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The  importance of nomenclature,  notation, and 
language as t~xls of tho~ght  has long been reeogo 
nize& tn chemis t ry  and in botany,  for example, 
the es tabl i shment  of sys tems of nomen.elature by 
Lavoisier arid Lim~aeus did much to s t imula te  and 
to cham~el later  invest igat ion.  Concerning l aw  
guage, George Boole in his Laws of Thought  
[ 1, p.~4] asserted " T h a t  hnguage  is an instru- 
ment of imman reason, and not merely a medium 
for the expression of thought,  is a t ruth generally 
admit ted ."  

Mathemat ica l  nota t ion  provides perhaps the 
best-known and best-developed example of Inn-, 
guage os~ed consciously as a tool of thought,  Recog- 
nition of the important  role of notat ion in mathe~ 
rustics is clear from the quotat ions  from rnathema.. 
tieians given in C a j o r i ' s  A History of Mathemato 
ieat Notat ions [2+ pp,332,331],  They  are weiI 
worth reading in full, but the fol lowing excerpts 
suggest the tone: 

By relieving the brain of alt mmeees-oe~ry work, 
a good nota t ion sets it free to concentrate on 
more advar~eed problems, and i~ effect increases 
the me,veal power of the ra~x~ 
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T}m q{m~it>' of metaling compressed into small 
~i);~<:~., by algebraic signs, is another  circum- 
:<a~:~ ~h~l facil i tates the reasonings we are 
a<'<:,>lomed {o carry <m by their aid. 

Charles Babbage 

Nevertl~eless, nmthematical  notat ion has seri- 
ous deficiencies. In particular, it lacks universali- 
ty, a~d must be interpreted different ly  according 
t~; {he topic, according to the author,  and even 
according to the immediate context. Programming 
languages, because they were designed for the pur- 
pose of directing computers, offer important  ad- 
vantages as tools of thought.  Not only are they 
m~iversal (general-purpose), but they are also exec- 
ulable and unambiguous. Executabil i ty makes it 
possible to use computers to perform extensive 
experime~ts on ideas expressed in a programming 
language, and the lack of ambiguity makes possible 
precise thought  experiments. In other  respects, 
however, most programming languages are decided- 
ly inferior to mathematical  notation and are little 
used as tools of thought  in ways that  would be 
considered significant by, say, an applied mathe- 
matician. 

The thesis of the present paper is that  the ad- 
vantages of executabili ty and universality found in 
programming languages can be effectively com- 
bined, in a single coherent language, with the ad- 
vantages offered by mathematical  notation. It is 
developed in four stages: 

(a)Section 1 identifies salient characterist ics of 
mathemat ica l  notat ion and uses simple prob- 
lems to illustrate how these characteristics may 
be provided in an executable notation. 

(b)Sections 2 and 3 continue this i l lustrat ion by 
deeper t rea tment  of a set of topics chosen for 
their  general interest  and uti l i ty.  Section 2 
concerns polynomials, and Section 3 concerns 
t ransformat ions  between representations of 
functions relevant to a number of topics, includ- 
ing permutat ions  and directed graphs. Al- 
though these topics might  be characterized as 
mathemat ica l ,  they are directly relevant  to 
computer  programming, and their  relevance 
wilt increase as prograrnming continues to de- 
velop into a legitimate mathematical  discipline. 

(c)Section 4 provides examples of identi t ies  and 
formal proofs. Many of these formal proofs 
concern identi t ies established informally and 
used in preceeding sections. 

(d)The concluding section provides some general 
comparisons with mathematical  notat iom refer- 
enees to t reatments  of other topics, and discus-. 
sion of the problem of mtrodueing notat ion in 

context. 
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The executable language to be used is APL, a 
general purpose language which originated in an 
at tempt to provide clear and precise expression in 
writing and teaching, and which was implemented 
as a programming language only after several years 
of use and developmer/t [ 3 ]. 

Although many readers will be unfamiliar with 
APL, I have chosen not to provide a separate intro- 
duction to it, but rather to introduce it in context 
as needed. Mathematical  notation is always intro- 
duced in this way rather than being taught, as pro- 
gramrning languages commonly are, in a separate 
course. Notat ion suited as a tool of thought  in any 
topic should permit  easy introduction in the con- 
text of' t ha t  topic; one advantage of introducing 
APL in context here is that  the reader may assess 
the relative difficulty of such introduction. 

However, introduction in context :is incompati- 
ble with cornplete discussion 0f all nuances of each 
bit of notation, and the reader must be prepared to 
ei ther  extend the def ini t ions in obvious and sys- 
tematic ways as required in later uses, or to con- 
sult a reference work. All of' the notat ion used 
here is summarized in Appendix A, and is covered 
fully in pages 24-60 of A P L  Language [ 4 ]. 

Readers having access to some machine embodi- 
ment of APL may wish to translate the function 
definitions given here in direct  de f in i t ion  form 
[5, p.10 ] (using ~ and ,,, to represent the left and 
right arguments) to the canonical form required 
for execution. A function for performing this 
translation automatical ly is given in Appendix B. 

1. I m p o r t a n t  Charac ter i s t i c s  o f  Nota t ion  

In addition to the executabili ty and universali- 
ty emphasized in the introduction, a good notation 
should embody characteristics familiar to any user 
of mathematical  notation: 

~, Ease of express mg constructs ar ising in problems. 
o Su~,ges t ~vl ty. 
°Ability tosubordinate detail. 
o Economy. 
~,Amenab ility to for mat proofS. 

The foregoing is not intended as an exhaustive list. 
but will be used to shape the subsequent discus- 
sion. 

Unambiguous executability of tile notation in- 
troduced remains important,  and will be emphasiz- 
ed by displaying below an expression the explicit 
result produced by it. To maintain the distinction 
between expressions and results, the expressions 
will be indented as they automatical ly are on APL 
computers, For example, the integer function de- 
noted by ~ produces a vector ot ~he first ,,' integers 
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when applied to the a r g u m e n t  N, and the sum 
reduction denoted by ~/ produces the sum of the 
elements  of its vector a rgument ,  and will be show,  
as follows: 

15 
l 2 3 ~ 5 

15 

We w i l l  use one  n o n - e x e c u t a b l e  b i t  o f  n o t a t i o n :  

the symbol .... appearing between two expressions 
asserts the i r  equivalance. 

1.1 Ease o f  Express ing  Constructs  Aris ing in 
Problems 

If it is to be effective as a tool of thought,  a 
notat ion must  allow convenient  expression not only 
of notions ar is ing directly from a problem, but  also 
of those arising in subsequent  analysis, generaliza- 
tion, and specialization. 

Consider,  for example,  the crystal  s t ruc tu re  
i l lustrated by Figure 1, in which successive layers 
of a toms lie not direct ly on top of one another ,  but  
lie "close-packed" between those below them. The  
numbers  of a toms in successive rows from the top 
in Figure 1 are therefore  given by ~% and the total 
number  is given by ~/, ' , .  

The three-dimensional  s t ruc ture  of such a crys- 
tal is also close-packed; the a toms  in the plane 
lying above Figure 1 would lie between the a toms 
in the plane below it, and would have a base row of 
four a toms.  The  complete  th ree-d imens iona l  
s t ructure  corresponding to Figure 1 is therefore  a 
te t rahedron whose planes have bases of lengths 1, 2, 
3, ,,, and s. The  numbers  in successive planes are 
therefore the par t ia l  sums of the vector  ,s, tha t  
is, the sum of the first  e lement ,  the sum of the 
first  two e lements ,  etc. Such par t ia l  sums of a 
vector v are denoted by ,\v, the function ~\ being 
called sum scan. Thus:  

+ \ ~ 5  
1 3 6 10  15  

• ~-I ~ \ ~ 5 
35 

The final expression gives the total  number  of at-  
oms in the te t rahedron.  

The  sum +/,s can be represented graphical ly in 
other  ways, such as shown on the left of Figure 2. 
Combined with  the inverted pa t te rn  on the right,  
this representa t ion  suggests tha t  the sum may be 
s imply related to the number  of uni ts  in a rectan-  
gle, tha t  is, to a product. 

The  lengths of the rows of the figure formed by 
pushing together  the two parts  of Figure 2 are giv- 
en by adding the vector  , s to the same vector  rev- 
ersed. Thus:  

15 
1 2 3 ~t 5 

5 4 3 2 1  
(t5)+(~5) 

6 6 6 6 6  

Fig. 1. Fig. 2. 
o O OOOOO 

o o O0 OOO0 
o o o O[]O O00 

o o o o O[]OO OO 
o o o o o O000O 0 

Thi s  pat tern  of ~; repet i t ions  of 6 may be expressed 
as 506, and we have:  

5 9 5  
6 6 6 b 6 

. I . . /596 
3O 

6 × 5  
3O 

The  fact tha t  ,/596 ,-+ 6~ follows f rom the defini- 
t ion of mul t ip l ica t ion  as repeated  addit ion.  

The  foregoing suggests tha t  ~/,s *~ (6×~,)÷2, and, 
more  generally, tha t :  

+ / ~ N  + +  ( ( N f l ) x N I ) ÷ 2  A.I 

1.2 Suggest iv i ty  
A nota t ion  will be said to be suggestive if' the 

forms of the expressions arising in one set  of prob- 
lems suggest re la ted expressions which find appli- 
cat ion in o ther  problems.  We will now consider 
related uses of the f tmctions in t roduced thus far, 
namely:  

~ p + /  + \  

T h e  example:  

5 0 2  
2 2 2 2 2 

× / 5 p 2  

2,2 

suggests t ha t  ~/Mp~v +~ ~J~M, where • represents  the 
power function. T h e  s irni l iar i ty  between the defi- 
ni t ions of' power in te rms of t imes,  and of t imes  in 
t e rms  of plus may  the re fore  be exhib i ted  as fol- 
lows: 

x / M p N  + +  N*M 
+ / M p N  ~ ÷  NxM 

Simi la r  expressions for par t ia l  sums and par t ia l  
products  may  be developed as follows: 

x \ 5 p 2  
2 ~ 8 16  3 2  

2 . ~ 5  
2 q 8 16  3 2  

x \ M p N  ~ +  N*~M 
+\MpN ~+ N × i M  

B e c a u s e  t h e y  can be r e p r e s e n t e d  b y  a t r i a n g l e  as 

in F igure  1, the sums + \ , s  are called t r iangu lar  
numbers .  T h e y  are a special case of the f i gura t e  
numbers  obta ined by repeated appl icat ions  of sum 
scan, beginning e i the r  wi th  , \ ,~ ,  or wi th  ,\~0~. 
Thus :  

5 p 1  + \ * \ 5 p l  
1 l 1 1 1 1 3 6 1 0  15  

÷ \ 5 p l  + \ + \ t \ 5 p l  
1 2 3 4 5 1 4 10  2 0  3 5  
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Replacing sums over the successive integers by 
products yields the factorials as follows: 

!5 
2 3 h 5 

× / ~ ' ~  × \ ~ 5  
t?O 1 2 6 24 120 

~5 ~t5 
120  1 2 6 24 i 2 0  

P a r t  of  the  suggest ive p o w e r  o f  a language re- 

sides in the ability to represent identities in brief', 
general, and easily remembered  forms. We will 
i l lustrate this by expressing duali t ies between 
functions in a form which embraces D e M o r g a n ' s  
laws, mult ipl icat ion by the use of logarithms, and 
other less familiar  identities. 

If v is a vector of positive numbers,  then the 
product ~/v may be obtained by taking the natural  
logarithms of each element of v (denoted by ®v), 
summing them (+/®v), and applying the exponential 
function ( * + i ® v ) .  Thus:  

× / V  + +  * + / ~ V  

Since the exponential function , is the inverse of 
the natural  logari thm ~, the general form suggested 
by the right side of the identity is: 

[C F/G g 

where ro is the function inverse to o. 

Using ~ and ~ to denote the functions and and 
or, and ~ to denote the self-inverse funct ion of 
logical negation, we may express DeMorgan ' s laws 
for an arbi t rary  number  of elements by: 

^ / B  ÷ ÷  ~ v / ~ B  
v / B  ÷ +  ~ ^ i ~ B  

The elements of B are, of course, restricted to the 
boolean values 0 and ~. Using the relation symbols 
to denote funct ions (for example, x<r yields ~ if x 
is less than Y and 0 otherwise) we can express fur- 
ther dualities, such as: 

= / B  + +  ~ ~ l ~ B  

Finally, using r and L to denote the maximum 
and minimum functions, we can express dualities 
which involve ar i thmet ic  negation: 

r l v  +.+ - l l - V  
L / V  ÷+ - r / - v  

It  may  also be noted tha t  scan (F\) may replace 
reduction (e/) in any of the foregoing dualities. 

1.3 S u b o r d i n a t i o n  o f  D e t a i l  
As Babbage remarked in the passage cited by 

Cajori ,  brevi ty  facil i tates reasoning. Brevi ty  is 
achieved by subordinating detail, and we will here 
consider three impor tant  ways of doing this: the 
use of arrays, the assignment of names to functions 
and variables, and the use of operators. 

We have already seen examples of the brevity 
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provided by one-dimensional arrays (vectors) in 
the t r ea tment  of duality, and fur ther  subordina- 
tion is provided by matrices and other  arrays of 
higher  rank, since functions defined on vectors are 
extended systematically to arrays of higher rank. 

In particular, one may specify the axis to which 
a function applies. For example, ¢[1 ins acts along 
the first axis of a matrix M to reverse each of the 
columns, and ¢[ ~ it., reverses each row; M, c ~ ]~ caten- 
ates columns (placing ~i above N), and t~,[2]~ caten- 
ates rows; and +/[1]M sums columns and +/[2]~ 
sums rows. If no axis is specified, the function 
applies along the last axis. Thus  +/M sums rows. 
Finally, reduct ion and scan along the f irs t  axis 
may be denoted by the symbols s and ~. 

Two uses of names may be distinguished: 
constant  names which have fixed referents are 
used for entities of very general utility, and ad hoc 
names are assigned (by means of the symbol +) to 
quantit ies of interest in a narrower context. For 
example, the constant (name) ~,,,, has a fixed refer- 
ent, but the names c'~,',~'~'~:, r,A~'ZR, and ~ow assigned by 
the expressions 

CRATE' ÷ l q q  
L A Y E R  + C R A T E ÷ 8  
[fOW ÷ LAYER÷3 

are ad hoc, or variable names. Constant  names for  
vectors are also provided, as in  2 3 5 7 ~ for a nu- 
meric vector of five elements, and in ,ancDz, for a 
character vector of five elements. 

Analogous distinctions are made in the names 
of functions. Constant names such as +, ×, and 
are assigned to so-called primit ive  functions of 
general utility. The detailed definitions, such as 
+fM~N for ~ and ~/,pN for ~.M, are subordinated by 
the constant names ~ and ,. 

Less familiar  examples of constant  function 
names are provided by the comma which catenates 
its arguments as illustrated by: 

( 1 5 ) , ( q b S )  ÷-÷ 1 2 3 II 5 5 4 3 2 1 

and by the base-representation function ~, which 
produces a representation of its r ight  argument  in 
the radix specified by its left argument.  For exam- 
ple : 

2 2  2 T 3 .e~ 0 i 1 

2 2  2 r 4 ÷ ~  1 0 0  

B N ÷ 2  2 2 1" 0 1 2 3 4 S 6 7 

BN 
0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 
0 1 0 11 0 1 0 1 

BN,~BN 
O,O 0 0 1 1 ] 1 1 I 1 J O O 0 0 
O 0  1 1 0 0 1 1 1 1 O 0  1 1 O 0  
0 1  0 1 0 1 0 1 1 0 1 0 1 0 1 0  

The matrix ~N is an important  one, since it can be 
viewed in several ways. In addition to representing 
the binary numbers, the columns represent all sub- 
sets of a set of three elements, as well as the en- 
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tries in a truth table for three boolean arguments.  
The general expression for re elements is easily seen 
to be (,v~,2),(~2,N) I, and we may wish to assign a~ 
ad hoc name to this function. Using the direct  
definit ion form (Appendix B), the name 7, is as- 
signed to this function as follows: 

i : ( , . p 2 ) T (  ~ 2 . w ) - i  A.2 

The symbol ,,, represents the argument  of the func- 
tion; in the case of two arguments the left is repre- 
sented by ,:,. Following such a definit ion of the 
function ,::, tim expression ~ 3 yields the boolean 
matrix , : ~ / s h o w n  above. 

