer to Figures 3-1 & 3-2

WALL HEIGHT (TOP OF WALL TO BOT	FTOM OF FOOTING)=	26.00 FT
ANGLE OF INCLINED BACKFILL=	18 DEGREES	
ANGLE OF INTERNAL FRICTION=	30 DEGREES	
UNIT WEIGHT OF SOIL= 120	PCF	

3.1.1 Stability

VERTICAL LOADS

<u>PART</u>	WIDTH (FT)	HEIGHT (FT)	\underline{AREA}	UNIT WT.	$\frac{FORCE}{(K/ET)}$	ARM (FT)	$\frac{\text{MOMENT}}{(K \text{ FT/FT})}$
	(1.1)	(1 , 1)	(1,1,2)	(KCF)	$(\mathbf{K}/\mathbf{\Gamma}\mathbf{I})$	(F1)	(K [1/[])
1	1.75	21.00	36.75	0.150	5.51	5.63	31.01
2	2.25	18.00	20.25	0.150	3.04	7.25	22.02
3	6.50	5.00	32.50	0.150	4.88	3.25	15.84
4	12.50	4.50	56.25	0.150	8.44	12.75	107.58
5	2.25	18.00	20.25	0.120	2.43	8.00	19.44
6	2.25	3.50	7.88	0.120	0.95	7.63	7.21
7	10.25	21.50	220.38	0.120	26.45	13.88	366.92
8	12.50	4.06	25.38	0.120	3.05	14.83	45.18
Pv					6.53	19.00	124.16
				Fv=	61.26	- Mr=	739.36
Ka=	0.39	(RANKINE	COEFF	ICIENT WIT	TH INCLI	NED BACK	KFILL)
Pa=	0.5*SOIL V	WT*H^2*K	a	21.15	K/FT	H=30.06	
Pv=	Pa*SIN(BA	ACKFILL A	NGLE)	6.53	K/FT		
HORIZOI	NTAL LOAI	<u>DS</u>					
Ph=	Pa*COS(B	ACKFILL A	ANGLE)	20.11	K/FT		
Mo=	Ph*(H/3)			201.53	K FT/FT		

STABILITY CHECK	<u> </u>					
RESULTANT=	(Mr - Mo))/Fv	8.78	FT	<u>MEETS (</u> YES	<u>CRITERIA?</u> In middle third
OVERTURNING FS	Mr/Mo		3.67		YES	>2.0
SLIDING FS=	Fv*(Coeff Coeff.=	ficient)/Ph 0.50	1.52 (AASHTC	D Table 5.5	YES .2B) - Dena	>1.5 se M-F Sand
BRG. PRESSURE	B=	19.00	FT	e=	0.72	FT
	q(max)=	Fv/B*(1 +	- 6e/B)	3.96	KSF (T)	
	q(min)=	Fv/B*(1 -	6e/B)	2.49	KSF (H)	
				1.98	TSF (T)	YES
				1.25	TSF (H)	YES

Assumed allowable bearing capacity for Dense Med-Fine Sand = 2TSF

3.1.2 Heel Design

MATERIAL PROPERTIES

fc'=	3,000 PSI		fc=	0.4*fc'	1,200	PSI
			fv=	0.95*fc'^1/2	52	PSI
fy=	60,000 PSI		Class B Co	oncrete Grade 60 Reinfor	cement -	-
fs=	24,000 PSI		Black - Ur	ncoated		
n=	Es/Ec	9.2				
k=	fc/(fc + fs/n)	0.315				
j=	1 - k/3	0.895				
K=	0.169 (ACI TABL	E)				

VERTICAL LOADS (NEGLECT VERTICAL COMPONENT OF ACTIVE EARTH FORCE)

PART	WIDTH (FT)	HEIGHT	\underline{AREA}	UNIT WT.	FORCE	ARM (FT)	MOMENT
4	10.25	4 50	46.13	0.150	6.92	5 13	35.46
7	10.25	21 50	220.38	0.120	26.45	5 13	135 53
0	10.25	21.50	220.30	0.120	20.45	6.02	17.06
0	10.30	2.03	20.81	0.120	2.30	-	17.00
				Fv=	35.86	M=	= 188.05
ASSUME	BAR SIZE	10		DIAMETE	R=	1.270	IN
d= dmin=	HEEL DEI (M/K)^1/2	PTH - 2" -(1	1/2*BAR]	DIAMETEF	51.37 33.36	IN IN	OK >dmin
STEEL AI As=	REA M/(fs*j*d)	2.05	IN^2				
NOMINA 0.9*Mn=	L MOMEN 0.9*(As*fy	T CAPACI v*d*(1-0.59	TY (AAS *(As*fy/fo	HTO 8.17.1. c'*b*d)))	1) 326.84	K FT	
CRACKIN 1.2*Mcr=	IG MOME 1.2*(7.5*fc	NT (AASH c'^1/2)*S	TO 8.17.1 239.57	.1) K FT			
IS 0.9*Mn As (require	=1.2*Mc ed)=	r ? 2.05	YES IN^2				
PROVIDE	BAR SIZE	10	AT	6	IN SPACI	NG	
BAR ARE	A=	1.27	IN^2	DIAMETE	R=	1.270	IN
As (provid	ed)=	2.54	IN^2				

١

HEEL DESIGN (CONTINUED)

CHECK SHEAR IN HEEL AT BACK FACE OF STEM (CRITICAL SECTION)											
v=	V/(b*d)	58.18	PSI	NG >vc							
CHECK DEVELOPMENT LENGTH OF BAR SIZE 10											
Ldb=	Ldb= MAX. 0.04*Ab*fy/(fc')^1/2 OR 0.0004*db*(AASHTO 8.25.1)										
Ldb=	55.6	IN	OR	30.5	IN						
Ldb=	55.6	IN									
Ld=	Ldb*(As (r (AASHTO	required)/A 8.25.3.2)	s (provided)))	44.9	IN	(12 IN MIN.) (AASHTO 8.25.3.3)				

3.1.3 Toe Design

ASSUME CRITICAL SECTION AT FACE OF STEM FOR M & V

q(max) = 3.96 KSF(T)

q(min) = 2.49 KSF (H)

BEARING PRESSURE AT FRONT FACE OF STEM

y= DISTANCE FROM PRESSURE DIAGRAM AT STEM TO MINIMUM PRESSURE

y= (q(max)-q(min))*((FOOTING WIDTH-TOE WIDTH)/FOOTING WIDTH) 1.10

PRESSUR	RE AT FAC	E OF STEN	/[=	y+q(min)	3.59	KSF
<u>PART</u>	<u>WIDTH</u> (FT)	PRESS. (KSF)	FORCE (K/FT)	ARM (FT)	MOMENT (K FT/FT)	-
1	4.75	0.37	1.76	3.17	5.57	
2	4.75	3.59	17.06	2.38	40.52	
		Fv=	18.82	- M=	46.09	-

ASSUME BAR SIZE 9 DIAMETER= 1.128 IN

 d=
 TOE DEPTH - 3" -(1/2*BAR DIAMETER)
 56.44
 IN
 OK >dmin

 dmin=
 (M/K)^1/2
 19.91
 IN

STEEL AREA

As= M/(fs*j*d) = 0.46 IN^2

NOMINAL MOMENT CAPACITY (AASHTO 8.17.1.1) 0.9*Mn= 0.9*(As*fy*d*(1-0.59*(As*fy/fc'*b*d))) 166.51 K FT

CRACKING MOMENT (AASHTO 8.17.1.1)

1.2*Mcr= 1.2*(7.5*fc'^1/2)*S 295.77 K FT

IS 0.9*Mn >=1.2*Mcr ? NO, INCREASE AREA BY 33% As (required)= 0.61 IN^2

PROVIDE BAR SIZE8.00AT12IN SPACINGBAR AREA=0.79IN^2DIAMETER=1.000INAs (provided)=0.79IN^2INININ

CHECK SHEAR IN TOE AT FRONT FACE OF STEM CRITICAL SECTION)

v= V/(b*d) 33.33 PSI OK < vc

TOE DESIGN (CONTINUED)

CHECK	DEVELOP	MENT	LENGTH OF BA	R SIZE	8		
Ldb=	MAX. 0.	04*Ab*1	fy/(fc')^1/2 OR 0.0)004*dl	b*(AASHT	O 8.25.1)	
Ldb=	34.6	IN	OR	27.1	IN		
Ldb=	34.6	IN					
I d-	I db*(As	(require	$d)/\Delta s$ (provided))		267	IN	(12 IN M

Ld= Ldb*(As (required)/As (provided)) 26.7 IN (12 IN MIN.) (AASHTO 8.25.3.2) (AASHTO 8.25.3.3)

3.1.4 Stem Design

Flexure

Horizontal Loads (At Tenth Points From Top Of Wall To Top Of Heel) Assume A No. 8 Bar Size For Initial Calc. Of D And Revise Based On Bar Size Chosen For As (p)

HT.	<u>Ph</u>	ARM	<u>M</u>	<u>d</u>	<u>dmin</u>	<u>As</u>	<u>0.9*Mn</u>	<u>1.2*Mcr</u>	$\underline{As(r)}$	<u>bar (p)</u>	spc (p)	<u>As (p)</u>
ТОР	K/F1	F1	K F1/F1	ΠN	IIN	111/2	K F1/F1	K F1/F1	111/2		IN	IN ^A 2
0.00	0.27	1.16	0.32	18.63	1.37	0.01	0.79	36.23	0.01	6	12	0.44
2.15	0.71	1.88	1.33	18.63	2.81	0.04	3.34	36.23	0.05	6	12	0.44
4.30	1.35	2.60	3.51	19.83	4.56	0.10	8.78	40.49	0.13	6	12	0.44
6.45	2.20	3.31	7.29	23.05	6.57	0.18	18.19	53.11	0.24	6	12	0.44
8.60	3.25	4.03	13.10	26.28	8.81	0.28	32.64	67.44	0.37	6	12	0.44
10.75	4.51	4.75	21.43	29.44	11.26	0.41	53.15	83.47	0.54	7	6	1.20
12.90	5.98	5.46	32.68	32.66	13.91	0.56	80.77	101.22	0.74	7	6	1.20
15.05	7.65	6.18	47.30	35.89	16.73	0.74	116.50	120.67	0.98	7	6	1.20
17.20	9.53	6.90	65.73	39.11	19.72	0.94	161.34	141.84	0.94	7	6	1.20
19.35	11.61	7.61	88.42	42.21	22.87	1.17	216.23	164.71	1.17	9	6	2.00
21.50 (BOT)	13.90	8.33	115.81	45.44	26.18	1.42	282.17	189.29	1.42	9	6	2.00
3.50	1.09	2.33	2.54	18.63	3.87	0.08	6.35	36.23	0.10	6	12	0.44

BATTER IS LOCATED AT 3.50 FT FROM THE TOP OF THE WALL BATTER WIDTH AT BOTTOM OF STEM AT HEEL IS 2.25 FT THICK BATTER HEIGHT = 18.00 FT

