

Abstract — Industry is more and more interested in executing

business functions that span multiple applications. This demands
high-levels of interoperability and a more flexible and adaptive
business process management. The trend is to have systems
assembled from a loosely coupled collection of Web services,
which are ubiquitous and organically integrated. This technical
area appears to be a natural environment in which the agent
technology can be exploited with significant advantages.

In the present paper, we propose a framework with the aim of
supporting an agent-based SOA. The peculiar characteristic and
strength of our research work is the integration of the agent
technology with other strategic technologies, that is Web services,
workflow, rule engine and semantic Web.

Index Terms — Multi -agent systems, service oriented
architecture, workflow, ontology, rule engine, trust management.

I. INTRODUCTION

ost of the technology and market research companies,
which provides their clients with advice about

technology's impact on business and consumers, agree on the
fact that the adoption of a SOA paradigm is strategic and
should be part of the most forward-looking software projects.
Nevertheless the paradigm shift is still quite challenging.

Agent technology is more and more considered one of the
most interesting technologies to successfully support SOA. In
fact, besides being an ideal mechanism for implementing
complex systems, agent technology is well-suited to
applications that are communication-centric, based on
distributed computational and information systems, and
requiring autonomous components readily adaptable to
changes.

Considering their peculiar features, the central role that
agents should play in a SOA scenario is to efficiently support
distributed computing and to allow the dynamically
composition of Web services. To be successful, it is crucial to
appropriately engineer and integrate agent technology with
other technologies that have found and will find a purpose
within enterprise computing: workflows, rule engines, the
semantic Web and Web services.

The vision which is making its way into the research

A. Poggi is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905728 ; e-mail: poggi@ce.unipr.it).

M. Tomaiuolo is with DII, University of Parma, Parco Area delle Scienze
181A, 43100, Parma, Italy (phone: +39 0521 905712; e-mail:
tomamic@ce.unipr.it)

P. Turci is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905708; e-mail: turci@ce.unipr.it ).

community is to encapsulate the organization’s functionalities
within appropriate interfaces and advertise them as one or
more Web services, which could be integrated, when brought
into play, in workflows. This innovative idea brings with it
new outstanding opportunities but also new great issues,
related mainly to the ability of automatically discovering and
composing Web services. An answer to these problems could
come from the semantic Web technology.

Recently, we have seen an explosion of interest in
ontologies as artefacts to represent human knowledge and as a
critical component in several applications; among these the e-
business applications. Moreover the “marriage” between
agents and ontologies seems to be the kind of technology that
can significantly change the face of enterprise software.

On the one hand, ontologies should accomplish the task of
giving a precious support to solve two tricky problems: how to
efficiently discover Web services and how to make possible
the interoperability of heterogeneous Web services. In order to
facilitate the resolution of such a structural and semantic
heterogeneity, Web services, which play the role of workflow
components, will have their interfaces semantically described
by ontological concepts.

On the other hand, ontologies enable agents to communicate
in a semantic way, exchanging messages which convey
information according to explicit domain ontologies.

In this scenario agents represent the backbone of the system
and the “glue” that could hold these pieces together and make
them perform properly.

Assuming to adopt an agent-based approach, a typical
agent-based SOA scenario would be characterized mainly by
three actors: service providers, business process manager and
users, playing roles which would be allocated to different
concrete agents. The system architecture would likely be
organized in communities constituted by different kinds of
agents: service providers, personal assistants and middle
agents (e.g. service brokers, user profile managers, workflow
managers, etc). In order to achieve their goals (semantic
matching, service contracting and so on) these autonomous
agents should be able to perform their tasks in cooperation or
competition with other agents and to interoperate with external
entities (e.g., legacy software systems). Moreover they should
show reasoning capabilities and should have a support for
dynamic behaviour modification based on business rules.
Finally they should be able to build workflows, compose the
external Web services and monitor their execution. The entire
process should be supported by a distributed trust
management.

