
Future of VR with Vulkan

JANG DAEMYUNG
Engineer
Samsung Electronics

1

Future of VR with Vulkan

Who we are?

2

Future of VR with Vulkan

Agenda

• Introduction

• Why Vulkan?

• Technical Details

• Case Study

3

Introduction

4

Future of VR with Vulkan

 The Force Awakens: October 2012

• glCommon TSG formed to consider redesign of OpenGL / ES

• Brainstorming and design sketches

 A New Hope: June / July 2014

• Effort rebooted as glNext – becomes the top priority

• Unprecedented participation from key ISVs

• AMD donates Mantle as a starting point

 Renamed and disclosed at GDC 2015

 Public Launch on February 16th, 2016

55

History

Introduction

Future of VR with Vulkan

 An open-standard, cross-platform graphics+compute API

• Compatibility break with OpenGL

• Start from first principles

 Goals

• Clean, modern architecture

• Multi-thread / multicore-friendly

• Greatly reduced CPU overhead

• Full support for both desktop and mobile GPU architectures

• More predictable performance – no driver magic

• Improved reliability and consistency between implementations

6

Introduction

Vulkan vision and goals at project launch

Future of VR with Vulkan

 A whole industry, working together

• GPU and SoC Vendors

• Game and middleware developers

• Platform owners, Content providers

 All Khronos resources are open source

• http://github.com/KhronosGroup/

7

* Image from Khronos 3D BoF of GDC 2016

Introduction

Wide industry support

http://github.com/KhronosGroup/

Future of VR with Vulkan

A bunch of people who really care about open graphics future

8

* Image from Khronos Group Flickr

Introduction

Brought to you by…

Why Vulkan?

9

Future of VR with Vulkan

 Did many investigation from the

very early stage like mid 2015

 Limitless draw calls and render

passes now allowed in mobile

product

 Simple 3D scenes show more

than 5X CPU offload from GPU

 It gives real gains like 2X FPS

with some scenes

10

Why Vulkan?

Super efficient

Future of VR with Vulkan

 More performance or less power /

thermal

 More visual effect and post

processing can be covered within

same hardware resources

 Various explicit ways to optimize

application

 Means you can make your game

runs faster and look better

11

Why Vulkan?

Real beneficial

Future of VR with Vulkan 12

Why Vulkan?

Real Beneficial

Future of VR with Vulkan

 Open standard

 Cross platform

 Open source

 Why Samsung chose Vulkan?

Because an open dev model is the best to support developers.
This will help to accelerate adoption of Vulkan to the ecosystem and
surely can make a healthy mobile environment.

13

Why Vulkan?

Open, Open and Open!

Future of VR with Vulkan

 The time interval between initiating an

action and rendering

 High latency can lead to uncomfortable

psychophysical effects

 Stall GPU because busy CPU

 Mostly 60 FPS is not enough and solid 60

FPS is a minimum requirement

14

Why Vulkan?

Latency at VR

Future of VR with Vulkan

Why Vulkan?

Asynchronous Time warp

 High priority queue for the time-critical task

Present to display Present to displayPresent to display

Graphics

Queue

High

Priority

Queue

Render

Frame N

Render

Frame N+1

Render

Frame N+2

ATW ATW ATW

15

Technical Details

16

Future of VR with Vulkan

 Providing information at the right time

 Predictable performance costs

• Creating pipelines, allocating memory, more…

 No driver magic on the clock

 Remove guesswork and late decision making

 Simpler drivers

 Better scheduling over CPU & GPU work

17

Explicit API

What it is?

Future of VR with Vulkan

 Low-level == Thin layer over specific HW
implementation, little abstraction
• Not possible given wide variety of hardware

 Making everything the app’s problem

 Getting the driver out of the way

 Solves a different problem than we were asked to

18

Explicit API

What it is not?