STEM DESIGN (CONTINUED)

SHEAR

HORIZONTAL LOADS (AT TENTH POINTS FROM TOP OF WALL TO TOP OF HEEL)

<u>HT.</u> FT (TOP)	<u>Ph</u> K/FT	⊻ PSI									
0.00	0.27	1.21	OK < vc								
2.15	0.71	3.17	OK < vc								
4.30	1.35	5.68	OK < vc								
6.45	2.20	7.95	OK < vc								
8.60	3.25	10.32	OK < vc								
10.75	4.51	12.77	OK < vc								
12.90	5.98	15.26	OK < vc								
15.05	7.65	17.76	OK < vc								
17.20	9.53	20.31	OK < vc								
19.35	11.61	22.92	OK < vc								
21.50 (BOT)	13.90	25.49	OK < vc								
CHECK	K DEVE	LOPM	ENT LEN	GTH OF	BAR	SIZE		9	BAR AREA=	1.00	IN^2
Ldb= Ldb= Ldb=	MAX. 43.8 43.8	0.04*A IN IN	b*fy/(fc')^ OR	1/2 OR (27.1 II	0.0004 N	l*db*fy		(AASH	TO 8.25.1)	1.120	IIN
Ld=	Ldb*(A (AASH	ts (requ TO 8.2	ired)/As (j 5.3.2)	provided))		31.2	IN	(12 IN MIN.) (AASHTO 8.25.3	.3)	
CHECK LAP SPLICE LENGTH FOR DOWEL BAR											
CLASS	C SPLI	CE=	1.7*Ld		53.0	IN			(12 IN MIN.) (AASHTO 8.32.3	1)	
SUMMARY

SECTION GEOMETRY

TOTAL WALL HEIGHT=	26.00	\mathbf{FT}
FOOTING WIDTH=	19.00	\mathbf{FT}
TOE WIDTH=	4.75	\mathbf{FT}
TOE THICKNESS=	5.00	\mathbf{FT}
HEEL WIDTH=	10.25	\mathbf{FT}
HEEL THICKNESS=	4.50	FT
STEM THICKNESS=	1.75	FT
BATTER THICKNESS=	2.25	\mathbf{FT}
BATTER HEIGHT=	18.00	\mathbf{FT}

REINFORCING

HEEL	PROVIDE NUMBER 10	BARS AT 6	IN SPACES
	DEVELOPMENT LENGTH=	44.9 IN	
TOE	PROVIDE NUMBER 8 DEVELOPMENT LENGTH=	BARS AT 12 26.7 IN	IN SPACES
STEM	PROVIDE NUMBER 9 CLASS C SPLICE LENGTH=	DOWELS AT 53.0 IN	6 IN SPACES

3.2 Quantity Calculations

3.2.1 Concrete Quantity:

Footing: 4.5ftx (19ft– 4.75ft– 1.75ft) = 5ft x (4.75ft+ 1.75ft) = $88.8ft^3 = 3.3yd^3$ Pay Item 25 = 3.3 x 100 = 330 yd ³	
Stem: 1.75ft x $(26ft - 5ft) + \frac{1}{2}$ x 18ft x 2.25ft = 57ft ³ = 2.1yd ³ Pay Item 26 = 2.1 x 100 = 210 yd ³	
Total Concrete Quantity (Pay Item 23): (89.6 ft ³ + 57 ft ³) = 146.6 ft ³ = 5.4 yd ³ /ft x 100 = 540 yd ³	
Form in place, footing (Pay Item 18): Contact area = $(5ft + 4.5ft) \times 100ft = 950ft^2$	
Forms in place, footing, Integral starter wall (Pay Item 19): Length = 100ft	
Forms in place, Steel Framed Plywood (Pay Item 20): Contact area = 2×21.5 ft x 100ft = 4300 ft ²	
3.2.2 Reinforcement Quantity: (Pay Item 21)Stem Portion EL. 105 to EL. 126	
Front Bars: #4 @18" $L = 26ft - 5ft - 0.5ft = 20.5ft$ $\uparrow(3"CLR. E. end)$	
WT = 0.668 lb/ft x 20.5ft x 12"/18" = 9.13lb/ft width	
Bars on Back Face:	
#7@ 6" $L = 14.5ft - 0.25ft = 14.25ft$	
WT = 2 x 2.044lb/ft x 14.25ft = 58.3 lb/ft $\uparrow \qquad \uparrow^{(\text{wt. #7 bar})}_{(\text{per 12"width})}$	
-#6 @ 12" $L = 22.5ft + 1ft - 14.5ft - 4.5ft + 3ft$ $\uparrow_{E1.122.5 Above} \uparrow_{\#7} \uparrow_{frg} \uparrow_{Lap}$ L = 7.5'	
WT= $1.502\#/1 \ge 7.5' = 11.31b/ft$	

-Longitudinal Bars: #4 @12" E Face L=1 ft for front face: 26ft - 5ft = 21ft ie 21 spaces, use 22 bars for back face: 23 bars WT: (22 + 23) x 0.668lb/ft x 1 ft = 30lbs Top Portion of Stem: #6@12" L = 26ft - 22.5ft + 1ft - 0.25ft = 4.25ft

 $WT = 1.502lb/ft \times 4.25ft = 6.4lb/ft$

Total Reinforcement in Stem:

WT = 9.13lb + 58.3lb + 11.3lb + 30lb + 6.4lb = 115lb per 1 ft widthFooting: Transverse Bars #8@12" Bott #10@6" Top (8.61b/ft + 2.71b/ft)(19 - 0.5') = 209#Ea. side Longitudinal Bars: #5 @18" T & B 2 x 13 x 1.043lb/ft x 1ft = 27lb ↑ ↑ 1 1 T of B bars/mat wt #5 width Dowels: #9@6" 6.5ft + 4.5ft = 11ft $2 \ge 3.4$ lb/ft ≥ 11 ft = 75lb 1 ↑ 2 bars/12" WT. #9 Total Reinforcement in Footing: W = 209lb + 27lb + 75lb = 311lb per 1ft width

Total Reinforcement in Retaining Wall (Pay Item 21): WT = 115lb + 311lb = 426lb per ft width x 100ft = 21.3 tons \uparrow \uparrow stem footing

3.2.3 Excavation and Backfill (See Figure 3-3)

Excavation:

Limits: From front face of wall to 2' beyond heel of footing Then on 1 to 1 slope

Area 1:(19ft- 4.75ft + 2ft) x 26ft + $\frac{1}{2}$ x 26ft x 26ft = 761ft³ per ft $\uparrow_{\text{ftg.}}$ \uparrow_{toe} $\uparrow_{\text{beyond heel}}$

Area 2: $(4.75ft + 2ft) \times (5ft + 2ft) + \frac{1}{2} \times (7)^2 ft^2 = 72 ft^3 \text{ per ft}$

Area 3:L = 19ft - 6.5ft + 2ft + 26ft = 40.5ftH = 40.5ft Tan 18° = 13.2ft $\frac{1}{2} \times 40.5ft \times 13.2ft = 267ft^{3}$ per ft

Total Excavation: $(761 \text{ft}^3 + 72 \text{ft}^3 + 267 \text{ft}^3) 1/27 = 41 \text{ yd}^3 \text{ per ft x } 100 \text{ft} = 4100 \text{yd}^3$

Excavation Related Pay Items

Item 07 – Backfill Structural	$V = 4100 \text{ yd}^3$
Item 08 – Select Granular Fill	$V = 4100 \text{ yd}^3$
Item 09 – Compaction Roller	$V = 4100 \text{ yd}^3$
Item 10 – Compaction Plate	$V = 1.5 ft x 26 ft x 100 ft = 144 yd^3$
Item 12 – Excavation	$V = 4100 \text{ yd}^3$

Figure 3-1 Proposed Reinforced Concrete Retaining Wall Configuration

Figure 3-2 Proposed Reinforced Concrete Retaining Wall Section

Figure 3-3 Retaining Wall Quantities

CHAPTER 4 CONCRETE MODULAR UNIT GRAVITY WALL

4.1 Design Calculations

Wall Properties - Stepped Modules

$H := 19 \cdot ft + 2 \cdot ft$	Wall height + Distance below grade
L := 100 · ft	Wall Length

Soil Properties

Infill Soil Granular Backfill to fill voids of each unit

'z Gravel

 ϕ i := 36·deg Angle of Internal Friction

Foundation Soil & Retained Soil

γf := 120·pcf	Soil Density
¢f ≔ 30·deg	Angle of internal friction
δ := 22.5 deg	Angle of friction between soil and wall - AASHTO $5.9.2 = 3/4 $
$\beta := 64 \cdot \text{deg}$	Batter of Wall, where 90 degrees is vertical - Match Modules
$\alpha \coloneqq 18 \cdot \deg$	Slope of Retained Soil
c := 0	Soil Cohesion

Determine Coulomb's Active Earth Pressure Coefficient, Ka for retained granular fill

$$Ka := \frac{\sin(\beta + \phi i)^{2}}{\sin(\beta)^{2} \cdot \sin(\beta - \delta) \cdot \left[1 + \sqrt{\left(\sin(\phi i + \delta) \cdot \frac{\sin(\phi i - \alpha)}{\sin(\beta - \delta) \cdot \sin(\alpha + \beta)}\right]^{2}}\right]^{2}}$$

Ka = 0.825 Coulomb's active earth pressure coefficient for fill material

Where:

$$\beta = 64 \circ \deg \qquad \delta := 22.5 \ \deg$$

$$\phi f := 30 \ \deg \qquad \alpha = 18 \circ \deg$$

4.1.1 Stability

Consider Overturning

$$\begin{split} \text{Mr} &\coloneqq 264.6 \ \frac{\text{kip} \cdot \text{ft}}{\text{ft}} & \text{Resiting Moment, See Table 4.1} \\ \text{Ph} &\coloneqq \frac{1}{2} \cdot \gamma f \cdot \text{Ka} \cdot \text{H}^2 \cdot \cos(90 - \beta + \delta) & \text{Horizontal Load due to Active Soil Pressure} \\ \text{Ph} &= 14.5 \ \frac{\text{kip}}{\text{ft}} & \text{Table 4.1} \\ \text{z} &\coloneqq \frac{\text{H}}{3} & \text{z} = 7.0 \cdot \text{ft} & \text{Overturning moment arm} \\ \text{Mo} &\coloneqq \text{P} \cdot \text{z} & \text{Overturning Moment due to active soil pressure} \\ \text{Mo} &\coloneqq 101.3 \ \frac{\text{kip} \cdot \text{ft}}{\text{ft}} & \text{Where:} \\ &\gamma f &\coloneqq 120 \text{ pcf} & \text{H} = 21 \cdot \text{ft} \\ \text{Ka} &= 0.825 & \beta = 64 \cdot \text{deg} \end{split}$$