An Agent-Based Service Oriented Architecture

Agostino Poggi, Michele Tomaiuolo, Paola Turci

M



Clearly the researchers are well aware that such a scenario is
quite ambitious and the outlined objectives difficult to achieve
in a short period. Indeed there are several overlooked technical
issues and the existing technology presents significant
limitations. Nevertheless the realizations of prototype systems
centred on the underlying infrastructure can be of great help in
order to raise awareness of these issues and to delineate
possible solutions.

Bearing in mind what said above, the aim of the present
paper, which is an evolution of our previous paper [23], is to
introduce a framework, under development at the University of
Parma, for the realization of an agent-based SOA.

In the next section we discuss the related work in the fields
of the emergent and more established technologies which we
aim at integrating with agent technology. Section 3 describes
the framework aiming at being the basis for the realization of
successful and innovative agent-based SOA. In this section we
focus mainly on its architecture, the BPEL engine, the
ontological support, the integration with a rule engine and our
proposal for a distributed trust management. The paper ends
by drawing some conclusions around the results of the work
done, and by outlining some considerations regarding our
future research directions.

II. RELATED WORK

There is evidence from several research studies [1],[24] that
agents represent one of the most suitable technologies which
can be used to meet the performance needs for innovative
business applications. In particular the current interest in using
agents for developing e-business applications, business process
management and enterprise integration is rising mostly
because different works have shown how agent technology can
be leveraged if used together with technologies exploited in
the Internet, that is, semantic Web, Web services and
workflows [5],[7],[12],[19],[22].

Semantic Web technologies appear to be the right means to
provide the semantic integration between data and processes
across systems that can be owned by different enterprises [6].
This technology is not completely mature yet; some major
activities related to the definition of languages for expressing
the semantics of the Web are still in progress [16],[8].
Nevertheless different works have shown how the powerful
synergism between agents and semantic Web could be very
promising [19],[29] and some efforts have been made in order
to define ontology models and develop tools suitable for
agents aiming at being truly semantic aware agents. The
research community contributions have been mainly devoted
to cope with three different issues:
- The formal definition of a standard language for

expressing semantics on the web which has led to the Web
Ontology Language,

- The development of integral software infrastructures, for
writing semantic web applications, offering a variety of
tools to engineer ontologies.

- The development of ontological supports specifically

thought for multiagent systems.
The second and third points are strictly connected to the

first one since OWL is considered the reference language;
therefore the work carried out, starting from OWL, has
developed tools more suitable for different contexts.

As far as the second point is concerned, an interesting
approach is characterized by the definition of a meta-model
that closely reflects the OWL syntax and semantics. This is the
case of the modelling APIs of Jena, which is the most famous
and widely used tool in the sphere of the semantic web (and
recently also in the context of multiagent systems).

Considering the third point, the focus is on the specific
needs of multiagent systems, and the objective is to provide a
communication support enabling agent to perform the proper
semantic checks on a given content expression. A significant
example of the efforts made in this direction is represented by
the ontological support of JADE, designed to represent, using
Java objects, a taxonomy of concepts. Such semantically aware
agents should then be able to discover, invoke, compose and
monitor those Web resources that provide services. In order to
make agents able to use a service, they need a computer
interpretable description of the service itself and furthermore
to know the means by which it is accessible. To that purpose, a
community of researchers is developing an ontology of
services, called OWL-S, with the aim of providing a semantic
orientation to the description of Web services.

To enable software systems for innovative business
applications, security issues have to be carefully analysed and
sound solutions have to be deployed. A number of different
solutions for the problems of authentication and authorization
in open systems have been proposed in the scientific literature,
and some standards have emerged through the years. Most of
them are based on some kind of PKI and signed certificates
issued by a Certification Authority. In particular, this is the
case of X.509, which is the best known and adopted standard
for authentication and authorization. However, its weaknesses
have been clearly demonstrated in a number of works [15],
above all related to its effort to create a global directory of
unique names. Relying on an external entity as root of all
certifications represents an additional, not directly
controllable, point of failure for the whole system.

In contrast, different approaches have been proposed, based
on local names. Both SDSI and PetName Markup Language
allow local names to be used in a global scale by prefixing
them with the public key of the principal defining them, in the
form of (key, name) couples. This way, name conflicts are
solved thanks to the uniqueness of the public keys. In [32],
authors show that local names and YURLs are more robust
than global names to phishing attacks, arguing the root for
these attacks lie in the global namespace itself. Moreover, in
[21], authors shows that local names and a subset of the
SDSI/SPKI standard [9] can be used to implement a
distributed RBAC infrastructure, in which local names are
interpreted as distributed roles, whose name is localized to
their defining principal (key).



