
Analysing Engineering Tasks Using a Hybrid Machine Vision
and Knowledge Based System Application∗

Ioannis Kaloskampis 1,2, Yulia A. Hicks 1, and David Marshall2

1School of Engineering, Cardiff University, UK
2School of Computer Science & Informatics, Cardiff University, UK
{kaloskampisi, hicksya}@cardiff.ac.uk, Dave.Marshall@cs.cardiff.ac.uk

Abstract

We propose a novel application that automatically
analyses video sequences arising from the conceptual
stage of design engineering tasks. It is capable of han-
dling cognitive activities, i.e. procedures which take
place in the engineer’s mind. A hybrid machine vision
and knowledge based system framework is employed to
efficiently identify stages of the design process and de-
tect mistakes. Activity analysis is performed by exam-
ination of the temporal relationships between the en-
gineer’s actions. Experimental results captured in a
complex, real life scenario showed that our system was
able to correctly characterise input sequences with high
accuracy rate.

1 Introduction

The conceptual stage of design engineering is the
initial step of the design process, where the vague
statement of a design task is transformed into a set
of requirements. Although there are several computer-
based applications that aid in latter stages of the design
procedure, the conceptual stage is usually performed
on pen and paper.

Activity recognition systems using pattern recogni-
tion techniques have been used in the past for monitor-
ing kitchen activities [1], card games [2] and nursing ac-
tivities [3]. Inspired by these, we develop a framework
for the purpose of analysing the conceptual stage of de-
sign engineering. The contributions of this paper are:
(1) a novel industrial application that aids engineers
in the conceptual stage of design, (2) a method of ob-
taining data from cognitive activities, i.e. procedures
which take place in the engineer’s mind which com-
bines activity identification techniques with a Knowl-
edge Based System (KBS), (3) a database of correct
solutions to 3 bridge design tasks, which is learned by
our system from input sequences annotated by profes-
sional civil engineers.

This paper is structured as follows: in §2 we give
an overview of our system. We then present its parts:
the Machine Vision unit (§3), the KBS (§4) and the
Machine Learning component (§5 and §6). We evaluate
our system in §7, presenting results captured in a real
life, complex task. We conclude this article in §8.

2 System Overview

Our framework automatically analyses video se-
quences illustrating the conceptual stage of engineer-

∗This project was funded by the Human Factors Technology
Centre (HFTC), Wales, UK (www.hftc.cardiff.ac.uk).

ing design. In these, the engineer works on a given
bridge design problem at a study desk, interacting
with various objects (pencil, ruler etc) and perform-
ing simple actions such as writing, sketching and mea-
suring distances. During the design process, the en-
gineer consults various knowledge sources, like regu-
lation manuals, books or the internet. Our system
provides this “expert knowledge” on-demand, in the
form of a computer application which includes a KBS.
The user enters simple command line queries, such as
“bridge type”, which brings up information regarding
the specifications of various bridge models. We record
the design procedure in two ways:

1. User’s interactions with various scene objects are
recorded using a static camera; the footage is anal-
ysed with the aid of an activity identification sys-
tem, which returns a sequence of the form:

S = {pa(t1 → t2), pb(t3 → t4), . . . } (1)

where px(ti → tj) an action (e.g. erasing, writing
etc) that starts at time ti and ends at tj .

2. The KBS timestamps user’s queries; from this in-
formation we attempt to deduce on which part
of the design (e.g. foundations, piers, cost etc)
he works at a specific time slot. We assume that
the start of such activities coincides with the time
point when the user inputs a relevant query to the
KBS; furthermore, as we show later in this article
(§4), our KBS provides the means to define the
end point of each activity of this type. We there-
fore obtain another time sequence M, of similar
form as S.

By combining S and M we obtain sequence T, which
includes the complete timeline of the engineer’s work.
We compare T against a database of “correct” be-
havioural patterns in order to identify design stages
and discover errors. The database is learned from in-
put sequences which are annotated by experts and is
represented as a Hierarchical Hidden Markov Model
(HHMM) [4], whose topology implements the activi-
ties’ hierarchy and structure. Thus, activity analysis
is posed as a HHMM inference problem.

3 Extracting Actions from Video

Our system’s machine vision unit consists of 2 com-
ponents: a mechanism to track selected objects and
a framework that maps from interactions of tracking
windows to actions.

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN14-20

495



Figure 1. QSR framework application. Left : Action writing or sketching: {Hand (S)urrounds Pencil} and
{Paper (S) Hand}. Right : Measuring on map: {Hand (T)ouches Ruler} and {Map (S) Ruler}.

3.1 Object tracking

The objects participating in the scene are at least
partially visible at all times; we monitor their move-
ments by placing one video tracker on each object at
the first frame of each sequence. We employ a tracking
algorithm which uses a colour histogram-based obser-
vation model and a second order autoregressive dy-
namical model [5].

