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L. Tóth ∗

MENON’S IDENTITY AND ARITHMETICAL SUMS

REPRESENTING FUNCTIONS OF SEVERAL VARIABLES

Abstract. We generalize Menon’s identity by considering sums representing arithmetical
functions of several variables. As an application, we give aformula for the number of cyclic
subgroups of the direct product of several cyclic groups of arbitrary orders. We also point
out extensions of Menon’s identity in the one variable case,which seems not to appear in the
literature.

1. Introduction

Menon’s identity [9] states, that for everyn∈ N := {1,2, . . .},

(1)
n

∑
k=1

gcd(k,n)=1

gcd(k−1,n) = φ(n)τ(n),

whereφ denotes Euler’s function andτ(n) is the number of divisors ofn.

This identity has many generalizations derived by several authors. For example,
if f is an arbitrary arithmetical function, then

(2)
n

∑
k=1

gcd(k,n)=1

f (gcd(k−1,n)) = φ(n)∑
d|n

(µ∗ f )(d)
φ(d)

(n∈ N),

where∗ stands for the Dirichlet convolution. Formula (2) was deduced, in an equivalent
form, by Kesava Menon [9, Th. 1] forf multiplicative, and by Sita Ramaiah [12, Th.
9.1] in a more general form.

Nageswara Rao [10] proved that

(3)
n

∑
k1,...,ks=1

gcd(k1,...,ks,n)=1

gcd(k1−a1, . . . ,ks−as,n)
s = φs(n)τ(n) (n∈ N),

wherea1, . . . ,as∈ Z, gcd(a1, . . . ,as,n) = 1 andφs(n) = ns∏p|n(1−1/ps) is the Jordan
function of orders.

Richards [11] remarked that for any polynomialg with integer coefficients,

(4)
n

∑
k=1

gcd(k,n)=1

gcd(g(k),n) = φ(n)∑
d|n

ηg(d) (n∈ N),
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whereηg(d) stands for the number of solutionsx (modd) of the congruenceg(x)≡ 0
(modd) such that gcd(x,d) = 1. Haukkanen and Wang [7] gave a proof of formula (4)
in a more general setting.

In a recent paper Sury [16] showed that

(5)
n

∑
k1,k2,...,kr=1
gcd(k1,n)=1

gcd(k1−1,k2, . . . ,kr ,n) = φ(n)σr−1(n) (n∈ N),

whereσk(n) = ∑d|ndk.

Further generalizations of (1) and combinations of the existing ones were given
by Haukkanen [3, 4], Haukkanen and McCarthy [5], Haukkanen and Sivaramakrishnan
[6], Sivaramakrishnan [13, 14] and others. See also McCarthy [8, Ch. 1,2]. All of these
identities represent functions of a single variable.

Note that there are three main methods used in the literatureto prove Menon-
type identities, namely: (i) the group-theoretic method, based on the Cauchy–Frobenius
lemma, called also Burnside’s lemma, concerning group actions, see [9, 11, 16]; (ii)
elementary number-theoretic methods based on properties of the Dirichlet convolution
and of multiplicative functions, see [9, 3, 7, 12]; (iii) thenumber-theoretic method
based on finite Fourier representations and Cauchy productsof r-even functions, cf.
[5, 6, 8, 10].

Recall the idea of the proof of (1) based on the Cauchy–Frobenius lemma. Let
G be an arbitrary group of ordern and letUn := {k ∈ N : 1 ≤ k ≤ n,gcd(k,n) = 1}
be the group of units (modn). Consider the action of the groupUn on G given by
Un ×G ∋ (k,g) 7→ gk. Here two elements ofG belong to the same orbit if and only
if they generate the same cyclic subgroup. Hence the number of orbits is equal to the
number of cyclic subgroups ofG, notationc(G). We obtain, according to the Cauchy–
Frobenius lemma, that

(6) c(G) =
1

φ(n)

n

∑
k=1

gcd(k,n)=1

ψ(G,k),

whereψ(G,k) := #{g∈ G : gk = g} is the number of fixed elements ofG.

If G=Cn is the cyclic group of ordern, then we havec(G) = τ(n), ψ(G,k) =
gcd(k−1,n) and (6) gives Menon’s identity (1).