Local names and delegation certificates are the key to build
systems adhering trust management principles [18]. These
systems are completely distributed as they avoid any
centralized authority. This way they can easily scale to large
peer-to-peer networks, where each node is in charge of
protecting its own resources and to show proper credentials
when accessing resources of other nodes.

In recent years a lot of research work has been undertaken
ranging from the use of workflows in distributed systems to the
use of agent technology for the management of workflows
[7][24][19]. The most important contribution of our work is
firstly the use of agents as a support of all the activities
involved in the development and execution of a business
process, i.e. the workflow generation, the distribution of
workflow tasks, the control of their execution and finally the
re-allocation of tasks in case of failure of some service
components. Secondly, the integration of the agent technology
with those technologies we consider crucial for accomplishing
strategic business objectives.

To conclude just a few remarks on JADE since it is
considered the reference implementation of the FIPA
specifications and one of the most used and promising agent
development framework. The present release of JADE tries to
provide agent developers with a support integrating almost all
these technologies, even if in our opinion only partially. As a
matter of fact, JADE agents can exploit an ontological model
of the application domain to improve their interactions, are
able to interact with external Web services [12] and finally
different works have shown how the integration of a JADE
agent with the Jess rule engine is feasible. But this simply
represents a first step towards an effective support of the SOA
paradigm.

III. TOWARDS A SERVICE ORIENTED ARCHITECTURE

To overcome the limits of the present release of JADE, we
have realized an agent based framework called MASE (Multi-
Agent Service Environment), which is the evolution of our
previous framework GAIN [22], that allows dynamically
composing Web services. Its architecture is based on a society
of agents, mostly composed of two kinds of agents: component
managers and workflow managers.

Each component manager is associated to one or more Web
services and is responsible for the interaction with them.
Through the use of the WSIG JADE add-on [12], the
component managers are able to invoke a Web service,
converting ACL messages into WSDL descriptions and vice
versa. Moreover, a component manager allows a flexible
provision of services defining “on the fly” the features of the
services (price, timing, etc.) through a set of business rules
managed by a rule engine and modifiable by the operators of
the service provider through a Web interface.

Workflow managers have the goal of supporting users in the
process of building the workflows, composing external Web
services and monitoring their execution. To accomplish this
complex activity the workflow managers provide the users

with two alternative automatic procedures:
Predefined workflow; the workflow is extracted from a

repository of standard and common templates, e.g. templates
used in previous computations. In this case the duty of the
workflow manager is to support the user in the selection of the
most appropriate Web services for the execution of the
different workflow tasks. The workflow manager is able to
select a matching service thanks to the exploitation of a shared
ontology that gives a common knowledge background to all
the agents in the system.

Dynamic workflow; the workflow manager, according to the
user’s requirements, creates a new workflow, composing the
atomic services available in the system. This is done by
applying a planner (we have realized it by extending the SGP
planner [28]) that works on the operators extracted from the
OWL-S descriptions of the Web services, provided by
component managers. After the composition of the final
workflow, the workflow manager is able to update it and
possibly replace those Web services that are failed or no more
available or cannot satisfy the execution time constraints.

Moreover, MASE offers to the users the possibility of
manually building workflows. In this case, a personal assistant
(i.e. an agent, associated with each user active in the system,
responsible for the interaction between the user and the other
parts of the system) helps its user presenting her/him the tasks
(Web services) that can be composed and possibly informing
her/him when the realized workflow does not satisfy the
composition rules, coming from the related OWL-S
descriptions. When a complete workflow is realized, the user
can ask its personal assistant to delegate the workflow
execution to a workflow manager. The enactment is clearly a
problematic phase. When a workflow is going to be executed,
a Web service could be no more available due to the
expiration of a timeout, a failure of a resource or other
unpredictable problems. In this case the workflow manager
helps the user finding a new solution, creating a new contract
phase with all the component managers that are able to satisfy
the task and suggesting to the user the replacement of the
failed service with the new one.