Three expressions, separated by colons, are also 
used to define a function as follows: the middle 
expression is executed first; if' its value is zero the 
first expression is executed, if' not, the last expres- 
sion is executed. This form is convenient for re- 
cursive definitions, in which the function is used 
in its own definition. For example, a funct ion 
which produces binomial  coefl'icients of an order 
specified by its a rgument  may be defined recur- 
sively as follows: 

[ ~ C I ( X , ( J ) ~ ( O , X ÷ . Y ( L  ' 6J- [ ) ; ~ J a : ( ) l  l i , 3  

Thus  sc  0 ..... ~ arid z c  1 .-+ ~ ~ and ,,c ~, .... 1 ,, ~, ~, :i. 

The term operator, used in the str ict  sense 
defined in mathemat ics  rather than loosely as a 
synonym for ['unction, refers to an ent i ty  which 
applies to functions to produce functions; an exam- 
ple is the derivative operator. 

We have already met two operators, reduction, 
and scan, denoted by / and \, and seen how they 
contribute to brevity by applying to different func- 
tions to produce families of related functions such 
as ,/ and ,/ and ~/. We will now illustrate the 
notion fur ther  by introducing the inner produc t  
operator denoted by a period. A function (such as 
~/) produced by an operator  will be called a 
derived function. 

If ~:, and ~e are two vectors, then the inner prod- 
uct , . ,  is defined by: 

[ ' * , x l 2  ~.* ~ I p × Q  

and analogous definit ions hold for function pairs 
other  than + and ~. For example: 

g + 2  3 !~ 
Q ~ 2  t 2 
P ~ . × Q  

17  
P × ,  *Q 

30,0 
P I . .  + Q 

Each of the foregoing expressions has at  least 
one useful interpretation: F..,c~ is the total cost of 
order quantities ~, for items whose prices are given 
by p; because p is a vector of primes, p..,Q is the 
number whose prime decomposition is given by the 
exponents (~; and if ~, gives distances from a source 
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to t ranshipment  points and c~ gives distances from 
the t ranshipment  points to the dest inat ion,  then 
~ . ,~ gives the min imum distance possible, 
The function +.~ is equivalent to the inner product 
or dot product of mathematics ,  and is extended to 
matrices as in mathematics.  Other cases such as 
.<.. are extended analogously. For example, i f ;  is 
the ['unction defined by A.2, then: 

0 0 0 0 I I 1 1 
0 0 1 1 0 0 1 1  

0 1 0 1 0 1 0 1 

P+ .×~7  3 F × . * Z :  3 
0 5 3 8 2 7 5 10  i b 3 15  2 10 6 30  

These examples bring out an impor tant  point:  if 
r~ is boolean, then f,+. ×B produces sums over subsets 
of t, specified by ~ ' s  in ~, and P×.,~ produces prod- 
ucts over subsets. 

The phrase o.× is a special use of the inner 
product operator  to produce a derived funct ion 
which yields products of' each element of its left 
argument  with each element of its right. For ex- 
ample: 

2 3 5 o . x l 5  

2 L, 6 8 I 0 

3 6 9 1 2  1 5  

5 1 0  l b  2 0  2 5  

The function o.× is called outer product,  as it 
is in tensor analysis, and functions such as o.+ and 
o., and o.< are defined analogously, producing 
"function tables" for the particular functions. For 
example : 

D*-0123 

Do.[D Do.~D Do. ID 
0 1 2 3  1 0 0 0  iiii 

1123 1 1 0 0  0 1 2 3  

2223 i i i 0  0 0 1 3  

3 3 3 3  111:[ 0 0 0 1  

The symbol : denotes the binomial coefficient 
function, and the table Do.~D is seen to contain 
P a s c a l ' s  triangle with its apex at the left; if' ex- 
tended to negative arguments  (as with ~+-3:2 -1 0 1 
2 3 ) it will be seen to contain the triangular and higher- 
order figurate numbers  as well. This  extension to 
negative arguments  is interest ing for o ther  func- 
tions as well. For example, the table Do.×D consists 
of four quadrants separated by a row and a column 
of' zeros, the quadrants showing clearly the rule of 
signs for multiplication. 

Pat terns in these function tables exhibit  other  
properties of' the functions, al lowing brief state- 
ments of proofs by exhaustion. For example, com- 
muta t iv i ty  appears as a symmet ry  about  the diago- 
nal. More precisely, if the result of the transpose 
function + (which reverses the order of the axes of 
its argument)  applied to a table T+vo.fv agrees with 
T, then the function r is commuta t ive  on the do- 
main. For example, T=+T+~o.rD produces a table of 

' s  because r is commutat ive.  
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Corresponding  tests of a ssoc ia t iv i ty  r e q u i r e  
rank 3 tables of the form ao.~(~,o .f>) and (L2o .,))o .tD. 
For example:  

D+O 1 
O o . ~ ( L ) o , ^ D )  ( D o . A D ) o . A D  D o . ~ ( D o . < D )  ( D o . ~ D ) o . ~ D  

0 0 0 0 1 1 o 11 
o o o o i 1 0 l 

0 0 0 0 L L 1 L 
0 ] 0 l 0 it 0 1 

1.4 E c o n o m y  
T h e  u t i l i ty  of a language as a tool of t h o u g h t  

increases wi th  the range of topics it can treat ,  bu t  
decreases wi th  the a m o u n t  of vocabulary  and the  
complexi ty  of g r a m m a t i c a l  rules which  the  use r  
nmst  keep in mind. Economy of no ta t ion  is t he r e -  
fore impor tan t .  

Economy requires tha t  a large n u m b e r  of ideas 
be expressible in te rms of a re la t ive ly  small  vocab-  
ulary. A fundamenta l  scheme for achieving this  is 
the in t roduc t ion  of g r a m m a t i c a l  rules  by w h i c h  
meaningful  phrases and sentences can be cons t ruc t -  
eel by combining  e lements  of the vocabulary.  

Th i s  scheme may be i l lus t ra ted  by the f i r s t  
example t rea ted  -- the re la t ively  s imple  and wide ly  
useful not ion of the sum of' the first n integers was 
not introduced as a pr imi t ive ,  but  as a phrase con- 
s t ructed  f rom two more  general ly  useful  no t ions ,  
the funct ion , for the produc t ion  o1' a vec tor  o f  
integers, and the funct ion +/ for the s u m m a t i o n  of  
the e lements  of a vector.  Moreover ,  the de r ived  
function +/ is itself a phrase, s u m m a t i o n  being a 
derived function constructed f rom the more gener-  
al not ion  of the reduct ion  opera to r  appl ied to a 
par t icular  function. 

Economy is also achieved by general i ty  in the  
functions introduced. For  example,  the  de f in i t ion  
of the  fac tor ia l  funct ion denoted by : is not  re-  
s tr icted to integers, and the g a m m a  funct ion of x 
[nay therefore  be wr i t ten  as :x-~. Simil iar ly ,  the  
r e l a t i o n s  defined on all real a r g u m e n t s  p rov ide  
several impor t an t  logical functions when applied to  
boolean a rguments :  exclusive-or ( ,) ,  ma te r i a l  im- 
plication ( ~ ), and equivalence ( : ). 

The  economy achieved for the ma t t e r s  t r e a t ed  
thus far can be assessed by recall ing the  vocabu la ry  
introduced: 

t o ¢ T 
/ \ 

+ - x ÷ * ® : [ t . ~  

The  five functions and three opera tors  l isted in t h e  
first  two rows are of p r imary  interest ,  the r ema in -  
ing f ami l i a r  funct ions  hav ing  been in t roduced  to  
i l lustrate the versa t i l i ty  of the operators .  

A signif icant  economy of symbols,  as opposed to  
economy of functions, is a t ta ined  by al lowing a n y  
symbol to represent  both  a raonad ic  funct ion {i.e. 
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a I u n c u o n  ot one a r g u m e n t )  and a d y a d t c  Iunc- 
lion, in the same manner  tha t  the minus sign is 
commonly  used for both  subtract ion and negation.  
Because tile two functions represented may,  as in 
the case of the minus sign, be related, the bm'den 
of r emember ing  symbols  is eased. 

For  example,  ,vkr and ,r  represent  power and 
exponential ,  x®Y and ®~ represent  base x loga r i thm 
and na tura l  logar i thm x÷z and ÷z represent  divi- 
sion and reciprocal ,  and x: r and :r r ep resen t  the  
b inomia l  coeff icient  funct ion  and the fac tor ia l  
( tha t  is , ,v:z÷÷(:Y),( :x)×(:>x)) .  Tile symbol  p used 
for the dyadic  funct ion  of repl icat ion also repre-  
sents a monadic funct ion which gives the shape of 
the a rgumen t  ( tha t  is, x+-.pxpr), the symbol  , used 
for the monadic  reversal  function also represen ts  
the dyadic  r o t a t e  funct ion exempl i f ied  by 
2¢,~,~3 ~, r~ ~ 2, and by -2,,s~÷~ ,~ ~ ~ 3, and finally,  
the comma represents riot only catenat ion,  but  also 
the monadic  ravel ,  which produces a vector  of the 
e lements  of its a r g u m e n t  in "row-major" " order.  
For example:  

~ 2 ,T  2 
o o 1 I 0 0 :t 1 o 1 o 
o ! o 1 

Simplic i ty  of the g rammat ica l  rules of a nota-  
t ion is also important .  Because the rules used thus 
far have been those fami l ia r  in m a t h e m a t i c a l  nota-  
tion, they  have not been made explicit ,  but  two 
s implif icat ions in the order of execution should be 
re marked:  

(1)All functions are t rea ted  alike, and there are no 
rules of precedence such as . being executed  
before +. 

(2)The rule tha t  the r ight  a rgument  of a monadic  
function is the value of the ent i re  expression to 
its right,  implicit  in the order of execution of 
an expression such as :;rn so~ :n, is extended to 
dyadic functions. 

The  second rule has certain useful consequences 
[n reduct ion  and scan. Since e./v is equ iva len t  to 
placing the function e between the e lements  of' v, 
the expression - iv gives the a l te rnat ing  sum of the 
e lements  of v, and ÷/v gives the a l te rna t ing  prod- 
uct. Moreover ,  if ~ is a boolean vector,  then <\u 
" isolates"  the first  :t in B, since all e lements  follow- 
ing it become 0. For example:  

< \ 0  0 1 1 0 1 11 ÷+ 0 0 1 0 0 0 0 

Syntact ic  rules are fu r the r  s implif ied by adopt-  
ing a single form for all  dyadic functions,  which 
appear  between the i r  a rguments ,  and for all mo- 
nadic functions,  which appear  before the i r  argu.  
ments. .  Th i s  contrasts  wi th  the var ie ty  of rules in 
m a t h e m a t i c s .  For example,  the symbols  for the  
monadic  funct ions  of negation, factorial,  and mag- 
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ni tude  precede, follow, and su r round  the i r  argu-  
ments ,  respectively.  Dyadic  funct ions  show even 
more  var iety.  

0 0 
0 1 

i 1 
1 1 

1.5 A m e n a b i l i t y  to  F o r m a l  P r o o f s  
T h e  impor tance  of fo rmal  proofs and der iva-  

t ions is clear f rom thei r  role in ma themat i c s .  Sec- 
t ion 4 is largely devoted to fo rmal  proofs, and we 
will l imi t  the  discussion here  to the in t roduct ion 
of the forms used. 

Proof  by exhaus t ion  consists  of exhaus t ive ly  
examining  all of a finite n u m b e r  of special cases. 
Such exhaust ion  can often be s imply  expressed by 
applying some outer  product  to a rgumen t s  which 
include all e lements  of the re levan t  domain.  For  
example,  if O÷0 ~, then  Do. ̂ O gives all cases of appli- 
ca t ion  of the  and funct ion .  Moreover ,  
D e M o r g a n ' s  law can be proved exhaus t ive ly  by 
compar ing each e lement  of the ma t r ix  Oo.^O wi th  
each e l emen t  of ~(~O)°. v(~O) as follows: 

Do.^D ~ ( ~ D ) ° . v ( ~ D )  
0 0 
0 1 

( D o , A D ) = ( - ( ~ D ) o . v ( - D ) )  

^ / , ( D o , A D ) = ( ~ ( ~ D ) o . v ( ~ O ) )  

1 

Questions of associa t iv i ty  can be addressed s im- 
ilarly, the following expressions showing the  asso- 
c ia t iv i ty  of and and the  non-assoc ia t iv i ty  of  
not-and: 

^ l  , ( ( Oo . AD )o .AD ) : (  Do.^~ Do . AD ] ) 
i 

^ / ,  ( ( D o . ~ D ) o  . ~ D ) : ( D o . ~ ( D o  .~D)  ) 
0 

A proof by a sequence of identities is presented 
by list ing a sequence of expressions,  anno t a t i ng  
each expression wi th  the suppor t ing  evidence  for  
i ts  equivalence wi th  its predecessor.  For example,  
a formal  proof of the iden t i ty  A.1 suggested by the  
f i r s t  example  t r ea ted  would be presented  as fol- 
lows: 

+~iN 
+~@iN + is a&sociative and commutative 
( (  + I i N ) + ( + I @ ~ N ) ) ¢ 2  ( X + X ) + 2 ÷ ÷ X  
( + / ( ( t N ) + (4) i N ) ) ) ÷ 2 • m associative and commutative 
( +/((N+i)aN) )÷2 Lemma 
( ( N+ 1 ) x N) ÷ 2 Definition of x 

T h e  four th  anno ta t ion  above concerns an iden t i ty  
which,  a f ter  observat ion of the  pa t te rn  in the spe- 
cial case (, s )+( ¢, s ), might  be considered obvious or 
might  be considered wor thy  of formal  proof in a 
separate  lemma.  

Induct ive  proofs proceed in two steps: 1) some 
iden t i ty  (called the  induct ion hypothesis)  is as- 
sumed  true for  a fixed integer  va lue  of  some par- 
a m e t e r  a a n d t h i s  a s sumpt ion  is used to prove t h a t  
the  ident i ty  also holds  for the  value ~+1, and 2)  
the  ident i ty  is shown t o  ho ld  fo r  some in teger  val-  
u e  x. T h e  conclusion is t h a t  t h e  iden t i ty  holds fo r  
al l  integer  values of a which  equal  or  exceed r. 
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Recurs ive  def in i t ions  of ten provide convenient 
bases for induct ive  proofs. As an example  we will 
use the recurs ive  def in i t ion of the b inomia l  coeffi- 
cient  funct ion Bc given by A.a in an inducUve proof 
showing t h a t  the  sum of the b inomial  coefficients 
of order  N is 2.N. As the induct ion hypothes is  we 
assume the ident i ty :  

¢ I B C  N ~ 2*N 

and proceed as follows: 

¢/BC N+i 
+/(X,O)+(O,X÷BC N) A.3 
( + / X  , 0 ) + (  + / 0  , X  ) T Is ~ls~SOCla[ive ans comlnu~atll e 
( +/X )+( +/X ) O+Y+~y 
2 x + / X  Y + Y + ' ~ - 2 x y  
2 x + / B C  N Definitio~ o~ X 
2 x 2 * N  lnduetioll hypothesis 
2 . N + 1  Property of Power ~ 

I t  remains  to show tha t  the induction hypothesis 
is t rue  tbr  some integer  value of ~. F r o m  the re- 
cursive def in i t ion  A.3, the value of ~c o is the value 
of the r igh tmos t  expression, name ly  1. Consequent- 
ly, +lee o is ~, and  therefore  equals 2,0. 

We will conclude wi th  a p roof  that  
DeMorgan  ' s law for scalar a rguments ,  represented 
by: 

A ^ B  ~ - ( ~ A  ) v ( ~ B )  AA 

and proved by  exhaust ion,  can indeed be extended 
to vectors of a r b i t r a r y  length as indicated earlier 
by the pu ta t ive  ident i ty :  

^ / V  ~ +  ~ v l ~ V  A.5 

As the induc t ion  hypo thes i s  we will a ssume that  
A.5 is t rue  for vec tors  of length (~ v)- 1. 