Now specialize (6) to the case whereG is the direct product of several cyclic
groups of arbitrary orders, i.e.,G=Cm1 ×·· ·×Cmr , wherem1, . . . ,mr ∈N (r ∈N). We
deduce that the number of its cyclic subgroups is

(7) c(Cm1 ×·· ·×Cmr ) =
1

φ(q)

q

∑
k=1

gcd(k,q)=1

gcd(k−1,m1) · · ·gcd(k−1,mr),

whereq= m1 · · ·mr .
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Being motivated by this example and in order to evaluate the right hand side of
(7), see Section 4, we generalize in this paper Menon’s identity (1), and also (2) and
(4), by considering arithmetical sums representing functions of several variables. For
example, using simple number-theoretical arguments we derive the following identity:

Let m1, . . . ,mr ,M ∈ N (with r ∈ N), m := lcm[m1, . . . ,mr ], m | M and a :=
(a1, . . . ,ar) ∈ Zr . Then

1
φ(M)

M

∑
k=1

gcd(k,M)=1

gcd(k−a1,m1) · · ·gcd(k−ar ,mr)

(8) = ∑
d1|m1,...,dr |mr

φ(d1) · · ·φ(dr)

φ(lcm[d1, . . . ,dr ])
η(a)(d1, . . . ,dr),

where

(9) η(a)(d1, . . . ,dr) =





1 for gcd(di ,ai) = 1 (1≤ i ≤ r) and
gcd(di ,d j) | ai −a j (1≤ i, j ≤ r),

0 otherwise.

Remark that (8) does not depend onM and it represents a multiplicative function
of r variables, to be defined in Section 2. Also, each term of the sum in the right-hand
side of (8) is an integer. Therefore the sum in the left-hand side of (8) is a multiple of
φ(M) for anym1, . . . ,mr ∈ N.

If r = 2 anda1 = a2 = a∈ Z with gcd(a,m) = 1, then (8) gives

(10)
M

∑
k=1

gcd(k,M)=1

gcd(k−a,m1)gcd(k−a,m2) = φ(M) ∑
d1|m1,d2|m2

φ(gcd(d1,d2)).

If m1, . . . ,mr are pairwise relatively prime,M = m= m1 · · ·mr anda := (a1, . . . ,ar) ∈
Zr , then (8) reduces to

(11)
m

∑
k=1

gcd(k,m)=1

gcd(k−a1,m1) · · ·gcd(k−ar ,mr) = φ(m)τ(m1,a1) · · ·τ(mr ,ar),

whereτ(n,a) denotes the number of divisorsd of n such that gcd(d,a) = 1. Now, if
a1 = . . .= ar = a∈ Z, then the right-hand side of (11) isφ(m)τ(m,a).

Note that the arithmetical function of several variables

(12) A(m1, . . . ,mr) :=
1
m

m

∑
k=1

gcd(k,m1) · · ·gcd(k,mr),

wherem1, . . . ,mr ∈N andm := lcm[m1, . . . ,mr ], as above, was considered by Deitmar,
Koyama and Kurokawa [2] in casemj | mj+1 (1 ≤ j ≤ r − 1) by studying analytic
properties of some zeta functions of Igusa type. The function (12) was investigated in
the paper [18].
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For r = 1 andm1 = m (12) reduces to the function

(13) A(m) :=
1
m

m

∑
k=1

gcd(k,m) = ∑
d|m

φ(d)
d

,

of which arithmetical and analytical properties were surveyed in [19].

We also generalize the function (12) and deduce certain single variable exten-
sions of Menon’s identity, which seems not to appear in the literature.

2. Preliminaries

We present in this section some basic notions and propertiesto be used in the paper.

We recall that an arithmetical function ofr variables is a functionf : Nr → C,
notation f ∈ Fr . If f ,g∈ Fr , then their convolution is defined as

(14) ( f ∗g)(m1, . . . ,mr) = ∑
d1|m1,...,dr |mr

f (d1, . . . ,dr)g(m1/d1, . . . ,mr/dr).

A function f ∈ Fr is said to be multiplicative if it is not identically zero and

f (m1n1, . . . ,mrnr) = f (m1, . . . ,mr) f (n1, . . . ,nr)

holds for anym1, . . . ,mr ,n1, . . . ,nr ∈ N such that gcd(m1 · · ·mr ,n1 · · ·nr) = 1.

