

Galaxy &
GameDev

Vulkanized:

Mobile Game Optimization Techniques

WeiYao lgor Nazarov
GameDev Engineer, GameDev Engineer,
Samsung Research China Samsung Research Kiev

#SDCI9 S =

Conference

Galaxy &
GameDev

Igor Nazarov

GameDev Engineer, Samsung Research Kiev

H#HSDCI19

Developer
Conference

Galaxy GameDev

24/7 Mobile Game Developers Support

« Promoting the use of new technologies and features on Android
« On/off-site studios support
« Contribute to game engines
« Profiling and best practices

H#HSDCI19

China --Korea

Vulkan

Unlock Maximum Performance on Android!

Minimal CPU overhead

Explicit Control

Multithreaded

Cross-platform

Already has out of the box support by Unity & UE4!

ENGINE

H#HSDCI19

Vu Iikan.

CPU & Memory Optimization:

Use Vulkan Object Caching Extensively

« Because Vulkan API is handle-based rather than state-based like OpenGL API, it is
possible to cache frequently used objects;

« Recommended objects for caching are:
* Pipelines;
« Descriptor and Pipeline Layouts;
« Descriptor Sets;
« Command Buffers;
« Render Passes;
« Framebuffers;
« Shader Modules;
« Samplers.

H#HSDCI19 4 q

Tip:
Generate Vulkan Object IDs for Use in Caching

« Different types of Vulkan objects may share same handle value:

VkDewc‘tleMemor VkBuffer Vkimage

Handle = 42 Handle = 42 Handle = 42
« Handle values may be reused after Vulkan object’s destruction:

VkBuffer VkBuffer VkBuffer
vkDestroyBuffer(...) vkCreateBuffer(...)
Handle = 13 » Handle = 13 » | Handle = 13

« Direct handle usage for caching is error prone and requires careful “dead” object
tracking.

Samsung
H#SDC19 Conference

Tip:
Generate Vulkan Object IDs for Use in Caching

« Assign unique ID for each created object;

VulkanBuffer
VkBuffer Handle = 42

uint32_t HandlelD = 144 — Assigned using counter. Used for comparison.

« With IDs, "dead” entries cause no harm and may be removed using more efficient
GC logic.

 Avoid using global map to convert Vulkan object handles to IDs;

Samsung
H#SDC19 Conference

CPU Optimization:
Use Vulkan Pipeline Cache

 VkPipeline object controls states for all shader and fixed-function stages;
« Call to vkCreateGraphicsPipelines(...) is very expensive;
« Use VkPipelineCache object to reduce cost of this call:

vkCreatePipelineCache(...) o
= VkPipelineCache

|

vkCreateGraphicsPipelines(...) o
- VkPipeline

H#HSDCI19

CPU Optimization:

Use Vulkan Pipeline Cache

 Simple usage of the VkPipelineCache object is not enough;

 Create VkPipelineCache object from the Pipeline Cache Data:

App startup

Activity::onPause()

Pipeline - Load data - Store data = New Pipeline
Cache Data Cache Data
vkCreatePipelineCache(...) vaetPipeIineCacheData(..\.\

> VkPipelineCache

H#HSDCI19

<

Samsung
Developer
Conference

Case Study:

Use Vulkan Pipeline Cache

 Performance comparison of vkCreateGraphicsPipelines(...) call, creating
approximately 4300 Pipelines in Fortnite Mobile game during loading:

Average Call Time
50

N
o

-1
35% m No Cache

w
o

Empty Cache
Loaded Cache

Milliseconds
S

-
o

-95%

Samsung
Conderance
H#HSDCI19

Case Study:

Do Not Use "Little Cores” for Pipeline Compilation

« Fortnite Mobile creates around
4300 unique Pipelines at loading;

« Initial Pipeline compilation is done in
the “Optimizing Content” phase;

« Before the optimization
it used “Little Cores”;

« After the optimization
it uses “All Cores”. Samsung Galaxy S8:
7 min 5sec — 2 min 45 sec

Optimizing Content

Samsung
Developer

#S DC] 9 Conference

CPU & GPU Optimization:

Allocate Vulkan Memory in Large Chunks

« Vulkan APl has maxMemoryAllocationCount limit;

 According to vulkan.gpuinfo.org almost all mobile GPUs has limit of 4096
allocations;

« Prefer single VkBuffer object per each VkDeviceMemory allocation;
« Share large VkDeviceMemory allocation between multiple Vkimage objects.