So far we have given a concise description of the system
architecture and the responsibilities of the major system
components, intentionally leaving out the treatment of the
issues connected to the tools needed by the agents, in order to
carry out their activities. In the following subsections, we will
go into details, illustrating our proposals and the implemented
tools.

A. The BPEL Engine
The WS-BPEL specification defines an XML-based

language for the formal description of a business process
based on Web services orchestration. It is an open standard
recently approved as an OASIS standard.



Figure 1 - Excerpt of the internal model representing the BpelDocumentImpl class and its relationship with the correlated classes

Figure 2 - Excerpt of the internal model representing the ControlFlowActivity class and its relationship with the correlated classes



flow

sequence while

main engine

ExecutionContext

remote engine

while

ExecutionContext

remote engine

ExecutionContext

sequence

WorkflowManagerAgent

ComponentManagerAgent ComponentManagerAgent

flow

sequence while

main engine

ExecutionContext

flowflow

sequencesequence whilewhile

main enginemain engine

ExecutionContext

remote engineremote engine

whilewhile

ExecutionContext

remote engineremote engine

ExecutionContext

sequencesequence

WorkflowManagerAgent

ComponentManagerAgent ComponentManagerAgent

Figure 3 - The major classes of the BPEL engine

Figure 4 - An example of distributed execution



A WS-BPEL workflow is a structured XML document
composed of three main parts: (i) the definition of the process’
attributes, (ii) the definition of the execution context and (iii)
the activities to be executed. Due to industry’s increased
interest on business process management and the wide
acceptance of WS-BPEL as the language to use in the
workflow definition, several vendors are producing software
tools for workflow design, specification and enactment. The
main drawbacks of these tools are that they enact the workflow
in a centralized manner and furthermore they are not able to
dynamically exploit new Web services in case of unpredictable
event.

In the attempt to give an answer to such problems, we have
realized a framework for the distributed execution of a BPEL
process and the dynamically composition of Web services. The
BPEL process execution is constituted of three phases: (i)
interpretation of the BPEL document, (ii) creation of an
internal process model, aiming at describing in a consistent
way the business process characteristics and at the same time
to make easy and efficient the execution of the business
process itself, (iii) preparation of the execution context and
distributed execution, possibly providing for the exploitation
of new Web services.

In the first phase of the execution process we have utilized
XMLBeans (a framework, part of the Apache XML project.),
which has the advantage of fully supporting XML Schema and
XML Infoset. As far as a BPEL process is concerned there are
two schemas that have to be provided to XMLBeans in order
to parser the BPEL document: WS-BPEL schema and WSDL
schema (we have referred to WS-BPEL 2.0 and WSDL 1.1).

Regarding the second phase, in order to give an idea of how
the internal model is structured, in Figure 1 and Figure 2 two
excerpts of the model are shown. In particular, they represent
respectively the model core class, i.e. the BPELDocumentImpl
class, and a representative BPEL structured activity, i.e. the
AbstractControlFlowActivity class, together with their major
correlated classes.

The engine is responsible for efficiently executing a BPEL
process, instance of the model. The classes, playing a key role
in its implementation, are shown in Figure 3.

The main engine, part of the workflow manager agent, is
responsible for initiating and coordinating the entire execution
process. It creates the execution context, an instance of the
ExecutionContextImpl class, which will represent the
reference context during the execution process. Next, it will
identify those parts of the workflow (e.g. scope activities, sub-
activities of the flow activities, and so on), that if executed
remotely will positively affect the performance of the system,
and will delegate their execution to specific component
manager agents. Figure 4 shows an example of distributed
execution.

From what said above, it emerges clearly that we have
chosen to have stateless engines and thus to share the
execution context. As a consequence the remote engines have
to send messages to the main engine in order to update

consistently the reference execution context. We have found
out that this choice has several advantages, primarily it makes
easier to handle the possibly dependency between activities.