Determine Factor of Safety against Overturning, AASHTO 5.5.5

FSo :=
$$\frac{Mr}{Mo}$$
 FSo = 2.6 > 2.0, O.K.
Where:

$$Mr \coloneqq 264.6 \frac{kip \cdot ft}{ft}$$

Mo :=
$$101.3 \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$$

Consider Sliding

k :=
$$\frac{2}{3}$$
 See Appendix, Ref. 2, Pp. 434
w := $45.7 \cdot \frac{\text{kip}}{\text{ft}}$ Total Weight per ft of Wall, See Table 4.1 -100% Fill Weight

Determine Factor of Safety against Sliding, AASHTO 5.5.5

 $FSs := \frac{w \cdot tan(k \cdot \phi f) + Pv}{Ph} \qquad FSs = 2.11 > 1.5, OK$

Where $Pv = 1/2 \gamma_f Ka H^2 sin(90-\beta+\delta)$

				Table 4.1					
Parameter	s					See Fig. 4-1 fo	or Wall Configu	Iration	
Retained 5	soil, Grave	l & Sand							
Unit Weigh		105 pcf							
Ka		0.825							
	-1-1 V -4		7500						
Soil In Col	ICTETE VOIC	is, uravei &	Sand						
Unit Weigh		105 pcf		-					
Batter of M	all	26 degrees	trom 90 - eqt	uivalent					
			Ŭ	oncrete Modu	lar Units				
<u>Unit</u>		Unit Height	Unit Depth	Unit Weight*	Fill Volume	80% Fill Wt.	Total Net Wt	Wt per Ft	
-		4	4	4,815	95.9	8,056	12,871	1,609	
2		4	9	6,065	151.6	12,732	18,797	2,350	
e		4	∞	7,230	207.8	17,455	24,685	3,086	
4		4	10	8,485	263.4	22,128	30,613	3,827	
5		9	14	14,970	572.2	48,065	63,035	7,879	
Totals:				41,565	1,291	108,436	150,001	18,750	
* Weights c	jiven for Do	ublewal II Un	its for this ex	cample					
		Res	sisting Mome	nt. Mr		Overturning	Vement. Mo		
Unit	Wt	Arm (ft)	Mr (ft-k)	Cummulative	Soil Depth	Ph** (horiz)	Arm	Mo	Safety Factor
-	1,609	2.0	3.2	3.2	3	0.30	1.00	0.30	
Soil above	24	2.8	0.1	3.3					11.1
2	2,350	3.0	7.0	10.3	7	1.61	2.33	3.75	
Soil above	1,110	5.0	5.5	15.9					4.2
3	3,086	4.0	12.3	28.2	1	3.97	3.67	14.55	
Soil above	2,382	6.0	14.3	42.5					2.9
4	3,827	5.0	19.1	61.6	15	7.38	5.00	36.90	
Soil above	3,498	0.6	31.5	93.1					2.5
5	7,879	7.0	55.2	148.3	21	14.46	7.00	101.25	
Soil above	<u>9,695</u>	12.0	116.3	264.6					2.6
Totals:	35,459		264.6						
	a for the second se								
** Ph = Ka'	gamma*z^	2/2*cos(90-be	eta+delta)						
Toto	1 \\/\oiceht -	28 8/7	li a no radu	ction of fill wair	-tht	ack Sliding =	2 11		
		240,00	11-2-1101201			incon Onunu -	zal component	of Doctive	
	A finiminin	Totor of Cafe	thould the	10 C - 2 U (0 V		C C C			
	MINIMUTI F	actor ul cale	IN IOL UVEI IN	12 = 2.0 (m	- INDI OILOF	lc.c.c			

4.1.2 Bearing Capacity of Substrate Soil

$$\begin{split} & \phi f = 30 \cdot deg & Angle of internal friction \\ & Nc \coloneqq 30.14 & From AASHTO Table 4.4.7.1A \\ & Ng \coloneqq 22.4 \\ & B \coloneqq 14 \cdot ft & Width of bottom unit of wall, See Figure 4-1 \\ & e \coloneqq \frac{B}{2} - \frac{Mr - Mo}{w} & e = 1.27 ft & Eccentricity of resultant load from the midpoint of the bottom unit \\ & \frac{B}{6} = 2.33 ft & Kern distance & OK, e is within Kern \\ & Lp \coloneqq B - e \cdot 2 & Lp = 11.46 ft & Effective Bearing Length \\ & \sigma \coloneqq \frac{w}{B} & \sigma \coloneqq .3.26 \text{ ksf } & Bearing Stress on Foundation Soil \\ & Where: \\ & w = 45.7 \frac{kip}{ft} & Weight of the Wall \\ & ft \\ \end{split}$$

 $q := \frac{1}{2} \cdot \gamma f \cdot Lp \cdot Ng$ q = 15.4 ksf Allowable Bearing Stress on Soil

Where:

 $\gamma f := 120 \text{ pcf}$ Unit weight of soil

Determine Factor of Safety for Bearing, AASHTO 4.4.7.1.2

$$FSb := \frac{q}{\sigma}$$
 $FSb = 4.7 > 3 OK$

4.2 Quantity Calculations

4.2.1 Modular Units

Concrete Quantity (Pay Item 23, 24 & 27)

A := $277 \cdot ft^2$ Volume per 8' SectionL = $100 \cdot ft$ Length of Wall

Volume = $V := A \cdot \frac{L}{8}$ $V = 128 \cdot yd^3$

Reinforcement Quantity (Pay Item 21)

Ratio := $293 \cdot \frac{\text{lbf}}{\text{yd}^3}$ Assumed ratio of reinforcement to concrete

Wt := $V \cdot Ratio$ Wt = 18.8 ton

4.2.2 Footing

Concrete in Leveling Pad (Pay Item 23 & 25)

 $A := 3 \cdot 1 \cdot ft^{2} + 2 \cdot 1 \cdot ft^{2} \qquad A = 5 \circ ft^{2} \qquad \text{Cross-Section Area}$ $L = 100 \circ ft \qquad \text{Length of Wall}$ $\text{Volume} = \qquad V := A \cdot L \qquad V = 18.5 \circ yd^{3}$

Reinforcement Quantity (Pay Item 21) 128 yd3

Ratio :=
$$293 \cdot \frac{1bf}{yd^3}$$

Wt := V·Ratio Wt = 2.7 Ton

Concrete related Pay Items

Item 18 - Forms in place, footing $4 \cdot 1 \cdot \text{ft} \cdot \text{L} = 400 \cdot \text{ft}^2$

- Item 21 Reinforcing Steel 18.8 Ton + 2.7 Ton = 21.5 Ton
- Item 23 Concrete, Ready Mix $128yd^3 + 18.5yd^3 = 146.5yd^3$

Item 24 - Placing concrete, chute $128 \cdot yd^3$ (Assume for plant operations)

Item 25 - Placing concrete, pumped $18.5 \cdot \text{yd}^3$

Item 27 - Placing concrete, with crane $128 \cdot yd^3$ (Assume for field ops)

4.2.3 Excavation and Backfill

Excavation (Pay Item 12)

A := $795 \cdot ft^2$ Cross-Section Area measured in CAD SketchL = $100 \circ ft$ Length of WallVolume =A \cdot L = $2944 \circ yd^3$

Backfill: Structural Fill (Pay Items 07 & 08)

$A \coloneqq 500 \cdot ft^2$	Cross-Section Area measured in CAD Sketch
$L = 100 \circ ft$	Length of Wall
Volume =	$A \cdot L = 1852 \circ yd^3$

Volume of Granular Backfill behind wall units (Pay Items 07 & 08)

$A \coloneqq 92 \cdot ft^2$	Cross-Section Area measured in CAD Sketch
$L = 100 \circ ft$	Length of Wall

Volume = $A \cdot L = 341 \circ yd^3$

Volume of Granular Backfill inside wall units (Pay Item 07 & 08)

$A \coloneqq 1291 \cdot ft^2$	CF per 8' Section
$L = 100 \circ ft$	Length of Wall
Volume =	$\frac{1291}{8} \cdot \frac{100}{27} = 598$ CY

Total Volume of Granular Backfill (Pay Items 07 & 08)

Volume = $341 \text{ yd}^3 + 598 \text{ yd}^3 = 939 \text{ yd}^3$

Geotextile around granular fill pocket (Pay Item 16)

 $W := 19 \cdot ft + 6 \cdot ft + 2 \cdot ft$ Length of Geotextile along Wall Cross-Section Area

 $L = 100 \circ ft$ Length of Wall

Area = $W \cdot L = 300 \circ yd^2$

Excavation related Pay Items

Item 07 - Backfill Structural	$1852 \text{ yd}^3 + 939 \text{yd}^3 = 2791 \text{yd}^3$
Item 08 - Select Granular Fill	$2724 \cdot yd^3$
Item 09 - Compaction, Roller	$2724 \cdot yd^3$
Item 10 - Compaction, Plate	$1.5 \cdot \text{ft} \cdot 21 \cdot \text{ft} \cdot \text{L} = 117 \circ \text{yd}^3$
Item 12 - Excavation	$2944 \cdot \text{yd}^3$

* DIMENSIONS VARY AS PER MANUFACTURER

CHAPTER 5 MECHANICALLY STABILIZED EARTH WALL

5.1 Design Calculations

Wall Properties

 $\label{eq:H} \begin{array}{ll} H \coloneqq 19 \cdot \mathrm{ft} + 2 \cdot \mathrm{ft} & \mbox{Wall height} + \mbox{Embedment below grade} \\ \mbox{L} \coloneqq 100 \cdot \mathrm{ft} & \mbox{Wall Length} \end{array}$

Soil Properties

Infill Soil: Granular Backfill used as fill around reinforcement

 $\gamma i := 105 \cdot pcf$ Soil Density

 ϕ i := 36·deg Angle of Internal Friction

Foundation & Retained Soil

$\gamma f := 120 \cdot pcf$	Soil Density
¢f ≔ 30·deg	Angle of internal friction
δ := 0 β := 90·deg	Angle of friction between soil and wall Batter of Wall, where 90 degrees is vertical
$\alpha \coloneqq 18 \cdot \deg$	Slope of Retained Soil
c := 0	Soil Cohesion

Galvanized Steel Reinforcement Properties

w := 2·in	Witdth of Reinforcement Strip
sv := 2.5 ·ft	Vertical Spacing, Center to Center
$sh \coloneqq 2 \cdot ft$	Horizontal Spacing, Center to Center
fy := 60·ksi	Yield Stress
¢u ≔ 20·deg	Soil tie friction angle

Determine Coulomb's Active Earth Pressure Coefficient, Ka

$$Ka := \frac{\sin(\beta + \phi i)^{2}}{\sin(\beta)^{2} \cdot \sin(\beta - \delta) \cdot \left[1 + \sqrt{\left(\sin(\phi i + \delta) \cdot \frac{\sin(\phi i - \alpha)}{\sin(\beta - \delta) \cdot \sin(\alpha + \beta)}\right]^{2}}\right]^{2}}$$

Ka = 0.32 Coulomb's active earth pressure coefficient for fill material

Where:

$\beta = 90 \circ deg$	$\delta = 0 \circ deg$
φi = 36 •deg	$\alpha = 18 \circ deg$

5.1.1 Stability

Determine Required Tie Requirements

FS = 1.5 Factor of Safety for bearing

 $t := \frac{\gamma i \cdot H \cdot Ka \cdot sv \cdot sh \cdot FS}{w \cdot fy}$ t = 0.44 in Required Tie Thickness

Where:

 $\gamma i = 105 \text{ pcf}$ $sv = 3 \circ ft$ fy = 35 ksi $H = 21 \circ ft$ $sh = 2 \circ ft$ Ka = 0.32 $w = 2 \circ in$

Consider Corrosion of Reinforcement: Assume the rate of corrosion is 0.001 in. per year and that there is a 100 year life span or per AASHTO

t = 0.16 in min

Use 1/4 in. thick ties $t := 0.25 \cdot in$

Analysis follows per FHWA software MSEW

Per output, use a Tie Length Lt = 15ft

NASSPA1 TITLE PAGE _____ PROJECT IDENTIFICATION: NASSPA Retaining Wall Study Project Number: NASSPA client: PJS Designer: Typical Section Corresponds to design section on Page 51 of 82 of NASSPA Report Station Number: Description: Revised MSE, Wall Design Company's information: Telephone #: Fax #: E-Mail: File path and name: C:\Program Files\ADAMA\MSEW(2.0)\NASSPA1.BEN Original date and time of creating this file: Thu Jul 13 15:24:27 2006 ANALYSIS PROGRAM MODE: of a SIMPLE STRUCTURE using METAL STRIPS as reinforcing material. SOIL DATA REINFORCED SOIL Unit weight, gamma = 105.0 lb/ft ³ Design value of internal angle of friction, phi = 36.0 ° RETAINED SOIL Unit weight, gamma = 120.0 lb/ft ³ Design value of internal angle of friction, phi = 30.0 ° FOUNDATION SOIL (Considered as an equivalent uniform soil) Equivalent unit weight, gamma_equiv. = 120.0 lb/ft ³ Equivalent internal angle of friction, phi_equiv. = 30.0 ° Equivalent cohesion, c_equiv. = 0.0 lb/ft ² Water table does not affect bearing capacity RETAINED SOIL LATERAL EARTH PRESSURE COEFFICIENTS Ka (internal stability) = 0.2596 (i Otherwise, eq. 38 is utilized) Ka (external stability) = 0.3948 (i Otherwise, eq. 17 is utilized) BEARING CAPACITY (if batter is less than 10°, Ka is calculated from eq. 15. (if batter is less than 10°, Ka is calculated from eq. 16. Bearing capacity coefficients (calculated by MSEW): NC = 30.14 = 22.40 N_gamma SEISMICITY ----- Not Applicable -----(Analysis) INPUT DATA: Metal strips Metal strip Metal strip Metal strip Metal strip type #1 type #2 type #3 type #4 type #5 DATA Yield strength of steel, Fy [ksi] 65.3 N/A Gross width of strip, b [in] 2.0 N/A Vertical spacing, Sv [ft] Varies N/A Design cross section area, Ac [in²] 0.16 N/A Ribbed steel strips. Uniformity Coefficient of reinforced soil, Cu = D60/D10 = 4.0 Friction angle along reinforcement-soil interface, ro @ the top 60.97 N/A @ 19.7 ft or below 36.00 N/A Pullout resistance factor. F* _____ _____ _____ N/A Pullout resistance factor, F* N/A N/A N/A 1.80 N/A @ the top @ 19.7 ft or below N/A N/A N/A 0.73 N/A

Variation of Lateral Earth Pressure Coefficient with Depth

к / ка Ζ _____

scale-effect correct. factor, alpha

N/A

1.00

N/A

N/A

N/A

NASSPA1

0 ft	1.70
3.3 ft	1.60
6 6 ft	1.55
a 8 ft	1.45
13.1 + 12	1.35
16 1 4	1 30
10.4 10	1 20
19./ TL	1.20

INPUT DATA: Facia and Connection (Analysis) FACIA type: Segmental precast concrete panels. Depth of panel is 0.50 ft. Horizontal distance to Center of Gravity of panel is 0.25 ft. Average unit weight of panel is gamma_f = 152.78 lb/ft ³

z / нd	To-static / Tmax
0.00 0.25 0.50 0.75 1.00	1.00 1.00 1.00 1.00 1.00 1.00

(for connection only)	туре #1	туре #2	туре #3	Туре #4	туре #5
D A T A (TOT Connection in))					
Strength reduction at the connection, CRu = Fyc / Fy	0.90	N/A	N/A	N/A	N/A

INPUT DATA: Geometry and Surcharge loads (of a SIMPLE STRUCTURE)

21.00 [ft] {Embedded depth is E = 2.00 ft, and height above top of finished bottom grade is H = 19.00 ft } _____ Design height, Hd 0.0 [deg] 18.0 [deg] 100.0 [ft] Batter, omega Backslope, beta Backslope rise Broken back equiv. angle, $I = 18.00^{\circ}$ (see Fig. 25 in DEMO 82)

UNIFORM SURCHARGE Uniformly distributed dead load is 0.0 [lb/ft ²]

ANALYSIS: CALCULATED FACTORS (Static conditions)

ANALIJIJ						-liden Fr	- 1 580 E	centric	itv.
Bearing capac e/L = 0.1392	city, Fs	= 3.6	9, Founda	tion Interfac	e: Direct	Siloing, FS			
M E T A L # Elevation	S T R I Length	 Р Туре #	C O Fs-overall [pullout resistance	NNECTIC Fs-overallF [connect.[N] break]) N 5 -overall Metal strip strength]	Metal strip strength Fs	Pullout resistance Fs	Direct sliding Fs	Eccent. e/L
1 1.00 2 3.46 3 5.92 4 8.38 5 10.84 6 13.30 7 15.76 8 18.22 9 20.69	14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70		N/A N/A N/A N/A N/A N/A N/A N/A OF HLATO	2.25 2.19 2.39 2.69 3.06 3.62 4.62 6.62 16.63	2.50 2.44 2.66 2.98 3.40 4.02 5.13 7.36 18.48 4.7 <i>F</i> ł	2.502 2.436 2.661 2.985 3.400 4.024 5.129 7.357 18.482	1,961 1,789 1,781 1,729 1,608 1,639 1,790 2,009 3,326	2.051 2.228 2.442 2.705 3.036 3.463 4.022 4.743 5.427	0.1257 0.0942 0.0650 0.0381 0.0129 -0.0115 -0.0375 -0.0719 -0.1471
BEARING	CAPACITY	for 6	IVEN LAYOU	T			·		
Ultimate be Meyerhof st Eccentricit Eccentricit	aring cap ress, sig y, e y, e/L	acity, ma_v	q-ult	STATIC 14257 3861.9 2.05 0.139	SEISMIC N/A N/A N/A N/A	UNITS [lb/ft ²] [lb/ft ²] [ft]		-	

Page 2

.

Es calculated	NASSPA	1		
Base length	3.69	N/A		
	14.70	N/A	[ft]	

) ====	DIRECT SLID	ING for GIVE	N LAYOUT					•	
Along	reinforced	and foundat	ion soils	===== 5 interfac	e: F	- s-static =	1.580		
#	Metal s Elevati [ft]	trip Metal on Lengt [ft]	strip 1	Fs Statio		Fs Seism	 ic	Metal st type #	 rip
1 2 3 4 5 6 7 8 9	1.00 3.46 5.92 8.38 10.84 13.30 15.76 18.22 20.69	14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70		2.051 2.228 2.442 2.705 3.036 3.463 4.022 4.743 5.427	L 3	N/A N/A N/A N/A N/A N/A N/A N/A		1 1 1 1 1 1 1 1	
EC ======	CCENTRICITY	for GIVEN L	AYOUT	=					
 #	Motal ct	nd Toundatio	on soils	interface:	: e/	L static = (0.1392		
	Elevatio [ft]	n Length [ft]	strip	e/L Static		e/L Seismio	2	Metal stri type #	ip
1 2 3 4 5 6 7 8 9	1.00 3.46 5.92 8.38 10.84 13.30 15.76 18.22 20.69	14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70		$\begin{array}{c} 0.1257\\ 0.0942\\ 0.0650\\ 0.0381\\ 0.0129\\ -0.0115\\ -0.0375\\ -0.0719\\ -0.1471 \end{array}$		N/A N/A N/A N/A N/A N/A N/A N/A		1 1 1 1 1 1 1 1 1 1	
RESU ====== # Meta Elev [ft]	ULTS for STR l strip Cov ation rat Rc=b,]	ENGTH [er. Horiz. io, spacing, /Sh [ft]	Note: Ac Long-te Streng [lb/ft]	tual Fs-ov rm Tmax th []b/ft] [/eral Tmd	l = (Yield s 	Actual calculated Fs-overall	Actual stre Specified minimum FS-overall	Actual calculate Fs-overa
1 1 2 3 5 4 8 5 10, 6 13, 7 15, 8 18, 9 20,	.00 0.067 .46 0.067 .92 0.067 .38 0.067 .84 0.067 .30 0.067 .76 0.067 .22 0.067 .69 0.067	7 2.461 7 2.461 7 2.461 7 2.461 7 2.461 7 2.461 7 2.461 7 2.461 2.461 2.461	4111 4111 4111 4111 4111 4111 4111 411	1642.92 1687.40 1545.21 1377.28 1209.02 1021.59 801.47 558.79 222.44	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	2.502 2.436 2.661 2.985 3.400 4.024 5.129 7.357 18.482	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Seismic N/A N/A N/A N/A N/A N/A N/A N/A N/A

RESULTS for CONNECTION (static conditions)

北京	M. Strips Elevation	Coverage ratio Rc=b/Sh	Horizontal spacing, Sh	Connection force, To	Reduction factor for connect.	Long-term connect. strength, Tac (break	M. Strips long-term strength	Fg-ov conne break	erall ction	Fs-ov M. st strer	verall trips ngth
	[ft]		[ft]	[]b/ft]	break CRu	criterion) [lb/ft]	[]b/ft]	Spec.	Actu	Spec.	Actu
1 2 3 4 5	1.00 3.46 5.92 8.38 10.84	0.067 0.067 0.067 0.067 0.067 0.067	2.461 2.461 2.461 2.461 2.461 2.461	1643 1687 1545 1377 1209	0.90 0.90 0.90 0.90 0.90 0.90 Page 3	3700 3700 3700 3700 3700 3700	4111 4111 4111 4111 4111 4111	N/A N/A N/A N/A N/A	2.25 2.19 2.39 2.69 3.06	N/A N/A N/A N/A N/A	2.50 2.44 2.66 2.98 3.40