VkBuffer Vkimage Vkimage Vkimage Vkimage

Index Data Vertex Data Uniform Data

Sumslung
H#SDC19 Conference

CPU & GPU Optimization.:

Use Ring Buffer for Uniform Data That Changes Every Frame

 Dedicate separate large buffer for Uniform Data that changes every frame:

Ring Buffer

;Tome Frame #41 Free Space | Frame #39 (Signaled Fence) Frame #40
Draw Calls of Frame - -
#42 —

« Assign VkFence object for each frame to track when GPU is done using the Ring
Buffer’'s memory.

H#HSDCI19 4 Eq oo

CPU Optimization:
Implement Descriptor Set Cache

« Calling vkUpdateDescriptorSets(...) for each draw call may be very expensive;
* Itis better to reuse already updated Descriptor Sets by implementing efficient

cache:
. et m—— T —— AR — A —
With cache DS_ DS DS _ DS _
Descriptor Set Cache
Few calls per frame on *
average — Upda;e DS
—————————————————— Vulkan Dniver ——————————— -
Without SR ez

cache UPdateDS [I0iDraw 1 UpdateDs [Draw | UpdateDs [[Draw |

Samsung
Conderance
H#HSDCI19

CPU & Memory Optimuzation:

Use Dynamic Uniform Buffers

 Vulkan API supports two types of Descriptors for Uniform Buffers:
. VK _DESCRIPTOR TYPE_UNIFORM BUFFER;
. VK_DESCRIPTOR TYPE UNIFORM BUFFER DYNAMIC.

« Dynamic Uniform Buffer allows setting offset without Descriptor Set update.

VK_DESCRIPTOR TYPE_UNIFORM_BUFFER

i DS: buffer = offset =
1 42 128

DS: buffer = offset =
2542 256

DS: buffer = offset =
3 42 384

s,

H#HSDCI19

VK_DESCRIPTOR TYPE_UNIFORM_BUFFER DYNAMIC

dynamic offset = 0

\ DS: buffer = base offset =

7 4 42 128

Samsung
Developer
Conference

Galaxy &
GameDev

Wei Yao

GameDev Engineer, Samsung Research China

H#HSDCI19

Developer
Conference

CPU Optimization:
Reduce Unnecessary VB & IB Bind Commands

« Cached the states of Vertex buffer and Index buffer;

i VB buffer | offset | stride
I;fsat;e E;uffer gl)ffset %tride “““-“,:',? Same Buffer state, can skip

.~/ Buffer State
oottt Tstde Ty S Putter
State ; a /
B State Duffer Offset dride L buffer offset

buffer stride

VB buffer | offset | stride

IBq;;:cL‘ate buffer offset dtride E

Sumslung
#SDC19 Conferance

Tip:
Reduce Unnecessary VB & IB Bind Commands

« Better skip both Vertex buffer and Index buffer at the same time, or not skip
both of them;

. It i&ﬂ)us\’;g passedifferent affiget in draw commands, and skip the binding;

Case1 State 1 1 1 \
a buffer | offset | stride

; 1 1 Dangerous !!!
May face dummy bind
---------------- -\13--""bu'ff'e'r"““_'_'_'_'_'_','Sff-i'e?é"‘"'/ state
1 |
§ :

Samsung

H#SDC19 Conference

GPU Optimization:
Use proper Pipeline Barriers

 Pipeline barriers have a stage flag that the application developer can set;
« If waiting too early (when not needing to) then some work will stay for no reason;

Example:
Change image layout to readable

Pipeline
Barrier,
Wait - !