B. Ontology Support

The idea which mostly inspired the design of the JADE
content language and ontological support was to define an
ontology independent abstract model of the content language
that could be subsequently bound to any domain ontology
representation expressed using an object-oriented data model.
This ontological support has been conceived when the
Semantic Web was on its very early stage of research and
development and OWL was not already established as a
standard. Consequently its expressive power is clearly limited
with respect to OWL and basically allows expressing
taxonomy of concepts, predicate and actions and therefore it is
not able to represent completely the different application
domains where JADE agent may be used.

In order to provide a JADE agent with an adequate
expressive power (i.e., equivalent to the one offered by OWL
DL), it is necessary either to replace or to integrate the JADE
ontological support. In the attempt to find a suitable solution to
this problem one has to choose among the proposals described
above and others, each characterized by different domain
knowledge modelling techniques and answering different
needs. The majority of the research work in this field is
thought for the semantic Web. But while in the vision of the
semantic Web the increasing interest in ontologies is driven by
the large volumes of information available and by the need of
automating many information retrieval activities, in the agent
context the focal point is slightly different and it is mainly on
communicative acts - communications which implies actions.
Agents would use ontologies to perform the proper semantic
checks on a given content expression, and therefore ontologies
should include concepts (objects of the domain of the
discourse) but also predicates (assertions on properties of
concepts) and actions (that agents can perform in the domain).
Moreover a peculiar characteristic of the agent community is
the heterogeneity of resources available and the roles played
by different agents of a system. This leads us to choose
different approaches in different contexts. Our solution was to
realize a compound tool, called OWLBeans [5], that allows the
use of ontologies described by using OWL DL. These
ontologies can be used by agents for performing their tasks in
cooperation with other agents, for interoperating with external
entities (e.g., legacy software systems) and for performing a
semantic matching of Web services, described by using OWL-
S and having inputs and outputs associated with concepts
belonging to a domain ontology.

OWLBeans is based on a two-level approach with the aim
of coping with both the issues of managing complex ontologies
and of providing ontology management support to lightweight
agents, which seldom need to deal with the whole complexity
of a OWL DL ontology. Therefore, lightweight agents
maintain the simple JADE ontology support whereas one or
more dedicated agents, acting as ontology servers, are able to



use and manage complete OWL DL ontologies and provide the
service to the agents that need it.

The main functionality of OWLBeans is to extract JADE
ontologies from OWL DL ontologies realizing a set of
ontologies usable by JADE agents, with the obvious
shortcoming that not all the information maintained in the
original OWL ontologies are taken into account. Therefore, for
all those systems that need a complete support for OWL DL
ontologies, OWLBeans offers a set of ontology server agents
implemented as JADE agents, providing a common knowledge
base and reasoning facilities. These ontology servers use the
Jena toolkit to load, maintain and reasoning about OWL
ontologies. The other agents of the system do not need to
know anything about the Jena toolkit given that these ontology
servers provide them with a set of simple actions for querying
and manipulating the ontologies. Furthermore, ontology
servers take into account proper authorization mechanisms. In
particular, the underlying trust management support (discussed
in the following subsection) has been leveraged to implement a
certificate-based access control. Only authenticated and
authorized principals will be granted access to managed
ontologies. A delegation mechanism allows the creation of
communities of trusted entities, which can share a common
ontology, centrally managed by the ontology server.

Finally, despite the fact that the JADE ontological support is
quite simple, it could still be complex for some devices with
limited resources such as smart phones. This is the reason why
we have decided to improve OWLBeans adding a further
feature which allows agents to import taxonomies and
classifications from OWL ontologies, in the form of a
hierarchy of Java classes with the purpose of providing very
simple artefacts to access structured information. Given its
modular architecture, based on an intermediate ontology
model, OWLBeans also provides further functionalities, e.g.,
saving a JADE ontology into an OWL file, or generating a
package of JavaBeans from the description provided by a
JADE ontology.

C. Production Rule Management

JADE provides the integration with the JESS rule engine,
which is probably the most known Java rule engine
implementing the Rete algorithm [11]. This integration is
realized through a so-called JessBehaviour that allows the
encapsulation of a JESS rule engine inside a JADE agent and
has the duty of storing and retrieving information in/from the
rule engine. The main limits of this solution are: i) the rule
engine is completely hidden to the other agents of the system
and there is not any support for the cooperation among
different rule-based agents (i.e., agents encapsulating a JESS
rule engine) and ii) JESS is a commercial software and so we
have additional costs if we plan to realize commercial
applications by using JADE together with JESS.