6 7 8 9	13.30 15.76 18.22 20.69	0.067 0.067 0.067 0.067	2.461 2.461 2.461 2.461	1022 801 559 222	NASSPA1 0.90 0.90 0.90 0.90	3700 3700 3700 3700	4111 4111 4111 4111 4111	N/A 3.62 N/A 4.62 N/A 6.62 N/A 16.63	N/A 4.02 N/A 5.13 N/A 7.36 N/A 18.48
------------------	----------------------------------	----------------------------------	----------------------------------	---------------------------	---	------------------------------	--------------------------------------	---	---

RESULTS for PULLOUT

# Metal stri Elevation [ft]	p Covera Ratio Rc=b/Sł	age Tmax [1b/f1 1	 < Tm t][]b/	d Le ft] [ft	La] [ft]	Avaîl. S Static S Pullout Pr [lb/f	pecif. tatic Fs t]	Actual Static Fs	Avail. S Seismic S Pullout Pr [lb/ft	Specif. Seismic Fs]	Actual Seismic Fs
$\begin{array}{c} 1 & 1.00 \\ 2 & 3.46 \\ 3 & 5.92 \\ 4 & 8.38 \\ 5 & 10.84 \\ 6 & 13.30 \\ 7 & 15.76 \\ 8 & 18.22 \\ 9 & 20.69 \end{array}$	0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067	1643 1687 1545 1377 1209 1022 801 559 222	N/A N/A N/A N/A N/A N/A N/A N/A	14.10 12.62 11.15 9.67 8.19 7.72 7.72 7.72 7.72	0.60 2.08 3.55 5.03 6.51 6.98 6.98 6.98 6.98	3221.5 3019.1 2752.3 2381.7 1944.5 1674.3 1434.3 1122.9 739.9	N/A N/A N/A N/A N/A N/A	1.961 1.789 1.781 1.729 1.608 1.639 1.790 2.009 3.326	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A

Consider Overturning

FS := 2.0 Factor of Safety against overturning

Determine Resisting Moment

W :=
$$\gamma i \cdot Lt \cdot H$$
 W = 33 kip
ft Weight of soil resisting overturning
x := $\frac{Lt}{2}$ x = 7.5ft Moment arm of resisting soil from face of wall

 $Mr := W \cdot x$ $Mr = 248 \frac{kip ft}{ft}$ Resiting Moment

Determine Overturning Moment

$$P := \frac{1}{2} \cdot \gamma i \cdot Ka \cdot H^{2} \cdot \sin(\beta) \quad P = 7.4 \underbrace{kip}{ft} \quad \text{Horizontal Load due to Soil}$$
$$z := \frac{H}{3} \quad z = 7 \cdot ft \quad \text{Overturning moment arm}$$
$$Mo := P \cdot z \quad Mo = 51.9 \underbrace{kip ft}_{ft} \quad \text{Overturning Moment}$$

Determine Factor of Safety

$$\frac{\mathrm{Mr}}{\mathrm{Mo}} = 4.80 \qquad > \quad 2.0, \ \mathrm{OK}$$

Check Sliding

$$k \coloneqq \frac{2}{3}$$
 See Appendix, Ref. 2, Pp. 434

Determine Factor of Safety against Sliding, AASHTO 5.5.5

FSs :=
$$\frac{W \cdot \tan(k \cdot \phi_i)}{P}$$
 FSs = 2.0 > 1.5 OK

Where:

$$P = 7.4 \underline{kip}$$
ft
$$W = 33 \underline{kip}$$
ft

5.1.2 Bearing Capacity of Substrate Soil

 $\phi f = 30 \circ deg$ Angle of internal friction Nc := 30.14 From AASHTO Table 4.4.7.1A Ng := 22.4

$$e := \frac{Lt}{2} - \frac{Mr - Mo}{W}$$
 $e = 1.56 \text{ ft}$ Eccentricity of resultant load from the
midpoint of the retained soil $Lp := Lt - e \cdot 2$ $Lp = 11.9$ Effective Length $q := \frac{1}{2} \cdot \gamma f \cdot Lp \cdot Ng$ $q = 16.0 \text{ ksf}$ Allowable Bearing Stress on Soil $\sigma := \gamma i \cdot H$ $\sigma := 2.21 \text{ ksf}$ Bearing Stress on Foundation Soil

Determine Factor of Safety for Bearing, AASHTO 4.4.7.1.2

FSb :=
$$\frac{q}{\sigma}$$
 FSb = 7.3 > 3 OK

5.2 Quantity Calculations

Wall Panels (Pay Item 29)

$A := H \cdot L$	$A = 2100 \circ ft^2$	Exposed wall area
$L = 100 \circ ft$	Length of Wa	11
$H = 21 \circ ft$	Height of Wal	1
T := 7.5 · in	Assumed Wal	l Panel Thickness

V := $A \cdot T$ V = 48.6 • yd³ Volume of Concrete in Wall Panels Concrete in Leveling Pad (Pay Item 23)

 $v := 3 \cdot ft \cdot 1 \cdot ft \cdot L$ $v = 11.1 \cdot yd^3$ Volume in Concrete Leveling Pad Formwork for Leveling Pad (Pay Item 25)

 $Af := 2 \cdot 3 \cdot ft \cdot 100 \cdot ft \qquad Af = 600 \circ ft^2$

5.2.2 Reinforcement Quantity in Wall Panels

Galvanized Ties (Pay Item 22 & 30) $w = 2 \cdot in$ Tie Width $t = 0.25 \cdot in$ Tie ThicknessDetermine Tie Grid Matrix

$sv = 2.5 \circ ft$		Vertical Spacing of Ties
$sh = 2 \circ ft$		Horizontal Spacing of Ties
$Sv := \frac{H}{sv}$	Sv := 9	Number of Vertical Ties
$Sh := \frac{L}{sh}$	Sh = 50	Number of Horizontal Ties

Determine Total Weight of Tie Steel (Pay Item 30)

Wt :=
$$Sv \cdot Sh \cdot w \cdot t \cdot Lt \cdot 490 \cdot \frac{lbf}{ft^3}$$
 Wt = 5.6 Ton

Determine equivalent area of welded wire fabric for estimating (Pay Item 22)

$$Aw := \frac{Wt}{58 \cdot lbf} \qquad Aw = 193 \quad CSF$$

Reinforcement Steel in Wall Panels and Leveling Pad (Pay Item 21)

Ratio := $293 \cdot \frac{1bf}{yd^3}$ Assumed Ratio of Reinforcement Steel to Concrete Wt := V·Ratio Wt = 71. Ton Where V = $48.6 \cdot yd^3$ Volume of Concrete in Wall Panels

5.2.3 Excavation and Backfill

Volume of Granular Fill (Pay Item 07 & 08)

$$V := H \cdot (15 \cdot ft + 3.5 \cdot ft) \cdot L$$
 $V = 1439 \circ yd^3$

Where :

$H = 21 \circ ft$	Wall Height
$15 \cdot \text{ft} + 3.5 \cdot \text{ft}$	Length Granular Fill
$L = 100 \circ ft$	Wall Length

Volume of Structural Fill (Pay Item 07 & 08)

A :=
$$970 \cdot \text{ft}^2 - \text{H} \cdot (15 \cdot \text{ft} + 3.5 \cdot \text{ft})$$
 A = $582 \cdot \text{ft}^2$ Area of Fill
V := A·L V = $2154 \cdot \text{yd}^3$ Total Volume of Structural Fill

Where :

$H = 21 \circ ft$	Wall Height		
$15 \cdot \text{ft} + 3.5 \cdot \text{ft}$	Length Granular Fill		
$L = 100 \circ ft$	Wall Length		

Geotextile (Pay Item 16)

 $A := (H + 18.5 \cdot ft) \cdot L$ $A = 438.9 \cdot yd^2$

Excavation related Pay Items

Item 07 - Backfill Structural	$1439 \cdot \text{yd}^3 + 2154 \cdot \text{yd}^3 = 3593 \cdot \text{yd}^3$
Item 08 - Select Granular Fill	$3593 \cdot yd^3$
Item 09 - Compaction, Roller	$3593 \cdot yd^3$
Item 10 - Compaction, Plate	$1.5 \cdot \text{ft} \cdot 21 \cdot \text{ft} \cdot \text{L} = 117 \cdot \text{yd}^3$
Item 12 - Excavation	$3593 \cdot yd^3$

FIGURE 5-1 MECHANICALLY STABILIZED EARTH WALL

 $\mathcal{L}_{\mathbf{r}} = \{ \mathbf{r}_{\mathbf{r}} \}^{T}$

CHAPTER 6 SOLDIER PILE AND LAGGING WALL

6.1 Design Calculations

Wall Properties

H := 19.ft	Wall height
L := 100.ft	Wall Length

Retained Soil Properties

$\gamma f := 120 \cdot pcf$	Soil Density
¢f ≔ 30·deg	Angle of internal friction
δ := 0 β := 90·deg	Angle of friction between soil and wall Batter of Wall, where 90 degrees is vertical
$\alpha \coloneqq 18 \cdot \deg$	Slope of Retained Soil
c := 0	Soil Cohesion

Pile Properties

 $Fy := 50 \cdot ksi$ Yield Strength

Determine Coulomb's Earth Pressure Coefficients

For passive pressure

$$Kp := \frac{\left(\sin(\beta - \phi f)\right)^2}{\sin(\beta)^2 \cdot \sin(\beta + \delta) \cdot \left[1 - \left(\sin(\phi f + \delta) \cdot \frac{\sin(\phi f + \alpha)}{\sin(\beta + \delta) \cdot \sin(\beta + \alpha)}\right)^{0.5}\right]^2}$$

Kp = 5.33 Coulomb's passive earth pressure coefficient

FS := 1.5Factor of Safety used for Kp
(Use in lieu of lengthening the pile later)
$$Kp := \frac{Kp}{FS}$$
 $Kp = 3.56$ Value used for design

For active pressure

$$Ka := \frac{\sin(\beta + \phi f)^{2}}{\sin(\beta)^{2} \cdot \sin(\beta - \delta) \cdot \left[1 + \sqrt{\left(\sin(\phi f + \delta) \cdot \frac{\sin(\phi f - \alpha)}{\sin(\beta - \delta) \cdot \sin(\alpha + \beta)}\right]^{2}}\right]^{2}}$$

Coulombs active earth pressure coefficient

6.1.1 Pile Design

Determine Pressure Diagram

 $S := 8 \cdot ft$ Spacing of soldier pile

B = 14 in Flange width of soldier pile

$$bf = effective width = 3.0B bf = 3.5 ft$$
 Effective wi

Effective width of pile including adjustment factor, Value must be less than soldier pile spacing

Consider Area 1, See Figure 6-2

Determine the pressure and force

p1 ≔ H∙γf∙Ka	pl = 0.966 ksf	Active pressure at exc. line
$f1 \coloneqq \frac{1}{2} \cdot p1 \cdot H$	fl = 9.18 <u>kip</u> ft	Total Force per ft. of width due to p1
$w1 \coloneqq p1 \cdot S$	$wl = 7.73 \frac{kip}{ft}$	Maximum value of uniform Load (Used for lagging design)
$F1 := f1 \cdot S$	Fl = 73.4 kip	Force of retained earth due to pressure p1