SRC
VK _PIPELINE_STAGE_FRAGMENT _SHADER BIT

DST
VK_PIPELINE_STAGE_VERTEX_SHADER BIT

SRC
VK _PIPELINE_STAGE_COLOR ATTACHMENT OUTPUT B

IT

DST
VK _PIPELINE_STAGE_FRAGMENT _SHADER BIT

Barrier

Samsung
Developer

#S DC] 9 Conference

GPU Optimization:

Use proper Pipeline Barriers

« Heavy pipeline barrier(stage) interrupt parallel processing of vertex/fragment job;
« Need to use light & proper pipeline stage;

GPU time :

GPU time :

Sumslung
#SDC19 Conferance

GPU Optimuzation:
Eliminate Empty Renderpass Instances

* In some cases, engine will have some renderpass with no draw calls, just for
clearing RT;

- Renderpass switching is quite heavy operations, should avoid empty renderpass;

One idea is to glglay the switching after it has actual,drawycall:

vkCmdBeginRenderp
ass

kamd BeginRenderp vkCmdBeginRenderp

o
s

H#SDCI19 ‘(E%"?Ezﬁ;,

o
oo)

GPU Optimization:

Minimize number of Renderpass Instances

« Use Attachment information and subpass information as Key; (avoid creating all

the time)
« Merging the render target to avoid unnecessary renderpass logic;
Use key to minimize the Avoid unnecessary renderpass logic
number of Renderpass Here is an example from UE4:
Renderpass Decal
Kav RenderTarge Tonemap
format Attachment 1 t Re"d:trTarg
sampleCount
isDepth . -
loadop/storeop Particle
Attachment N RenderTarge
t
color SpraSS 1
input Slate
resolve | Translucent RenderTarg
reserve
Hepth SultorEs RendetrTarge et

#SDC19 Conteranc

Conference

GPU Optimization:

Optimize Render target Load/Store operations

« Vulkan API can explicitly specify the operations during start and end the subpass;

+ VkAttachmentDescription describe the load and store operations of an
attachment when used in a subpass;

Loadop
LOAD
CLEAR
DONT CARE allows the GPU do nothing before rendering into the attachment;

Storeop
Store
DONT _CARE allows the GPU to discard the contents after executing the subpass;

Samsung
#SDC19 Conferance

Tip:

Optimize Render target Load/Store operations

« Use 'DONT CARE’" for loadop can effectively reduce the bandwidth and GPU job

—~ el e, ey

w Colour Pass 27 (1 Targets)
vkCrdBeginRenderPass(Don't Care)
vkCmdDrawlndexed(g, 1)
vkCmdEndRenderPass(5tore)

w Colour Pass #3 (1 Targets)
vkCmdBeginRenderPass(Don't Care)

B L= 4 1% 15 =y a1 [=va=ls [

vkCmdEndRenderPass{5tore)

w Colour Pass #9 (1 Targets)
vkCmdBeginRenderPass(C=Don't Care, D=Clear, 5=Don't Care)
| (‘m.—lﬂm .-I.:'.ir ‘Ij

sl T Em AN ezl A o2 AVITN 1Y

« But you need to make sure:

Frag Frag
cycles tasks

Use
DONT CAR 932435 2,586
E

USE
LOAD 900,828 2,586

« Current attachment don't need previous rendering result;

 Current frame is fullscreen rendering.

Or you may found dirty region on some drivers.

H#HSDCI19

CPU IRQ VTC
cycles cycles cycles

;'308'85 167.311 645,170
33'267'40 153,481 640,105

Samsung
Developer
Conference

GPU Optimization:
Clear RenderTarget by Load Operation rather than Clear Command

* In most cases, we don't need to call clear command inside renderpass;

« Remove clear commands by using loadop can both reduce the CPU calling and
GPU job

ere |s an example: .
I‘_’Lcmdlgsengen erp . color Depth Stencil chmdBengenderp —» Color Depth Stencil

ass DONI CAR | DONT CAR @ DONT CAR ass DONI CAR DONT CAR
- - - E - CLEAR E -

S Ei—

e
s

Sumslung
H#SDC19 Conference

b E
e
P

GPU Optimization:

Use Subpasses when possible

« Subpass breaks the renderpass down into smaller intermediate steps;
« Each renderpass have at least one subpass and can have multiple subpasses;

« Each subpass identifies which attachments of the render pass it uses as inputs and
outputs, and which attachment should be used as a depth/stencil buffer;

« By using Subpass, we can:
« Read from attachments as InputAttachment;
« Write to attachments;
« Perform multi-sample resolve.