We will f i rs t  give formal  recurs ive  defini t ions 
of the  der ived  funct ions  and-reduction and 
or - reduc t ion  ( ^ / a n d  v/), using two new primit ives ,  
indexing, and drop. Indexing  is denoted  by an 
expression of the  fo rm xc±J, where  r is a single in- 
dex or a r r ay  of indices of the vec tor  x. For  exam- 
ple, if x~2 a s 7, then  xe2J is 3, and xe2 1] is a 2. 
Drop  is denoted  by  x+x and is defined to drop ~ 
(i.e., the  magn i tude  of K) e lements  f rom x, f rom the 
head if x>0 and f rom the  tai l  if x<0. For  example, 
2 , z i s s  7and  - 2 + x i s 2  z. T h e  take funct ion (to be 
used later} is deno ted  by + and is defined analo- 
gously. For  example ,  a~x is 2 3 s and -3+z is 3 s 7. 

T h e  fol lowing funct ions  provide fo rmal  defini- 
t ions of and-reduction and or - reduc t ion :  

ANDRED:c~[i]^ANDRED 1+w:O=p~:l A.6 
O R R E D  :~[l]v ORBED 1+w:0=pm:0 A.7 

The induct ire proof of A.5 proceeds as follows: 

^/V 
(VCI])^(^/I+V) A.6 
~( NV[I ] )v( ~^/i +V) AA 
~ ( ~ V [ 1 ]  ) v ( £ ~ v / ~ g + V )  A.5 

~( ~V[1 ] )v (v /~I + g ) ~~x÷+X 
~v/(~V[1 ]),(~l+F) k.7 
~ v / ~ (  V[ 1 ] .  l + g )  v distributes over , 

~ v / ~ V  Definition of , (catenation) 
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2. P o l y n o m i a l s  

If c is a vector  of coeff icients  and x is a scalar,  
then the  po lynomia l  in x wi th  coefficients c may  be 
w r i t t e n  s imply  as + / c . x . - ~ + ~ c .  or ~ , ( x . - l + , ~ c ) × c ,  

or (x, l+~0c)+.×c. However .  to app ly  to a non- 
scalar  a r r ay  of a rguments  x, the power function . 
should  be replaced by the power table  o.. as shown 
in ~he fol lowing de f in i t ion  of the po lynomia l  func- 

t ion:  

p : ( o o o . * - l + - t o a ) + . x a  B.I 

For  example,  ~ 3 3 3 P 0 1 2 3 ~ +* a 8 27 6 4  I 25. If o 

is replaced by ~p~,  then the  function applies also 
to mat r ices  and  h igher  d imens iona l  a r rays  of sets 
of coeff ic ients  represent ing  (along the leading axis 
of ~) col lect ions of coeff icients  of d i f fe ren t  polyno- 

mials.  
Th i s  de f in i t ion  shows clear ly  t h a t  the polyno- 

mial  is a l inear  funct ion of the  coeff ic ient  vector.  
Moreover ,  if ~ and ~ are  vectors  of the same shape, 
then  the  p r e - m u l t i p l i e r  . . . .  - ~ + ~  is the  Vander-  
monde m a t r i x  of ~ and is therefore  i ave r t ib l e  if the  
e lements  of , are  dis t inct .  Hence if c and x are 
vectors  of the  same shape, and if  y+c e x, then the  
inverse (curve- f i t t ing)  p rob lem is c lear ly  solved by 
apply ing  the ma t r i x  inverse funct ion ~ to the  Van- 
dermonde  mat r ix  and using the iden t i ty :  

C ~÷ ( ~ X ° . * - I + t o X ) + -  x y  

2.1 P r o d u c t s  o f  P o l y n o m i a l s  
The  "p roduc t  of two po lynomia l s  ~ and c" is 

commonly  taken to mean the  coeff icient  vector  0 

such tha t :  

D P X +* ( B  L2 X)×(C P X) 

I t  is wel l -known tha t  D can be computed  by tak ing  
produc ts  over  all pai rs  of e l ements  f rom ~ and c 
and summing  over subsets  of these products  associ- 
a ted  wi th  the  same exponent  in the resul t .  These  
products  occur in the  funct ion  table so.,C, and i t  is 
easy to show in fo rmal ly  t ha t  the powers of x asso- 
c ia ted  wi th  the  e lements  of B o. ,c are  given by the  
add i t i on  tab le  z+( ~+,oB)o.+(,.,pc). For  example :  

X ÷ 2  
B ÷ 3  1 2 3 
C÷2  0 3 
E+( - 1 +  t o B ) . . + (  -I+ t pC) 
B o . x C  E 

6 0 9 0 1 2 

2 0 3 1 2 3 

0 6 2 3 u 
6 0 9 3 u 5 

+ / ,  (Bo • ×C)xX*E 

518 
(B P X)*(C _P X) 

518 

X*E 

2 u 8 
u 8 1 6  
8 16  32  

The foregoing suggests  t he  fol lowing iden t i ty ,  
which  will  be es tab l i shed  fo rmal ly  in Sect ion 4: 

(B P m)x(C ~ X)÷++/,(Bo.xC)xX*(-I+tpB)***(-I+tOC) B.2 

,151 

Moreove r .  the  p a t t e r n  of the  exponent  t ab l e  z 
shows t h a t  e lements  of B o. ~ c ly ing  on diagonals  are 
associated with the same power, and t h a t  the  coef- 
f ic ien t  vector  of the product  po lynomia l  is there-  
fore given by sums over these diagonals.  T h e  tab le  
B o.xc therefore  provides  an excel len t  o rganiza t ion  
for the manual  computa t ion  of products  of polyno- 
mials.  In the present  example these sums give the 
vector  0.6 2 13 9 6 9. and 0 E x may be seen to equal 
( B E X ) x ( C _ P X ) .  

Sums over the  r equ i r ed  d iagona l s  of B o . c  can 
also be ob ta ined  by border ing  i t  by zeros,  skewing 
the  resul t  by ro t a t i ng  successive rows by successive 
integers, and then  summing  the columns. We thus  
ob t a in  a d e f i n i t i o n  for the  po lynomia l  p roduc t  

function as follows: 

pp:+/(1-t~a)C~ao.×~,1+Oxc~ 

We will now develop an alternative method 

based upon the simple observation that if B PP c 

produces the product of polynomials 8 and c, then 

PP is linear in both of its arguments. Consequent- 

ly, 

PP:a~.xA+. ×~ 

where A is an a r r ay  to be  de te rmined .  4 must  be of 
rank 3. and must  depend on the exponents  of the 
left  a r g u m e n t  ( - 1 + ~ 0 ~ ). of the  resul t  ( - ~+, ~ i +,. ~ ). 
and of the r igh t  argument .  T h e  "def ic iencies"  of 
the  r igh t  exponent  a r e  given by the difference ta- 
ble ( ,  01 +~. ~) o, - ,  o ~. and comparison of  these values 

wi th  the left exponents  yields  A. Thus  

A~( -i¢tpa)o .=((~p1+a,~) ° . - io~) 

and 

pp:ae.x( (-1+tpc~)o .=( ,pl+a,~)o.-to~)+.x~ 

Since ~+.×~ is a ma t r ix ,  t h i s  f o r m u l a t i o n  sug- 
gests t h a t  if D+, Pe c, then c m i g h t  be ob ta ined  
f rom o by p r e - m u l t i p l y i n g  i t  by the inverse matr ix  
(~B*.*A), thus  p r o v i d i n g  d iv i s ion  of polynomials .  
Since ~ , . ~  is not  square (having more rows than  
columns) ,  th i s  wil l  not  work,  bu t  by rep lac ing  
M~B+. ~A by e i the r  its leading square pa r t  (2pL/~M~+M, 
or by i ts  

wi th  low-~ 
divis ion wi th  h igh -o rde r  r ema inde r  terms.  



c o e f f i c i e n t s  of  t h e  d e r i v a t i v e ,  bu t  as  a vec to r  o f  t h e  
s a m e  shape  as  c and  h a v i n g  a f i na l  ze ro  e l e m e n t .  

2,3 D e r i v a t i v e  o f  a P o l y n o m i a l  w i t h  R e s p e c t  
t o  I t s  R o o t s  

If  R is a v e c t o r  of  t h r e e  e l e m e n t s ,  t hen  the  de-  
r i v a t i v e s  of  t h e  p o l y n o m i a l  ~/x-R w i t h  r e s p e c t  to  
each  of  i ts  t h r e e  roo ts  a r e  -(X-RF2])×(X-R:3],, and  

(X-R[~])×(X-R[3]).  and  - ( x - ~ [ 1 ] ) ~ ( x - ~ [ 2 ] ) .  M o r e  
g e n e r a l l y ,  t h e  d e r i v a t i v e  of × / x - R  w i t h  r e s p e c t  to  
~[J] is s i m p l y  - (X-R)×. ,J , ,oR.  a n d  the  vec to r  of  de- 
r i v a t i v e s  w i t h  r e s p e c t  to  e a c h  o f  t h e  r o o t s  is 
-(X-R)× * *I o .~÷~oR. 

The expression ~/x-~ for a polynomial with 

roots ~ applies only to a scalar x, the more general 

expression being × xo.-~. Consequently, the gener 

al expression for the matrix of derivatives (of the 

polynomial evaluated at z[~] with respect ~o root 

~[~] ) is g i v e n  by :  

-( Xo . - R ) x .  *Io .~I÷IpR B,3 

2.4 Expansion of a Polynomial 

Binomial expansion concerns the development 

of an  i d e n t i t y  in the  fo rm of  a p o l y n o m i a l  in x for  
t h e  exp re s s ion  , z , r , . ~ .  F o r  t h e  spec ia l  case of r:~ 
we h a v e  t h e  w e l l - k n o w n  exp re s s ion  in t e r m s  of  t h e  
b i n o m i a l  c o e f f i c i e n t s  of  o r d e r  ~: 

(X+I)*N ÷ ÷  ( ( O , t N ) ! N ) E  

By e x t e n s i o n  we s p e a k  of  t he  e x p a n s i o n  of  a 
p o l y n o m i a l  a s  a m a t t e r  of  d e t e r m i n i n g  c o e f f i c i e n t s  

such  t h a t :  

C E X+Y ~ *  O P 

T h e  c o e f f i c i e n t s  o a re ,  in gene ra l ,  f u n c t i o n s  of  r. I f  
r=~ t h e y  a g a i n  d e p e n d  o n l y  on b i n o m i a l  coe f f i -  
c i e n t s ,  b u t  in t h i s  case  on t h e  s e v e r a l  b i n o m i a l  
c o e f f i c i e n t s  o f  v a r i a u s  o r d e r s ,  s p e c i f i c a l l y  o n  t h e  
m a t r i x  g o ,  : g ÷ - ~ , ~ o c .  

F o r  e x a m p l e ,  i f  c~-3 1. ~ ,,  a n d  c e x+1.~+v e x ,  t h e n  
o d e p e n d s  on t h e  m a t r i x :  

0 1 2 3 o . I  0 t 2 3 

1 1 1 1. 

0 i 2 3 
0 0 1 3 
0 0 0 1 

a n d  ~ m u s t  c l e a r l y  be a w e i g h t e d  s u m  of  t he  col-  
Umns,  t h e  w e i g h t s  be ing  t h e  e l e m e n t s  of  c. T h u s :  

P + ( J o .  :J÷-l+t oC)+. ~g 

J o t t i n g  d o w n  t h e  m a t r i x  of  c o e f f i c i e n t s  a n d  per -  
f o r m i n g  t h e  i n d i c a t e d  m a t r i x  p r o d u c t  p r o v i d e s  a 

7 _P Xt(K+I, ~-~ C E X+K)+i -- (B+.xC P (X+K) 

i t  fo l lows t h a t  the  e x p a n s i o n  for  p o s i t i v e  in teger  
va lue s  of  Y m u s t  be g iven  by  p r o d u c t s  of t h e  fo rm 

B+ . xB+. ×B+ . x B + .  xC 

w h e r e  the  s occur s  ~ t i m e s  
Because  ~. is associa t ive_  the  fo r ego ing  can be 

w r i t t e n  as M+.×c. whe re  ~ is t he  p r o d u c t  of  Y occur-  
rences  of  s. I t  is i n t e r e s t i n g  to  e x a m i n e  t h e  succes- 
s ive  powers  of B. c o m p u t e d  e i t h e r  m a n u a l l y  or  by 
m a c h i n e  e x e c u t i o n  of t h e  fo l l owing  i n n e r  p r o d u c t  
power  f u n c t i o n  : 

IPP:a+.×a IPP w-l:w=O:d~.=J÷-~+11to~ 

C o m p a r i s o n  of s ±ez K w i t h  s for  a few va lues  of 
K s h o w s  an o b v i o u s  p a t t e r n  w h i c h  m a y  be ex- 
p ressed  as :  

B [PP K ~ BxK*O[-Jo.-J÷-i+11+oB 

T h e  i n t e r e s t i n g  t h i n g  is t h a t  t h e  r i g h t  s ide  of  t h i s  
i d e n t i t y  is m e a n i n g f u l  for  n o n - i n t e g e r  va lue s  of z, 
and ,  in fac t ,  p r o v i d e s  t he  d e s i r e d  e xp re s s ion  for  t he  
ge ne ra l  e x p a n s i o n  c _P x÷r: 

C _P(XeY) ~* (((do.!g)×Z*O[-Jo.-J÷ i+IpC)+.×C)P X B4 

The right side of' B.4 is of the form 'M+.×c)E 

where M itself is of the form s×r.E and can be dis- 

p l a y e d  i n f o r m a l l y  (for  the  case ~:oc) as  fo l lows:  

1 1 [ 1 0 1 2 3 
0 1 2 3 () 1 2 
0 0 1 3 × Y *  0 ( 0 1 
) 0 ) 1 0 0 0 0 

S i n c e  z.K m u l t i p l i e s  t he  s i n g l e - d i a g o n a l  m a t r i x  
B×(K=E), t h e  express ion  for M can  a lso  be w r i t t e n  as 
t h e  inner  p r o d u c t  tZ*J) , .×T,  w h e r e  r is a r a n k  3 
a r r a y  whose  Kth p lane  is t h e  m a t r i x  B×(z:z). Such  
a r a n k  t h r e e  a r r a y  can be f o r m e d  f r o m  an  upper  
t r i a n g u l a r  m a t r i x  M b y  m a k i n g  a r a n k  3 a r r a y  
whose  f i r s t  p l a n e  is ~ ( t h a t  is, (1 . :11 ,~)o .×~)  and  
r o t a t i n g  i t  a long  the  f i r s t  ax i s  by  t h e  m a t r i x  J o-J, 
whose  Kth s u p e r d i a g o n a l  h a s  t h e  v a l u e  -K. T h u s :  

DS: (Io.-I)¢[l](l:I÷tlCpw)o.×~ 

DS K o .  l K ÷ - l + t 3  
1 0 0 
0 1 0 
o 0 1 

0 I 0 
0 0 2 
0 0 0 

0 0 1 
0 0 0 
0 0 0 

B.5 

S u b s t i t u t i n g  these  r e s u l t s  in B.4  and  us ing  t h e  
a s s o c i a t i v i t y  of  +. , ,  we have  t h e  f o l l o w i n g  i d e n t i t y  
for  t h e  e x p a n s i o n  of a p o l y n o m i a l ,  v a l i d  for  non-  
i n t e g e r  a s  w e l l  a s  i n t ege r  v a l u e s  of  r: 

C P[+Y ÷~ ((Y*J)~.x('DG Jo.!d~-1÷IpC)t.xC)P 2 B.6 

F o r  e x a m p l e :  
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Y÷3 

C+3 l ? 

M÷i 7*J)~.xDS Jo.:J÷-i+~oC 

M 

I 3 9 27 

0 [ 6 27 

0 0 l 9 
0 

M+ , x C  

96 7U 22 2 
( M + .  xC  L~ X ÷ 2  

3 5 8  
C P X+Y 

3 5 ~  

3. Representations 

The subjects of mathemat ica l  analysis and com- 
putat ion can be represented in a var iety of ways, 
and each representat ion may possess par t icular  
advantages. For  example, a positive integer N may 
be represented simply by t~ check-marks;  less sim- 
ply, but  more compactly,  in Roman  numerals;  even 
less simply, but  more convenient ly  for the  per- 
formance  of addi t ion  and mult ipl icat ion,  in the 
decimal system; and less familiarly,  but  more con- 
venient ly for the computa t ion  of the least common 
multiple and the greatest  common divisor, in the 
prime decomposit ion scheme to be discussed here. 

