
The low-level mysteries of

pipeline barriers
Frederic Garnier, Andrew Garrard

f.garnier@samsung.com a.garrard@samsung.com

mailto:f.garnier@samsung.com
mailto:a.garrard@samsung.com

Overview

● Introduction

● What are barriers?

● How are barriers exposed in Vulkan?

● Case study and examples

Our partners

Who are we?

● Promote the use of Vulkan on Android

● Support game studios with issues on our devices, at a global scale

● Help game studios port their games to Vulkan
○ Performance, content tuning, DDK & platform support

Andrew Garrard, Samsung Electronics

Why do GPUs need barriers?

GPUs are highly parallel

● “Computer graphics is embarrassingly parallel”

● “In parallel computing, an embarrassingly parallel workload or problem [...]

is one where little or no effort is needed to separate the problem into a

number of parallel tasks.” - Wikipedia
○ Heh, heh, heh

● “All problems become scalar once you’ve thrown enough silicon at them”
○ - A. Garrard, 2018

GPUs are highly parallel

● Rasterisation is quite parallel

● Shading is parallel

● Memory access is parallel
○ Multiple usage-dependent caches and buffers

● All GPUs are parallel
○ But some are more = than others - George Orwell

VB/IB Texture FramebufferTile buffer(s)

GPU

GPUs are hyperthreaded

● Graphics is dominated by memory access
○ Textures, frame buffers, vertex buffers

● Many threads let GPUs hide latency
○ ALUs are often quite deeply pipelined,

but memory latency can be enormous

● Even more is in flight than

the parallelism would suggest!

GPUs are heavily pipelined

● The “graphics pipeline” is actually a series of (mostly) parallel stages

● The pipeline can get backed up by slow components,

so buffering is important to keep things flowing

● The GPU can be working on multiple elements at once within a stage

● Triangles covering a fragment may not finish shading in-order

VB/IB

Vertex

Shader

Input

assem.
TCS TES Geom. Raster Fragment Blend

Texture Framebuffer

Tiled GPUs are very heavily pipelined

● Tiled GPUs do all the rasterising for one tile independently of other tiles

● Fragments in one tile may get shaded before “earlier” primitives in another

● Rasterising may not be in the same frame as vertex shading

● Vertex shaders may be run repeatedly

● “How long did my shader take?” is a very complicated question

VB/IB

Vertex

Shader

Input

assem.
TCS TES Geom. Raster Fragment Blend

Texture FramebufferTile buffer(s)

Even the memory is parallel

● GPUs depend heavily on caches
○ Random access to “fast” DRAM is much slower than you’d think

○ 1995: 100MHz SDRAM random access latency: ~20ns

○ 2018: DDR4-4800 random access latency: ~8ns (2.5x in 23 years)

● Textures might be in a special cache

● The frame buffer on a tiler may be a “special” cache

● The caches don’t necessarily snoop each other

VB/IB

Vertex

Shader

Input

assem.
TCS TES Geom. Raster Fragment Blend

Texture FramebufferTile buffer(s)

Memory doesn’t look like reality

● Linear memory is really inefficient for texturing
○ Exact layout depends on cache size,

ease of integration, and patents…

● “Layout” enables memory compression to save bandwidth
○ Lossless compression for the frame buffer, MS, depth buffer, etc.

○ Layout is usage-specific

○ The representation may not be consistent (e.g. NaNs)

○ Don’t confuse this with lossy texture compression

(DXT, ETC, ASTC, PVRTC)

○ Barriers specify layout transitions

● The CPU’s view has to be non-proprietary
○ GPU vendors can’t expose details, because then they wouldn’t be able to change them

○ Still need a simple view for communication with the CPU

Magic just happens

● If every parallel operation needed manual sequencing,

game developers would go mad*
○ (* more mad)

● The silicon designers get to go mad* instead
○ (* more mad)

● GPUs maintain the illusion primitives are rasterised in order
○ Typically blend units can sort out the mess

● ...so long as you’re only writing to the frame buffer

● Computer graphics is cheating and hoping no-one notices
○ Corollary: do what you like, but don’t get caught

○ - A. Garrard, 2018

FS FS FS FS

Blend

Framebuffer

There’s no such thing as magic

● Sometimes you do things the GPU can’t magic away
○ Abstracting away parallelism is easier in special cases than in general

