

Wei Yao
GameDev Engineer,
Samsung Research China

Igor Nazarov
GameDev Engineer,
Samsung Research Kiev

Vulkanized:
Mobile Game Optimization Techniques

Igor Nazarov
GameDev Engineer, Samsung Research Kiev

Galaxy GameDev
24/7 Mobile Game Developers Support

• Promoting the use of new technologies and features on Android

• On/off-site studios support

• Contribute to game engines

• Profiling and best practices

Vulkan
Unlock Maximum Performance on Android!

• Minimal CPU overhead

• Explicit Control

• Multithreaded

• Cross-platform

• Already has out of the box support by Unity & UE4!

CPU & Memory Optimization:
Use Vulkan Object Caching Extensively

• Because Vulkan API is handle-based rather than state-based like OpenGL API, it is
possible to cache frequently used objects;

• Recommended objects for caching are:
• Pipelines;

• Descriptor and Pipeline Layouts;

• Descriptor Sets;

• Command Buffers;

• Render Passes;

• Framebuffers;

• Shader Modules;

• Samplers.

Tip:
Generate Vulkan Object IDs for Use in Caching

• Different types of Vulkan objects may share same handle value:

• Handle values may be reused after Vulkan object’s destruction:

• Direct handle usage for caching is error prone and requires careful “dead” object
tracking.

VkDeviceMemor
y

Handle = 42

VkBuffer

Handle = 42

VkImage

Handle = 42

VkBuffer

Handle = 13
vkDestroyBuffer(…)

VkBuffer

Handle = 13
vkCreateBuffer(…)

VkBuffer

Handle = 13

Tip:
Generate Vulkan Object IDs for Use in Caching

• Assign unique ID for each created object;

• With IDs, “dead” entries cause no harm and may be removed using more efficient
GC logic.

• Avoid using global map to convert Vulkan object handles to IDs;

VulkanBuffer

VkBuffer Handle = 42

uint32_t HandleID = 144 – Assigned using counter. Used for comparison.

CPU Optimization:
Use Vulkan Pipeline Cache

• VkPipeline object controls states for all shader and fixed-function stages;

• Call to vkCreateGraphicsPipelines(…) is very expensive;

• Use VkPipelineCache object to reduce cost of this call:

VkPipelineCache
vkCreatePipelineCache(…)

vkCreateGraphicsPipelines(…)
VkPipeline

CPU Optimization:
Use Vulkan Pipeline Cache

• Simple usage of the VkPipelineCache object is not enough;

• Create VkPipelineCache object from the Pipeline Cache Data:

App startup Activity::onPause()

vkCreatePipelineCache(…)

Load dataPipeline
Cache Data

vkGetPipelineCacheData(…)

New Pipeline
Cache Data

Persistent
Storage

VkPipelineCache

Store data

Case Study:
Use Vulkan Pipeline Cache

• Performance comparison of vkCreateGraphicsPipelines(…) call, creating
approximately 4300 Pipelines in Fortnite Mobile game during loading:

0

10

20

30

40

50

M
ill

is
ec

o
n
d
s

Average Call Time

No Cache

Empty Cache

Loaded Cache

-35%

-95%

Case Study:
Do Not Use “Little Cores” for Pipeline Compilation

• Fortnite Mobile creates around
4300 unique Pipelines at loading;

• Initial Pipeline compilation is done in
the “Optimizing Content” phase;

• Before the optimization
it used “Little Cores”;

• After the optimization
it uses “All Cores”. Samsung Galaxy S8:

7 min 5 sec → 2 min 45 sec

CPU & GPU Optimization:
Allocate Vulkan Memory in Large Chunks

• Vulkan API has maxMemoryAllocationCount limit;

• According to vulkan.gpuinfo.org almost all mobile GPUs has limit of 4096
allocations;

• Prefer single VkBuffer object per each VkDeviceMemory allocation;

• Share large VkDeviceMemory allocation between multiple VkImage objects.

VkDeviceMemory

VkBuffer

Index Data Vertex Data Uniform Data

VkDeviceMemory

VkImage VkImageVkImageVkImage

CPU & GPU Optimization:
Use Ring Buffer for Uniform Data That Changes Every Frame

• Dedicate separate large buffer for Uniform Data that changes every frame:

• Assign VkFence object for each frame to track when GPU is done using the Ring
Buffer’s memory.

Ring Buffer

Frame
#40

Frame #41 Frame #40Free Space Frame #39 (Signaled Fence)

Draw Calls of Frame
#42 –

Frame
#42

Draw Draw Draw Draw
. .
.

. .
.