In order to cope with the limits of the current JADE support
for rule engines, we realized a software library, called D4J
(Drools4JADE) [4], that integrates JADE agents with the
Drools rule engine. Drools is a well known, freeware

implementation of the so-called Rete-OO algorithm. Apart of
its open-source availability, one of the main advantages of
Drools is exactly the fact that it is not just a literal
implementation of the Rete algorithm, but rather an adap tation
for the object-oriented world. This greatly eases the burden of
integrating the rule engine and the application rules with the
existing external objects. In Drools, asserted facts are simple
Java objects, that can be modified through their public
methods and properties. Where Jess requires hundreds of lines
of code, for example to simply access an ACL message
mapped into a Java object, Drools rules can obtain the same
result in a dozen of easy-reading code lines.

D4J guarantees both the advantages of full rule-based
agents, i.e., agent whose behaviour and/or knowledge is
expressed by means of rules [17], and the advantages of rule-
enhanced agents, i.e., agents whose behaviour is not normally
expressed by means of rules, but that use a rule engine as
additional component to perform specific reasoning, learning
or knowledge acquisition tasks [14]. In facts, in D4J, the
Drools rule-engine is integrated into an agent as a JADE
behaviour, but it also provides an API for interacting with it
through ACL messages allowing both remote storing and
retrieval of knowledge and the cooperation among different
rule-based agents. Moreover, this API allows rules mobility,
i.e., a rule-based agent can move a rule to another rule-based
agent.

Given their nature, business rules often refer to domain
specific concepts and, especially when dealing with data on the
semantic Web, these concepts are part of a domain ontology.
To better support this scenario, rule-enhanced JADE agents
should be augmented with a tool for the automatic
transformation of concepts, relations and individuals of an
OWL ontology to java classes, properties, and instances. The
D4J framework can be integrated with OWLBeans, which
enables the extraction of JavaBeans from an OWL ontology.
The JavaBeans can then be directly asserted as facts into the
working memory of Drools.

D. Distributed Trust Management

Out of the box e-business applications are not certainly
possible if security problems are not analyzed and addressed.
Our framework supports the implementation and deployment
of secure systems, adhering trust management principles. For
this purpose, local names, interpreted as distributed roles, and
delegation certificates are made available, to build peer-to-
peer networks of trusted entities.

The accurate release of authorizations is often the most
critical point of security systems. Ideally, systems should
respect the principle of least privilege , but this often contrasts
with other requirements, as easiness of understanding,
scalability and manageability. In this respect, the RBAC model
has proven to be a good abstraction to manage large and
complex systems, up to corporate and virtual-organizations
environments.

Following the RBAC model, each resource manager of our
system (i.e. each node in the peer-to-peer network) has to deal



with three main concepts: principals (i.e. authenticable entities
which act as users of resources and services), permissions (i.e.
rights to access resources or use services) and roles.

A many to many relationship binds principals and the roles
they are assigned to. In the same way, a many to many
relationship binds permissions and the roles they are granted
to, thus creating a level of indirection between a principal and
his access rights. This also leads to a better separation of
duties (between the assignment of principals to roles and the
definition of role permissions), to implement privilege
inheritance schemes among superior and subordinate roles and
to permit temporary delegations of some of the assigned roles
towards other principals. The fundamental principle here is
that each node is in charge of defining its own roles, and of
assigning principals to them.

Dynamic delegation of access rights is made possible
through the use of delegation certificates, whose structure is
based on the theory of [9]. But we have avoided s-expressions,
preferring XML to them, as it provides a better ground to
exploit and integrate standard technologies. In particular, in
recent times SAML [27] have emerged as a language to
express properties of authenticable principals, encoded in the
generic form of signed security assertions. SAML assertions
can easily bind public keys to local names, and certify the links
between two different local namespaces, as it happens in
SDSI/SPKI certificates.

