
Android Game Optimization
Deep Dive

Jonas Gustavsson & Jungwoo Kim
Samsung Electronics

Android Game Developer Summit 2017

Introduction

• Look inside of performance Tools
• Vulkan Optimization case studies

Android Game Developer Summit 2017

Look inside of performance Tools
Jonas Gustavsson

Android Game Developer Summit 2017

Profiling

Android Game Developer Summit 2017

Performance Analysis Workflow

Android Game Developer Summit 2017

Analyse performance

Identify bottleneckModify application

Understanding your device

• Lots of variation between devices
• Some are obvious, e.g. screen

resolution & GPU model
• Some are subtle, e.g. memory bus

speed

• Profiling all devices that matter to you
is vital
• We recommend mixing local and

remote device testing

Android Game Developer Summit 2017

Vs.

CPU & GPU performance analysis

Android Game Developer Summit 2017

Tool Vendor CPU GPU

Simpleperf Google Y N

Systrace Google Y N

GameBench Desktop App GameBench Y Y

DS-5 Streamline ARM Y Y

Snapdragon Profiler Qualcomm Y Y

Trepn Profiler (Android app) Qualcomm Y Y

PVRTune Imagination Y Y

Tegra Nsight NVIDIA Y Y

GameBench Desktop App

Android Game Developer Summit 2017

ARM DS-5 Streamline

• ARM’s profiler
• Community Edition
• Basic CPU & system counters
• All Mali GPU counters
• CE is free. Paid Editions for enhanced

functionality

Android Game Developer Summit 2017

ARM – DS-5 Streamline

Android Game Developer Summit 2017

Qualcomm Snapdragon Profiler

• Qualcomm’s profiler
• Analyze CPU, GPU, DSP, memory, power,

thermal, and network data

Android Game Developer Summit 2017

Qualcomm Snapdragon Profiler

Android Game Developer Summit 2017

GearVR:
Oculus Performance Data Viewer

Android Game Developer Summit 2017

Thermal throttling vs. profiling

• Dynamic power management
• Useful for power saving
• Annoying for profiling!

• OEMs are beginning to support
Android’s Sustained Performance API

Android Game Developer Summit 2017

https://developer.android.com/about/versions/nougat/android-7.0.html

Debugging OpenGL ES & Vulkan

Android Game Developer Summit 2017

Performance Analysis Workflow

Android Game Developer Summit 2017

Isolate causeModify application

Analyse render
How many devices

are affected?

Graphics API capture & analysis

Android Game Developer Summit 2017

Tool Vendor OpenGL ES Vulkan

GAPID Google Y Y

Mali Graphics

Debugger

ARM Y Y

Snapdragon

Profiler

Qualcomm Y Y

PVRTrace Imagination Y N

Tegra NSight NVIDIA Y Y

vkTrace LunarG N Y

RenderDoc RenderDoc Y (in progress) Y (alpha quality)

API integrated tools

• OpenGL ES
• KHR_debug/debug output

• Vulkan
• Validation layers
• Important to be error free before shipping!

Android Game Developer Summit 2017

ARM Mali Graphics Debugger

Android Game Developer Summit 2017

Qualcomm Snapdragon Profiler

Android Game Developer Summit 2017

RenderDoc

Android Game Developer Summit 2017

RenderDoc

• Widely used on desktop
• DirectX, OpenGL & Vulkan

• Android support in progress
• Vulkan and OpenGL ES
• Alpha support in latest nightly build

Android Game Developer Summit 2017

RenderDoc, Vulkan & Android:
Components

• Vulkan layer
• Must be packaged in your game APK
• Some game permission required, e.g.

INTERNET
• Device-side server
• Server APK must be installed
• Responsible for communicating with the GUI
• Also responsible for frame playback

Android Game Developer Summit 2017

RenderDoc, Vulkan & Android:
Capture & replay

• Single frame capture
• Server replays the frame
• Retrieves GPU output, e.g. rendered

images when draw call scrubbing
• Must be replayed on the same device

as capture

Android Game Developer Summit 2017

RenderDoc GUI

Android Game Developer Summit 2017

Summary

• Wide variety of Google, OEM, IHV tools
available

• Cross-platform Vulkan tools, such as
GAPID & RenderDoc, are maturing
rapidly

Android Game Developer Summit 2017

Vulkan Optimization Case
Studies
Jungwoo Kim

Android Game Developer Summit 2017

Memory Management

HOST_VISIBLE_BIT | HOST_COHERENT_BITStream out data from CPU to GPU

Static GPU resources

Read data by CPU HOST_VISIBLE_BIT | HOST_CACHED_BIT

DEVICE_LOCAL_BIT

You can create the memory according to your purpose!

Uniform Buffer
Brute Force 1 FPS Reusing Memory 37 FPS

Ideal Condition 43 FPSDynamic Offsets 40 FPS

Uniform Buffer

Remember : Structural selection depends on your renderer interface.
Please use these result for reference only.

4th Ideal condition3rd Dynamic Offsets2nd Memory Manager1st Brute Force

43
40 37

1st Brute Force : Create Buffer and Allocate Memory in every draw call.
2nd Memory Manager : Use memory manager for reusing VkBuffer and VkDeviceMemory.
3rd Dynamic Offsets : Also use memory manager but can skip vkUpdateDescriptorSets API with dynamic offsets feature.
4th Ideal condition : If everything is in a predictable situation. There is no overhead for caching resources.

Vertex / Index Buffer
• In mobile memory, we don’t need to use staging buffer for

Vertex/Index buffer.
• For dynamic objects, performance can be decreased with that logic.

Vertex / Index Raw Data

Staging VkBuffer
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

VkBuffer / VkDeviceMemory
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

vkCmdCopyBuffer

Vertex / Index Raw Data

VkBuffer / VkDeviceMemory
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

memcpy

command

process

memcpy

QC, ARM 의견받고써야됨.

제가알기로는모바일에서 Device Local BIT만
썼을때얻는 Performance 이득이없습니다.

Command Buffer (Submit Control)

RenderPass #0 (Heavy) RenderPass #1 RenderPass #2 Submit

RenderPass #0 (Heavy) Submit RenderPass #1 RenderPass #2 Submit

GPU (Idle)

GPU (Idle) GPU

* Heavy Task : Shadow Map Render / Main Scene Render / Post Processing..etc

Saved

GPU (Processing…)

#0 #1 #2

#0 #1 #2

1. Holding Renderpasses in single primary Commandbuffer and submit once

2. Submit Commandbuffer right after the Renderpass end (heavy commands)

Optimization List - Pipeline Barrier

- Change image layout to readable

- Wrong stage mask

- SRC

- VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

- DST

- VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

- VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

- VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

- VK_PIPELINE_STAGE_TRANSFER_BIT

Vertex Shader

...

Fragment Shader

SRC

VK_PIPELINE_STAGE_FRAGMENT_SHADER_B

IT

DST

VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

Pipeline

Barrier,

Wait - !

Vertex Shader

...

Fragment Shader

Vertex Shader

...

Fragment Shader

GPU

Optimization List - Pipeline Barrier

- Change image layout to readable

- Correct stage mask

- SRC

- VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

- DST

- VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

- VK_PIPELINE_STAGE_TRANSFER_BIT (We need it sometime.)

Vertex Shader

...

Fragment Shader

SRC

VK_PIPELINE_STAGE_COLOR_ATTACHMENT_

OUTPUT_BIT

DST

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

Pipeline

Barrier

Vertex Shader

...

Fragment Shader

Vertex Shader

...

Fragment Shader

GPU