○ Older APIs try to apply workarounds heuristically, which can cause unnecessary overhead

● Reading the frame buffer during rendering is hard
○ Requires pixel ordering guarantees, has representation issues

● Writing outside the framebuffer in any kind of shader

is not strictly ordered automagically
○ E.g. intermediate outputs from vertex shaders

● Accessing the framebuffer other than

the current pixel complicates tiling

FS FS FS FS

Blend

Framebuffer

Texture cache

GPGPU/Compute - more than pretty pictures

● Programmable GPUs used for more than just graphics since about 2001

● Custom compute shaders and APIs for many years

● More user control over read and write

● Much more requirement on the user to synchronise everything

Local dependencies

● Reads after framebuffer writes can have a framebuffer local dependency

● In a tiler, this dependency can stay within the processing of the tile
○ If you want to read anywhere in the framebuffer, you need the whole image to be rendered

○ If you just want to read your current pixel, you can work within the current tile

● Framebuffer local dependencies let you synchronise

within the current tile processing rather than across the entire frame

● Local processing can avoid a lot of unnecessary memory traffic

Subpass Subpass

Frame buffer memory (slow)

Subpass Subpass

On-chip tile memory (fast)

Global access Local access

Subpass synchronisation - mostly magic

● Typical graphics usage pattern: writing one pixel to the frame buffer,

then reading it back in a second subpass
○ Most common for deferred shading and programmable multisample resolves

○ Tilers can stay in tile memory for this

● Local dependencies get handled automatically

● Low synchronisation overhead

● Much less costly than a full framebuffer write to memory, especially on a tiler
● FB writes appear much less costly on a desktop GPU

● This is why the subpass concept exists in Vulkan

● Only works for local access
○ Bear this in mind if you’re post-processing

Pipeline barriers

● Block operations after this point until operations before this point complete

● Dependencies apply to graphics pipeline stages
○ Block only the pipeline stages you need (especially on a tiler!)

● Dependencies can be framebuffer local (but use subpasses!)

● Use between render passes (e.g. shadow map to main frame)

● Use to order compute operations

Vertex

Shader

Input

assem.
Raster Fragment Blend

Vertex

Shader

Input

assem.
Raster Fragment Blend

Barrier

Events: sync while keeping things busy

● A simple barrier divides time into before and after
○ Work may have to stop and wait, stalling the GPU

○ But we wanted parallelism - how do we keep things going while we synchronise?

○ Doing a single barrier for multiple dependencies helps - but still stalls

● Events let you have multiple dependencies active
○ Wait only for the work you cared about, independent work can continue

● Events have a user-visible representation
○ The host CPU can access them too

○ Be careful not to make the GPU time out when doing this

Vertex ShaderInput assem. Raster Fragment Blend

Vertex ShaderInput assem. Raster Fragment Blend

Vertex ShaderInput assem. Raster Fragment BlendEvent

Summary

● GPUs do lots of things at once
○ They get a lot slower if they can’t do this!

● Only the most basic ordering happens automatically

● Anything more complicated, you need to provide explicit synchronisation

● Use:
○ Subpass dependencies for local pixel framebuffer dependencies

○ Pipeline barriers to synchronise everything else

○ Events to keep the GPU busy while synchronising

● What’s actually going on may well be more complicated than this

● That’s the theory - how do you program it?

Frederic Garnier, Samsung Electronics

How are barriers exposed in

Vulkan?

Disclaimer

● Results and our experience are based on Galaxy S7 to S9 devices using Arm

Mali and Qualcomm GPUs

AxE by Nexon FF15 by Square Enix L2R by Netmarble

Protostar by Epic GamesBlade II by Action SquareArena of Valor by

Tencent

How are barriers exposed in Vulkan?

● Need to track resources in Vulkan and synchronise accordingly
○ Is the resource in the right state?

○ Are we writing to / reading to the resource in the correct order?

○ Have we taken care of execution and memory dependencies?

● Even lower-level…
○ Have we ensured that data is visible and available to the relevant stages?

How are barriers exposed in Vulkan?

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

typedef enum VkPipelineStageFlagBits {

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,

VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,

VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,

VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,

VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,

VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,

VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,

VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,

VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,

VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,

VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,

VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,

VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,

VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,

VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,

} VkPipelineStageFlagBits;

How are barriers exposed in Vulkan?