Determine associated moment arm

T := 4·ftDistance of Tie Back from top of pileA1 := H - T -
$$\frac{H}{3}$$
A1 = 8.67 • ftMoment Arm for F1 from tie backM1 := -F1·A1M1 = -636.4 kip ftMoment about Tie Back due to P1

Consider Area 2, See Sketch of Pressure Diagram, Fig. 6-2

Determine pressure and force

$$p2 := p1$$
 $p2 = 0.966$ ksfActive pressure at exc line, same as p1 $L2 := \frac{H \cdot Ka}{Kp - Ka}$ $L2 = 2.57 \cdot ft$ Depth of A2 pressure $f2 := \frac{1}{2} \cdot p2 \cdot L2$ $f2 = 1.241 \frac{kip}{ft}$ Total Force per ft. of width for Area 2 $w2 := p2 \cdot bf$ $w2 = 3.38 \frac{kip}{ft}$ Uniform Load $F2 := f2 \cdot bf$ $F2 = 4.3$ kipForce due to pressure p2

Determine associated moment arm

A2 := A1 +
$$\frac{H}{3}$$
 + $\frac{L2}{3}$ A2 = 15.86 oft Moment arm for F2 from tieback
M2 := -F2 · A2 M2 = -68.8 kip ft Moment due to pressure in area 2

Consider Area 3, See sketch

- L3 := 7.0 ft Depth of pressure for area 3, note: this value is determined by trial and error so the the moment about the tieback is equal to 0.00
- $p3 = \gamma f(Kp Ka)lp3 = 2.64 \text{ ksf}$ Pressure of area 3 due to difference of
active & passive pressure $f3 := \frac{1}{2} \cdot \gamma f \cdot (Kp Ka) \cdot L3^2$ $f3 = 9.2 \frac{kip}{ft}$ Total Force per ft. of width
due to pressure p3 $w3 := p3 \cdot bf$ $w3 = 9.24 \frac{kip}{ft}$ Uniform load at bottom $F3 := f3 \cdot bf$ F3 = 32.2 kipForce due to pressure p3

Determine associated moment arm

A3 := H - T + L2 +
$$\frac{2 \cdot L3}{3}$$
 A3 = 22.26 ft Moment arm for force
about tieback
M3 := F3 \cdot A3 M3 = 716.8 kip ft

Sum moments about tie back - equal close to 0

$$M := M1 + M2 + M3$$

M = +11.6 kip ft > 0 Therefore value of L3 above is OK

F := F1 + F2 - F3 F3 = 45.5 kip Tie Back Force

Determine Pile length and depth

Depth := L2 + L3 Depth = $9.6 \circ ft$

Length := L2 + L3 + H Length = $28.6 \circ ft$

Use a 30 ft. pile $Lp := 30 \cdot ft$

Determine Pile Section Required

Determine the point of zero shear by summing the forces (Note: Assume zero shear is above the mud line)

x := 15.0 ftDistance from top of grade determined by trial & error $Px := \frac{1}{2} \cdot w1 \cdot \frac{x^2}{H}$ Px = 45.5 kipHorizontal force due to soil at depth x

V := F - Px V = 0.0 kip Net shear at depth x, OK

Detemine Required Section Modulus

$$M \coloneqq F \cdot (x - T) - Px \cdot \frac{x}{3} \qquad M = 273 \text{ kip ft}$$

Sx := $\frac{M}{0.55 \cdot Fy}$ Sx = 121 in³ Use HP14 x 89 Sx := 131 \cdot in³

6.1.2 Lagging Design

Design Lagging based on maximum load applied

Properties

b := 10·in	Height of Laggin	ig Panel	s := 12·in	Space of
h := 10·in	Depth of Lagging	g Panel		Shear Reinf.
fy := 60·ksi	Use 60 ksi Reinforcing			
fc := 3.5 ·ksi	28 Day compress	sive strength	n of concrete	
fs := 24·ksi	Allowable tensic	n in reinfor	cement	
w := p1·b	$w = 0.805 \underline{kip}$ ft	Uniform La Equal to pr	oad at exc line o essure at excline	on lagging panel, e x panel width
$S = 8 \circ ft$	Span of La	agging, Con	servative	

Determine maximum moment, conservative to design as simply supported beam Include a load factor of 1.3 for Earth Loads as per AASHTO Table 3.22.1A

$$M := \frac{w \cdot S^2}{8} \cdot 1.3 \qquad M = 8.37 \text{ kip ft} \qquad \text{Maximum Moment}$$
$$V := 1.15 \cdot \frac{w \cdot S}{2} \cdot 1.3 \qquad V = \bullet \circ \text{kip} \qquad \text{Maximum Shear}$$

Determine the required reinforcement by service load design

As :=
$$3 \cdot 0.31 \cdot in^2$$
 As = $0.93 \cdot in^2$ Try 3 # 5 bars
d := h - $3 \cdot in$ d = 7 $\cdot in$ Use 3 in. clearance for Reinforcement
Ts := As $\cdot fs$ Ts = 22.3 kip Tension & Compression Force
kd := $\frac{2 \cdot Ts}{fc \cdot b}$ kd = 1.28 in Depth of compression block
Ma := $Ts \cdot \left(d - \frac{kd}{3}\right)$ Ma = 12.2 kip ft > M = 8.37 kip ft
For Shear vc := $0.95 \cdot \sqrt{\frac{fc}{psi}} \cdot psi$ vc = 56.2 psi Allow. Concrete Shear
v := $\frac{V}{b \cdot d}$ v = 68.8 psi Total Shear
Avr := $\frac{(v - vc) \cdot b \cdot s}{fs}$ Avr = 0.06 in² < Av := $0.62 \cdot in^2$ OK
Use 10"x10" Panels w/ 3 #5 Bars on E. Face

65 of 78

6.1.3 Grouted Anchor Design

Use 1" dia. Threadbar Fa := $76.5 \cdot \text{kip}$ See Chapter 2 Bonded Length = FS x F/Fu = $44.7 \times 2.5/13.0 = 8.6'$ Use 10'

6.2 Quantity Calculations

6.2.1 Pile Quantities

Soldier Piles, HP 14x89 (Pay Item 14)

$S = 8.0 \circ ft$	Pile Spacing			
$L = 100 \circ ft$	Wall Length			
$Np := \frac{L}{S} + 1$	Np = 13.5	Use	Np := 14	Piles
$Lp = 30 \circ ft$	Pile Length			
Qp ≔ Lp·Np	$Qp = 420.0 \circ ft$		Fotal Length o	of Soldier Pile

Grouted Anchor Quantity, one per pile (Pay Item 04)

14 Units x (15' + 10') = 350LF

6.2.2 Lagging Panel Quantities

Concrete Quantity in Lagging Panels

$H = 19 \circ ft$	Height of Wall
h = 10.0 •in	Depth of Lagging Panel
$Lp := 7 \cdot ft$	Length of Lagging Panel
Nb := 13	Number of Bays of Lagging Panel along wall
Qc ≔ Nb ·H ·h ·Lp	$Qc = 53.4 \circ yd^3$ Concrete Quantity
$A := H \cdot L \qquad A = 1$	1900 • ft ² Exposed Wall Area (Pay Item 29)

6.2.3 Reinforcement Quantity in Lagging Panels (Pay Item 21)

Lr := $6 \cdot 6.5 \cdot ft + 14 \cdot 8 \cdot in$ Lr = $48.3 \circ ft$ Total Bar Length
Per PanelNpa := $\frac{H}{b}$ Npa = 22.8Npa := 23Panels per baywt := $1.043 \cdot \frac{lbf}{ft}$ Weight of No. 5 barNb = 13Number of baysWr := Lr \cdot Nb \cdot Npa \cdot wtWr = 7.5 TonTotal Weight of Reinforcement

Excavation (Pay Item 12)

$$A := 350.4 \cdot ft^2$$
Measured in Cad File $V := A \cdot L$ $V = 1298 \cdot yd^3$ Volume of Excavation

Excavation for Tie Rods (Pay Item 11)

$$T := 5 \cdot ft$$
Assumed Trench width $At := 402 \cdot ft^2$ Area of trench beyond Excavation, measured in CAD $Np = 14$ Number of Tie Rod locations

Vt := $At \cdot T \cdot Nb$ $Vt = 968 \cdot yd^3$ Volume of Tie Rod Trench excavation

Granular Backfill Behind Wall, for drainage

 $Qg := 2 \cdot ft \cdot H \cdot L$ $Qg = 141 \circ yd^3$

Structural Fill

Qs := V + Vt - Qg $Qs = 2125 \circ yd^3$

Geotextile $(19 \cdot \text{ft} + 2 \cdot \text{ft}) \cdot \text{L} = 233.3 \cdot \text{yd}^2$ Pay Item 16

^{6.2.4} Excavation and Backfill
Excavation related Pay Items

Item 07 - Backfill Structural	$141 \cdot yd^3 + 2125 \cdot yd^3 = 2266 \cdot yd^3$
Item 08 - Select Granular Fill	$2266 \cdot yd^3$
Item 09 - Compaction, Roller	$2266 \cdot yd^3$
Item 10 - Compaction, Plate	$1.5 \cdot \text{ft} \cdot 19 \cdot \text{ft} \cdot \text{L} = 106 \circ \text{yd}^3$
Item 11 - Excavation for Tie Rods	$968 \cdot yd^3$
Item 12 - Excavation	$1298 \cdot yd^3$

FIGURE 6-2 SOLDIER PILE AND LAGGING WALL FORCE & PRESSURE DIAGRAM

70 of 78

CHAPTER 7 SLURRY WALL

7.1 Design Calculations

Wall Properties

H := 19.ft	Exposed Wall height
L := 100.ft	Wall Length

Retained Soil Properties

$\gamma f := 120 \cdot pcf$	Soil Density
¢f ≔ 30·deg	Angle of internal friction
$\delta \coloneqq 0$ $\beta \coloneqq 90 \cdot \deg$	Angle of friction between soil and wall Batter of Wall, where 90 degrees is vertical
$\alpha \coloneqq 18 \cdot \deg$	Slope of Retained Soil
c := 0	Soil Cohesion

Concrete and Reinforcement Properties

fc := 4·ksi	28 Day compressive strength
fy ≔ 60·ksi	Yield strength of reinforcement

Determine Coulomb's Earth Pressure Coefficients

For passive pressure

$$Kp := \frac{\left(\sin(\beta - \phi f)\right)^2}{\sin(\beta)^2 \cdot \sin(\beta + \delta) \cdot \left[1 - \left(\sin(\phi f + \delta) \cdot \frac{\sin(\phi f + \alpha)}{\sin(\beta + \delta) \cdot \sin(\beta + \alpha)}\right)^{0.5}\right]^2}$$