3.2 Action identification

Extraction of actions from footage is achieved by
identifying patterns of qualitative spatial relations
(QSR) [1] between the tracking windows of moving
objects. Two tracking windows surrounding key ob-
jects can be either spatially Disconnected (D), or con-
nected through the surrounds (S) or Touches (T) re-
lationships. This framework is capable of detecting
simple actions such as measuring (Figure 1). We spec-
ify the set of possible object interactions a priori ;
e.g., we define that relationship {Hand(T)Ruler} and
{Map(S)Ruler} is interpreted as the action measuring.
We disambiguate between spatially similar actions,

such as writing and sketching, by statistically analysing
the motion trajectories of the objects involved in these.
This analysis is performed with the aid of a continuous
Hidden Markov Model (HMM). The model is trained
with T = 500 sequences, 250 representing the class
sketching and 250 the class writing.

4 The Role of KBS

We would like to recognise activities relevant to a
bridge design procedure, such as “choose bridge type”
and “estimate soil condition”. We cannot detect these
cognitive activities by the interaction of the engineer
with standard objects; we achieve this by monitoring
his interactions with the KBS (Figure 2): We have
omitted important details from the design scenario
given to the participant, without which the task can-
not be completed. The engineer can access all missing
information at any time by consulting the KBS. Each
piece of provided information is linked to a specific part
of the design task. Therefore, when the user queries the
system, we can deduce on which stage of the design he
is working. When he completes a cognitive activity, he
inputs the result in a cell corresponding to this activ-
ity. The software records input time, which signals the
end of the relevant activity. Thus, apart from provid-
ing expert knowledge, the KBS informs us about the

Figure 3. Forming an activity’s timeline from
temporal occurrence of its constituent actions.
Each action’s start and end point is inputted as
an event in the timeline.

starting and ending point of a cognitive activity.

5 Sequence Analysis

Analysis of input video sequence with the aid of
QSR, object trajectory classification and KBS query
time stamping offers a basic understanding of the stud-
ied scene. The resulting data is in form:

T = {pa(ta,s), pb(tb,s), pb(tb,e), pa(ta,e), . . . } (2)

with px(tx,s), px(tx,e) start and end of a sub-activity
or action px. Formulation of sequence T is shown
in Figure 3. Note that this representation can handle
concurrent activities.

Due to the design procedure’s variable nature, the
order of a sequence’s constituent elements can be
changed and elements can be added to it or omitted
from it without significant alteration of the overall pro-
cess. To model this variability, we represent design ac-
tivities using statistical graphical models (§6) and sep-
arate actions (sequence elements) into 2 classes: (1)
critical, which are vital for the completion of certain
activities, e.g., activity examining soil condition is al-
most impossible to solve without using a graphical rep-
resentation of the problem data; thus, sketching is a
critical action for this activity, (2) common, which do
not constructively affect the design process; e.g., in T,
let pa be erasing : while designing, the engineer may or
may not need to erase, without erasing affecting the
process, therefore erasing is a common action. Com-
mon actions can be thought of as noise; eliminating
them leads to a more compact problem representation.

496



Figure 2. Overview of the KBS interface: (A) Task scenario, (B) input console, (C) returned expert knowledge,
(D) entered queries and (E) their timestamps, (F) slot for user to input result and (G) result’s timestamp.

Figure 4. A 2-level HHMM representing 2 sample
design activities, D1 and D2. We denote transi-
tion probability between two nodes (i, j) of the
same level with aij and with πmn the initial prob-
ability of child n of parent statem. Actions below
a state represent the emitted symbol.

Classification of actions in common and critical with
respect to each activity is performed by experts.

6 Activity Representation

We represent actions constituting an activity as
states of an action chain. Transitions from one state to
another are allowed or not subject to the set of rules
that govern the activity. Such representations have
been employed frequently in the past, usually taking
the form of the HMM and some of its variations. How-
ever, these flat representations cannot sufficiently rep-
resent complex activities, as they fail to model their
hierarchic structure [6]. More recent work has adopted
extensions of the HMM in a hierarchical manner, such
as the HHMM [6], which we use here (Figure 4).

In order to produce more compact behavioural mod-
els and reduce computational complexity, we simplify
sequence T by ignoring common actions.

6.1 The Hierarchical Hidden Markov Model

Each state of the HHMM can either emit observa-
tions (“production states”) or strings of observations
(“abstract states”). Each abstract state is a sub-

Figure 5. State hierarchy for the activities in the
bridge task. Only critical actions are shown.

HHMM that can be called recursively and integrates
end states, which signal when the control is returned
to the parent HHMM. We work with discrete HHMMs,
which are defined by a 3-tuple < ζ, Y, θ >: the topo-
logical structure, ζ, defines the number of levels, the
state space at each level and the parent-children rela-
tionship between levels. The observation alphabet, Y ,
is the set of the symbols emitted by the model’s states;
the set of parameters, θ, includes the matrix of transi-
tion probabilities between nodes, the initial probability
distribution between the children of each node and the
observation probability distribution.