If f is multiplicative, then it is determined by the valuesf (pa1, . . . , par ), where
p is prime anda1, . . . ,ar ∈ N0 := {0,1,2, . . .}. More exactly,f (1, . . . ,1) = 1 and for
anym1, . . . ,mr ∈ N,

f (m1, . . . ,mr) = ∏
p

f (pep(m1), . . . , pep(mr )),

wheremi = ∏p pep(mi ) is the prime power factorization ofmi (1≤ i ≤ r), the products
being over the primesp and all but a finite number of the exponentsep(mi) being zero.

If r = 1, i.e., in case of functions of a single variable, we recoverthe familiar
notion of multiplicativity.

For example, the functions(m1, . . . ,mr) 7→ gcd(m1, . . . ,mr) and(m1, . . . ,mr) 7→
lcm[m1, . . . ,mr ] are multiplicative for anyr ∈ N.

The convolution (14) preserves the multiplicativity of functions. This property,
well known in the one variable case, follows easily from the definitions.

The product and the quotient of (nonvanishing) multiplicative functions are both
multiplicative. Leth∈ F1 and f ∈ Fr be multiplicative functions. Then the functions

(m1, . . . ,mr) 7→ h(m1) · · ·h(mr) and (m1, . . . ,mr) 7→ h( f (m1, . . . ,mr))

are multiplicative. In particular, the functions(m1, . . . ,mr) 7→ h(gcd(m1, . . . ,mr)) and
(m1, . . . ,mr) 7→ h(lcm[m1, . . . ,mr ]) are multiplicative.
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The definition and properties of multiplicativity for functions of several vari-
ables go back to the work of Vaidyanathaswamy [20]. See also [15].

In the one variable case1, id, idt andφt (t ∈ C) will denote the functions given
by 1(n) = 1, id(n) = n, idt(n) = nt andφt(n) = nt ∏p|n(1−1/pt) (n∈N), respectively.

Let G = (g1, . . . ,gr) be a system of polynomials with integer coefficients and
consider the simultaneous congruences

(15) g1(x)≡ 0 (modm1), . . . ,gr(x)≡ 0 (modmr ).

Let NG(m1, . . . ,mr) denote the number of solutionsx (mod lcm[m1, . . . ,mr ]) of
(15). Also, letηG(m1, . . . ,mr) denote the number of solutionsx (mod lcm[m1, . . . ,mr ])
of (15) such that gcd(x,m1) = 1, . . . , gcd(x,mr) = 1. These are other examples of
multiplicative functions of several variables, properties which might be known, but we
could not locate them in the literature. We give their proof in Lemma 1.

If r = 1, m1 = mandg1 = g, thenNG(m) := Ng(m) is the number of solutionsx
(modm) of the congruenceg(x)≡ 0 (modm), which is multiplicative as a function of
a single variable. This is well known, see e.g., [1, Th. 5.28].

LEMMA 1. For every system G=(g1, . . . ,gr) of polynomials with integer coeffi-
cients the functions(m1, . . . ,mr) 7→NG(m1, . . . ,mr) and(m1, . . . ,mr) 7→ ηG(m1, . . . ,mr)
are multiplicative.

Proof. We prove the multiplicativity of the functionNG. In case ofηG the proof is
similar.

Let m1, . . . ,mr ,n1, . . . ,nr ∈ N such that gcd(m1 · · ·mr ,n1 · · ·nr) = 1. Consider
the simultaneous congruences (15) together with

g1(x)≡ 0 (modn1), . . . , gr(x)≡ 0 (modnr ),(16)

g1(x)≡ 0 (modm1n1), . . . , gr(x)≡ 0 (modmrnr ).(17)

If x is any solution of (17), thenx is a solution of both (15) and (16).

Conversely, assume thatx∗ is a solution of (15) andx∗∗ is a solution of (16).
Consider the simultaneous congruences

(18) x≡ x∗ (mod lcm[m1, . . . ,mr ]), x≡ x∗∗ (mod lcm[n1, . . . ,nr ]).

Let m := lcm[m1, . . . ,mr ], n := lcm[n1, . . . ,nr ]. Then by the Chinese remainder
theorem (18) has a unique solution ˜x (modmn), wheremn= lcm[m1n1, . . . ,mrnr ]. Here
x̃ is a solution of (17), completing the proof.

The following lemma is a known property, it follows easily bythe inclusion-
exclusion principle, cf. [1, Th. 5.32].

