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Introduction

• Look inside of performance Tools
• Vulkan Optimization case studies 
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Look inside of performance Tools
Jonas Gustavsson
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Profiling
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Performance Analysis Workflow
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Analyse performance

Identify bottleneckModify application



Understanding your device

• Lots of variation between devices
• Some are obvious, e.g. screen 

resolution & GPU model
• Some are subtle, e.g. memory bus 

speed

• Profiling all devices that matter to you 
is vital
• We recommend mixing local and 

remote device testing
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CPU & GPU performance analysis
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Tool Vendor CPU GPU

Simpleperf Google Y N

Systrace Google Y N

GameBench Desktop App GameBench Y Y

DS-5 Streamline ARM Y Y

Snapdragon Profiler Qualcomm Y Y

Trepn Profiler (Android app) Qualcomm Y Y

PVRTune Imagination Y Y

Tegra Nsight NVIDIA Y Y



GameBench Desktop App
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ARM DS-5 Streamline

• ARM’s profiler
• Community Edition
• Basic CPU & system counters
• All Mali GPU counters
• CE is free. Paid Editions for enhanced 

functionality
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ARM – DS-5 Streamline
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Qualcomm Snapdragon Profiler

• Qualcomm’s profiler
• Analyze CPU, GPU, DSP, memory, power, 

thermal, and network data
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Qualcomm Snapdragon Profiler
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GearVR:
Oculus Performance Data Viewer
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Thermal throttling vs. profiling

• Dynamic power management
• Useful for power saving
• Annoying for profiling!

• OEMs are beginning to support 
Android’s Sustained Performance API
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https://developer.android.com/about/versions/nougat/android-7.0.html


Debugging OpenGL ES & Vulkan
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Performance Analysis Workflow
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Isolate causeModify application

Analyse render
How many devices 

are affected?



Graphics API capture & analysis
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Tool Vendor OpenGL ES Vulkan

GAPID Google Y Y

Mali Graphics 

Debugger

ARM Y Y

Snapdragon 

Profiler

Qualcomm Y Y

PVRTrace Imagination Y N

Tegra NSight NVIDIA Y Y

vkTrace LunarG N Y

RenderDoc RenderDoc Y (in progress) Y (alpha quality)



API integrated tools

• OpenGL ES
• KHR_debug/debug output

• Vulkan
• Validation layers
• Important to be error free before shipping!
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ARM Mali Graphics Debugger
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Qualcomm Snapdragon Profiler
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RenderDoc
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RenderDoc

• Widely used on desktop
• DirectX, OpenGL & Vulkan

• Android support in progress
• Vulkan and OpenGL ES
• Alpha support in latest nightly build
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RenderDoc, Vulkan & Android:
Components

• Vulkan layer
• Must be packaged in your game APK
• Some game permission required, e.g. 

INTERNET
• Device-side server
• Server APK must be installed
• Responsible for communicating with the GUI
• Also responsible for frame playback
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RenderDoc, Vulkan & Android:
Capture & replay

• Single frame capture
• Server replays the frame
• Retrieves GPU output, e.g. rendered 

images when draw call scrubbing
• Must be replayed on the same device 

as capture
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RenderDoc GUI
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Summary

• Wide variety of Google, OEM, IHV tools 
available

• Cross-platform Vulkan tools, such as 
GAPID & RenderDoc, are maturing 
rapidly
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Vulkan Optimization Case 
Studies
Jungwoo Kim
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Memory Management

HOST_VISIBLE_BIT | HOST_COHERENT_BITStream out data from CPU to GPU

Static GPU resources

Read data by CPU HOST_VISIBLE_BIT | HOST_CACHED_BIT

DEVICE_LOCAL_BIT

You can create the memory according to your purpose!



Uniform Buffer
Brute Force 1 FPS Reusing Memory 37 FPS

Ideal Condition 43 FPSDynamic Offsets 40 FPS



Uniform Buffer

Remember : Structural selection depends on your renderer interface.
Please use these result for reference only.

4th Ideal condition3rd Dynamic Offsets2nd Memory Manager1st Brute Force

43 
40 37 

1st Brute Force : Create Buffer and Allocate Memory in every draw call.
2nd Memory Manager : Use memory manager for reusing VkBuffer and VkDeviceMemory.
3rd Dynamic Offsets : Also use memory manager but can skip vkUpdateDescriptorSets API with dynamic offsets feature.
4th Ideal condition : If everything is in a predictable situation. There is no overhead for caching resources.



Vertex / Index Buffer
• In mobile memory, we don’t need to use staging buffer for 

Vertex/Index buffer.
• For dynamic objects, performance can be decreased with that logic.

Vertex / Index Raw Data

Staging VkBuffer
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

VkBuffer / VkDeviceMemory
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

vkCmdCopyBuffer

Vertex / Index Raw Data

VkBuffer / VkDeviceMemory
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

memcpy

command

process

memcpy

QC, ARM 의견받고써야됨.

제가알기로는모바일에서 Device Local BIT만
썼을때얻는 Performance 이득이없습니다.



Command Buffer (Submit Control)

RenderPass #0 (Heavy) RenderPass #1 RenderPass #2 Submit

RenderPass #0 (Heavy) Submit RenderPass #1 RenderPass #2 Submit

GPU ( Idle )

GPU ( Idle ) GPU

* Heavy Task : Shadow Map Render / Main Scene Render / Post Processing..etc

Saved

GPU ( Processing… )

#0 #1 #2

#0 #1 #2

1. Holding Renderpasses in single primary Commandbuffer and submit once

2. Submit Commandbuffer right after the Renderpass end ( heavy commands )



Optimization List - Pipeline Barrier 

- Change image layout to readable

- Wrong stage mask

- SRC 

- VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

- DST 

- VK_PIPELINE_STAGE_VERTEX_SHADER_BIT 

- VK_PIPELINE_STAGE_VERTEX_INPUT_BIT 

- VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT 

- VK_PIPELINE_STAGE_TRANSFER_BIT

Vertex Shader

...

Fragment Shader

SRC 

VK_PIPELINE_STAGE_FRAGMENT_SHADER_B

IT

DST 

VK_PIPELINE_STAGE_VERTEX_SHADER_BIT 

VK_PIPELINE_STAGE_VERTEX_INPUT_BIT 

Pipeline 

Barrier, 

Wait - !

Vertex Shader

...

Fragment Shader

Vertex Shader

...

Fragment Shader

GPU



Optimization List - Pipeline Barrier 

- Change image layout to readable

- Correct stage mask

- SRC

- VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

- DST

- VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

- VK_PIPELINE_STAGE_TRANSFER_BIT (We need it sometime.)

Vertex Shader

...

Fragment Shader

SRC 

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_

OUTPUT_BIT

DST 

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

Pipeline 

Barrier

Vertex Shader

...

Fragment Shader

Vertex Shader

...

Fragment Shader

GPU