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

typedef enum VkDependencyFlagBits {

VK_DEPENDENCY_BY_REGION_BIT = 0x00000001;

} VkDependencyFlagBits;

How are barriers exposed in Vulkan?

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

typedef struct VkImageMemoryBarrier {

VkStructureType sType;

const void* pNext;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

VkImageLayout oldLayout;

VkImageLayout newLayout;

uint32_t srcQueueFamilyIndex;

uint32_t dstQueueFamilyIndex;

VkImage image;

VkImageSubresourceRange subresourceRange;

} VkImageMemoryBarrier;

How are barriers exposed in Vulkan?

typedef struct VkImageMemoryBarrier {

VkStructureType sType;

const void* pNext;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

VkImageLayout oldLayout;

VkImageLayout newLayout;

uint32_t srcQueueFamilyIndex;

uint32_t dstQueueFamilyIndex;

VkImage image;

VkImageSubresourceRange subresourceRange;

} VkImageMemoryBarrier;

typedef enum VkAccessFlagBits {

VK_ACCESS_INDIRECT_COMMAND_READ_BIT = 0x00000001,

VK_ACCESS_INDEX_READ_BIT = 0x00000002,

VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004,

VK_ACCESS_UNIFORM_READ_BIT = 0x00000008,

VK_ACCESS_INPUT_ATTACHMENT_READ_BIT = 0x00000010,

VK_ACCESS_SHADER_READ_BIT = 0x00000020,

VK_ACCESS_SHADER_WRITE_BIT = 0x00000040,

VK_ACCESS_COLOR_ATTACHMENT_READ_BIT = 0x00000080,

VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT = 0x00000100,

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT = 0x00000200,

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT = 0x00000400,

VK_ACCESS_TRANSFER_READ_BIT = 0x00000800,

VK_ACCESS_TRANSFER_WRITE_BIT = 0x00001000,

VK_ACCESS_HOST_READ_BIT = 0x00002000,

VK_ACCESS_HOST_WRITE_BIT = 0x00004000,

VK_ACCESS_MEMORY_READ_BIT = 0x00008000,

VK_ACCESS_MEMORY_WRITE_BIT = 0x00010000,

} VkAccessFlagBits;

How are barriers exposed in Vulkan?

typedef struct VkImageMemoryBarrier {

VkStructureType sType;

const void* pNext;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

VkImageLayout oldLayout;

VkImageLayout newLayout;

uint32_t srcQueueFamilyIndex;

uint32_t dstQueueFamilyIndex;

VkImage image;

VkImageSubresourceRange subresourceRange;

} VkImageMemoryBarrier;

typedef enum VkImageLayout {

VK_IMAGE_LAYOUT_UNDEFINED = 0,

VK_IMAGE_LAYOUT_GENERAL = 1,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL = 2,

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL = 3,

VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL = 4,

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,

VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,

VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL = 7,

VK_IMAGE_LAYOUT_PREINITIALIZED = 8,

VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL = 1000117000,

VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL = 1000117001,

VK_IMAGE_LAYOUT_PRESENT_SRC_KHR = 1000001002,

} VkImageLayout;

How are barriers exposed in Vulkan?

● Images in Vulkan are created with a tiling arrangement
○ Linear tiling

○ Optimal aka swizzled tiling

● Images that are created with optimal tiling require an explicit copy op
○ Possible to avoid this copy if using linear tiling mode

○ Useful if the texture is streamed in every frame...

● But images with linear tiling have a lot of limitations
○ No support for mipmaps

○ Only a few formats may be supported…

How are barriers exposed in Vulkan?

● Will go through pipeline barriers using the following example
○ Copy data to an optimal image from a buffer or a linear image that contains data…

○ Synchronize correctly to prepare the implementation for the copy operation...