Graphs, which concern connect ions among a 
collection of elements, are an example of a more 
complex ent i ty  which possesses several useful rep- 
resentations. For example, a simple directed graph 
of N elements (usually called nodes) may be repre- 
sented by an N by N boolean matr ix B (usually called 
an adjacency m a t r i x ) s u c h  tha t  8E~:,;~=1 if there  is 
a connection from node ~ to node J. Each connec- 
tion represented by a ~ io ~ is called an edge, and 
the graph can also be represented by a w.B by  
matr ix  in which each row shows the nodes con-  
nected by a part icular  edge. 

Funct ions also admi t  different useful represent- 
ations. For  example, a pe rmu ta t i on  function,  
which yields a reorder ing of the elements  of its 
vector a rgument  x, may be represented by a per- 
mutation vectOr P such tha t  the permuta t ion  func: 
t ion is simply xEPj, by a cycle:representation which 
presents the s t ructure  of  the funct ion more direct- 
ly, by the boolean matr ix  B÷P . . . .  F such t h a t  the 
pe r mu ta t i on  funct ion  is B+. ~x, or by a radix repre- 
sentat ion ~ which employs one o f  the columns of 
the mat r ix  l+(¢,~)~-~,,:s*0x, and has the property 
tha t  ~,./~-~ is the par i ty  of the permuta t ion  repre- 
sented. 

In order  to use d i f ferent  representa t ions  con- 
veniently,  it is impor tant  to be able to exnr~s.~ the  
t r ans format ions  between represenl 
and precisely. Convent ional  math~ 
tion is often deficient  in t h i s  respect, and thepres~ 

als, permutat ions,  graphs, and boolean algebra. 
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3.1 N u m b e r  S y s t e m s  
We will begin the discussion of representat ions 

with a famil iar  example, the use of different repre- 
sentations of positive integers and the t ransforma-  
tions between them. Instead of the positional or 
base-value representat ions commonly  treated,  we 
will use prime decomposition, a representa t ion  
whose interesting properties make it useful in in- 
t roducing the idea of logari thms as well as t h a t  of 
number  representat ion [ 6, Ch.16 ]. 

If P is a vector of the first oP primes and z is a 
vector of non-negative integers, then ~, can be used 
to represent the number P~.,z, and all of the integ- 
ers ,r/P can be so represented. For  example, 
2 3 5 - ×.. _ 0 c 0 is ~ and 2 3 5 - ~.. ~ ~ 0 0 is 6 
and: 

P 

2 3 5 

ME 
) 1 0 2 ( I 0 3 0 1 

0 0 1 0 g [ 0 0 2 0 

0 0 0 0 1 0 0 0 0 1  

0 0 0 0 0 0 I 0 0 0 

Px , *ME 

1 2 3 4 5 6 ~ 8 9 1[  

The  similari ty to logari thms can be seen in the 
identi ty:  

×IPx.*ME ÷÷ p x ,  *+/ME 

which may be used to effect mult ipl icat ion by ad- 
dition. 

Moreover,  if we define co, and LcM to give the 
greatest common divisor and least common m u l t i -  
ple of elements of vector arguments,  then: 

GCO px . *ME ~* px . * [/ME 

LCM px. *ME ÷÷ P×. * [/ME 

ME V~-Px . *ME 

2 1 0 V 
3 l 2 1 8 9 0 0  7 3 5 0  3 0 8 7  

2 2 o dCO v LCM v 
1 2 3 21 9 2 6 1 0 0  

px. *t/ME P×. *f/ME 

21 926100 

In defining the function aco, we will use the 
operator / with a boolean argument s (as in s/). It 
produces the compression function which selects 
elements from its right argument according to the 
ones ins .  For  example, ~ 0 ~ 0 ~/,5 is~ 3 5. More-  

rows. Thus :  

GCD GCD ~ , ( M ÷ L / R ) [ R : I ~ o R ~ ( o # O ) / ~ : + / R  

For example: 

oUgU'St 1980 
i~me 23 

umber 8 



P VF_5 2 t 3 I 

10500 
P R F V  1 0 5 0 0  

2 1 3 I 

3 .2  P o l y n o m i a l s  
S e c t i o n  2 i n t r o d u c e d  two  r e p r e s e n t a t i o n s  of  a 

p o l y n o m i a l  on a s c a l a r  a r g u m e n t  ~, t h e  f i r s t  in 
t e r m s  of  a v e c t o r  of c o e f f i c i e n t s  c ( t h a t  is, 
- / c×x , -~ .~oc ) ,  a n d  t h e  second  in t e r m s  of i t s  r o o t s  
( t h a t  is, ~/x-s) .  T h e  c o e f f i c i e n t  r e p r e s e n t a t i o n  is 
c o n v e n i e n t  for  a d d i n g  p o l y n o m i a l s  (C+D) a n d  fo r  
o b t a i n i n g  d e r i v a t i v e s  (~,c×-~+,oC). T h e  r o o t  r ep re -  
s e n t a t i o n  is c o n v e n i e n t  for  o t h e r  purposes ,  inc lud-  
ing  m u l t i p l i c a t i o n  w h i c h  is g iven  by  s~.R~. 

W e  wi l l  now d e v e l o p  a f u n c t i o n  c ~  
( C o e f f i c i e n t s  f r o m  R o o t s )  w h i c h  t r a n s f o r m s  a r o o t s  
r e p r e s e n t a t i o n  to  an  e q u i v a l e n t  c o e f f i c i e n t  r e p r e -  
s e n t a t i o n ,  a n d  an  inve r se  f u n c t i o n  n~c. T h e  deve l -  
o p m e n t  wi l l  be i n f o r m a l :  a f o r m a l  d e r i v a t i o n  of  cen 
a p p e a r s  in S e c t i o n  4. 

T h e  e x p r e s s i o n  for  c.~z wi l l  be b a s e d  on  
N e w t o n ' s  s y m m e t r i c  f u n c t i o n s ,  w h i c h  y i e l d  t h e  
c o e f f i c i e n t s  as  s u m s  ove r  c e r t a i n  of  t h e  p r o d u c t s  
ove r  a l l  subse t s  of  t h e  a r i t h m e t i c  n e g a t i o n  ( t h a t  is, 
-~) of t he  r o o t s  ~. F o r  e x a m p l e ,  t h e  c o e f f i c i e n t  of  
t h e  c o n s t a n t  t e r m  is g iven  by  ~/-~, t h e  p r o d u c t  
ove r  t h e  e n t i r e  set ,  a n d  t h e  c o e f f i c i e n t  of  t h e  n e x t  
t e r m  is a s u m  of  t he  p r o d u c t s  ove r  t h e  e l e m e n t s  o f  
-e t a k e n  (oR)-~ a t  a t ime .  

T h e  f u n c t i o n  de f ined  by  A.2 can be used  to  
g ive  t he  p r o d u c t s  ove r  al l  subse t s  as  fo l l ows :  

P+(-R)x.*M÷T oR 

T h e  e l e m e n t s  of e s u m m e d  to p r o d u c e  a g iven  coef-  
f i c i e n t  d e p e n d  upon  t h e  n u m b e r  of  e l e m e n t s  of 
e x c l u d e d  f rom the  p a r t i c u l a r  p r o d u c t ,  t h a t  is, u p o n  
,/~~, t h e  s u m  of  t h e  c o l u m n s  of  t h e  c o m p l e m e n t  of  
t h e  b o o l e a n  " s u b s e t "  m a t r i x  Ton. 

T h e  s u m m a t i o n  ove r  m m a y  t h e r e f o r e  be ex-  
p r e s sed  as  ( ( 0.~ oR) *. : , /~~  ) , .  ×~, and  t h e  c o m p l e t e  
exp re s s ion  for  t h e  c o e f f i c i e n t s  c becomes :  

C ÷ ( ( O . ' ~ p R ) ~ . = + / ~ M ) + . x ( - R ) x . * M ÷ ~  aR 

F o r  if  t hen  e x a m p m ,  ~÷~ z s, 

M e/~M 
0 0 0 0 I I i I 3 2 2 I 2 I 1 0 
0 0 1 I 0 0 I 1 ( 0 , t p R ) o . = + / ~ M  
0 1 0  1 0 1 0 1 0 0 0 0 0 0 0 1  

( - R ) x . * M  0 0 0 I 0 i I 0 
1 - 5  - 3  15 2 10 6 - 3 0  0 1 1 0 1 0 0 0 

1 0 0 0 0 0 0 0  
( ( 0 , t 0 R ) o  . = - / ~ M ) e . x (  - R ) x . * M ÷ ~  o R  

- 3 0  31 -i01 

T h e  f u n c t i o n  C~R w h i c h  p r o d u c e s  t h e  c o e f f i c i e n t s  
f r o m  t h e  r o o t s  m a y  t h e r e f o r e  be d e f i n e d  a n d  u sed  
as  fo l lows:  

CFR:((O,~o~)o.=+/~M)+.x(-ta)x.*t#÷T p~ C I 

CFR 2 3 5 
- 3 0  31 - 1 0  1 

(CFR 2 3 5 ) ,~ X ÷ i  2 3 ~ 5 5 7 8 
- 8  0 0 - 2  0 12 ~0 90 

x / X o , - 2  3 5 
- 8  0 0 - 2  0 12 40 90 

T h e  inve r se  t r a n s f o r m a t i o n  RFc is m o r e  diff i -  
cul t ,  b u t  can be expressed  as  a success ive  approx i .  
m a t i o n  s c h e m e  as fo l lows:  

RFC: , -i+ ~ c i+~ )G - 

G:(a-Z)G w:TOL>-[ Z+a STEP ~:a-Z 
STEP:r~(ao.-a)x.~Io.=F+~oa,~.×tao.* i+i~ +.x~ 

Q +C+CFR ? 3 5 
21.0 2117 10i 17 i 

TOL~iE-8 
RFC C 

b 2 

T h e  o r d e r  of t h e  r o o t s  in t h e  r e su l t  is, of  course.  
i m m a t e r i a l .  T h e  f ina l  e l e m e n t  of  any  a r g u m e n t  of 
RFC m u s t  be ~, s ince  a n y  p o l y n o m i a l  e q u i v a l e n t  to 
~/x-e m u s t  n e c e s s a r i l y  have  a c o e f f i c i e n t  of ~ for 
t he  h igh  o r d e r  t e r m .  

T h e  fo r ego ing  d e f i n i t i o n  of  ~,c app l i e s  on ly  to 
coe f f i c i en t s  of  p o l y n o m i a l s  whose  r o o t s  a r e  a l l  real. 
T h e  l e f t  a r g u m e n t  of  a in RFC p r o v i d e s  ( u s u a l l y  
s a t i s f a c t o r y )  i n i t i a l  a p p r o x i m a t i o n s  to t h e  roots,  
b u t  in t h e  gene ra l  case s o m e  a t  l e a s t  m u s t  be com- 
plex.  T h e  f o l l o w i n g  e x a m p l e ,  u s i n g  t h e  r o o t s  of 
u n i t y  as  t h e  i n i t i a l  a p p r o x i m a t i o n ,  was e x e c u t e d  on 
an  A P L  s y s t e m  w h i c h  h a n d l e s  comp lex  n u m b e r s :  

( kOOJ2x (  -I+I.N)÷N÷ol.~a~)Gw C2 

O÷C÷CFR IJ1 IJ-I ~J2 IJ-2 
lO -1~4 ii -- l 

RFC C 
tJ-I iJ2 1 J 1  1 J - 2  

T h e  m o n a d i c  f u n c t i o n  o used  above  m u l t i p l i e s  i ts 
a r g u m e n t  by pi.  

In  N e w t o n ' s  m e t h o d  for  the  r o o t  of  a sca la r  
f u n c t i o n  ~, t h e  n e x t  a p p r o x i m a t i o n  is g iven  by 
A*A-(F A)~D~ A, w h e r e  o~ is t h e  d e r i v a t i v e  of  ~. T h e  
f u n c t i o n  STEP is t h e  g e n e r a l i z a t i o n  of  N e w t o n ' s  
m e t h o d  to t h e  case w h e r e  E is a v e c t o r  f u n c t i o n  of 
a vec to r .  I t  is of  t h e  f o r m  (~MI*.~B, w h e r e  B is the  
va lue  of  t h e  p o l y n o m i a l  w i t h  c o e f f i c i e n t s  ~. t h e  
o r i g i n a l  a r g u m e n t  of  R F C ,  e v a l u a t e d  a t  ~, t he  cur-  
r en t  a p p r o x i m a t i o n  to  t h e  roo t s ;  a n a l y s i s  s i m i l a r  to 
t h a t  u sed  to d e r i v e  B.3 shows  t h a t  M is t h e  m a t r i x  
of  d e r i v a t i v e s  of  a p o l y n o m i a l  w i t h  r o o t s  , ,  t he  
d e r i v a t i v e s  b e i n g  e v a l u a t e d  a t  ~. 

E x a m i n a t i o n  of t he  exp re s s ion  for  M shows  t h a t  
i t s  o f f - d i a g o n a l  e l e m e n t s  a r e  a l l  zero,  a n d  the  ex- 
p ress ion  (raM)+. ~B m a y  t h e r e f o r e  be r e p l a c e d  by  B,D, 
w h e r e  v is  t h e  v e c t o r  of  d i a g o n a l  e l e m e n t s  of M, 
S ince  (±.J)~N d rops  z rows and  g c o l u m n s  f rom a 
m a t r i x  ~, t h e  v e c t o r  o m a y  be e x p r e s s e d  as 
×/0 1 , ( - ~ , ~ ) ,  . . . . .  ; t h e  d e f i n i t i o n  of  t h e  func t ion  
sT~p m a y  t h e r e f o r e  be r e p l a c e d  by  !:he m o r e  eff i-  
c i e n t  d e f i n i t i o n :  

S T E P : ( ( a o . * - I + ~ O ~ ) e . × ~ ) ÷ x / O  l + ( - l + l # a ) ~ a o . - a  C.3 

T h i s  l a s t  is  t he  e l e g a n t  m e t h o d  of  K e r n e r  [ 7 ] .  
Us ing  s t a r t i n g  va lue s  g iven  b y  t h e  l e f t  a r g u m e n t  
of  G in C.2, i t  c o n v e r g e s  in s e v e n  s t eps  ( w i t h  a to l -  
e r a n c e  ~oL*lz-s} for  t h e  s i x t h - o r d e r  e x a m p l e  g iven  
b y  Kerner~ 
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3°3 P e r m u t a t i o n s  

A vecLor  ~, whose  e l e m e n t s  a re  some  permuta.-  
~ion o{' i t s  indice~-~ ( t h a t  is, ~/~=+/~ ........ ~,) will  be 
called a p e r m u t a t / o n v e c t o r .  If ;~ i s a  p e r m u t a t i o n  
vec tor  ~<~ch tha t  ~,.~ ~ :~,r,, then  x~)3 is a p e r m u t a t i o n  
of  /~ and :, wilt be said to  be the  d i r e c t  r e p r e s e n t s -  
{ion of i, his p e r m u t a t i o n .  

T h e  p e r m u t a t i o n  :r,:o:l may  also be expressed as 
; , where  ~¢ is the  boolean m a t r i x  ca . . . . .  ~c~. T h e  
man- ix  ~ will be called the  b o o l e a n  r e p r e s e n t a t i o n  
of the p e r m u t a t i o n .  T h e  t r a n s f o r m a t i o n s  be tween  
d i r ec t  and boolean  r e p r e s e n t a t i o n s  are:  

[!?[2:w,, , :: tO w D F B i w ~ .  × / 1 ~pw 

Because  p e r m u t a t i o n  is assoc ia t ive ,  the  compos-  
i t ion of p e r m u t a t i o n s  sa t i s f ies  the  fo l lowing rela-  
t i o ns: 

{ X [ / ) 3  ] ) [ 0 2  ] ..... XE(D~ [ D 2 ] ) ]  
~ 2 ~ - . , ~ ( 8 l ~ . . x X )  ÷,*~ ( B ' 2 + . x B L ) e , × X  

T h e  inverse  o f  a boolean r e p r e s e n t a t i o n  s is ~s, and 
the inverse  of a d i r ec t  r e p r e s e n t a t i o n  is e i t h e r  ,~ or  
..,~ ~,~,. ( T h e  g r a d e  func t ion  , grades  i ts  a r g u m e n t ,  
g iv ing a vec to r  of indices to i ts  e l e m e n t s  in ascend-  
ing order ,  m a i n t a i n i n g  ex is t ing  order  a m o n g  equal  
e l ement s .  T h u s  ,~ 7 ~..., is ~ ,. ,~ 2 and ,~ 7 s ~ is 

:~ ~, ~. T h e  i n d e x - o f  func t ion  , d e t e r m i n e s  the  
sma l l e s t  index in its left  a r g u m e n t  of each  e l e m e n t  
of its r i g h t  a r g u m e n t .  Fo r  example ,  ' ~CW' , ' e ,A~e '  
is ~ ~ 2 5, and ,>~e~,,a~c;~e, is 2 ~ ~, 5 ,.,.) 

