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Galaxy GameDev

24/7 Mobile Game Developers Support

« Promoting the use of new technologies and features on Android
« On/off-site studios support
« Contribute to game engines
« Profiling and best practices
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Vulkan

Unlock Maximum Performance on Android!

Minimal CPU overhead

Explicit Control

Multithreaded

Cross-platform

Already has out of the box support by Unity & UE4!

ENGINE
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CPU & Memory Optimization:

Use Vulkan Object Caching Extensively

« Because Vulkan API is handle-based rather than state-based like OpenGL API, it is
possible to cache frequently used objects;

« Recommended objects for caching are:
* Pipelines;
« Descriptor and Pipeline Layouts;
« Descriptor Sets;
« Command Buffers;
« Render Passes;
« Framebuffers;
« Shader Modules;
« Samplers.
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Tip:
Generate Vulkan Object IDs for Use in Caching

« Different types of Vulkan objects may share same handle value:

VkDewc‘tleMemor VkBuffer Vkimage

Handle = 42 Handle = 42 Handle = 42
« Handle values may be reused after Vulkan object’s destruction:

VkBuffer VkBuffer VkBuffer
vkDestroyBuffer(...) vkCreateBuffer(...)
Handle = 13 » Handle = 13 » | Handle = 13

« Direct handle usage for caching is error prone and requires careful “dead” object
tracking.

Samsung
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Tip:
Generate Vulkan Object IDs for Use in Caching

« Assign unique ID for each created object;

VulkanBuffer
VkBuffer Handle = 42

uint32_t HandlelD = 144 — Assigned using counter. Used for comparison.

« With IDs, "dead” entries cause no harm and may be removed using more efficient
GC logic.

 Avoid using global map to convert Vulkan object handles to IDs;

Samsung
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CPU Optimization:
Use Vulkan Pipeline Cache

 VkPipeline object controls states for all shader and fixed-function stages;
« Call to vkCreateGraphicsPipelines(...) is very expensive;
« Use VkPipelineCache object to reduce cost of this call:

vkCreatePipelineCache(...) o
= VkPipelineCache

|

vkCreateGraphicsPipelines(...) o
- VkPipeline
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CPU Optimization:

Use Vulkan Pipeline Cache

 Simple usage of the VkPipelineCache object is not enough;

 Create VkPipelineCache object from the Pipeline Cache Data:

App startup

Activity::onPause()

Pipeline - Load data - Store data = New Pipeline
Cache Data Cache Data
vkCreatePipelineCache(...) vaetPipeIineCacheData(..\.\

>  VkPipelineCache

H#HSDCI19
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Case Study:

Use Vulkan Pipeline Cache

 Performance comparison of vkCreateGraphicsPipelines(...) call, creating
approximately 4300 Pipelines in Fortnite Mobile game during loading:

Average Call Time
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Empty Cache
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Milliseconds
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-
o
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Case Study:

Do Not Use "Little Cores” for Pipeline Compilation

« Fortnite Mobile creates around
4300 unique Pipelines at loading;

« Initial Pipeline compilation is done in
the “Optimizing Content” phase;

« Before the optimization
it used “Little Cores”;

« After the optimization
it uses “All Cores”. Samsung Galaxy S8:
7 min 5sec — 2 min 45 sec

Optimizing Content
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CPU & GPU Optimization:

Allocate Vulkan Memory in Large Chunks

« Vulkan APl has maxMemoryAllocationCount limit;

 According to vulkan.gpuinfo.org almost all mobile GPUs has limit of 4096
allocations;

« Prefer single VkBuffer object per each VkDeviceMemory allocation;
« Share large VkDeviceMemory allocation between multiple Vkimage objects.

VkBuffer Vkimage Vkimage Vkimage Vkimage

Index Data Vertex Data Uniform Data

Sumslung
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CPU & GPU Optimization.:

Use Ring Buffer for Uniform Data That Changes Every Frame

 Dedicate separate large buffer for Uniform Data that changes every frame:

Ring Buffer

;Tome Frame #41 Free Space | Frame #39 (Signaled Fence) Frame #40
Draw Calls of Frame - -
#42 —

« Assign VkFence object for each frame to track when GPU is done using the Ring
Buffer’'s memory.
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CPU Optimization:
Implement Descriptor Set Cache

« Calling vkUpdateDescriptorSets(...) for each draw call may be very expensive;
* Itis better to reuse already updated Descriptor Sets by implementing efficient

cache:
. et m—— T —— AR — A —
With cache DS\_ DS DS _ DS _
Descriptor Set Cache
Few calls per frame on *
average — Upda;e DS
—————————————————— Vulkan Dniver ——————————— -
Without SR ez

cache UPdateDS [I0iDraw 1 UpdateDs [ Draw | UpdateDs [[Draw |

Samsung
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CPU & Memory Optimuzation:

Use Dynamic Uniform Buffers

 Vulkan API supports two types of Descriptors for Uniform Buffers:
. VK _DESCRIPTOR TYPE_UNIFORM BUFFER;
. VK_DESCRIPTOR TYPE UNIFORM BUFFER DYNAMIC.