Delegation is particularly important to deal with the
activation of intermediate agents, acting between the human
user and the concrete service providers, i.e. personal agents,
workflow managers and agents providing composite services.
In this case, privileges must be forwarded in the form of
delegation certificates from the user toward each agent in the
chain, up to the final service provider, which will check them
for consistency with local security policies. These policies are
stored and managed locally as XACML documents [31].

To cope with the security problems coming from the remote
utilization of the rule engine and from the mobility of rules,
also D4J exploits this security layer to enforce security policies
at two different levels: proper authorization is necessary to
modify the working memory and the rule set of an agent;
moreover, each rule is associated with a specific protection
domain, limiting the resources made accessible when it is
scheduled for execution.

IV. CONCLUSION

In this paper, we have presented an agent-based framework
for SOA that integrates agent technology with other
technologies that have found, and will find, a purpose within
enterprise computing: web services, workflows, ontologies and
rule engines.

Up to now, we have not experimented the system with real
users and real services, but we have tested and evaluated the
system functionalities implementing some “artificial” services
and involving a group of students, acting either as service
provider operators or as customers. Some of the information

used by the service providers, implemented just for the
experimentation of the system, comes from the Web site of
some real service providers (e.g., flight companies, hotel
brokers, etc.). The results, though still preliminary, are quite
encouraging

We are well aware that the current multi-agent solutions
need to be improved since the technologies used are still not
completely mature. However a lot of researchers and software
developers are really interested in giving a significant
contribution in this direction, driven by the motivation of
providing a strengthening of the related standards and new
methodologies, algorithms and implementations to realize real
flexible, adaptive SOA [1],[10].

Our future activities will be oriented towards the
aforementioned goal. In particular, we will continue working
on the JADE software environment in order to both improve
the integration of the JADE agents with the most interesting
knowledge and internet-oriented technologies and realize real
adaptive agents that will be the basis of next and future
business applications. At present, we are working in three main
directions: i) to finalize the implementation of a full OWL DL
support through a home-made framework supplying ontology
management and reasoning functionalities, with the main
purpose of reducing the amount of computational resources
and time required (compared to the Jena engine), ii) to
enhance the distribution algorithm in order to achieve a more
efficient execution of a workflow and iii) to finalize the
implementation of a framework for the dynamic composition
of semantic Web services.

REFERENCES

[1] AgentLink III. Agent Technology Roadmap. Available from
http://www.agentlink.org/roadmap/index.html

[2] Akkermans, H. Intelligent E-Business - From Technology to Value.
IEEE Intelligent Systems, 16(4):8-10, 2001.

[3] Bechhofer, R. Volz, and P. Lord. Cooking the semantic web with the
OWL API. In Proc. Int Semantic Web Conference, pp. 659-675, Sanibel
Island, FL, 2003.

[4] Beneventi, A., Poggi, A., Tomaiuolo, M., & Turci, P. Integrating Rule
and Agent-Based Programming to Realize Complex Systems. WSEAS
Trans. on Information Science and Applications, 1(1):422-427, 2004.

[5] Bergenti, F., Poggi, A., Tomaiuolo, M., Turci, P. An Ontology Support
for Semantic Aware Agents. In Proc. Seventh International Bi-
Conference Workshop on Agent-Oriented Information Systems (AOIS-
2005 @ AAMAS), Utrecht, The Netherlands, 2005.

[6] Berners-Lee, T., Hendler, J., Lassila O. The Semantic Web - A new
form of Web content that is meaningful to computers will unleash a
revolution of new possibilities. 284(5):34-43, 2001.

[7] Buhler P.A., Vidal, J.M. Towards Adaptive Workflow Enactment Using
Multiagent Systems. Information Technology and Management,
6(1):61-87, 2005.

[8] de Bruijn, J., Polleres, A., Lara, R., Fensel, D. OWL DL vs. OWL
Flight: Conceptual Modeling and Reasoning for the Semantic Web. In
Proc. of the 14th Int. World Wide Web Conference (WWW2005), pp.
623-632, Chiba, Japan, 2005.

[9] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.
SPKI Certificate Theory. RFC 2693, 1999.