Kp = 5.33 Coulomb's passive earth pressure coefficient

FS := 1.5Factor of Safety used for Kp
(Use in lieu of lengthening wall embedment depth later)
$$Kp := \frac{Kp}{FS}$$
 $Kp = 3.56$ Value used for design

For active pressure

$$Ka := \frac{\sin(\beta + \phi f)^{2}}{\sin(\beta)^{2} \cdot \sin(\beta - \delta) \cdot \left[1 + \sqrt{\left(\sin(\phi f + \delta) \cdot \frac{\sin(\phi f - \alpha)}{\sin(\beta - \delta) \cdot \sin(\alpha + \beta)}\right]^{2}}\right]^{2}}$$

Ka = 0.424 Coulombs active earth pressure coefficient

7.1.1 Cantilever Wall Design

Determine Pressure Diagram, Ref. 2, Pp. 458-462

Consider Area 1

Determine the pressure and force

p1 := $H \cdot \gamma f \cdot Ka$ p1 = 0.966 ksf Active pressure at exc line f1 := $\frac{1}{2} \cdot p1 \cdot H$ f1 = 9.18 $\frac{kip}{ft}$ Total Force per ft. of width due to p1

Consider Area 2

Determine pressure and force

p2 := p1 p2 = 0.966 ksf Active pressure at exc line, same as p1
L2 :=
$$\frac{H \cdot Ka}{Kp - Ka}$$
 L2 = 2.57 oft Depth of A2 pressure
f2 := $\frac{1}{2} \cdot p2 \cdot L2$ f2 = 1.241 $\frac{kip}{ft}$ Total Force per ft. of width for Area 2

Determine moment arms from point E for f1 & f2

$$z1 := L2 + \frac{H}{3}$$
 $z1 = 8.9 \circ ft$ Moment arm for f1
 $z2 := \frac{2}{3} \cdot L2$ $z2 = 1.7 \circ ft$ Moment arm for f2

Determine z & P

 $P := f1 + f2 \qquad P = 10.4 \frac{\text{kip}}{\text{ft}} \qquad \text{Horizontal force due to Passive} \\ Pressure \\ z := \frac{f1 \cdot z1 + f2 \cdot z2}{f1 + f2} \qquad z = 8.0 \text{ ft} \qquad \text{Distance from Point E} \end{cases}$

Determine L4 by trial and error

$$p5 := \gamma f \cdot H \cdot Kp + \gamma f \cdot L2 \cdot (Kp - Ka) \qquad p5 = 9.07 \text{ ksf}$$

$$A1 := \frac{p5}{\gamma f \cdot (Kp - Ka)} \qquad A1 = 24.1 \text{ ft}$$

$$A2 := \frac{8 \cdot (f1 + f2)}{\gamma f \cdot (Kp - Ka)} \qquad A2 = 221.6 \text{ ft}^2$$

A3 :=
$$\frac{6 \cdot P \cdot (2 \cdot z \cdot \gamma f \cdot (Kp - Ka) + p5)}{\gamma f^2 \cdot (Kp - Ka)^2}$$
 A3 = 6687.2 ft³

A4 :=
$$\frac{P \cdot (6 \cdot z \cdot p5 + 4 \cdot P)}{\gamma f^2 \cdot (Kp - Ka)^2}$$
 A4 = 35353.1 ft⁴

LA := 17.4 ft

Solved by Trial and Error

 $L4^4 + A1 L4^3 - A2L4^2 - A3L4 - A4 = 0.8 ft^4$ Close Enough to 0.0

Total distance below Exc Line Required

D := L2 + L4 $D = 20.0 \circ ft$

Determine pressures and distances

$p4 := p5 + \gamma f \cdot L4 \cdot (Kp - Ka)$	p4 = 15.6 ksf
$p3 := \gamma f \cdot L4 \cdot (Kp - Ka)$	p3 = 6.5 ksf
$L5 := \frac{p3 \cdot L4 - 2 \cdot P}{p3 \cdot L4 - 2 \cdot P}$	L5 = 4.2 ft
p3 + p4	L5 = 1.2 It

7.1.2 Wall Reinforcement Design

Determine Maximum Bending Moment

 $zp := \sqrt{\frac{2 \cdot P}{(Kp - Ka) \cdot \gamma f}}$ zp = 7.4 ft Point of zero shear

Mmax := $P \cdot (z + zp) - \left[\frac{1}{2} \cdot \gamma f \cdot zp^2 \cdot (Kp - Ka)\right] \cdot \frac{1}{3} \cdot zp$

Design Reinforcement for slurry wall

 $Mu = 1.3 \ 1.3 \ Mmax \qquad Mu = 229 \ \underline{kip \ ft} \\ ft \qquad Factor Moment for Group I \\ AASHTO LFD Loading$

 $\rho \min \coloneqq \frac{200}{\frac{fy}{psi}}$ $\rho \min = 0.0033$ Grade 60

 $b := 12 \cdot in$ Consider 12 in. wide wall segment

 $h := 3 \cdot ft$ Wall thickness

 $d := h - 4.5 \cdot in$ $d = 31.5 \cdot in$ Concrete depth to cl of reinforcementAsmin := $b \cdot d \cdot \rho \min$ Asmin = 1.26 in²per 1 ft. width

Use No. 11 bars at 9 in. spacing

As := $1.56 \cdot in^2 \cdot \frac{12}{9}$ As = $2.1 \cdot in^2$ per 1 ft. width $a = \frac{As fy}{0.85 fc b}$ a = 3.1 in Depth of compression block ϕ Mn = 0.9 As fy $\left(d - \frac{a}{2}\right)$ ϕ Mn = 281 kip ft OK ϕ Vc = 0.85 2 $\sqrt{\frac{fc}{psi}}$ $b \cdot d \cdot psi$ ϕ Vc = 40.6 kip ϕ Vc + ϕ Vs>V OK

7.2 Quantity Calculations

7.2.1 Concrete Quantity (Pay Item 23 & 26) $Of = 37.0 \circ vd^3$ $Qf := (H + 1 \cdot ft) \cdot 6 \cdot in \cdot L$ **CIP** Finish Wall Portion Only $H = 19 \circ ft$ Exposed Wall Height Where: 6" = Finish Wall Thickness $L = 100 \circ ft$ Wall Length Formwork for finish wall (Pay Item 20) $A = 2000 \circ ft^2$ $\mathbf{A} \coloneqq (\mathbf{H} + 1 \cdot \mathbf{ft}) \cdot \mathbf{L}$ 7.2.2 Reinforcement Quantity (Pay Item 21) Vertical Bars, No. 11 @ 9" Each Face w11 := $5.313 \cdot \frac{\text{lbf}}{\text{ft}}$ Bar weight $L11 := H + D - 0.5 \cdot ft$ $L11 = 38.5 \cdot ft$ Bar Length No of bars along length N11 := $\frac{L}{9 \cdot in}$ N11 = 133.3 N11 := 134 Each Face $W11 := w11 \cdot L11 \cdot N11 \cdot 2$ W11 = 54800 lbfWeight of vert. bars Horizontal Bars, No. 5 @ 12" Each Face w5 := $1.043 \cdot \frac{\text{lbf}}{\text{ft}}$ Bar Weight $L5 = 99.5 \circ ft$ $L5 := L - 0.5 \cdot ft$ Bar Length N5 := $\frac{H + D - 0.5 \cdot ft}{12 \cdot in}$ N5 = 38.5 N5 := 39 No of bars along height Each Eace Each Face $W5 = 8095 \circ lbf$ Weight of horiz bars W5 := w5 \cdot L5 \cdot N5 \cdot 2 Finish Face Bars, #4 @ 12" Each Face $w4 := 0.668 \cdot \frac{lbf}{ft} \qquad N4h := \frac{H + 1 \cdot ft - 0.5 \cdot ft}{12 \cdot in} \qquad N4h = 19.5 \qquad N4h := 20$ N4v := $\frac{L}{12 \cdot in} \qquad N4v = 100 \qquad L4 := H + 1 \cdot ft - 0.5 \cdot ft \qquad L4 = 19.5 \cdot ft$

 $W4 := w4 \cdot (L5 \cdot N4h + L4 \cdot N4v) \qquad W4 = 2631.9 \cdot lbf \qquad Wt. of \#4 bars$ Total Weight of Reinforcement (Pay Item 21) $W := W11 + W5 + W4 \qquad W = 32.7 \text{ Ton}$

77 of 78

7.2.3 Excavation and Backfill

Determine Quantity for drainage at front face of wall

Ae :=
$$7.3 \cdot \text{ft}^2$$
 Cross-Section Area Measured in CAD File
Qe := Ae·L Qe = $27.0 \cdot \text{yd}^3$ Excavation and Backfill Quantity

Determine Quantity for drainage at back face of wall

Agr :=
$$132 \cdot \text{ft}^2$$
 Cross-Section Area Measured in CAD File

 $Qgr := Agr \cdot L \quad Qgr = 488.9 \circ yd^3$ Excavation and Backfill Quantity

Total Excavation and Backfill Quantity

Qt := Qe + Qgr $Qt = 515.9 \circ yd^3$

Slurry Trench Excavation and Backfill with concrete (Pay Item 17)

Geotextile around drainage pocket (Pay Item 16)

$$Agt := 26 \cdot ft \cdot L \qquad Agt = 288.9 \cdot yd^2$$

Excavation related Pay Items

Item 07 - Backfill Structural	$515.9 \cdot \text{yd}^3$
Item 08 - Select Granular Fill	$515.9 \cdot \text{yd}^3$
Item 10 - Compaction, Plate	$515.9 \cdot \text{yd}^3$
Item 12 - Excavation	$515.9 \cdot \text{yd}^3$

NORTH AMERICAN STEEL SHEET PILING ASSOCIATION RETAINING WALL STUDY Appendix A: RS Means Pay Items, Heavy Construction 2009