○ Synchronize correctly to prepare the implementation for sampling the copied image…

Copy operation Sampling operation
Dependency

Copying data to an image

vkCmdPipelineBarrier(

commandBuffer,

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,

VK_PIPELINE_STAGE_TRANSFER_BIT,

0,

0

VK_NULL_HANDLE,

0,

VK_NULL_HANDLE,

1,

&imageBarrier1);

imageBarrier1 = {

VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,

VK_NULL_HANDLE,

0,

VK_ACCESS_TRANSFER_WRITE_BIT,

VK_IMAGE_LAYOUT_UNDEFINED,

VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,

VK_QUEUE_FAMILY_IGNORED,

VK_QUEUE_FAMILY_IGNORED,

imageHandle,

subResourcesRange

};

Sampling data from a copied-to image

vkCmdPipelineBarrier(

commandBuffer,

VK_PIPELINE_STAGE_TRANSFER_BIT,

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,

0,

0

VK_NULL_HANDLE,

0,

VK_NULL_HANDLE,

1,

&imageBarrier2);

imageBarrier2 = {

VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,

VK_NULL_HANDLE,

VK_ACCESS_TRANSFER_WRITE_BIT,

VK_ACCESS_SHADER_READ_BIT,

VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,

VK_QUEUE_FAMILY_IGNORED,

VK_QUEUE_FAMILY_IGNORED,

imageHandle,

subResourcesRange

};

Batch your pipeline barriers!

● Inserting a pipeline barrier (sync-point) within the command buffer has a CPU

cost associated to it
○ Need to batch barriers as much as possible and flush at the right time!

vkCmdPipelineBarrier(...,1,&barrier);
vkCmdPipelineBarrier(...,1,&barrier);
vkCmdPipelineBarrier(...,1,&barrier);
vkCmdPipelineBarrier(...,1,&barrier);
vkCmdPipelineBarrier(...,1,&barrier);
vkCmdPipelineBarrier(...,1,&barrier);
vkCmdPipelineBarrier(...,1,&barrier);
vkCmdPipelineBarrier(...,1,&barrier);
vkCmdPipelineBarrier(...,1,&barrier);

vkCmdPipelineBarrier(...,9, barriers.getData());

Subpass dependencies

● Images also need to be transitioned to the correct layout before presentation

● Preferably to transition as part of the render pass if possible
○ Can specify an image layout to use per-subpass and a final layout

○ Final layout is what the image transitions to at the end of the render pass

● Why not use a subpass dependency for the previous case?
○ Due to render pass scope .. copy command can only be called outside of a render pass

instance

Subpass dependencies

typedef struct VkAttachmentReference {

uint32_t attachment;

VkImageLayout layout;

} VkAttachmentReference;

typedef struct VkAttachmentDescription {

VkAttachmentDescriptionFlags flags;

VkFormat format;

VkSampleCountFlagBits samples;

VkAttachmentLoadOp loadOp;

VkAttachmentStoreOp storeOp;

VkAttachmentLoadOp stencilLoadOp;

VkAttachmentStoreOp stencilStoreOp;

VkImageLayout initialLayout;

VkImageLayout finalLayout;

} VkAttachmentDescription;

typedef struct VkSubpassDependency {

uint32_t srcSubpass;

uint32_t dstSubpass;

VkPipelineStageFlags srcStageMask;

VkPipelineStageFlags dstStageMask;

VkAccessFlags srcAccessMask;

VkAccessFlags dstAccessMask;

VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

Subpass dependencies

● Very simple example based on rendering a triangle or quad and presenting it

● Transition at the beginning of a render pass instance may happen out of order
○ Need to make sure presentation engine is done reading from the image

○ Subpass dependencies allow us to express execution and memory dependencies we need

○ Implicit subpass dependencies exist but not suitable for this use case

Subpass dependencies

● Transition the image when it can be rendered to..
○ I.e. when made available by semaphore & based on pWaitDstStageMask

● Not just limited to synchronising with presentation engine
○ Render passes can be used for off-screen rendering

○ Next one depends on previous one

○ Stage masks and access flags need to be set accordingly

Subpass dependencies - Implicit pre-dependency

colorAttachmentReference = {

0,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

};

attachmentDescription = {

0,

VK_FORMAT_R8G8B8_UNORM,

VK_SAMPLE_COUNT_1_BIT,

VK_ATTACHMENT_LOAD_OP_DONT_CARE,

VK_ATTACHMENT_STORE_OP_STORE,

VK_ATTACHMENT_LOAD_OP_DONT_CARE,

VK_ATTACHMENT_STORE_OP_DONT_CARE,

VK_IMAGE_LAYOUT_UNDEFINED,

VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

};

subpassDependency = {

VK_SUBPASS_EXTERNAL,

firstSubpass,

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,

VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,

0,

VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |

VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |

VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,

0

};