T h e  c y c l e  r e p r e s e n t a t i o n  also employs  a p e r m u -  
t a t i on  vector .  Cons ide r  a p e r m u t a t i o n  vec to r  c and 
the  s egmen t s  of  c m a r k e d  of f  by the  vec to r  c:~\c. 
F o r  example ,  if c~'~ s s s 2 a . ,  t h e n  c : t \ c  is 

~ 0 0 : :~ 0, and  the  blocks are :  

'7 
3 5 5  
2 
I 4 

E a c h  block d e t e r m i n e s  a " cyc l e "  in the  assoc ia ted  
p e r m u t a t i o n  in the  sense t h a t  if  a is the  r e su l t  of  
p e r m u t i n g  x, then :  

R f 7 ]  ,~ x[73 
R [ 3 3  ~ X [ 5 3  E l 6 ]  is X [ 5 3  R [ 5 3  iz X [ 3 ]  
R { 2 ]  is g [ 2 ]  
k'[~] i,~ X[4] R'[~] is X[I] 

If  the  leading e l e m e n t  of c is the  smal les t  ( t h a t  is, 
), then  c consists  of a single cycle, and the  p e r m u t a -  

t ion of a vec to r  x which  it  r ep re sen t s  is g iven  by 
x~:c:>..x~,c?. Fo r  example :  

X*' ~ ABCDEFG 
C÷~ 7 6 5  2 4 "3 
x[C]÷x(~.¢C] 
x 

GDACBEF 

Since x~:~].4 is e q u i v a l e n t  to  >.4{,(~L i t  fo l lows 
t h a t  ~~c~,at.a+c~ is e q u i v a l e n t  to  x ,xe(~+c)~,c~?,  and 
the  d i rec t  r e p r e s e n t a t i o n  vec to r  e e q u i v a l e n t  to c is 
t h e r e f o r e  g iven ( for  t h e  spec ia l  case of  a s ingle  
cycle)  by  e~< ~,c)~.~cs. 

4 ~  

In  the  m o r e  genera l  case, t he  r o t a t i o n  of  the  
comple t e  vec tor  ( t h a t  is, ~,c) m u s t  be rep taeed  by 
r o t a t i o n s  of the ind iv idua l  subcyctes  m a r k e d  off  by 
c,,txc', as shown in the  fo l lowing de f in i t ion  of the  
t r a n s f o r m a t i o n  to d i r ec t  f r o m  cycle r ep resen ta t ion :  

is?C: ( ,~[ & X * + \ X + ~ , :  i, \ , , , ]  ) l: &~ ] 

I f  one w i s h e s  t o  c a t e n a t e  a c o l l e c t i o n  o f  d i s j o i n t  

cyc les  to  f o r m  a s i n g l e  v e c t o r  c such  t h a t  c=~\c 

m a r k s  off due ind iv idua l  cycles, t hen  each  cycle c~ 
m u s t  f i r s t  be b r o u g h t  to s t a n d a r d  f o r m  b y  the  
r o t a t i o n  { - ~ +cz, ~./c'z ),or, and the  resu l t ing  vec to rs  
m u s t  be e a t e n a t e d  in descend ing  o rder  on t h e i r  
leading e lements .  

T h e  inverse t r a n s f o r m a t i o n  f r o m  di rec t  to cycle 
r e p r e s e n t a t i o n  is m o r e  complex ,  bu t  can be ap- 
p roached  by f i rs t  p roduc ing  the  m a t r i x  of all pow- 
ers of ~ up to the  ~ t h ,  t h a t  is, the  m a t r i x  whose 
success ive  c o l u m n s  are v and  D i D ]  and  ( , < ~ ] ) ~ i ,  

etc. T h i s  is o b t a i n e d  by app ly ing  the  func t ion  e0~ 
to the  o n e - c o l u m n  m a t r i x  v o.+,0 f o r m e d  f r o m  v, 
where  Pow is def ined  and used as follows: 

POW:POW D,{O~w[;1])[~]:~/pw:w 

O÷D÷DFC C+7 , 3 6 5 ~ 2 , 1 4 
2 6 I 3 5 7 

POW D~.+,O 

2 2 2 2 2 2 2  
5 5 2, 6 5 3 6 
i 4 1 4 1 4 1  
3 ' 5 5 3 6 5 3  
5 3 6 5 3 6 5 
7 7 7 7 7 7 7 

I f  M~so~' s . . . .  o, t hen  the  cycle r e p r e s e n t a t i o n  ot 

o may be obtained by selecting from ,~ onl)  
"standard" rows which begin with their smallesl 
elements <ss~), by arranging these remaining row,, 
in descending order on their leading elements 
(soL), and then catenating the cycles in these row,, 
(cz~). T h u s :  

CP'D:CIR DOL SSR POW ~o.*,0 

SSB:  ( ,~/M=lq~M÷[ \ 9  )/~a 

CIR:(,I,:,\O t * ~ [ \ ~ ) / . ~  

~).FC C ~ 7 , 3  ~ 5 , 2 , 1  8 
4 2 '6 ~ 3 5 7 

CFD DFC C 

In  the de f in i t ion  of D0;, indexing  is app l ied  t( 
ma t r i ces .  T h e  indices for  success ive  coord ina te s  an  
s epa ra t ed  by semicolons ,  and a b lank  en t ry  for an2 
axis  indicates  t h a t  all e l e m e n t s  a long it  a re  se lec t  
ed. T h u s  ~[ : ~ 3 se lects  co lumn  ~ of  ~. 

T h e  cycle r e p r e s e n t a t i o n  is c o , v e n i e n t  for  de 
t e r m i n i n g  the  n u m b e r  of  cycles in the  p e r m u t a t i m  
r e p r e s e n t e d  {,~c: ,,~= ~ \,~ ). t h e  cycle l e n g t h  
( c s : x - o , - ~ , x ~ , , o ~ \ ~  ~ ) ,  and  the  p o w e r  of  thl 
p e r m u t a h o n  (~,P:~,ce cL ~). ()n t he  o the r  hand,  it i 
a w k w a r d  for  c o m p o s i t i o n  and invers ion .  

The : ~e e o l u n m  vec tors  of t he  ma t r i :  
( ,,~v ~.~ ~ ~ #, ~ e a re  all  dis t in  ct. and  the re fo re  provid~ 
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a potential  r a d i x  representat ion [ 8 ] for t h e . ,  
permuta t ions  of order N. We will use instead a 
related form obtained by increasing each element  
by ~: 

RR: l*(q~ t ~ )v-l+ ~ ,'~ 

RR u 
1 1 l 1 1 1 2 2 2 2 2 2 3  3 3 3 3 3 . n ~ ~ ~ 
1 1 2 2 3 3 I 2 2 2 3  3 t 1 2 2 3 3 1  1 2 2 3 3 
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ] 2 1 2 
1 1 1l 1 1 11 I 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 

Trans format ions  between this representa t ion and 
the direct form are given by: 

OFR:~[iJ,X+~[1]~X+DFR 1",1.~ : O : p  ~ : ~ 
R F D : ~ [ 1 ] , R F D  X-~[1]~X÷i+~:O=o~:~ 

Some of the character is t ics  of this  a l ternate  
representation are perhaps best displayed by modi- 
fying 0~  to apply to all columns of a matrix argu- 
ment, and applying the modified funct ion #~ to the 
result of the function ~ :  

MF:~[,I:],[I]X+~[(I pX)ol;]~X÷MF 1 0+~:0=1÷o~:~ 
MF RR 

1 1 1 1  1 1 2 2 2 2 2 2 3 3 3 3 3 3  ~ . , , u ~  

2 2 3 3  ~ ~ 1 1  3 3  ~ u 1 1  2 2  e ~ :I 1 2 2 3 3  
3 ~ 2 ~ 2 3  3 ~ ~ ~ t 3 2  u. 1 ~ . ]  2 2 3  1 3 1 2  

3 e 2 3 2 ~ 3 u 1 3 1 u~ 2 , 4 -  1 2 1 3 2  3 11 2 1 

The direct  permuta t ions  in the columns of this 
result occur in l ex ica l  order ( that  is, in ascending 
order on the first e lement  in which two vectors  
differ); this is true in general, and the a l ternate  
representation therefore provides a convenient  way 
for producing direct representations in lexicai or- 
der. 

The al ternate representation also has the useful 
property tha t  the pari ty of the direct permuta t ion  

is given by 2 ~ + / - i + R F D  D, where ~ represents the 
residue of • modulo M. The  par i ty  of a direct  rep- 
resentat ion can also be de te rmined  by the func- 
tion: 

PAR:21+/,(I..>I÷tom)^~o.>~ 

3.4 D i r e c t e d  G r a p h s  
A simple directed graph is defined by a set of K 

nodes and a set of directed connections f rom one to 
another  of pairs of the nodes. The  directed con- 
nections may be conveniently represented by a g by 
K boolean connec t ion  matrix c in which eEz;~j=~ 
denotes a connection f r o m  the zth node to the ~th. 

For example, if the four  nodes of  a graph are 
represented by ~,'QRSr,, and if there  are connec- 
tions from node s to node ~, f r o m  ~ to ~, and  f r o m  r 
to ~, then the corresponding connection matr ix  is 
given by: 

0 0 0 0 
0 0 0 1  
I 0 0 0 
1 0 0 0  

A connection from a node to itself (called a self- 
loop) is L con- 
nection 

I f  P i then 
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NI÷~EP~ is a reordering of the nodes, and the col're- 
sponding connection matrix is given by CEP;F~. We 
may {and will) wi thout  loss of generali ty use the 
numeric  labels ~ oN for the nodes, because if ~ is any 
a rb i t r a ry  vector of names for the nodes and L is 
any list of numeric  labels, then the expression 
Q÷~ELJ gives the corresponding list of names and, 
conversely, N~Q gives the list L of numeric  labels. 

The  connection matrix c is convenient  for ex- 
pressing many useful funct ions on a graph. For 
example, t ie gives the ou t -degrees  of the nodes, 
+/c gives the in-degrees,  +l,C gives the number  of 
connections or edges, ~c gives a related graph with 
the directions of edges reversed, and cv~c gives a 
related "symmetr ic"  or "undirected"  graph. 
Moreover ,  if we use the boolean vector  8÷v/( ll 
~C)o. =~ to represent the list of nodes L, then ~ . ^ c  
gives the boolean vector which represents the set 
of nodes directly reachable from the set B. Conse- 
quently,  c~.^e gives the connections for pa ths  of 
length two in the graph c, and ewe. ^c gives connec- 
tions for paths of length one or two. This  leads to 
the following function for the t rans i t i v e  closure of 
a graph, which gives all connections through paths 
of any length: 

TC:TC Z:^/,~=Z÷~v~v.^~: Z 

Node J is said to be r e a c h a b l e  from node ~ if 
(Te e)Ez;Jj=~. A graph is s t r o n g l y - c o n n e c t e d  if 
every node is reachable f rom every node, t ha t  is 
^/,TCC, 

If  o+zo c and D[I;I]=I for some ,, then node ± is 
reachable f rom itself t h rough  a path of some 
length; the path is called a circuit ,  and node z is 
said to be contained in a circuit. 

A graph r is called a t ree  if it has no circuits 
and its in-degrees do not  exceed ~, t ha t  is, ^/1~+/~,. 
Any node of a tree with an in-degree of 0 is called 
a root,  and if K*+/o=~r, then r is called a it-rooted 
tree. Since a tree is circuit-free, ~c must  be at  least 
1. Unless otherwise stated, it is normal ly  assumed 
tha t  a tree is s i n g l y - r o o t e d  ( tha t  is, g=~); 
mult iply-rooted trees are sometimes called fores t s .  

A graph e c o v e r s a  graph o if ^/,e~D. If  c i s a  
strongly-connected graph and r is a (singly-rooted) 
tree, t hen  r is said to be a s p a n n i n g  t ree  of ~ if 
covers r and if all nodes are reachable  f rom the  
root  o f  r, t ha t  is, 

(^I.G~T) ^ ^ I R v R v . ^ T C  T 

where R is the (boolean representat ion of the)  root  
of r. 

A d e p t h - f i r s t  s p a n n i n g  tree [ 9 ] of a graph 
is a spanning tree produced by proceeding from the 
r o o t  t h r o u g h  i m m e d i a t e  descendants in o, always 
choosing as: the next  node a descendant  o f  the lat- 
est in the l i s t o f  nodes vis i ted w h i c h  still possesses 
a descendant not in the list. This  is a relat ively 
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complex process which can be used to i l lustrate the 
util i ty of the connection matr ix representat ion:  

D E S ' f : ( ( , , 1 ) ~ , , = K )  ft ~ A K o ~  v ~ K * c t : - l l + f ) o ~  C A  

/i ' :  ( C ,  [ 1 ] a  )Rw, ,P~,  . v - . C + < \ t j a p v  , ^ w  

: .-.,v / f,+,( < \c~ ',..,wv. ^ U+,~v/a )v, ̂ a  
; to  

Using as an example the graph ~ from [ 9 ] "  

G 
0 0 1 1 . 0 0 0 0 0 0 0 0  001 
0 0 0 0 1 0 0 0 0 0 0 0  000 

0 1 0 0 1 1 0 0 0 0 0 0  010 
0 0 0 0 0 0 1 1 0 0 0 0  000 
0 0 0 0 0 0 0 0 1 0 0 0  000 

0 0 0 0 0 0 0 0 1 0 0 0  000 
0 0 0 0 0 0 0 0 0 1 0 0  000 
0 0 0 0 0 0 0 0 0 1 1 0  000 

0 0 1 0 0 0 0 0 0 0 0 1  000 
i 0 0 0 0 0 0 0 0 0 0 1  0 0 0  
O ] , u ( O O 0 0 1 0 0  0 0 0  
l O ~ O [ O , , C O 0 0 0  ugoO 

The  function c~,:~ establishes 
of the recursion ~ as the one-row 

IDFSTG 

1 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0  

0 0 0 1 1 0 0 0 0  
0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 1 0  

0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  

the left argument  
matr ix represent- 

lug the root specified by the left  argument  of 0FS~, 
and the r ight  argument  as the original graph with 
the connections i n t o  the root  z deleted, T h e  first 
line of the recursion ~ shows tha t  it continues by 
appending on the top of the list of nodes thus far 
assembled in the left  a rgument  the next child c, 
and by deleting from the r ight  argument  all con- 
nections into the chosen child c except the one 
from its parent  e. The  child c is chosen f rom 
among those reachable  f rom the chosen parent  
(P . . . .  ), but  is l imi ted  to those as ye t  un touched  
(u^P . . . .  ), and is taken, arbi t rar i ly ,  as the f irs t  of 
these (~w^P . . . . .  ). 

The  determinat ions  of P and v are shown in the 
second line, P being chosen from among those nodes 
which have chi ldren among the  untouched nodes 
( . . . .  u). These are permuted to the order  of the 
nodes in the left  a rgument  { . . . . . . . .  0), bringing 
them into an order  so tha t  the last visited appears 
first, and P is finally chosen as the  first  of these. 

The  last line of R shows the final result  to  be 
the resulting r ight  argument  ~, tha t  is, the original 
graph with all connections into each node broken 
except for its parent  in the spanning tree. Since 
the final value of ~ is a square matr ix  giving the 
nodes of the t ree  in reverse order  as visited, substi- 
tut ion of ~,¢E17~ (or, equivalent ly ,  ~.o~) for 
would yield a result  of shape ~ 2,0c containing the 
spanning tree followed by its "preorder ing"  infor- 
mation. 