[10] Fensel, D., Bussler, C. The Web Service Modeling Framework WSMF.
Electronic Commerce Research and Applications 1(2): 113-137, 2002.



[11] Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many Pattern /
Many Object Pattern Match Problem, Artificial Intelligence 19(1), pp.
17-37.

[12] Greenwood, D., Callisti, M. Engineering Web Service-Agent
Integration. In IEEE Conference of Systems, Man and Cybernetics,
2004. Available from
http://www.whitestein.com/resources/papers/ieeesmc04.pdf.

[13] Gibbins, N., Harris, S., Shadbolt, N. Agent-based semantic web
services. In Proc of the 12th International World Wide Web Conference
(WWW2003), Budapest, Hungary, 2003.

[14] Gutknecht, O., Ferber, J., Michel, F. Integrating tools and infrastructures
for generic multi-agent systems. In Proc. of the 5th International
Conference on Autonomous Agents. Montreal, Canada, 2001.

[15] Gutmann, P. (2000). X.509 Style Guide. Available from
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

[16] Horrocks, I. and Patel-Schneider, P. F. A proposal for an OWL rules
language. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), pp. 723-731, 2004.

[17] Hindriks, K.V., de Boer, F.S., van der Hoek, & W., Meyer, J.C. Control
Structures of Rule-Based Agent Languages. In Lecture Notes In
Computer Science, Proceedings of the 5th International Workshop on
Intelligent Agents V, Agent Theories, Architectures, and Languages,
Vol 1555, pp. 381-396, 1998, London, UK: Springer-Verlag.

[18] Khare, R., Rifkin, A. Weaving a Web of trust, World Wide Web Journal
Special Issue on Security, 2(3):77–112, 1997.

[19] R. Kishore, H. Zhang & R. Ramesh, Enterprise integration using the
agent paradigm : foundations of multi-agent-based integrative business
information systems, Decision Support Systems, 42 (2006) (1), pp. 48–
78..

[20] Labrou, Y. Agents and ontologies for e-business. Knowledge
Engineering Review, 17(1):81-85, 2002.

[21] Li, N., Mitchell, J.M.. RT: A Role-based Trust-management
Framework. In Proc of the Third DARPA Information Survivability
Conference and Exposition (DISCEX III), pp. 201-212, 2003.
Washington, D.C.

[22] Negri, A., Poggi, A., Tomaiuolo, M., Turci, P,. Dynamic Grid Tasks
Composition and Distribution through Agents,. Concurrency and
Computation: Practice and Experience, 2005.

[23] Negri A., A. Poggi, M. Tomaiuolo, P. Turci, Agents for e-Business
Applications, In Proc. AAMAS 2006, Hakodate, Japan 2006

[24] Papazoglou, M.P.. Agent-oriented technology in support of e-business.
Communication of ACM, 44(4):71-77, 2001.

[25] Papazoglou, M.P. The World of e-Business: Web-Services, Workflows,
and Business Transactions In Lecture Notes In Computer Science,
CAiSE '02/ WES '02: Revised Papers from the International Workshop
on Web Services, E-Business, and the Semantic Web, Vol 2512, pp.
153-173, 2002. London, UK. Springer-Verlag

[26] Poggi, A., Rimassa, G., Tomaiuolo, M. Multi-user and security support
for multi-agent systems. In Proc. of WOA 2001, pp. 13-18, 2001.
Modena, Italy: Pitagora.

[27] SAML - Security Assertion Markup Language. Available from
http://xml.coverpages.org/saml.html.

[28] Sensory Graph Planner software and documentation. Available from
http://www.cs.washington.edu/ai/sgp.html.

[29] Silva, N., Rocha, J., Cardoso, J. E-Business Interoperability Through
Ontology Semantic Mapping. In Proc. of the Processes and Foundations
for Virtual Organizations, pp. 315-322, 2003. Lugano, Switzerland.

[30] Weikum G. Special Issue on Infrastructure for Advanced E-services,
IEEE Data Engineering, 24(1), 2001.

[31] XACML- Extensible Access Control Markup Language. Available
from http://xml.coverpages.org/xacml.html.

[32] YURL - Decentralized Identification. Available from
http://www.waterken.com/dev/YURL.