Subpass dependencies - Explicit dependency

colorAttachmentReference = {

0,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

};

attachmentDescription = {

0,

VK_FORMAT_R8G8B8_UNORM,

VK_SAMPLE_COUNT_1_BIT,

VK_ATTACHMENT_LOAD_OP_DONT_CARE,

VK_ATTACHMENT_STORE_OP_STORE,

VK_ATTACHMENT_LOAD_OP_DONT_CARE,

VK_ATTACHMENT_STORE_OP_DONT_CARE,

VK_IMAGE_LAYOUT_UNDEFINED,

VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

};

subpassDependency = {

VK_SUBPASS_EXTERNAL,

0,

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,

0,

VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |

VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,

0

};

Subpass dependencies

● Need a final layout transition to prepare for presentation…
○ Images need to be in VK_IMAGE_LAYOUT_PRESENT_SRC_KHR layout

● An implicit post-render pass dependency also exists
○ We don’t need to explicitly define this

○ Defines that the transition happens after all work is done aka bottom of pipe

○ Semaphore guarantees execution dependency for us...

Subpass dependencies - Implicit post-dependency

colorAttachmentReference = {

0,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

};

attachmentDescription = {

0,

VK_FORMAT_R8G8B8_UNORM,

VK_SAMPLE_COUNT_1_BIT,

VK_ATTACHMENT_LOAD_OP_DONT_CARE,

VK_ATTACHMENT_STORE_OP_STORE,

VK_ATTACHMENT_LOAD_OP_DONT_CARE,

VK_ATTACHMENT_STORE_OP_DONT_CARE,

VK_IMAGE_LAYOUT_UNDEFINED,

VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

};

subpassDependency = {

lastSubpass,

VK_SUBPASS_EXTERNAL,

VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,

VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,

VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |

VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |

VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,

0,

0

};

Subpass dependencies - Explicit dependency

colorAttachmentReference = {

0,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

};

attachmentDescription = {

0,

VK_FORMAT_R8G8B8_UNORM,

VK_SAMPLE_COUNT_1_BIT,

VK_ATTACHMENT_LOAD_OP_DONT_CARE,

VK_ATTACHMENT_STORE_OP_STORE,

VK_ATTACHMENT_LOAD_OP_DONT_CARE,

VK_ATTACHMENT_STORE_OP_DONT_CARE,

VK_IMAGE_LAYOUT_UNDEFINED,

VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

};

subpassDependency = {

VK_SUBPASS_EXTERNAL,

0,

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,

VK_PIPELINE_BOTTOM_OF_PIPE_BIT,

VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |

VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,

0,

0

};

Case Study / Examples

● Transitioning image to a readable state… but using wrong stages
○ srcStageMask = FRAGMENT_SHADER_BIT

○ dstStageMask = VERTEX_SHADER_BIT | VERTEX_INPUT_BIT

Vertex

Fragment

Vertex

…

Fragment

Vertex

…

Fragment

Wait!!

…

Case Study / Examples

● Transitioning image to a readable state… but using wrong stages
○ srcStageMask = COLOR_ATTACHMENT_OUTPUT_BIT

○ dstStageMask = FRAGMENT_SHADER_BIT

Vertex

…

Fragment

Vertex

Fragment

Vertex

…

Fragment

…

Case Study / Examples

L2R GLES build - 20.1ms frame time

L2R Vulkan (incorrect barrier stages) - 24.5ms (+3.4)

L2R Vulkan (incorrect barrier stages) - 12.4ms (-8.3)

Case Study / Examples

Unity Original GLES - 14.9ms

Unity VK - Using ALL_GRAPHICS_BIT - 13.7ms (-1.2)

Unity VK - Using optimized barriers + batching (-2.9)

Case Study / Examples

Original build - 36ms frame time

Optimized build - 25ms (-11) frame time

Frederic Garnier, Andrew Garrard

Galaxy GameDev, Samsung Electronics

http://developer.samsung.com/game

Thank you!
f.garnier@samsung.com

a.garrard@samsung.com

gamedev@samsung.com

http://developer.samsung.com/game
mailto:f.garnier@samsung.com
mailto:a.garrard@samsung.com
mailto:gamedev@samsung.com