Another  representat ion of directed graphs of ten 
used. at  least implicitly,  is the list of all node pairs 
v.w such t ha t  there  is a connect ion f rom ~' to w. 
The t ransformat ion to th i s  list fo rm from the  con- 
nection matr ix  may be def ined and used as follows: 

LFC:( .,o )/I÷D~-I+~x/D¢'O~ 

C LFC C 
0 0 1 I [ 1 2 3 3 

0 0 i 0 3 ~ 3 P ~ 1 

0 [ O 1 

1 O 0 0 
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However,  this representa t ion  is deficient  since it 
does riot alone de termine  the number  of nodes in 
the graph, al though in the present example this is 
given by ~/,L~,c c because the highest  numbered  
node happens to have a connection. A related boo- 
lean representa t ion is provided by the expression 

c~,c c') . . . .  1 + p c', the first plane showing the out- and the 
second showing the in-connections, 

An i n c i d e n c e  matrix representat ion often used 
in the t rea tment  of electric circuits [ 103 is given 
by the difference of these planes as follows: 

For example: 

( L F C  C)~,=~I.+pC if 'FC 6' 
I. 0 0 gO 1 0 - 1 o 
I 0 O ) 1 0 0 

0 1 0 0  0 i -1 0 
0 0 1 0  0 -I 1 0 
0 0 1 0 0 0 I 1. 
0 0 0 1  1 0 0 i 

0 0 1 0 
0 0 0  1 
O 0 1 0 
9 1 0 0  
0 0 0 1  
1, 00 o 

In dealing with non-di rec ted  graphs, one some- 
t imes uses a representat ion derived as the o r  over 
these planes ( , / ) .  This  is equivalent  to i z e c  c. 

The  incidence matr ix  z has a number of useful 
properties. For example, , / ,  is zero, +/i gives the 
d i f f e r e n c e  between the in- and out-degrees of each 
node, ~z gives the  number  of edges followed by the 
number  of nodes, and ×/~z gives the i r  product.  
However, all of these are also easily expressed in 
terms of the connection matrix,  and more signifi- 
cant  properties of the incidence matr ix are seen in 
its use in e lect r ic  circuits. For  example, if  the 
edges represent components connected between the 
nodes, and if v is the vector  of node voltages, then 
the branch voltages are given by z,.×v; if sz is the 
vector  of branch currents,  the vector of node cur- 
rents  is given by sz . . . .  r. 

T h e  inverse t ransformat ion  from incidence ma- 
trix to connection matr ix  is given by: 

CFI:DD(-i÷~x/D)~DI( i -I* .=~)+.×-l+ilCD÷[\@~ 

T h e  s e t  m e m b e r s h i p  funct ion  ~ yields a boolean 
array, of the same shape as its left argument.  
which shows which of  its e lements  belong to the 
right argument. 

3.5 S y m b o l i c  L o g i c  
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by a related inner product, such as r~.^~r, where r 
+ ~ N is the " t ru th  table" formed b y t h e  funct ion ~ de- 
fined by A.2. These mat ters  are t reated fully in 

[ 11, Ch.7 ]. 

4. I d e n t i t i e s  a n d  P r o o f s  

In this section we will in t roduce some widely 
used identities and provide formal  proofs for some 
of them, including N e w t o n ' s  symmetr ic  functions 
and the associativity of inner product,  which are 
seldom proved formally. 

4.1 D u a l i t i e s  in I n n e r  P r o d u c t s  

The dualities developed for reduct ion and scan 
extend to inner products in an obvious way. If D~ 
is the dual of ~ and D6 is the dual of 6 with respect 
m a monadic function M with inverse Mr, and if A 
and ~ are matrices, then: 

A F . G  B ~ MI (M A) DF.DG ( M  B )  

For example: 

Av.^B  ++ ~ ( ~ A ) ^ . v ( ~ B )  

A^.=B ÷+ ~ ( ~ A ) v . = ( ~ B )  
A L . + B  ÷+ - ( - A ) f , + ( - B )  

The dualities for inner product, reduction, and 
scan can be used to eliminate many uses of boolean 
negation from expressions, particularly when used 
in conjunction with identities of the following 
form: 

A^(~B) ~÷ A>B 

(~A)^B +÷ A<B 
(~A)^(~B) ++ A~B 

4.2 P a r t i t i o n i n g  I d e n t i t i e s  

Part i t ioning of an array leads to a number  of 
obvious and useful identities. For  example: 

x / 3  t 4 2 6 + +  ( x / 3  l )  x ( x / 4  2 6 )  

More generally, fo r  any associative funct ion ~: 

F l y  ~ +  (F/~+v) F (~/K+v) 
F / V , W  ++ ( F / V )  Y ( F / W )  

If  r is commutat ive  as well as associative, the 
par t i t ioning need n o t b e  l imi ted  to prefixes and 
suffixes, and the part i t ioning can be made by  com- 
pression:by a boolean vector u: 

F / V  ÷+ ( F / U / V )  F { F / I ~ U ) / V )  

If E is an empty vector (0:oE), the reduct ion  e/~ 
:he funct ion y, and 
the l imi t ing cases 

Part i t ioning identi t ies  extend to matr ices in an 
A are arrays 

) + M  D . I  
D,2  
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4.3  S u m m a r i z a t i o n  a n d  D i s t r i b u t i o n  

Consider the definit ion and and use of the fol- 
lowing functions: 

~ :  ( v / < \ ~ o .  : ~ ) / w  D.3 

~ 1 : ( ~  °° ) ° • :°~ D.4 

/ 1 + 3  3 1 - 1 
C ÷ I O  20 30 40 5 0  

A ~ A (S A)+.xC 
3 1 a 1 1 0 0 0 30 80 40 

0 0 3 0 l 

0 0 0 1 0 

The function ~ selects from a vector a rgument  
its nub, tha t  is, the set of dist inct  elements it con- 
tains. The  expression s A gives a boolean 
" summar iza t ion  mat r ix"  which  relates the  ele- 
ments  of A to the elements of its nub. If  A is a vec- 
tor of account numbers  and c is an associated vec- 
tor of costs, then the expression (~ A )+. ×c evaluated 
above sums or " summar izes"  the charges to the 
several account numbers  occurring in n. 

Used as postmult ipl ier ,  in expressions of the 
fo rm w+.x~ A, the  summar iza t ion  matr ix  can be 
used to distribute results. For example, if ~ is a 
funct ion which is costly to evaluate and its argu- 
ment  v has repeated elements, it may be more effi- 
cient  to apply ~ only to the nub of ~ and distr ibute 
the results in the manner  suggested by the follow- 
ing ident i ty:  

F V * *  ( Y  ~ V ) + . x ~  V D.5 

The  order of the elements of ~ v is the same as 
the i r  order in v, and it is sometimes more conven- 
ient to use an ordered nub and corresponding 
ordered summariza t ion  given by: 

Q~:~[$~] D.6 
Q S  : ( 2N_~ ) * • = ~ D.7 

The identi ty corresponding to D.5 is: 

Y V ÷ ÷  ( F  0_L/ V ) ÷ . x Q S  V D.8 

The  summar iza t ion  funct ion produces an inter- 
esting result  when applied to the funct ion ~ defined 
by A.2: 

+ / ~ + / T  N ÷ ÷  ( 0 , ~ N ) I N  

In words, the sums of the rows of the summariza-  
t ion matrix of the  column sums of the subset ma- 
t r ix  of order  N is the vector  of binomial  coefficients 
of order  N. 

4,4 D i s t r i b u t i v i t y  

The  d is t r ibut iv i ty  o f  one funct ion over  another  
is an important  not ion  in mathematics ,  and we will 
now raise the quest ion of represent ing th is  in a 
gene ra l  way.  Since mu l t i p l i c a t i on  dis t r ibutes  to 

( a , p )  x ( b + q )  ÷ *  a b + a q + p b + p q  

( a + p ) x ( b + q ) × ( c ÷ r )  + +  a b c + a b r + a q c + a q r + p h c ÷ p b r + p q c + p q r  
( a + p )  x ( b - ; - q ) x . . ,  x ( c + r )  * ÷  a b . . . c t . .  ; . + p q . . . r  
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Using the not ion tha t  v÷i,~ and w + e . ~  or v+~,~.c 
and ~*~,~,~, etc.. the left side can be written sim- 
ply in ~erms of reduction as ×/v+w For this case of 
three elements, the r ight side can be wri t ten as the 
sum of the products over the columns of the fol- 

lowing matr ix:  

V [ O ]  v [ o ]  v [ o ]  V [ O ]  w [ o ]  w [ o ]  Y [ O ]  w [ o ]  
V[1] V[i] W[i] W[i] V[i] V[I] W[I] W[i] 
V[2] W[2] V[2] W[2] V[2] W[2] V[2] W[2] 

The pat tern  of v's and w's above is precisely 
the pattern of z e r o s  and o n e s  in the matr ix T÷Zp~, 
and so the products down the columns are given by 
( v×. *~~)×( w× .,~l. Consequently:  

~ / V * W  ~ ÷/(Vx.*~T)xWx.*T+T oV D.9 

We will now present a formal inductive proof of 
D.9, assuming as the induction hypothesis  tha t  D.9 
is t rue for all v and w of shape N {that is, 
^ / N = ( ~ v )  ,ow) and proving tha t  it holds for shape ~+~, 
that  is, for x. v and Y,w, where x and ~ are arb i t rary  

scalars. 
For  use in the inductive proof we will first give 

a recursive definit ion of the function ~, equivalent 
to A.2 and based on the following not ion:  ff ~÷~ : is 
the result of order ~, then:  

M 
0 0 ] 1 
0 1 0 1 

O . : I ] M  i , [ l ] M  
0 ] 0 0 i 1 1 1 
0 ) 1 i 0 0 1 'i 
o 1 o 1 o 1 o 1 

(0.[I]M),(i,( 1)M) 

0 0 0 0 ] I 1 1 
0 0 I I 0 0 I 1 
o 1 O l  o 1 o 1 

Thus:  

T:(O,[1]T).(I,[i]T÷~-I):O=~:O 100 D.IO 

+/((C÷X,V)x.*~Q)xD×.*Q÷Tp(D÷E,E) 
+/(Cx.,~Z,U)xDx.*(Z÷O,[I] T),U÷I)[I] T÷~pW D.10 
+ / ( ( C x . , ~ Z ) . C x . , - U ) x ( D × . * Z ) . D x . * U  Note 1 
+/((Cx.,~Z),C×.,~U)x((y,O)xWx.*T))(y*i)~W×.*T Note 2 
,/((Cx.*~Z),Cx.*-U)x(Wx.*T),YxWx.*T Y*O I÷÷I,Y 
e/((XxVx.,~T),Vx.,~T)x(Wx.*T),YxWx.~T Note 2 
+/(X×(Vx.,~T)xY×.,T),(yx(Vx.*~T)xWx.*T) Note 3 
+ / ( X × × / V + W ) ,  ( Y x × / V ÷ W ) Induction hypothesis 
÷ / ( X . y ) x x / V + W  (XxS),(YxS)~÷(X.Y)×S 
× / ( X ÷ Y )  . (V+W)  Definition of x /  
x / ( X , V ) + ( y . W )  + distributes over , 

Note h M+.  × N.  P ÷-~ ( M + .  × Y ) .  M y .  × P (parti t ioning identi ty on matrices) 

Note2: V+.xM ÷+ ((i¢V),.x(l,l+pM)+M)+(i+V)+.xl O+M 
(parti t ioning ident i ty  on matrices and the  definition of C ,  D .  Z ~ and UI 

Note 3: ( V , W ) × P , ¢  ÷÷ (V×P)  ,WxQ 

To complete t h e  inductive proof we m u s t  show 
tha t  the putat ive iden t i ty  D.9 holds for some value 
of N. If  N=0, the vectors  A and B are  empty,  and  
therefore x,A ** .x and ~,8 ÷÷ ,~. Hence  the left 
side becomes  ×/x+r, or simply x÷~. T h e  r ight  side 
becomes +/(x~.*~Q)~Y~.,~, where ~Q i s  the one- 
r o w e d  matr ix  1 o ant 
therefore equivalent  ( 
lar examinat ion of the case N=~ m a y  be found in- 

structive. 
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4.5  N e w t o n  ' s S y m m e t r i c  F u n c t i o n s  

If x is a scalar and R is any vector,  then ×JX-R is 
a polynomial  in x having the roots R. It is there- 
fore equivalent  to some polynomial c ~ x, and as- 
sumpt ion  of this  equivalence implies tha t  c is a 
function of R. We will now use D.8 and D.9 to de- 
rive this funct ion,  which is commonly  based on 
N e w t o n ' s  symmet r i c  functions: 

x/X+4 -R) 
÷I(Xx.*~T)x(-R)x.*T+T ~R D9 
(Xx.*~f)+.xP÷(-R)x.*T Def of *.× 

(X*S÷+/~T)+.×p Note I 
((X*0N S)*.xO~ S)+.×P D8 
( X* ON S ) +. x ( ( 0S S ) + • x p ) +. x is a&~x)ciative 

( X * O , t o R ) + . x ( ( Q ~  S ) + . x P )  Note 2 
( ( OS S )+ , ×P )_P X B.1 ~polynomiall 
( ( 0 S  + / ~ T ) + . x ( ( - R ) × . * T ~  p R ) ) P  X Det~ of S 

and P 

Note l: If X is a scalar and B is a boolean vector, then X × .  * B 

÷* X*+/B. 

Note  2: Since T is boolean and has oR rows. the stlms el" its columns range ['rom 0 
to DR, and their  ordered nub is therefore 0 ,  ~oR. 

4.6 D y a d i c  T r a n s p o s e  

The dyadic  transpose, denoted by ,, is a general- 
ization of monadic transpose which permutes  axes 
of the r ight  argument,  and (or) forms "sectors" of 
the r ight a rgument  by coalescing certain axes, all 
as determined by the left argument.  We introduce 
it here as a convenient tool for t reat ing properties 
of the inner product. 

The dyadic transpose will be defined formal ly  
in terms of the  selection function 

SF:(,~)[l+(p~)la-1] 

which selects f rom its r ight  a rgument  the element 
whose indices are given by its vector left argument ,  
the shape o f  which must  clearly equal the  rank of 
the r ight argument .  The  rank of the result  of  K~A 
is r/K, and if r i s  any suitable le f t  a rgument  of the 

selection z sF K,A then:  

ISFK~A ÷~ (I[E] } SFA D If 

For example, if ~ is a matrix, then 2 I ~. ** ~ and 

and the vector I 1 1 , r  is the principal body diago- 

nal of r. 
The following ident i ty  will be  used in t h e  se- 

quel: 

J~K~A ÷÷ (J[E])~A D.12 

Proof: 

I SF J~E~A 
(l£J]) SE K~A 

((I[J])[K]) S~ A 
(I[(d[K])]) SF A 
I SF(d[K])~A 
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4.7 I n n e r  P r o d u c t s  
The  fo l lowing  proofs are stated only for matrix 

arguments  and for the particular inner product 
. . . .  T h e y  are easi ly extended to arrays of higher 
rank and to other  inner products ~.~, where  e and 
need possess only  the properties  as sumed in the 
proofs for • and ~. 