H#HSDCI19 4 q

GPU Optimization:

Use Subpasses when possible

« Traditional process of deferred shading
« Need two renderpasses;
« First one will rendering the position, normal and albedo to corresponding attachments;
« Second one will sample the textures and do the shading.

Renderpass Renderpass
Gbuffglj Subpass Lighti#a Subpass
#1

Stor iti Load for texture

e _ sampling "

Stor Load for texture Stor Swapchainlmag
. e ——

e hsampllng ol Shading 3 e

Stor Load for texture

e - sampling al

Samsung
#DC® pewiope

GPU Optimization:

Use Subpasses when possible

« Use multiple subpasses
« Only 1 renderpass;
« Doing Gbuffer and Lighting in 2 different subpasses;
 Read as input attachment and pass from 1st subpass to 2nd,

Renderpass
Lightil#d Subpass
#2

Gbuffer Subpass
#

Transfer as input
attachment
Transfer as input Stor Swapchainimag

attachment_ ™ Shading e e
Transfer as input |

attachment

Samsung
H#SDC19 Conference

GPU Optimization:

Use Subpasses when possible

« Use multiple subpasses
« Can remove load/store operation;
« Can reduce the memory bandwidth.

Single Subpass Multi Subpasses (2 subpass)

Samsung
Conference
H#HSDCI19

Vulkan

Release your CPU and Power your GPU

SAMSUNG

Galaxy

H#HSDCI19

actice
yme Dev Activ

Program

Connected Living Showcase

Contact: gamedev(@samsung.com

H#HSDCI19

Game Sessions in SDC19

O Game booster

13:30-1415 30t at ROOM 2
10B

Game Performance Platform
« Game booster introduction

« Al/ML based game optimizat
on

Big data assisted solution

Platform connection interfac
e

for developer/studio/publis

« Plug in for additional tweakin
_ g

Introduce best example for

ﬁg%%ating Samsung

; .
@ Galaxy GameDev -

#1: GameDev + Partner
Practices

#2: Unity Adaptive
Performance

#3: Vulkan Technical Studies

« Join Galaxy GameDev now to

& uniity Rsapau fems sl

UNREAL

ENGINE

GPUWatch Galaxy GameSDK

~
AR Emoji SDK

14:30-1450 29th at ROOM 2
10A

What if You Are in the Game?

: AR Emoji SDK

Create your own avatar in yo

Game Performance
Index

1500-1520 30t at ROOM
211A

« A new standard to

represent mobile game
performance

Mobile Gaming is more than
FPS!

State of Mobile Gaming

What is Mobile Gaming
Performance?

Galaxy Gaming Bigdata
driven approach

Samsung
Developer
Conference

Rate Your Tech Sessions

= My Sessions -

= Profile

Olivia Otterness

1

Notes Settings

EE]
Ech

Log in to the SDC19
app using your
registration email
and confirmation
number.

Sessions

TUE OCTOBER 29

- @ 2019 Best of Galaxy Store Awards

WED OCTOBER 30

- @ Spotlight Session: Day 2

_ Building Bixby Conversational
Experiences for Devices with an...

To select, go to "My
Surveys" (if you've
favorited a session)
or search the name
under "Sessions."

= 2019 Best of Galaxy Store -

Info Notes

Feedback

How likely is it that you would recommend this
session to a friend or colleague? With 1 being
not at all likely and 5 being extremely likely. 3 is
neutral. *

* ok ok ok k

Please rate your overall satisfaction with the
speaker(s). 1is extremely unsatisfied and 5 is
extremely satisfied. 3 is neutral. *

* Kk Kk

The information, presentation, demo or panel

Provide your
feedback at the
bottom of the
session
description.

How do you plan on using the knowted%
in this session after SDC19? Select all th V.

*

[] Implement into my existing products and services
Use to create new Samsung technologies
Share with my team and network

[7] 1 don't plan on sharing any knowledge gained

Please share any other comments on this session.

_SUBMIT

Hit "Submit”
to finish the
survey.