LEMMA 2. Let n,d,x∈ N such that d| n, 1≤ x≤ d, gcd(x,d) = 1. Then

#{k∈ N : 1≤ k≤ n,k≡ x (modd),gcd(k,n) = 1}= φ(n)/φ(d).



102 L. Tóth

3. Main results

For m1, . . . ,mr ∈ N (r ∈ N) let m := lcm[m1, . . . ,mr ] and letM ∈ N, m | M. Let F =
( f1, . . . , fr) be a system of arithmetical functions of one variable andG= (g1, . . . ,gr)
be a system of polynomials with integer coefficients.

Consider the arithmetical functions ofr variables

(19) S(G)
F (m1, . . . ,mr) :=

1
M

M

∑
k=1

f1(gcd(g1(k),m1)) · · · fr(gcd(gr(k),mr )),

(20) R(G)
F (m1, . . . ,mr) :=

1
φ(M)

M

∑
k=1

gcd(k,M)=1

f1(gcd(g1(k),m1)) · · · fr(gcd(gr(k),mr )).

THEOREM 1. If F and G are arbitrary systems of arithmetical functions and
polynomials with integer coefficients, respectively, thenfor any m1, . . . ,mr ∈ N,

(21) S(G)
F (m1, . . . ,mr) = ∑

d1|m1,...,dr |mr

(µ∗ f1)(d1) · · · (µ∗ fr)(dr)

lcm[d1, . . . ,dr ]
NG(d1, . . . ,dr),

which does not depend on M.

Proof. Writing fi = 1∗ (µ∗ fi) (1≤ i ≤ r) we obtain

S(G)
F (m1, . . . ,mr) =

1
M

M

∑
k=1

∑
d1|gcd(g1(k),m1)

(µ∗ f1)(d1) · · · ∑
dr |gcd(gr (k),mr )

(µ∗ fr)(dr)

=
1
M ∑

d1|m1,...,dr |mr

(µ∗ f1)(d1) · · · (µ∗ fr)(dr) ∑
1≤k≤M

g1(k)≡0 (modd1),...,gr (k)≡0 (moddr )

1,

where the inner sum is(M/ lcm[d1, . . . ,dr ])NG(d1, . . . ,dr).

COROLLARY 1. If F is a system of multiplicative arithmetical functions and G
is any system of polynomials with integer coefficients, thenthe function(m1, . . . ,mr) 7→
S(G)

F (m1, . . . ,mr) is multiplicative.

Proof. By Theorem 1 and Lemma 1 the functionS(G)
F is the convolution of multiplica-

tive functions; hence it is multiplicative.

For the functionA(m1, . . . ,mr) given by (12) we have the next representation.

COROLLARY 2 ([18, Prop. 12],f1 = . . .= fr = id, g1(x) = . . .= gr(x) = x).

(22)
1
M

M

∑
k=1

gcd(k,m1) · · ·gcd(k,mr) = ∑
d1|m1,...,dr |mr

φ(d1) · · ·φ(dr)

lcm[d1, . . . ,dr ]
,

which is multiplicative.
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For other special choices ofF andG similar results can be derived if the values

NG(d1, . . . ,dr) are known, but we turn our attention to the functionR(G)
F (m1, . . . ,mr)

defined by (20).

THEOREM 2. If F and G are arbitrary systems of arithmetical functions and
polynomials with integer coefficients, respectively, thenfor any m1, . . . ,mr ∈ N,

(23) R(G)
F (m1, . . . ,mr) = ∑

d1|m1,...,dr |mr

(µ∗ f1)(d1) · · · (µ∗ fr)(dr)

φ(lcm[d1, . . . ,dr ])
ηG(d1, . . . ,dr),

which does not depend on M.

Proof. Similar to the proof of Theorem 1,

R(G)
F (m1, . . . ,mr) =

1
φ(M)

M

∑
k=1

gcd(k,M)=1

∑
d1|gcd(g1(k),m1)

(µ∗ f1)(d1) · · · ∑
dr |gcd(gr (k),mr )

(µ∗ fr)(dr)

=
1

φ(M) ∑
d1|m1,...,dr |mr

(µ∗ f1)(d1) · · · (µ∗ fr)(dr) ∑
1≤k≤M

gcd(k,M)=1
g1(k)≡0 (modd1),...,gr (k)≡0 (moddr )

1,

where the inner sum is(φ(M)/φ(lcm[d1, . . . ,dr ]))ηG(d1, . . . ,dr) by Lemma 2.