The  fo l lowing ident i ty  ( famil iar  in m a t h e m a t -  
ics as a sum over the matrices  formed by (outer)  
products of c o l u m n s  of  the  f irst  argument  w i th  
corresponding rows of the  second argument)  will  be 
used in establ ishing the assoc iat iv i ty  and distrib- 
ut iv i ty  of  the inner product: 

M + . x N  ~ *  +/i 3 3 2 /it Mo.xN D.13 

Proof:  ( ± . ~ s ;  ,+.×~ is defined as the sum over v. 
where v i i i  ~+ M [ ; ; ~ ] ~ t ~ ; J ] ,  Similarly,  

(I.J)SF +/~ 3 3 2 ~ M o . x N  

is the sum over the vector w such that 

W[K] ~ +  (I.J.K)SF i 3 3 2 ~ Mo.xN 

Thus:  

W[K] 
(I.J.K)SF 1 3 3 2 ~ M o , x N  
(i.J.K)[I 3 3 2]SF Mo.xN D I 2  
( I ,  K, K ,  d ) S t  M o .  x fl Def of indexing 
M [ i ; g ] xN [ K ; d ] Dee of Outer prmluet 
V [ K ]  

Matrix  product  d is tr ibutes  over addi t ion  as 
fol lows: 

M + . x ( N ~ P )  + *  (M÷.xN)+(M+.xP) 

Proof: 

D.14 

M + . x ( N + P )  
+ l ( J +  • 3 3 2 ) ~ M o . x N + P  
+ / J ~ ( M . . x N ) ~ ( M ° . x £ )  
÷/(J~Mo.xN)÷(J~Mo.xp) 
(+IJ~Mo.xN)+(¢/J~Mo.xP) 
(M~.xN)÷(M+.xP) 

D.13 
x distributes over 

distributes over 
+ is aasoc and eolnln 

D.13 

Matrix product  is associat ive  as follows: 

M+.x(N+.xp) * *  (M+.xN)+.xP D.15 

Proof: We first reduce each of  the sides to sums 
over sect ions of an outer product, and then  com- 
pare the sums. Annotat ion  of the second reduct ion 
is left to the reader: 

M+. x(N+.~p) 

M * , x + / 1  3 3 2~No.xP 
+ / 1  3 3 2 ; ~ M o . x + / 1  3 3 2~No.xP 
¢ / I  3 3 2 ~ + / M o . x l  3 3 2 t ~ N o . x P  
+ / I  3 3 2 ~ + / I  2 3 5 5 4~Mo.xNo.xP 
+ / + e l  3 3 2 4 ~ t  2 3 5 5 ~Mo. XNo.xp 
+ / + / I  3 3 ~ "* 2~Mo. XNo.xP 
+/+II 3 3 q ~ 2~(Mo.xN)o.xP 
~ / + / 1  ~ q 3 3 2 ~ ( M * . x N ) o . x P  

(M+.xN)+.×P 
( + / 1  3 3 2 t ~ M o . x H ) + . x p  
+ / 1  3 3 2 ~ ( + / 1  3 3 2 ~ M o . x N ) o . x p  
+/i 3 3 2 ~ , + / 1  5 5 2 3 ~(Mo.xN)o.~P 
"1-/+/1 3 3 2 4~1 5 5 2 3 4 ~ ( M o . x N ~ o . x p  
• / + / 1  ~ ~ 3 3 2 ~ ( M o . x f l ) o . x P  

Note I :  +/M*. xJ~A ÷÷ + / (  ( rOOM ) ,J+poM )~M o . xA 

Note 2: J~+/A +÷ +/(g.l+[ /J)~A 

D.12 
D.12 

x distributes over * 
Note 1 
Note 2 

D.12 
x m associative 

+ is associative and 
commutative 

4.8 P r o d u c t  o f  P o l y n o m i a l s  
The  identity B.2 used for the mult ip l icat ion  of 

po lynomials  will  now be developed formally: 
( B  E X)x(C P_ X )  
( + / B x X * E ÷ - i  * : ~B ) ×( ÷ / C x X * F ÷ - I *  a o C  ) B 1 

÷/+/(BxX*E)o.x(CxX*F) Note ] 
+ / + / ( B o . x C ) x ( ( X * E ) o . × ( X ~ F ) )  Note 2 
+/+/( Bo . xC)x(X*(Eo .+F) ) Noto 3 

Note I: (+/V)×(+/W)÷++/+/Vo.xX because x distributes over *and - ~s 

associat ive and commutat ive  or see [ 12,P21 ] for a proof. 

Note 2: The  equivalence of ( P x V ) o . × ( Q × W )  and ( p o . × Q ) x ( V o × W )  can {~ 
established by examin ing  a typical element  of each expression, 

Note 3: (X*i)×(X*J)÷+X*(I+J) 

The foregoing is the  proof presented, in abbre- 
v iated  form, by Orth [ 13, p.52 ] ,  who  also defines 
funct ions  for the  compos i t ion  of polynomials .  

4 .9  D e r i v a t i v e  o f  a P o l y n o m i a l  
Because  of their abi l i ty  to approximate  a host  

of  useful  funct ions ,  and because they  are closed 
under addit ion,  mult ip l icat ion,  composi t ion ,  differ- 
ent ia t ion ,  and integrat ion,  po lynomia l  funct ions  
are very  attract ive  for use in introducing the  study 
of  calculus. The ir  t rea tment  in e l ementary  calcu- 
lus is. however ,  normal ly  delayed because the de- 
r ivat ive  of  a po lynomial  is approached indirectly,  
as indicated in Sect ion  2, through a sequence  of 
more  general results. 

T h e  fo l lowing presents a derivat ion of the  de- 
r ivat ive  of  a po lynomia l  direct ly from the expres- 
sion for the slope of the secant  l ine through the 
points  x. ~ x and (x+r).F(x.~): 

((c E X*Y)-(C 12 X))÷Y 
((C P X+Y)-(C P X+O))÷Y 
((C ~ X+Y)-((O*J)+.×(A+OS Jo. IJ+-l+ipC)+.xC) E X)÷Y B6 

((((Y*J)+.×M) ~ X)-((O*J)+.xM÷A+.×C) P X)÷Y B.6 
((((Y*J)+.×M)-(O*J)+.xM) _P X)÷Y P disI over - 
( ( ( ( Y*J )-O*j)+ . xM) _P X )÷Y +.× disl over 

(((O,Y*I¢J)+.×M) ~ X)÷Y Note 1 
(((Y*I+J)*.× ] 0 +M) P X)÷Y DA 

(((Y*l+J)+.×(~ 0 0 +A)+.×C) P X)÷Y D.2 
((Y*I+J-I)+.×(i 0 0 +A)+.×C) P X (Y*A)÷Y÷÷Y*A-I 
((Y*-l+t-l÷pC)+.×(l 0 0 +A)+.xC) P X Dee of J 

(((/*-l+t-l+oC)+.x I 0 0 CA)+.xC) P X D.15 

Note 1 0*0÷÷l÷÷Y*0 and ^/0=0*l+J 

The derivative is the limiting value of the se- 

cant slope for z at zero, and the last expression 

above can be evaluated for this case because if 

E.-1.~-1.oc is the vector of exponents of r, then all 

elements of E are non-negative. Moreover, o*E re- 

duces to a ~ followed by zeros, and the inner prod- 

uct with ~ o 0+A therefore reduces to the first plane 

of i 0 o ~A or, equivalently, the second plane of A. 

If B . a o .  :a,i+~c is the  matrix  of  b inomia l  coef- 
f icients,  then  A is os B and, f rom the def in i t ion  of ~s 
in B.5, the second plane of A is B×~:-~o.-J, that  is, 
the  matrix  B wi th  all but the first super-diagonal 
replaced by zeros .  T h e  f inal  express ion  for the  
coeff ic ients  of  the po lynomial  which  is the deriva- 
t ive  o f  the p o l y n o m i a l  c e ~ is therefore:  

[(d*. :J)xl:-go .-J÷-l÷~pg)+.xC 

For example: 
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C ~- 5 7 11 13 
(jo . !J)xl=-Jo . - J +  l + ~ p C  

0 1 0 0 
0 0 2 0 
0 0 0 3 
0 0 0 0 

( ( J °  , I J ) x l = - J o - J + - l + t p C ) + . x C  
7 22 39 0 

Since the  superdiagonal of the binomial coeffi- 
cient matr ix  (,u)o.~,N is (-I+tN-1):tN-1, or simply 
lN-1, the final resul t  is 1,c×-1.,pc in agreement  
with the earl ier  derivat ion.  

In concluding the discussion of proofs, we will 
re-emphasize the fact t ha t  all of the s ta tements  in 
the foregoing proofs are executable,  and tha t  a 
computer can therefore  be used to ident i fy  errors. 
For example, using the canonical funct ion defini- 
don mode [4  , p.81 ],  one could define a function 
F whose s ta tements  are the first four s ta tements  of 
the preceding proof as follows: 

VF 
[ 1 ]  ( t C E  X + Y ) - ( C  E X ) ) ÷ Y  
[2] ((C E X+Y)-(C E X+O))÷Y 
[ 3 ]  ((C P X+Y)-((O*J)+.x(A÷DS Jo. Ij÷-1+IpC)+.×C) E X ) ÷ Y  
[4] ((((y*J)*.xM) P X)-~(O*J)+.xM÷A+.xC) P X)÷Y 

7 

The s ta tements  of the proof' may then be executed 
by assigning values to the variables and executing 
as follows: 

132 
132  
132 
132 

C ÷ 5  2 3 [ 
Y e S  
X ~ 3  X ÷ t l 0  

F F 
6 6  9 6  1 3 2  1 v a  2 2 2  2 7 6  3 3 6  4 0 2  4 7 4  5 5 2  
6 6  9 6  1 3 2  1 7 4  2 2 2  2 7 6  3 3 6  4 0 2  4 7 4  5 5 2  

6 (  9 6  1 3 2  1 7 4  2 2 2  2 7 6  3 3 6  q 0 2  4 7 4  5 5 2  
6 6  9 6  1 3 2  1 7 4  2 2 2  2 7 6  3 3 6  a~02 4 7 4  5 5 2  

The annota t ions  may also be added as comments  
between the lines wi thou t  affecting the execution. 

5. C o n c l u s i o n  

The  preceding sections have a t t empted  to devel- 
op the thesis tha t  the propert ies of executabiI i ty  
and universal i ty  associated with programming lan- 
guages can be combined, in a single language, with 
the well-known proper t ies  of ma thema t i ca l  nota- 
tion which make it such an effect ive tool of 
thought.  Th i s  is an impor t an t  quest ion which 
should receive fu r the r  a t tent ion,  regardless of the 
success or fai lure of this  a t t empt  to develop i t  in 
terms of APL.  

In part icular,  I would hope tha t  others would 
t reat  the same quest ion using o ther  programming 
languages and conventional  mathemat ica l  notation.  

cerning comparisons wi th  ma themat i ca l  nota t ion,  
the problems of introducing notation,  extensions to 
APL which would fur ther  enhance its ut i l i ty ,  and 
discussion of the mode of presentat ion of the earli- 
er  sections. 

5.1 C o m p a r i s o n  w i t h  C o n v e n t i o n a l  M a t h e -  
m a t i c a l  N o t a t i o n  

Any deficiency remarked in mathemat ica l  nota- 
t ion can probably be countered by an example of" 
its rect i f icat ion in some par t icular  branch of math-  
ematics or in some par t icular  publication; compar- 
isons made here  are mean t  to refer to the more  
general and commonplace  use of ma themat i ca l  
notat ion.  

APL is s imilar  to convent ional  ma thema t i ca l  
nota t ion in many impor tan t  respects: in the use of  
functions wi th  explicit  a rguments  and explicit re- 
sults, in the concomitant  use of composite expres- 
sions which apply functions to the results of o the r  
functions, in the provision of graphic symbols for  
the more commonly used functions, in the use of  
vectors, matrices,  and h igher - rank  arrays,  and in 
the use of operators which, like the derivat ive and 
the convolution operators of mathematics ,  apply to 
functions to produce functions. 

In the t r e a tm en t  of funct ions APL differs in 
providing a precise formal  mechanism for the defi- 
n i t ion of new functions.  T h e  di rect  def in i t ion  
form used in this paper is perhaps most appropriate 
for purposes of exposi t ion and analysis, b u t  the  
canonical form referred to in the introduction,  a n d  
defined in  [4, p.81 ],  is of ten more convenient  f o r  
o ther  purposes. 

In the in te rpre ta t ion  of composite expressions 
APL agrees in the  use of parentheses, but  differs in 
eschewing h ie ra rchy  so as to t rea t  all funct ions  
(user-defined as  well as p r imi t i ve )  alike, and in 
adopting a single rule for the application of both 
monadic and dyadic functions:  the r ight  a rgument  
of a funct ion is the value of the ent i re  expression 
to its right. An impor tan t  consequence o f  this rule 
is tha t  any port ion of an expression which is free of 
parentheses may be read analytically from left  to  
r ight  (since the leading funct ion at  any stage is the  
" o u t e r "  or overa l l  funct ion  to be applied t o  the  
result on its r ight) ,  and  constructively f rom r igh t  
to lef t  (since the r u l e i s  easily seen to be equiva- 
lent to the ru le  that  execution is carried out  f rom 
r ight  to lef t) ,  

Al though Cajori  
for the  order  of execl 

,161 

This  concluding sect ion 
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Fig, 3. 

• j . 2 - J  
j = l  

1"2"3 + 2"3"4 + . . . n t e r m s  4 - - - ~  ¼ n ( n  + 1) (n + 2) (n + 3) 

1"2"3"4 + 2"3"4"5 + . . . n t e r m s  ~ ! n ( n  + 1) (n + 2) (n + 3) (n + 4 )  
5 

) 
F ( - q )  /=o F ( j + l )  * 

tors in expressing polynomials,  as in ~/c~x,E, does 
much  to remove  this  mot iva t ion  Moreover ,  the  
rule adopted in A P L  also makes H o m e r  t s ef f ic ient  
expression for a po lynomia l  expressible  w i t h o u t  
parentheses:  

v / 3  u 2 5 x X * O  1 2 3 * ~  3+Xx4÷Xx2+Xx5 

In providing graphic  symbols  for  c o m m o n l y  
used funct ions  A P L  goes much fa r the r ,  and pro- 
vides symbols  for  funct ions  {such as the  power  
function) which are  implic i t ly  denied symbols  in 
mathemat ics .  T h i s  becomes impor t an t  when oper-  
ators are introduced;  in the  preceding sections the  
inner product  ×.~ {which mus t  employ  a symbol  for 
power) played an equal role wi th  the  o rd inary  in- 
ner p roduc t  +.,. P roh ib i t ion  of elision of funct ion 
symbols  (such as ×) makes  possible the  unambi -  
gious use of m u l t i - c h a r a c t e r  names  for va r i ab les  
and functions.  

In the use of  a r rays  A P L  is s imi l a r  to ma the -  
matical  notat ion,  bu t  more sys temat ic .  For  exam- 
ple, v÷w has  t he  same meaning  in both,  and in APL 
the def in i t ions  for o ther  funct ions  are extended in 
the same e l e m e n t - b y - e l e m e n t  manner .  In  m a t h e -  
matics,  however ,  expressions such as w w and v , ,  
are def ined d i f fe ren t ly  or not  a t  all. 

For  example,  w w  commonly  denotes  the  v e c t o r  

p r o d u c t  [14.  p .308] .  I t  can be  expressed in vari-  
ous ways in APL. T h e  def in i t ion  

provides a conven ien t  basis for an obvious  proof  
t h a t  vP is " a n t i c o m m u t a t i v e "  ( t h a t  is, 
v ~p w .+ -w vP v), and  (using the  fact  t h a t  
-1,x ÷. 2,x for  3 -e l emen t  vec tors )  for a s imple  
proof t ha t  in 3-space v and w are bo th  or thogonal  to 
the i r  vec tor  product ,  t h a t  is. ^ / o : v + . × v  vF w and 
^ / O = W + . ~ V  VP Y .  

APL is also more  sys temat ic  i n  the  use of oper-  
on a r rays :  r e d u c t i o n  

he  s igma and  pi nota-  
tion ( 
es; ou 
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sor anaysis  to funct ions  o the r  t h a n . ,  and inner 
p roduc t  extends  o rd ina ry  ma t r i x  produc t  (+.×) to 
many  cases, such as v.^ and t . . ,  for which ad hoc 
def ini t ions  are often made.  

T h e  s imi lar i t ies  between A P L  and convent ional  
no ta t ion  become more  appa ren t  when one learns a 
few r a t h e r  mechanical  subst i tu t ions ,  and the t rans-  
la t ion  of m a t h e m a t i c a l  expressions is ins t ruc t ive .  
For  example ,  in an expression such as the f i rs t  
shown in Figure  3, one s imply  subs t i tu tes  ~ for 
each occurrence of j and replaces the s igma by +/. 
Thus :  

+ / ( 1 N ) x 2 * - t N  , o r  ÷ / J x 2 * ~ J ÷ l N  

Collect ions  such as J o l l e y ' s  S u m m a t i o n  o f  

S e r i e s  / 1 5 ]  provide  in te res t ing  expressions for 
such an exercise, pa r t i cu l a r ly  if a compu te r  is 
avai lable  for execut ion of the  results. For  example.  
on pages 8 and 9 we have  the ident i t ies  shown in 
the second and th i rd  examples  of Figure  3. These  
would be wr i t ten  as: 

+ / x / ( - l ÷ t N I o . + t 3  ÷+ ( x / N + O , t 3 ) ÷ 4  

• " t - / x / ( - l + t /V )o ,+ t~  ÷~  ( x / f l +O , t ' - t ) ' I ' 5  

Toge the r  these  suggest the  following identi ty:  

- e / x / ( - l ÷ t N ) o  .÷tK ÷* ( ×/N+0. tK)÷K+I 

The  reader  migh t  a t t e m p t  to res ta te  th is  general 
i den t i ty  (or even the  special case where  K=0) in 
Jol ley ' s notat ion.  