Future of VR with Vulkan

 Strong desire to avoid forking the ecosystem

 A single API(desktop, mobile)

 Supports various GPU hardware(IMR, TBR, TBDR)

19

Portability

Write once, run anywhere

Future of VR with Vulkan

Execution Model
A

p
p
lic

a
ti
o
n

S
ta

rt
re

c
o
rd

in
g

E
n

d
re

c
o

rd
in

g
C CC

C C C

C C C

C C C

C C C C C C

Command Buffer

D
e
v
ic

e

C C C C C C

Queue

Command Buffer

C CC

Queue

19

Future of VR with Vulkan

 Evolved into supporting multiple “subpasses”

 A dependency graph (DAG) between subpasses

• Each is a subpass – a list of attachments with format info

• Each is an execution/memory dependency between subpasses

• Each edge indicates whether the dependency is tiler-friendly

21

Node

Multipass

Edges

Future of VR with Vulkan 22

Multipass

Tiling

Future of VR with Vulkan 23

Comparison

OpenGL|ES and Vulkan

Future of VR with Vulkan

 Scenarios to reconsider coding to Vulkan

• Need to compatibility to pre-Vulkan platform

• Heavily GPU-bound application

• Heavily CPU-bound application due to non-graphics work

• Single-threaded application, unlikely to change

• App can target middle-ware engine, avoiding 3D graphics API

dependencies(Consider using an engine targeting Vulkan, instead of

coding Vulkan yourself)

24

Unlikely to Benefit

Future of VR with Vulkan

 Early concerns about being too hard to use / only viable for AAA

developers

• But in the end, the abstractions we have are quite usable and the API

evolved being “simpler” than first versions

 Higher-level abstractions allow for better hardware innovations,

optimization opportunities, and implementation on a wide variety of

hardware

 Not “Low-Level” – careful design decisions give apps the tools they need

to improve performances

25

* Contents from Khronos 3D BoF of GDC 2016

Conclusion

Case Study

26

Future of VR with Vulkan

 Goals

• Vulkan backend for existing graphics engine

• Same apps sources multiple pipelines (VK/GL)

• Minimal effort for apps migration to Vulkan

 Target Apps

• VR 1st person shooter show-case

27

Goals & Targets

Future of VR with Vulkan 28

Game Case

VR shooter

Future of VR with Vulkan

Triple buffering for command buffers and UBOs (once recorded buffers)

Eliminated vkQueueWaitIdle() call

29

Vulkan performance ~40% better than GL on low CPU clock(< 900 MHz)

Performance gap decreases on higher CPU clock

 “Static” scene NOT applicable for real use-case

SwapChain

Image [0]

Image [1]

Image [2]

CMD buffer [0]

CMD buffer [1]

CMD buffer [2]

BindDescriptorSet

UBO

of

x3

size

Offset [0]

Offset [1]

Offset [2]

Draw command

Acquire next image

Update UBO [index]

Queue submit [index]

Present [index]

vkQueueWaitIdle

Next object …

Image index

Game Case

Static scene(700 draw calls)

Future of VR with Vulkan

Recording command buffers for each frame

Scene divided on “Static” and “Dynamic” secondary command buffers

Single-thread secondary buffers recording and UBO updates

30

Performance ~25% less than for “Static” scene (CPU-bounded)

Applicable for real use case, but optimization required…

Primary

Command

Buffer

Intermediate

(changed rarely)

Secondary Command Buffers

Static

(not changed)

Dynamic
(changed often)

Recorded once – permanent scene

objects (UBO updates allowed)

Recorded often – scene objects which

appear/disappear on scene frequently

Any intermediate sub-divisions

depend on application use case

Game Case

Dynamic scene(700 draw calls)

Future of VR with Vulkan

Multi-thread secondary command buffers recording

UBO updates in parallel with buffers recording

31

Performance ~10% less than for “Static” scene

Applicable for real use case

Update UBO
Record Primary

CMD buffer

Graphics

Engine
Record Secondary

CMD buffer N

Record Secondary

CMD buffer 1

…

Render thread

Record threads

Game Case

Multi threaded dynamic scene(700 draw calls)

Future of VR with Vulkan

Game Case

Unreal Engine

32

Future of VR with Vulkan 33

Game Case

VainGlory

Future of VR with Vulkan 34

Game Case

Need For Speed

Future of VR with Vulkan 35