In the one variable case (r = 1) Theorem 2 is a special case of [7, Theorem],
giving, with f1 = f , g1 = g, m1 = m,

(24) R(g)
f (m) :=

1
φ(m)

m

∑
k=1

gcd(k,m)=1

f (gcd(g(k),m)) = ∑
d|m

(µ∗ f )(d)
φ(d)

ηg(d),

and for f = id this reduces to (4).

COROLLARY 3. Assume that g1 = . . . = gr = g and m1, . . . ,mr are pairwise
relatively prime. Then

(25) R(G)
F (m1, . . . ,mr) = R(g)

f1
(m1) · · ·R(g)

fr
(mr).

Proof. For anyd1 |m1, . . . ,dr |mr , ηG(lcm[d1, . . . ,dr ])= ηg(d1 · · ·dr)= ηg(d1) · · ·ηg(dr)
and obtain from (23) that

R(G)
F (m1, . . . ,mr) = ∑

d1|m1

(µ∗ f1)(d1)

φ(d1)
ηg(d1) · · · ∑

dr |mr

(µ∗ fr)(dr)

φ(dr)
ηg(dr),

giving (25) using the notation of (24).

COROLLARY 4. If F is a system of multiplicative arithmetical functions and G
is any system of polynomials with integer coefficients, thenthe function(m1, . . . ,mr) 7→
R(G)

F (m1, . . . ,mr) is multiplicative.
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Proof. By Theorem 2 and Lemma 1 the functionR(G)
F is the convolution of multiplica-

tive functions; hence it is multiplicative.

In case of multiplicative functionsfi (1 ≤ i ≤ r) we can assume thatmi > 1
(1≤ i ≤ r), since formi = 1 the corresponding factors of (20) are equal to 1.

COROLLARY 5 ( f1 = idt1, . . . , fr = idtr ).

R(G)
t1,...,tr (m1, . . . ,mr) :=

1
φ(M)

M

∑
k=1

gcd(k,M)=1

(gcd(g1(k),m1))
t1 · · · (gcd(gr(k),mr))

tr

= ∑
d1|m1,...,dr |mr

φt1(d1) · · ·φtr (dr)

φ(lcm[d1, . . . ,dr ])
ηG(d1, . . . ,dr),

representing a multiplicative function.

COROLLARY 6 ( f1 = . . .= fr = id).

R(G)
r (m1, . . . ,mr) :=

1
φ(M)

M

∑
k=1

gcd(k,M)=1

gcd(g1(k),m1) · · ·gcd(gr(k),mr )

= ∑
d1|m1,...,dr |mr

φ(d1) · · ·φ(dr)

φ(lcm[d1, . . . ,dr ])
ηG(d1, . . . ,dr),

representing a (positive) integer-valued multiplicativefunction.

Proof. The function(m1, . . . ,mr) 7→ φ(m1) · · ·φ(mr)/φ(lcm[m1, . . . ,mr ]) is multiplica-
tive and its values are integers, sinceφ(pe1) · · ·φ(per )/φ(lcm[pe1, . . . , per ]) are integers
for any primep and anye1, . . . ,er ∈ N.

COROLLARY 7 ( f1 = idt1, . . . , fr = idtr , g1(x) = x−a1,. . . ,gr(x) = x−ar).

For anya := (a1, . . . ,ar) ∈ Zr ,

R(a)
t1,...,tr (m1, . . . ,mr) :=

1
φ(M)

M

∑
k=1

gcd(k,M)=1

(gcd(k−a1,m1))
t1 · · · (gcd(k−ar ,mr))

tr

= ∑
d1|m1,...,dr |mr

φt1(d1) · · ·φtr (dr)

φ(lcm[d1, . . . ,dr ])
η(a)(d1, . . .dr),(26)

whereη(a)(d1, . . . ,dr) is defined by(9).

Proof. It is well known that ford1, . . . ,dr ∈N the simultaneous congruences

x≡ a1 (modd1), . . . ,x≡ ar (moddr )
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admit solutions if and only if gcd(di ,d j) | ai −a j (1≤ i, j ≤ r) and in this case there is
a unique solutionx (mod lcm[d1, . . . ,dr ]). Here

gcd(x,d1) = gcd(a1,d1), . . . , gcd(x,dr) = gcd(ar ,dr)

and we obtain for the values ofη(a)(d1, . . . ,dr) formula (9).