The topology of the HHMM implements the rules
that govern the activities taking place within the de-
sign task. State hierarchy for the model is shown in
Figure 5. The model is learned from annotated input
sequences as described in [6]. Discovery of a potential
mistake is the problem of determining if a sequence re-
sulting in one of the experiments is a possible output
of the HHMM. Activity identification is, likewise, the
problem of determining which activity has been per-
formed, given an input sequence, y1:T . These problems
can be solved by computing probability P (Sk | y1:T )
for all sets of nodes Sk = {k} ∪ parents(k) in the
HHMM. This is achieved by converting the model to
its corresponding Dynamic Bayesian Network and ap-
plying the Junction Tree algorithm [4]. Pseudo-code
for sequence analysis is given in Algorithm 6.1.

497



Table 1. System performance evaluation.

Activities ID ERR Total (%)
Soil Condition 9/10 9/10 90.0
Transient Loads 9/10 9/10 90.0

Base Cost 9/10 8/10 85.0
Overall 27/30 26/30 88.3

Algorithm 6.1: Activity Analysis(Ti, Dj)

comment: Identify activity in sequence Ti

Dj , j ∈ {1, . . . N} design task

U(Dj) common actions for Dj

G(Dj) graphical sub-model for Dj

for j ← 1 to N

do

⎧⎨
⎩
Define U(Dj)

T
(j)
i = Ti\U(Dj)

P
(j)
i = P (T

(j)
i |G(Dj)

if maxP
(j)
i = 0

then Ti erroneous

else Ti : ⇔ argmax
Dj

P
(j)
i

7 Experimental Results

We tested our system in a real-life bridge design sce-
nario, designed with the help of experts. 4 profession-
als and 12 students participated in our study, resulting
in a total of 20 hours of video footage. 40 sequences
were extracted from this video to serve as our training
set. In these, professional civil engineers execute one of
three complex behaviours: evaluate soil condition, es-
timate transient loads and evaluate bridge cost. State
hierarchy for these activities is shown in Figure 5. The
test data is a different set of 60 sequences obtained in
a similar way, but, this time, the task was performed
by students.

Evaluation of our framework’s efficiency in be-
haviour analysis is presented in Table 1; system per-
formance exceeds 88%. Analysis is based on system’s
ability to identify correctly performed activities (col-
umn “ID”) and detect mistakes in the test sequences
(column “ERR”). Ground truth was provided by ex-
perts, who annotated the extracted sequences and eval-
uated each participant’s study output.

To justify the use of the HHMM, we compare the
model’s performance with the flat HMM (Figure 6).
An HMM is created for each complex behaviour; its
parameters are learned using training data. We con-
sider the number of each task’s constituent actions as
a measure of task complexity and observe that the flat
HMM performs equally well with HHMM in the task
evaluate soil condition, which includes a small number
(3) of actions. As complexity increases, performance
slightly deteriorates for both models, but it is clear
that HHMM exhibits a milder decrease rate. These
findings are consistent with results reported in [6].

Figure 6. Comparing HHMM and HHM in be-
haviour analysis. HHMM performs better than
the flat HMM.

8 Conclusion

We have presented a system that uses a combina-
tion of machine vision with KBS, capable of efficiently
analysing video sequences arising from design engineer-
ing tasks. Experimental results captured in a real life,
complex task that can be carried out in a large number
of ways demonstrate the ability of our framework to
model complicated human behaviour. The high rate
of correct behaviour detections (88%) showcases the
usefulness of our system as a tool that can aid in the
improvement of engineering design process.

In future work, we will apply our system to vari-
ous other design engineering tasks (e.g. dam construc-
tion) and explore its applicability to other areas such
as medicine (e.g. surgery monitoring).

Acknowledgment

We would like to thank Christos Katsaras, Barry
Mawson, Professor John Miles, Professor John Patrick
and Victoria Smy for their expert advice on the devel-
opment of the bridge design task.

References

[1] M. Sridhar, A. G. Cohn, and D. C. Hogg: “Learn-
ing Functional Object-Categories from a Relational
Spatio-Temporal Representation,” Frontiers in AI and
Applications, vol.178, pp.606-610, 2008.

[2] D. Moore and I. Essa: “Recognizing Multitasked Ac-
tivities from Video Using Stochastic Context Free Gram-
mar,” AAAI, pp.770-776, 2002.

[3] T. Inomata, F. Naya, N. Kuwahara, F. Hattori, and K.
Kogure: “Activity recognition from interactions with
objects using dynamic Bayesian network,” pp. 39-42,
2009. 3rd ACM Int. Workshop on Context-Awareness
for Self-Managing Systems, pp.39-42, 2009.

[4] K. P. Murphy and M. A. Paskin: “Linear Time Infer-
ence in Hierarchical HMMs,” NIPS, 2001.

[5] P. Perez, C. Hue, J. Vermaak, and M. Gangnet: “Color-
Based Probabilistic Tracking,” ECCV, vol.1, pp.661-
675, 2002.

[6] N. T. Nguyen, D.Q. Phung, S. Venkatesh, and H. H.
Bui: “Learning and detecting activities from move-
ment trajectories using the Hierarchical HMM,” CVPR,
vol.2, pp.955-960, 2005.

498