• Calling vkUpdateDescriptorSets(…) for each draw call may be very expensive;

• It is better to reuse already updated Descriptor Sets by implementing efficient
cache:

CPU Optimization:
Implement Descriptor Set Cache

Without
cache

DrawUpdate DS DrawUpdate DS DrawUpdate DS

Vulkan Driver

Get
DS

DrawWith cache
Get
DS

Draw
Get
DS

Draw
Get
DS

Draw

Descriptor Set Cache

Update DS
Few calls per frame on
average –

CPU & Memory Optimization:
Use Dynamic Uniform Buffers

• Vulkan API supports two types of Descriptors for Uniform Buffers:
• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;

• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• Dynamic Uniform Buffer allows setting offset without Descriptor Set update.

Bind
DS
Draw
Bind
DS
Draw
Bind
DS
Draw

DS:
1

buffer =
42

offset =
128

DS:
2

buffer =
42

offset =
256

DS:
3

buffer =
42

offset =
384

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER
Bind
DS
Draw
Bind
DS
Draw
Bind
DS
Draw

DS:
4

buffer =
42

base offset =
128

dynamic offset = 0

dynamic offset =
128

dynamic offset =
256

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC

Wei Yao
GameDev Engineer, Samsung Research China

CPU Optimization:
Reduce Unnecessary VB & IB Bind Commands

• Cached the states of Vertex buffer and Index buffer;

Buffer State
buffer
object
buffer offset

buffer stride

Bind
VB

Draw

VB
State

buffer
1

offset
1

stride
1

Bind IB IB State
buffer
1

offset
1

stride
1

Bind
VB

Draw

VB
State

buffer
1

offset
1

stride
1

Bind IB IB State
buffer
1

offset
1

stride
1

Bind
VB

Draw

VB
State

buffer
1

offset
1

stride
1

Bind IB IB State
buffer
1

offset
1

stride
1

Same Buffer state, can skip

Tip:
Reduce Unnecessary VB & IB Bind Commands

• Better skip both Vertex buffer and Index buffer at the same time, or not skip
both of them;

• It is dangerous to pass different offset in draw commands, and skip the binding;Bind
VB
Draw

VB
State

buffer
1

offset
1

stride
1

Draw

Bind IB IB State
buffer
1

offset
1

stride
1

Draw

Bind
VB

VB
State

buffer
1

0
stride
1

Bind IB IB State
buffer
1

0
stride
1

Offset1

Draw Offset2

Dangerous !!!

May face dummy bind
state

Case1
:

Case2
:

Case3
:

GPU Optimization:
Use proper Pipeline Barriers

• Pipeline barriers have a stage flag that the application developer can set;

• If waiting too early (when not needing to) then some work will stay for no reason;

Example:

Change image layout to readable

SRC
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

DST
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

Pipeline
Barrier,
Wait - !Vertex Shader

……
Fragment

Shader

Vertex Shader

……
Fragment

Shader

Vertex Shader

……
Fragment

Shader

Vertex Shader

……
Fragment

Shader

Vertex Shader

……
Fragment

Shader

Vertex Shader

……
Fragment

Shader

SRC
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_B
IT

DST
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

Pipeline
Barrier

GPU Optimization:
Use proper Pipeline Barriers

• Heavy pipeline barrier(stage) interrupt parallel processing of vertex/fragment job;

• Need to use light & proper pipeline stage;

GPU time : 36.2 ms

GPU time : 33 ms

GPU Optimization:
Eliminate Empty Renderpass Instances

• In some cases, engine will have some renderpass with no draw calls, just for
clearing RT;

• Renderpass switching is quite heavy operations, should avoid empty renderpass;

One idea is to delay the switching after it has actual draw call:

vkCmdEndRenderpas
s

vkCmdBeginRenderp
ass

vkCmdDrawInde
x

vkCmdDrawInde
x

vkCmdDrawInde
x

vkCmdEndRenderpas
s

vkCmdBeginRenderp
ass

vkCmdEndRenderpas
s

vkCmdDrawInde
x

vkCmdDrawInde
x

vkCmdDrawInde
x

vkCmdBeginRenderp
ass

Original Optimized

GPU Optimization:
Minimize number of Renderpass Instances

• Use Attachment information and subpass information as Key; (avoid creating all
the time)

• Merging the render target to avoid unnecessary renderpass logic;

Renderpass
Key
Attachment 1

……

Attachment N

Subpass 1

……

Subpass N

format
sampleCount
isDepth
loadop/storeop

color
input
resolve
preserve
depth

Use key to minimize the
number of Renderpass

Avoid unnecessary renderpass logic
Here is an example from UE4:

Translucent
RenderTarge

t

Particle
RenderTarge

t

Decal
RenderTarge

t
Decal

&
Particle

&
Translucent

RenderTarget Slate
RenderTarg

et

Tonemap
RenderTarg

et
Tonemap

&
Slate

RenderTarget

GPU Optimization:
Optimize Render target Load/Store operations

• Vulkan API can explicitly specify the operations during start and end the subpass;

• VkAttachmentDescription describe the load and store operations of an
attachment when used in a subpass;

Loadop

LOAD

CLEAR

DONT_CARE

Storeop

Store

DONT_CARE

allows the GPU do nothing before rendering into the attachment;

allows the GPU to discard the contents after executing the subpass;

Tip:
Optimize Render target Load/Store operations

• Use ‘DONT_CARE’ for loadop can effectively reduce the bandwidth and GPU job
cycles

Frag
cycles

Frag
tasks

CPU
cycles

IRQ
cycles

VTC
cycles

Use
DONT_CAR
E

932,435 2,586
1,308,85
5

167,311 645,170

USE
LOAD 900,828 2,586

1,267,40
8

153,481 640,105

• But you need to make sure:
• Current attachment don’t need previous rendering result;

• Current frame is fullscreen rendering.