For t1 = . . .= tr = 1 we obtain from (26) formula (8) given in the Introduction.

COROLLARY 8 (r = 2, f1 = f2 = id).

R(G)
2 (m1,m2) :=

1
φ(M)

M

∑
k=1

gcd(k,M)=1

gcd(g1(k),m1)gcd(g2(k),m2)

= ∑
d1|m1,d2|m2

φ(gcd(d1,d2))ηG(d1,d2).

Proof. Use thatφ(a)φ(b) = φ(gcd(a,b))φ(lcm[a,b]) for anya,b∈ N, which holds for
any multiplicative function written instead ofφ.

COROLLARY 9 (r = 2, f1 = f2 = id, g1(x) = x−a1, g2(x) = x−a2, a1,a2 ∈ Z).

R(a1,a2)
2 (m1,m2) :=

1
φ(M)

M

∑
k=1

gcd(k,M)=1

gcd(k−a1,m1)gcd(k−a2,m2)

= ∑
d1|m1,d2|m2

gcd(d1,a1)=1,gcd(d2,a2)=1
gcd(d1,d2)|a1−a2

φ(gcd(d1,d2)).(27)

COROLLARY 10 (r = 2, f1 = f2 = id, g1(x) = x − a1, g2(x) = x − a2,
|a1−a2|= 1).

Let a1,a2 ∈ Z with |a1−a2| = 1. The multiplicative function R(a1,a2)
2 (m1,m2),

given by(27)can be represented as

(28) R(a1,a2)
2 (m1,m2) = ∑

d1|m1,d2|m2
gcd(d1,a1)=1,gcd(d2,a2)=1

gcd(d1,d2)=1

1,

and for any prime p and any u,v∈ N,

(29) R(a1,a2)
2 (pu, pv) =





u+ v+1, p ∤ a1, p ∤ a2,

u+1, p ∤ a1, p | a2,

v+1, p | a1, p ∤ a2,

1, p | a1, p | a2.

Now we deduce formula (10) given in the Introduction.
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COROLLARY 11 (r = 2, f1= f2= id, g1(x)=g2(x)=x−a, a∈Z, gcd(a,m) = 1).
If gcd(a,m) = 1, then

R(a)
2 (m1,m2) :=

1
φ(M)

M

∑
k=1

gcd(k,M)=1

gcd(k−a,m1)gcd(k−a,m2)

(30) = ∑
d1|m1,d2|m2

φ(gcd(d1,d2)).

Note that other special systems ofF andG can be considered too. We give the
following example.

COROLLARY 12 (r = 2, f1= f2= id, g1(x) = g2(x) = x2−a, gcd(a,m) = 1).

For every m= lcm[m1,m2] odd withgcd(a,m) = 1,

m

∑
k=1

gcd(k,m)=1

gcd(k2−a,m1)gcd(k2−a,m2)

= φ(m) ∑
d1|m1,d2|m2

φ(gcd(d1,d2)) ∏
p|lcm[d1,d2]

(
1+

(
a
p

))
,

which is a multiple ofφ(m), where
(

a
p

)
is the Legendre symbol.

In particular, for a= 1 and every m1,m2 odd,

m

∑
k=1

gcd(k,m)=1

gcd(k2−1,m1)gcd(k2−1,m2) = φ(m) ∑
d1|m1,d2|m2

φ(gcd(d1,d2))2
ω(lcm[d1,d2])

and whereω(n) denotes the number of distinct prime factors of n.

Proof. The congruencex2 ≡ a (modpe) has 1+
(

a
p

)
solutions (modpe) for any prime

p> 2, p ∤ a and anye∈N. Therefore,ηg(n) = ∏p|n
(

1+
(

a
p

))
for anyn∈N odd with

gcd(n,a) = 1. Apply Corollary 6.

4. The number of cyclic subgroups of the direct product of several cyclic groups

THEOREM3. Let m1, . . . ,mr ∈N. The number of cyclic subgroups of the group
Cm1 ×·· ·×Cmr is given by the formula

(31) c(Cm1 ×·· ·×Cmr ) = ∑
d1|m1,...,dr |mr

φ(d1) · · ·φ(dr)

φ(lcm[d1, . . . ,dr ])
,

representing a multiplicative function of r variables.
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In particular, the number of cyclic subgroups of Cm1 ×Cm2 is

(32) c(Cm1 ×Cm2) = ∑
d1|m1,d2|m2

φ(gcd(d1,d2)),

and for any prime p and any u,v∈ N with u≥ v,

(33) c(Cpu ×Cpv) = 2
(
1+ p+ p2+ . . .+ pv−1)+(u− v+1)pv.