			RS N	/leans S	Section		Daily			
Item No.	Pay Item		R	Referen	ced	Unit	Output	1	U nit Cost	Comment
	Sheet piling, 15 ft deep									
01	excavation	22 psf, left in place	31 41	16.10	0020	TN	10.81	\$	2,050.00	Used for anchor wall
	Sheet piling, 20 ft deep									
02	excavation	27 psf, left in place	31 41	16.10	0300	TN	12.95	\$	1,950.00	
	Wales, connections &									
03	struts		31 41	16.10	2500	TN	NA	\$	300.00	
	Tie rod, upset, 1.75 in. to									
04	4 in. dia	with turnbuckle	31 41	16.10	3300	TN	NA	\$	2,700.00	
05	Grouted Anchors	difficult 30'	31 32	36.16	1420	LF	360.00	\$	20.20	
06	No Item									
		105 H.P., 150 ft. haul,								
07	Backfill structural	sand &gravel	31 23	23.14	3200	LCY	670.00	\$	2.02	Does Not include materials
										Used to determine material price
08	Borrow loading	Select granular fill	31 23	23.15	5000	BCY	NA	\$	13.86	only (+ 10% profit)
	Compaction, riding,									
09	vibrating roller	12 in. lift, 2 passes	31 23	23.23	5060	ECY	5200.00	\$	0.23	Primary compaction method
	Compaction, walk behind									Compaction method at wall
10	vibrating plate	12 in. lift, 2 passes	31 23	23.23	7200	ECY	560.00	\$	0.78	edges, 18 in. width
	Excavation, trench,	6 ft to 10 ft deep, 1.5								
11	common earth	cy hydraulic backhoe	31 23	16.13	0610	BCY	600.00	\$	3.10	Trench for Tie Backs
	Excavation, trench,	14 ft to 20 ft deep, 1.5								
12	common earth	cy hydraulic backhoe	31 23	16.13	1310	BCY	480.00	\$	3.86	Main Excavating
		HP10x42, to 50 ft.								
13	Driven piles, H sections	length	31 62	16.13	0400	VLF	610.00	\$	32.00	
		HP14x117 to 50 ft.								
14	Driven piles, H sections	length	31 62	16.13	1400	VLF	510.00	\$	76.50	
	Driven piles, complete									
15	pile driving setup	Mobilization, large	31 06	60.15	1200	EA	0.27	\$	22,000.00	
	Geotextile for subsurface	Fabric, laid in trench,								
16	drainage	adverse conditions	33 46	26.10	0110	SY	1600.00	\$	2.18	

NORTH AMERICAN STEEL SHEET PILING ASSOCIATION **RETAINING WALL STUDY**

RS Means Section Daily Item No. Pay Item Unit Output **Unit Cost** Comment Referenced Backfilled w/ 3ksi concrete, no Slurry Trench, excavated reinforcement 31 56 23.20 0050 CF 17 in wet soils 333.00 \$ 23.50 Continuous wall, 18 Forms in place, footing plywood, 2x 03 11 13.45 0050 SFCA 440.00 \$ 2.80 Integral starter wall, to 19 Forms in place, footing 4 in 03 11 13.45 1000 LF 400.00 \$ 5.55 16 ft to 20 ft high 13.85 9460 SFCA 20 \$ 8.15 Used for forming walls Steel framed plywood 03 11 400.00 10 - 50 ton job, #3 to # Reinforcing steel, A615 Reasonable fit for applicable 10.60 1050 21 03 21 TN 2.10 \$ 2,825.00 walls Gr 60 7 bars 6x6, W4xW4, Best match for strip steel 03 22 05.50 0400 CSF 27.00 22 Welded wire fabric 58psf/csf \$ 94.00 reinforcing in CMU gravity wall Normal weight, 3500 Average strength for various 23 03 30 05.35 0200 CY NA \$ 114.00 components Concrete, ready mix psi Assume for precasting operations Continuous, shallow, Placing concrete, footings direct chute 24 03 31 05.70 1900 CY 120.00 \$ 21.00 of CMU gravity wall Continuous, shallow 03 31 05.70 1950 Placing concrete, footings pumped CY \$ 25 150.00 28.00 05.70 5350 \$ 35.00 26 Placing concrete, walls 15 in thk, pumped 03 31 CY 120.00 Assume for placing precast 53.50 segments of CMU gravity wall 03 31 05.70 5400 CY 95.00 27 Placing concrete with crane \$ 28 No Item With 33.3% increase in material Precast concrete wall 29 10 in. thick 03 47 13.50 0100 SF 1550.00 \$ 22.68 price for thickness panels For strip steel reinforcing in 05 05 13.50 5950 30 Galvanizing steel in shop 1 ton to 20 tons TN NA \$ 875.00 CMU gravity wall

Appendix A: RS Means Pay Items, Heavy Construction 2009

North American Steel Sheet Piling Association

Retaining Wall Study

Appendix B: References

- State of California, Department of transportation, Division of Structure Construction (1995), "Trenching and Shoring Manual", <u>http://www.dot.ca.gov/hq/construction/construc.htm</u>
- 2. Das, B. M. (1999), "Principals of Foundation Engineering", 4th Edition, Brooks/Cole Publishing Company
- 3. "RS Means Heavy Construction Data 2009", 23rd Edition, Reed Construction Data, Kingston, MA

1/OF	VISED 10/09	COST RE			
SHEET No.					
RE	NA	5.6	NA	Ţ	
TA	1,900.0	2,100.0	NA	К К	PANEL
ste INI	NA	NA	NA	<u>8</u> 2	ACE 4 IN
EL NG	NA	NA	AN	<u>१</u> २	, WALLS
N(SH	NA	600.0	18.5	R	, PUMPED
ORT IEE	NA	NA :	124.0	3	
нл ГР LC	NA	193.0	a cut VN	<u>२</u> भ	ABRIC
ame Ilin Con	7.5	7.1	21.3	Į	
ric Ig /	NAA	NA	N N N	<u>କ୍</u> ଷ ବ	FRAMED
ASS ASS	NA	NA	400.0	- SE	CE, FOOTIN
oci <i>i</i> SON	NA NA	NA NA	NA NA	<u>ନ</u> -	Ŧ
ATIO S1	1.0	ANA ANA	AN AN	2 EA	ARGE
N TUD	420.0	N A	NA	5	39
١Y	1,298.0	3,593.0	2,944.0	<u>г</u> г	4 TO 20 F
	968.0	NA II	NA	2 2 2	TO 10 FT
	2,266.0	3,593.0	2,724.0	20 20	ROLLER
CC M	2,266.0	3,593.0	2,724.0	CY	LAR FILL
ONC ECH	NA 0	3 503 0	0 122 C	Ω.E	AILS
RE1 HAN	NA	NA	NA	12	TUC
iica Dldi	940.0	NA	N N N	6 z	
MOD LLLY ER	NA	NA	AN	Ī	PSF
OUL/ ST PIL	NA	NA	NA	Z	PSF
AR U TABIL E AN	AND LAGGING		GRAVITY WALL	0	
init Izec Nd L					Ę
GR DE					2
AVI ART GIN			HWALL	EART	TABILIZED
TY WA TH WA G WA	dia. Rforated Pip	PEP 6,	RCEMENT $1/4^{*}X_{2}$ = 2'	REINFO	RIZONTAL
ALL ALL LL					
		<u> </u>			
420 Rot Fairfield Tel: 97: Fax: 97					
J CO Jute 46 E J, New J 3.227.80 3.227.80	·Ŀ				
ast, Su 660 661	Ĺ				
ite 1 7004		3'-6"			
,		-			
NJ °,		- 			
Cert. of Engine Inspec Constr		<u> </u>	2'-6"		
Auth. eerin ction: ructic		<u>AX.</u>	- (T		
. No. 24 g / St 5 Dn		<u></u>			15'
4GA280 Irveyin	-~-				
97900 g		J			
SCA DAT DES DRN CHK PRO FILE		L POCKET	면 18.0 18.0		
LE: E: . BY: . BY: . BY: JECT:				١	
NTS 5-06 RRS RRS MHM NASSP WALLS		X			
A TUDY		١	ICTURAL FILL	STRU	_
				I	

SURRY WALL 1. EXCAVATE FOR ALTERNATE PANEL LE 12 FT. WHILE FILLING EXCAVATION WI SLURRY. 2. PLACE REINFORCEMENT CAGE INTO E 3. PLACE TREINFIC CONCRETE BEGINNING EXCAVATION AND WORK UP WHILE CO SLURRY FOR RE-USE. 5. PLACE TREINFIC CONCRETE BEGINNING EXCAVATION AND WORK UP WHILE CO PLACE TREINFIC CONCRETE BEGINNING EXCAVATION AND WORK UP WHILE CO SLURRY FOR RE-USE. 5. PLACE TREMMIC CONCRETE BEGINNING EXCAVATION AND WORK UP WHILE CO SLURRY FOR RE-USE. 6. SLURRY FOR RE-USE. 7. ALLOW APPROPRIATE CURE TIME THE FINAL GRADE.	WALL CONSTRUCTION SEQUENCES	TOP OF WALL #1 0 9' E.F. #1 0 0 1'' #1 0 9'' E.F. #1 0 0 1'' #1 0 0'' #1 0 0''' #1 0 0''' #1 0 0'''' #1 0 0''''''''''''''''''''''''''''''''''
LENGTHS OF 8 FT. TO WITH A BENTONITE EXCAVATED AREA. NG AT BOTTOM OF COLLECTING BENTONITE HEN BEGIN EXCAVATING HLE PLACING BENTONITE EXCAVATED AREA. NG AT BOTTOM OF COLLECTING BENTONITE COLLECTING BENTONITE	URRY WALL	GRADE GRADE GRADULAR FILL FOR DRAINAGE FOR DRAINAGE FOR DRAINAGE SOL
TIME AND COST WALL TYPE TIME TO CONSTRUC FT/DAY SLURRY WALL 1.5		RUANTITY TABLNO.PAY ITEM01SHT. PILE, 22 PSF02SHT. PILE, 27 PSF03TREROS04TE ROSS05SOL NALL LAYOUT06INSTALL SOL NALLS07BACKFILLING08SELECT GRANULAR FILL09COMPACTION, PLATE11EXCAVATION, 14 TO 20 FT.12EXCAVATION, 14 TO 20 FT.13DRIVEN HP14X11714DRIVEN HP14X11715FILE SETUP, LARGE16FORMS IN PLACE, FOOTING19FORMS IN PLACE, FOOTING21REINFORCEMENT22WELDED WIRE FABRIC23CONCRETE, READY MIX24PLACING CONC, CHUTE25PLACING CONC, CRANE26PLACING CONC, CRANE27PLACING CONC, CRANE28GUNITING SURFACE, 4 IN.29PRECAST WALL PANEL30GALVANIZING
		╡ ╡ ╡ ╡ ╡ ╡ ╡ ╡ ╡ ╡ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴

COST	
REVISED	
10/09	

2	ŗ.		
\$211	PER S.F. EXPOSED	CONSTRUCT	

	_ ≺
	WALL

Я Ч				NJ Cert. of Auth. No. 24GA28097900	SCALE: I	NTS
19 (. 1 🗄	NORTH AMERICAN				DATE: !	5-06
S S	RETAINING WALL COMPARISON STUDY	SLURRY WALL	420 Route 46 East, Suite 1 Fairlied, New Jarsey 07004 Tel: 973.227.8660 Fax: 973.227.8661	• Engineering / Surveying	DES. BY: F	RRS
				• Inspections • Construction	DRN. BY: F	RRS
					CHK. BY: I	мнм
					PROJECT: I	NASSPA
					FILE: \	WALLSTUDY

NORTH AMERICAN STEEL SHEET PILING ASSOCIATION 500 Montgomery Street • Suite 400 • Alexandria, VA 22314 • 866.658.8667 • www.nasspa.com

Copyright © 2009

NASSPA and the companies disseminating this technical information disclaim any and all responsibility and liability for the application of the information contained in this publication.

18

www.nasspa.com

en stee eet piling heet pil , read

st . stee et piling

available , steel sheet piling, environmer ally friendly steel sheet piling steel she