« Dynamic Uniform Buffer allows setting offset without Descriptor Set update.

VK_DESCRIPTOR TYPE_UNIFORM_BUFFER

i DS: buffer = offset =
1 42 128

DS: buffer = offset =
2542 256

DS: buffer = offset =
3 42 384

s,

H#HSDCI19

VK_DESCRIPTOR TYPE_UNIFORM_BUFFER DYNAMIC

dynamic offset = 0

\ DS: buffer = base offset =

7 4 42 128
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CPU Optimization:
Reduce Unnecessary VB & IB Bind Commands

« Cached the states of Vertex buffer and Index buffer;

i VB buffer | offset | stride
I;fsat;e E;uffer gl)ffset %tride “““-“,:',? Same Buffer state, can skip

.~/ Buffer State
oottt Tstde Ty S Putter
State ; a /
B State Duffer  Offset  dride L buffer offset

buffer stride

VB buffer | offset | stride

IBq;;:cL‘ate buffer offset  dtride E

Sumslung
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Tip:
Reduce Unnecessary VB & IB Bind Commands

« Better skip both Vertex buffer and Index buffer at the same time, or not skip
both of them;

. It i&ﬂ)us\’;g passedifferent affiget in draw commands, and skip the binding;

Case1 State 1 1 1 \
a buffer | offset | stride

; 1 1 Dangerous !!!
May face dummy bind
---------------- -\13--""bu'ff'e'r"““_'_'_'_'_'_','Sff-i'e?é"‘"'/ state
1 |
§ :

Samsung
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GPU Optimization:
Use proper Pipeline Barriers

 Pipeline barriers have a stage flag that the application developer can set;
« If waiting too early (when not needing to) then some work will stay for no reason;

Example:
Change image layout to readable

Pipeline
Barrier,
Wait - !

SRC
VK _PIPELINE_STAGE_FRAGMENT _SHADER BIT

DST
VK_PIPELINE_STAGE_VERTEX_SHADER BIT

SRC
VK _PIPELINE_STAGE_COLOR ATTACHMENT OUTPUT B

IT

DST
VK _PIPELINE_STAGE_FRAGMENT _SHADER BIT

Barrier

Samsung
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GPU Optimization:

Use proper Pipeline Barriers

« Heavy pipeline barrier(stage) interrupt parallel processing of vertex/fragment job;
« Need to use light & proper pipeline stage;

GPU time :

GPU time :

Sumslung
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GPU Optimuzation:
Eliminate Empty Renderpass Instances

* In some cases, engine will have some renderpass with no draw calls, just for
clearing RT;

- Renderpass switching is quite heavy operations, should avoid empty renderpass;

One idea is to glglay the switching after it has actual,drawycall:

vkCmdBeginRenderp
ass

kamd BeginRenderp vkCmdBeginRenderp

o
s

H#SDCI19 ‘(E%"?Ezﬁ;,

o
oo )




GPU Optimization:

Minimize number of Renderpass Instances

« Use Attachment information and subpass information as Key; (avoid creating all

the time)
« Merging the render target to avoid unnecessary renderpass logic;
Use key to minimize the Avoid unnecessary renderpass logic
number of Renderpass Here is an example from UE4:
Renderpass Decal
Kav RenderTarge Tonemap
format Attachment 1 t Re"d:trTarg
sampleCount
isDepth . -
loadop/storeop Particle
Attachment N RenderTarge
t
color SpraSS 1
input Slate
resolve | ..... Translucent RenderTarg
reserve
Hepth SultorEs RendetrTarge et

#SDC19 Conteranc
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GPU Optimization:

Optimize Render target Load/Store operations

« Vulkan API can explicitly specify the operations during start and end the subpass;

+ VkAttachmentDescription describe the load and store operations of an
attachment when used in a subpass;

Loadop
LOAD
CLEAR
DONT CARE allows the GPU do nothing before rendering into the attachment;

Storeop
Store
DONT _CARE allows the GPU to discard the contents after executing the subpass;

Samsung
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Tip:

Optimize Render target Load/Store operations

« Use 'DONT CARE’" for loadop can effectively reduce the bandwidth and GPU job

—~ el e, ey

w Colour Pass 27 (1 Targets)
vkCrdBeginRenderPass(Don't Care)
vkCmdDrawlndexed(g, 1)
vkCmdEndRenderPass(5tore)

w Colour Pass #3 (1 Targets)
vkCmdBeginRenderPass(Don't Care)

B L= 4 1% 15 =y a1 [=va=ls [

vkCmdEndRenderPass{5tore)

w Colour Pass #9 (1 Targets)
vkCmdBeginRenderPass(C=Don't Care, D=Clear, 5=Don't Care)
| (‘m.—lﬂm .-I.:'.ir ‘Ij

sl T Em AN ezl A o2 AVITN 1Y

« But you need to make sure:

Frag Frag
cycles tasks

Use
DONT CAR 932435 2,586
E

USE
LOAD 900,828 2,586

« Current attachment don't need previous rendering result;

 Current frame is fullscreen rendering.

Or you may found dirty region on some drivers.

H#HSDCI19

CPU IRQ VTC
cycles cycles cycles

;'308'85 167.311 645,170
33'267'40 153,481 640,105
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GPU Optimization:
Clear RenderTarget by Load Operation rather than Clear Command

* In most cases, we don't need to call clear command inside renderpass;

« Remove clear commands by using loadop can both reduce the CPU calling and
GPU job

ere |s an example: .
I‘_’Lcmdlgsengen erp . color Depth Stencil chmdBengenderp —»  Color Depth Stencil

ass DONI CAR | DONT CAR @ DONT CAR ass DONI CAR DONT CAR
- - - E - CLEAR E -

S Ei—

e
s

Sumslung
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GPU Optimization:

Use Subpasses when possible

« Subpass breaks the renderpass down into smaller intermediate steps;
« Each renderpass have at least one subpass and can have multiple subpasses;

« Each subpass identifies which attachments of the render pass it uses as inputs and
outputs, and which attachment should be used as a depth/stencil buffer;

« By using Subpass, we can:
« Read from attachments as InputAttachment;
« Write to attachments;
« Perform multi-sample resolve.

H#HSDCI19 4 q




GPU Optimization:

Use Subpasses when possible

« Traditional process of deferred shading
« Need two renderpasses;
« First one will rendering the position, normal and albedo to corresponding attachments;
« Second one will sample the textures and do the shading.

Renderpass Renderpass
Gbuffglj Subpass Lighti#a Subpass
#1

Stor iti Load for texture

e _ sampling "

Stor Load for texture Stor Swapchainlmag
. e ——

e hsampllng ol Shading 3 e

Stor Load for texture

e - sampling al

Samsung
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GPU Optimization:

Use Subpasses when possible

« Use multiple subpasses
« Only 1 renderpass;
« Doing Gbuffer and Lighting in 2 different subpasses;
 Read as input attachment and pass from 1st subpass to 2nd,

Renderpass
Lightil#d Subpass
#2

Gbuffer Subpass
#

Transfer as input
attachment
Transfer as input Stor Swapchainimag

attachment_ ™ Shading e e
Transfer as input |

attachment

Samsung
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GPU Optimization:

Use Subpasses when possible

« Use multiple subpasses
« Can remove load/store operation;
« Can reduce the memory bandwidth.

Single Subpass Multi Subpasses (2 subpass)

Samsung
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Vulkan

Release your CPU and Power your GPU

SAMSUNG
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Game Sessions in SDC19

O Game booster

13:30-1415 30t at ROOM 2
10B

Game Performance Platform
« Game booster introduction

« Al/ML based game optimizat
on

Big data assisted solution

Platform connection interfac
e

for developer/studio/publis

« Plug in for additional tweakin
\_ g

Introduce best example for

ﬁg%%ating Samsung

; .
@ Galaxy GameDev -

#1: GameDev + Partner
Practices

#2: Unity Adaptive
Performance

#3: Vulkan Technical Studies

« Join Galaxy GameDev now to

& uniity Rsapau fems sl

UNREAL

ENGINE

GPUWatch Galaxy GameSDK

~
AR Emoji SDK

14:30-1450 29th at ROOM 2
10A

What if You Are in the Game?

: AR Emoji SDK

Create your own avatar in yo

Game Performance
Index

1500-1520 30t at ROOM
211A

« A new standard to

represent mobile game
performance

Mobile Gaming is more than
FPS!

State of Mobile Gaming

What is Mobile Gaming
Performance?

Galaxy Gaming Bigdata
driven approach
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