Or you may found dirty region on some drivers.

GPU Optimization:
Clear Render Target by Load Operation rather than Clear Command

• In most cases, we don’t need to call clear command inside renderpass;

• Remove clear commands by using loadop can both reduce the CPU calling and
GPU job

Here is an example:

vkCmdEndRenderpas
s

vkCmdBeginRenderp
ass

vkCmdDrawInde
x

vkCmdDrawInde
x

vkCmdDrawInde
x

DONT_CAR
E

Color Depth Stencil

vkCmdDrawInde
x

vkCmdClearAttachme
nt

Depth

DONT_CAR
E

DONT_CAR
E

vkCmdEndRenderpas
s

vkCmdBeginRenderp
ass

vkCmdDrawInde
x

vkCmdDrawInde
x

vkCmdDrawInde
x

DONT_CAR
E

Color Depth Stencil

vkCmdDrawInde
x

DONT_CAR
E

CLEAR

GPU Optimization:
Use Subpasses when possible

• Subpass breaks the renderpass down into smaller intermediate steps;

• Each renderpass have at least one subpass and can have multiple subpasses;

• Each subpass identifies which attachments of the render pass it uses as inputs and
outputs, and which attachment should be used as a depth/stencil buffer;

• By using Subpass, we can:
• Read from attachments as InputAttachment;

• Write to attachments;

• Perform multi-sample resolve.

GPU Optimization:
Use Subpasses when possible

• Traditional process of deferred shading
• Need two renderpasses;

• First one will rendering the position, normal and albedo to corresponding attachments；

• Second one will sample the textures and do the shading.

Renderpass
#1Gbuffer Subpass

#1
Position

Normal

Albedo

Depth

PositionTe
x

NormalTe
x

AlbedoTex

Lighting Subpass
#1

Renderpass
#2

Shading
Stor
e

Stor
e
Stor
e
Stor
e

Load for texture
sampling
Load for texture
sampling
Load for texture
sampling

SwapchainImag
e

GPU Optimization:
Use Subpasses when possible

• Use multiple subpasses
• Only 1 renderpass;

• Doing Gbuffer and Lighting in 2 different subpasses;

• Read as input attachment and pass from 1st subpass to 2nd.

Gbuffer Subpass
#1

Position

Normal

Albedo

Depth

Lighting Subpass
#2

Renderpass
#1

Shading
Stor
e

Transfer as input
attachment

SwapchainImag
e

Transfer as input
attachment
Transfer as input
attachment

GPU Optimization:
Use Subpasses when possible

• Use multiple subpasses
• Can remove load/store operation;

• Can reduce the memory bandwidth.

Single Subpass Multi Subpasses (2 subpass)

x8 Faster

Vulkan
Release your CPU and Power your GPU

Game Dev Code Lab & Booth

• Code Lab Area

- MegaCity demo

- Adaptive Performance
• Adjust game performance

- GPUWatch
• Embedded performance tool

• Booth

- Partner Practice

- Galaxy Game Dev Activity

- Game Dev Program

- Vulkan API

Contact: gamedev@samsung.com

Game Sessions in SDC19

Galaxy GameDev

#1: GameDev + Partner
Practices

#2: Unity Adaptive
Performance

#3: Vulkan Technical Studies

• Join Galaxy GameDev now to

optimize your game itself !!!

Game Performance
Index

• 1500-1520 30th at ROOM
211A

• A new standard to
represent mobile game
performance

• Mobile Gaming is more than
FPS!

• State of Mobile Gaming

• What is Mobile Gaming
Performance?

• Galaxy Gaming Bigdata
driven approach

AR Emoji SDK

• 14:30-1450 29th at ROOM 2
10A

• What if You Are in the Game?

: AR Emoji SDK

• Create your own avatar in yo
ur app !

Game booster

• 13:30-1415 30th at ROOM 2
10B

• Game Performance Platform

• Game booster introduction

• AI/ML based game optimizati
on

• Big data assisted solution

• Platform connection interfac
e

for developer/studio/publis
h

• Plug in for additional tweakin
g

• Introduce best example for

collaborating Samsung

Adaptive Performance

GPUWatch Galaxy GameSDK

Lucky Draw !!!