The  last  expression of F igure  3 is taken f rom a 
t r e a t m e n t  of  the f r a c t i o n a l  calculus [ 16, p .30] ,  
and represents  an approx ima t ion  to the qth order  
der iva t ive  of a funct ion f. I t  would be wr i t t en  as: 

( S * - ~ ) x + / ( J ! J - I ÷ Q ) x F  X - ( J ÷ - I + t N ) x S + ( X - A ) ÷ N  

T h e  t ransla t ion t o  A P L  is  a s imple  use of ,~ as 
suggested above,  combined  wi th  a s t r a igh t fo rward  
ident i ty  which collapses the  several  occurrences of  

single use of the  bino- 
:, whose domain  is, of 

course, no t  res t r ic ted  to integers.  
)f s imi la r  useful cas- In the  foregoing, the  p a r a m e t e r  Q specifies the  
)uter  product  of ten- order of the der iva t ive  if posit ive,  and the  order of 
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the integral  (from A to x) if negative. Fract ional  
values give fract ional  der ivat ives  and integrals, and 
the following funct ion can, by first defining a func- 
tion F and assigning suitable values to ~ and ~, be 
used to exper imen t  numer ica l ly  wi th  the deriva- 
tives discussed in [ 16 ] : 

O S : ( S * - a  I × ¢ / ( J ~ J  - I ÷ c t ) × F w - ( J ÷ - I + I N ) × S ÷ ( ( ' J - A ) ÷ N  

Although much use is made of " fo rmal"  manip- 
ulat ion in ma thema t i ca l  nota t ion ,  t ru ly  formal  
manipulat ion by explicit  a lgor i thms is very diffi- 
cult. APL is much more tractable in this respect. 
In Section 2 we saw, for example, t ha t  the deriva- 
tive of the  polynomial  expression ~ . . . .  -~ . . . .  ) * .~  
is given by ( . . . .  -~.~o~)~.×~¢~×-~+ . . . .  and a set of 
funct ions for the formal  d i f fe ren t ia t ion  of APL 
expressions given by Orth in his t r ea tmen t  of the 
calculus [ 13]  occupies less than a page. Other  
examples of funct ions  for formal  manipula t ion  
occur in [ 17, p.347 ] in the modeling operators for 

the vector  calculus. 
F u r t h e r  discussion of the re la t ionship  wi th  

mathemat ica l  nota t ion may be found in [3~ and 
in the paper "Algebra as a Language" [6, p.325 ]. 

A final comment  on printing, which has always 
been a serious problem in convent ional  nota t ion .  
Al though APL does employ cer ta in  symbols not  
ye t  general ly  available to publishers,  it employs 
only 88 basic characters,  plus some composite char- 
acters formed by superposi t ion of pairs of basic 
characters.  Moreover,  it makes no demands such as 
the infer ior  and super ior  l ines and smaller  type  
fonts used in subscripts and superscripts. 

5.2 T h e  I n t r o d u c t i o n  o f  N o t a t i o n  
At the  outset,  the ease of introducing nota t ion  

in context  was suggested as a measure of sui tabi l i ty  
of the notat ion,  and the reader was asked to ob- 
serve the process of introducing APL. The  u t i l i ty  
of this measure may well be accepted as a t ruism, 
but  it  is one which requires  some clarificat ion. 

For one thing, an ad hoc nota t ion which provid- 
ed exactly the functions needed for  some par t icular  
topic would be easy to introduce in context. It  is 
necessary to ask fu r the r  questions concerning the 
total  bulk of nota t ion required,  the degree of struc- 
ture  in the  notat ion,  and the  degree to wh ich  nota- 
t ion introduced for a specific purpose proves more 
generally useful. 

Secondly, it is impor tan t  to distinguish the dif- 
f iculty of describing and of learning a piece of  no- 
t a t  
t io 
ins 
implications {such as its associativity,  
u t iv i ty  over addit ion,  and its abi l i ty  t, 
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l inear  funct ions  and geometr ic  opera t ions)  is a 
d i f fe ren t  and much more difficult  mat ter .  

Indeed,  the ve ry  suggestiveness of a no ta t ion  
may  make it seem harder  to learn because of the  
many  propert ies it suggests for exploration.  For  
example, the notat ion ,.x for matr ix  product  can- 
not  make the rules for its computat ion more diffi- 
cult to learn, since it at  least serves as a reminder  
t h a t  the process is an addition of products,  but any 
discussion of the propert ies  of mat r ix  product  in 
t e rms  of this no ta t ion  cannot  help but  suggest a 
hos t  of questions such as: Is . ^  associative? Over 
w h a t  does it  d i s t r ibute?  Is Bv.^c ~ ~(~c,)v.^~ a 
val id ident i ty?  

5:3 E x t e n s i o n s  to  A P L  
In order  to ensure that  the nota t ion used in th i s  

paper is well-defined and widely available on exist- 
ing compute r  systems, it  has been res t r ic ted to 
current  A P L  as defined in [ 4 ]  and in the more 
formal  s tandard  published by STAPL,  the ACM 
S I G P L A N  T e c h n i c a l  C o m m i t t e e  on A P L  
[ 17, p .409] .  We will now comment  br ief ly  on 
potent ia l  extensions which would increase its con- 
venience for the topics t reated here,  and enhance 
its su i tab i l i ty  for the  t r e a tm en t  of o ther  topics 
such as ordinary and vector  calculus. 

One type  of extension has already been suggest- 
ed by showing the execution of an example (roots 
of a polynomial)  on an APL system based on com- 
plex numbers.  Th i s  implies no change in function 
symbols,  a l though the domain  of cer ta in  functions 
will have to be extended. For example, Ix will give 
the magni tude o f  complex as well as real argu-  
ments, ~x will give the conjugate of complex argu- 
ments  as well as the t r ivial  result  i t  now gives for 
real  arguments,  and the e lementa ry  functions will 
be appropriately extended, as suggested b y  the use 
o f ,  in the  cited example. It also implies the possi- 
b i l i ty  of meaningful  inclusion of p r imi t ive  func- 
t ions for zeros of polynomials and  for eigenvalues 
and eigenvectors of matrices. 

A second type also suggested by the ear l ier  sec- 
t ions includes functions defined for part icular  pur- 
poses which show promise of general uti l i ty.  Ex- 
amples include the nub funct ion ~, defined by D.3, 
and the s u m m a r i z a t i o n  funct ion s, defined by D.4. 
These  and o ther  extensions are  discussed in [ 1 8 ] .  
McDonnel l  [ 19, p.240 3 h a s  proposed generaliza- 
t ions of and  and or to  non-booleans so  tha t  Av8 is 
the G C D o f  A and 8, and A^Bis the LCM. The  func- 
t ions  Vc~ and LCM def ined  in Section 3 could t hen  be 



in [203  and in [ 17, p . t29] ,  proposed new opera.- 
tors for the vector  calculus are discussed h~ 
[ 17, pA7 3~ and others  are discus.sod in C 18 ] and 
in [17, p . t29] .  

5.4 Mode  o f  P r e s e n t a t i o n  

Th<, t rea tment  in the preceding sections con~ 
corned a set  of brief ropier% with an emphasis on 
clarity rather  than efficiency in the resulting at- 
gorithms~ Both of these points merit  fur ther  com~ 
mont. 

The  treatmer~t of some more complete topic, of 
an extent  suff ic ient  for, say, a one- or two- term 
course, provides a somewhat  dif.ferent, and perhaps 
more realistic, test of a ~mtation. In particular, it 
provides a bet ter  measure of the amount  of nota- 
tion to be introduced in normal course work. 

Such t reatments  of a number  of topics in APL 
are available, including: high school algebra [ 6 ] ,  
e lementary analysis [ 5 ], calculus, [ 13 ], design of 
digital systems [21 ], resistive circuits [ 10] ,  and 
crystallography [ 22 ]. Mt  of these provide indica- 
tions of the ease of int.roducing the notat ion need- 
ed, and one provides comments  on experience in its 
use. Professor Blaauw, in discussing the design of 
digital systems [ 2 t ] ,  says tha t  "APL makes it 
possible to describe what really occurs in a complex 
system",  that  "APL is particularly suited to this 
purpose, since it allows expression at the high ar- 
chitectural  tevel, a t  the lowest  implementa t ion  
level, and at all levels between" ,  and that  
"....learning the language pays of {sic) in- and out- 
side the field of computer  design". 

Users of computers  and programming lang?aages 
are often concerned primarily with the effieieney 
of execution of algori thms,  and might,  therefore,  
summar i ly  dismiss many of the a lgor i thms pres- 
ented here. Such dismissal would be short-sighted, 
since a clear s ta tement  of an algori thm can usually 
be used as a basis from which one may easily de- 
rive more  eff ic ient  algori thms.  For example, in 
the function, s~:ee of section 3.2, one may signifi- 
cantly increase efficiency by making subst i tu t ions  
of the form ~,~ for ~u~ ..... ~;. and in expressions 
using +/c,.~.-:+.,~c one may subs t i tu te  ~,.,c or, 
adopting an opposite con~mntion for the order of 
the coefficients, the  expression x~c. 

More  complex t ransformat ions  may also be 
made. For examp|e.  K e r n e r ' s  method (C.a) r e  
suits from a rather  obvious, though not formally 
stated, i den t i ty  Similarly,  the use of the matrix 
to represent permutat ions  in the recursive function 
~ used in obtaining the depth first  spanning tree 
{C.4) can be repdaced by the possibly more compact  
use of a list of nodes, subst i tut ing indexing for in- 
ner products in a rather  obvious, though not com.. 

pletely formal, way. Moreover, such a recur,,~ive 
definit ion ca~ be transformed into more efficie,~t 
~on-recursive forms. 

Finally, at~y a lgor i thm expressed clearly m 
terms of arrays can be t ransformed by simph,. 
though tedious, modif icat io~s into perhaps more, 

efficient algori thms employing iterati(m (m :<able 
elements. For example, the evah.latJor~ of ~ de 
ponds upon every element  of ; and does ~ot admit  
of much improveme~t,  but evaluaticm of ..~,; could 
stop at the first e lement  equal to ~, and might 
therefore  be improved by an i tera t ive  algori thm 
expressed in terms of indexing. 

The  practice of first developing a clear and pre~ 
cise definit ion of a process wi thout  regard to effi~ 
ciency, and then using it as a guide and a test in 
exploring equivalent  processes possessing other  
characteristics, such as greater efficiency, is very 
common in mathematics+ It is a very fruitful  prac- 
tice which should not be blighted by premature  
emphasis on efficiency in computer  execution. 

Measures of efficiency are often unrealist ic be- 
cause they concern counts of "substant ive"  func- 
tions such as mult ipl ication and addition, and ig- 
nore the  housekeeping (indexing and o ther  selec- 
tion process.s) which is often greatly increased by 
less s t ra ightforward algorithms. Moreover,  realis- 
tic measures depend strongly on the current  design 
of computers  and of language embodiments .  For 
example, because functions on booleans (such as ~/~, 
and ~t,~) are found to be heavi ly used in APL, im- 
plementers  have provided eff ic ient  execution of 
them. Finally, overemphasis of efficiency leads to 
an un%rtuna te  circulari ty in design: for reasons of 
efficiency early programming languages reflected 
the character is t ics  of the early computers,  arm 
each generation of computers  reflects the needs of 
the programming languages of the preceding goner-. 
ation. 
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Integers 

Sha t~  
(]ateila~lOl/ 

Ravel 

lndexmg 
C u m p r e ~  

Take ,Drop  

Reversal 
Rotate  
TrallsUOse 

Gra(le 
Base value 

&reverse 
Membership  
hwerse  
R~(tuctlon 

Scan 

Inner prod 
t i n t e r  prod 

AXIS 

t%c V + + 2  3 5 M + ~ i  ~ 3 
[./.el'. 5 6 

1 ~ 5 ÷ ÷ ~  2 3 - 5 
1 o V + + 3  3M÷+2  3 2 3 o t 6 + ÷ M  2o'4 . . . . .  
[ V .  V + ~ 2  3 .= 2 3 5 M , M + + i  2 3 1 2 3 

5 6 - 5 6 

] . M + + I  2 3 - 5 6 

1 V[3 i]÷~5 2 M[2:2]++5 M[2: l ~" 55 6 

3 1 ) i/V++2 5 0 1-M++4 ~ 6 
1 2¢ 'V÷÷2  3 2 ÷ V + ÷ l + V + + 3  5 
1 ~ V + ÷ 5  ] 2 
1 2 ¢ V ÷ + 5  2 3 2¢ 7 ÷ ÷ 3  5 2 

1 .4  ~ 0  revel's~s axes a ~ 0  permutes  axes 

3 &3 2 6 2~-+2 - 1 3 '~3 2 6" 2 + + 3  t 2 -- 
l 1 0 ± V + + 2 3 5  V ± V ÷ ÷ 5 0  
1 10 1(  1 0 T 2 3 5 ÷ ÷ 2  3 ~ V t 5 0 ÷ ÷ ~  3 5 
3 V~ 3 + + (  1 0 V~ 5 2++1 0 1 

2. 5 ~oJ Is ,natr ix  reverse  a~oo+÷(  ~a~ ) ~ . x a 

1 - V÷+I0 * IM÷+6 i[ -¢M÷÷5 9 

1 + \ V ÷ ÷ 2  5 1 0  + \ M + + 2  3 o l  3 6 ~ 9 15 
I +. x is ma t r i x  product 
1 0 3o.+i 2 3 ÷ + M  
1 F[I] appl ies  F along axis  I 

A p p e n d i x  B .  C o m p i l e r  f r o m  D i r e c t  t o  C a n -  

o n i c a l  F o r m  
T h i s  c o m p i l e r  h a s  b e e n  a d a p t e d  f r o m  [ 22,  p . 2 2 2  ] .  

It  w i l l  n o t  h a n d l e  d e f i n i t i o n s  w h i c h  i n c l u d e  ~ o r  
or ~ in q u o t e s .  I t  c o n s i s t s  o f  t h e  f u n c t i o n s  z~x a n d  

Fg, an d  t h e  c h a r a c t e r  m a t r i c e s  c9 a n d  Ag: 

F I X  
OoQFX F9 

D ÷ F 9  E ; F ; I ; K  
F~(,(E='~')o.~5¢I)/,E,(~4,pE)o' Y9 ' 
F+(,(F='a'Io.~5+i)/,F,(~,oF)p' ~9 ' 
F+i+~D÷(O,+/-6,I)+(~(3xI)++\I÷,:,=F)~F,(¢6,pF)p' ' 
D+3~C9[I+(i+'s'EE),I,O;],~D[;I,(T÷2+tF),2] 
K÷K+2xK<I~K÷I^K((>/I O¢'~D'o.=E)zK÷+k~I÷EeA9 
F+(O,I+pE)[pD+D,(F,oE)÷~O -2+K~' ',E,[i.5]';' 

D+(F+D),[i]F[2] 'A',E 
C9 A 9  

Z9÷ 0 1 ~ 3 4 5 6 7 8  
Y9Z9÷ 9ABCDEEGH 

Ygzg÷x9 IJKLMNOPQ 

I / 3 ~ ( 0 = 1 ÷ ,  RSTUVWXYZ 

E x a m p l e :  

F I X  

FIB:Z,T/-2÷Z~FIB~-I:~=I:I 

FIB 15 
1 l 2 3 5 8 13 21 34 55 89  144  2 3 3  377 6 1 3  

OCR'F£B' 
Z9÷[IB Y9~Z 
~ ( O = Z + , Y 9 = l ) / 3  
+ O , O p Z 9 ÷ l  
Z9÷Z,*/-2fZ÷FIB Y9-1 

aFIB:Z..~-2÷Z+FIB~-I:~=I:I 
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