Proof. Formula (31) follows at once from (7), deduced in the Introduction, by applying
(8) with a1 = . . .= ar = 1 andM = m1 · · ·mr . For the caser = 2 see Corollary 11. The
values ofc(Cpu ×Cpv) are easily obtained by (32).

Note that certain formulae for the number of cyclic subgroups of thep-group
Cpα1 ×·· ·×Cpαr (α1, . . . ,αr ∈N), including (33) were deduced in the recent paper [17,
Section 4] by a different method. Formulae (31) and (32) are given, without proof, in
[21] in casesr = 3, m1 = m2 = m3 andr = 2, m1 = m2, respectively.

5. Further remarks

In caser = 1 formulae (21) and (23) can be used to deduce new identities,representing
functions of a single variable, if the valuesNg1(n), respectivelyηg1

(n) (n ∈ N) are
known. As examples, we point out the next identities.

COROLLARY 13. Let j ∈N. For every n∈N,

(34)
1
n

n

∑
k=1

gcd(k j ,n) = ∑
d|n

φ(d)N( j)(d)
d

,

where the multiplicative function N( j) is given by N( j)(pa) = p[( j−1)a/ j ] for every prime
power pa (a∈N), [y] denoting the greatest integer≤ y.

Proof. Apply formula (21) forr = 1, f1 = id, g(x) = x j where the number of solutions
of the congruencex j ≡ 0 (modpa) is p[( j−1)a/ j ], as it can be checked easily.

In what follows, consider formula (23) forr = 1, f1 = id andg1 = g. Then (23)
reduces to (4).

COROLLARY 14. Let a,b∈ Z with gcd(b,n) = 1. Then for every n∈ N,

(35)
n

∑
k=1

gcd(k,n)=1

gcd(bk−a,n) = φ(n)τ(n,a).

Proof. Apply formula (4) in case of the linear polynomialg(x) = bx−a. Hereηg(n) =
1 for gcd(a,n) = 1 andηg(n) = 0 otherwise.
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Fora= b= 1 (35) reduces to (1).

COROLLARY 15. Let n∈ N. Then

(36)
n

∑
k=1

gcd(k,n)=1

gcd(k2−1,n) = φ(n)h(n),

where

(37) h(n) =





τ(m2), n= m odd,

2τ(m2), n= 2m, m odd,

4(ℓ−1)τ(m2), n= 2ℓm, ℓ≥ 2, m odd.

Proof. Apply formula (4) for the polynomialg(x) = x2 −1. Any solution ofx2 ≡ 1
(modn) is coprime ton; henceηg(n) = Ng(n). For the numberNg(pa) of solutions of
x2 ≡ 1 (mod pa) it is well known thatNg(pa) = 2 (p odd prime,a ∈ N), Ng(2) = 1,
Ng(4) = 2, Ng(2ℓ) = 4 (ℓ≥ 3).

Finally, let j ∈ N be fixed. Group the prime factors ofn∈ N according to the
values gcd(p−1, j) = d and writen= ∏d| j nd, where for anyd | j,

nd = ∏
pk||n

gcd(p−1, j)=d

pk.

COROLLARY 16. For every n∈ N odd,

(38)
n

∑
k=1

gcd(k,n)=1

gcd(k j −1,n) = φ(n)∏
d| j

τ(nd
d).

Proof. For g(x) = x j −1 we haveηg(n) = Ng(n) with η(pa) = gcd( j, p−1) for every
p odd prime anda ∈ N. Apply formula (4). Now, forF(n) := ∑d|n ηg(d) one has

F(pa) = 1+agcd( j, p−1) = τ(pagcd( j ,p−1)) for any p odd prime anda∈ N.

COROLLARY 17 (j = 6). For every n∈ N odd,

(39)
n

∑
k=1

gcd(k,n)=1

gcd(k6−1,n) = φ(n)τ(A6)τ(B2),

where A is the product, with multiplicity, of the prime factors p≡ 1 (mod6) of n, and
B= n/A.
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