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L. Toth*

MENON'S IDENTITY AND ARITHMETICAL SUMS
REPRESENTING FUNCTIONS OF SEVERAL VARIABLES

Abstract. We generalize Menon'’s identity by considering sums reprtasg arithmetical
functions of several variables. As an application, we givermula for the number of cyclic
subgroups of the direct product of several cyclic groupsrbitrary orders. We also point
out extensions of Menon’s identity in the one variable cadech seems not to appear in the
literature.

1. Introduction

Menon’s identity [9] states, that for evenye N:= {1,2,...},

n
(1) Z gcdk* 15 n) = (p(n)T(n)v
gco{ﬁ)zl
where@denotes Euler’s function aridn) is the number of divisors af.

This identity has many generalizations derived by severiflas. For example,
if f is an arbitrary arithmetical function, then

C B _ (b f)(d)
) k; f(gedk—1, n))—cp(n)dn ) (neN),
gcdk,n)=1

wherex stands for the Dirichlet convolution. Formula (2) was destijén an equivalent
form, by Kesava Menon [9, Th. 1] fofr multiplicative, and by Sita Ramaiah [12, Th.
9.1] in a more general form.

Nageswara Rao [10] proved that
n
(3) Z gCCKkl*al,...,ksfas, n)S:%(n)T(rD (nE N))
Ky, Re=1
gedky,...,ks,n)=1

whereay,...,as € Z, gcday, . . . ,as,n) = 1 and@s(n) = n*[n(1—1/p°) is the Jordan
function of orders.

Richards [11] remarked that for any polynomgakith integer coefficients,

@ 5 Ged0l).1) = 60 3 @) (1<)
k=1 din

gcd(k:,n):l
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98 L. Téth

whereng(d) stands for the number of solutiorgmodd) of the congruencg(x) =0
(modd) such that gctk,d) = 1. Haukkanen and Wang [7] gave a proof of formula (4)
in a more general setting.

In a recent paper Sury [16] showed that

n
(5) > gedki—1Lke,....ki,n) =@n)oy_1(n) (neN),
ki ko, k=1
ged(ky,n)=1

whereay(n) = ¥ qnd .

Further generalizations of (1) and combinations of thet@gsones were given
by Haukkanen [3, 4], Haukkanen and McCarthy [5], Haukkameh@ivaramakrishnan
[6], Sivaramakrishnan [13, 14] and others. See also Mc@4§8{HCh. 1,2]. All of these
identities represent functions of a single variable.

Note that there are three main methods used in the liter&dyseove Menon-
type identities, namely: (i) the group-theoretic methadd on the Cauchy—Frobenius
lemma, called also Burnside’s lemma, concerning groupastisee [9, 11, 16]; (i)
elementary number-theoretic methods based on propeftibs Dirichlet convolution
and of multiplicative functions, see [9, 3, 7, 12]; (iii) tmmber-theoretic method
based on finite Fourier representations and Cauchy prodficteven functions, cf.
[5, 6, 8, 10].

Recall the idea of the proof of (1) based on the Cauchy—Fiiabdéemma. Let
G be an arbitrary group of orderand letU, := {ke N: 1 <k < n,gcdk,n) = 1}
be the group of units (mod). Consider the action of the grolgy on G given by
Un x G 3 (k,g) — g“. Here two elements oB belong to the same orbit if and only
if they generate the same cyclic subgroup. Hence the nunilmebits is equal to the
number of cyclic subgroups @, notationc(G). We obtain, according to the Cauchy—
Frobenius lemma, that

®) c(G)ﬁ ki W(G.K).

ged(kn)=1

where(G, k) := #{g € G: g“ = g} is the number of fixed elements 6f

If G =C, is the cyclic group of orden, then we have(G) = 1(n), Y(G,k) =
gcdk— 1,n) and (6) gives Menon'’s identity (1).

Now specialize (6) to the case whegeis the direct product of several cyclic
groups of arbitrary orders, i.65=Cpy, X --- X Cyy, Wwheremy,...,m € N (r € N). We
deduce that the number of its cyclic subgroups is

1 qJ
(7) c(Cm1><~--><Cm):—q) > gedk—1,m)---gedk—1,m),
k=
gcd(k,ql):l

whereq=my---m.
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Being motivated by this example and in order to evaluateitite hand side of
(7), see Section 4, we generalize in this paper Menon's iiyefit), and also (2) and
(4), by considering arithmetical sums representing fumgtiof several variables. For
example, using simple number-theoretical arguments wieelttre following identity:

Let my,...,m,M € N (with r € N), m:=lecm[my,...,m], m| M anda :=
(a1,...,a) €Z'. Then

M
G 3 gedk—anmy)--gedk—a.m)
gcd(kk,:l\%):l
(8) — Mﬂ(a)(dla---;dr);

o(lcm[dy,...,d])

where
1 for geddi,a)=1(1<i<r) and

(9) n@(dy,...,d) = ged(di,dj) [ai—aj (1<i,j<r),
0 otherwise

Remark that (8) does not dependirand it represents a multiplicative function
of r variables, to be defined in Section 2. Also, each term of theisuhe right-hand
side of (8) is an integer. Therefore the sum in the left-hade of (8) is a multiple of
@M) foranymy,...,m € N.

If r =2 anday = ap = a € Z with gcda,m) = 1, then (8) gives

M
(10) S godk-am)gedk—am) = M) ¥ @gedd,do).
K=1 da [y, da|myp
gcdk,M)=1

If mq,...,m are pairwise relatively primél = m=my---my anda:= (as,...,&) €
7', then (8) reduces to

m
(11) > gcdk—ag,my)---gedk—ar,m) = @m)T(my,aq)---T(N¥, &),
gcd(lfr%):l
wheret(n,a) denotes the number of divisodsof n such that gc(d,a) = 1. Now, if
a; =...=a = ac Z, then the right-hand side of (11)¢m)t(m,a).
Note that the arithmetical function of several variables

(12) Almy,...,my) = ”lﬂi gedk,my) ---gedk, my),
=1

wheremy,...,m; € Nandm:=lcm[my,...,m], as above, was considered by Deitmar,
Koyama and Kurokawa [2] in cas®; | mj;1 (1 < j < r —1) by studying analytic
properties of some zeta functions of Igusa type. The fundti®) was investigated in
the paper [18].
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Forr =1 andm; = m(12) reduces to the function

(13) g gcdk, m) @d)

)
dmd

BII—\

of which arithmetical and analytical properties were syegkin [19].

We also generalize the function (12) and deduce certairesiragiable exten-
sions of Menon'’s identity, which seems not to appear in tieediure.

2. Preliminaries

We present in this section some basic notions and propésties used in the paper.

We recall that an arithmetical function pivariables is a functiorf : N — C,
notationf € . If f,g € %, then their convolution is defined as

(14) (fxg)(my,...,m) = z f(dy,...,d)g(my/da,...,m /).
dq|my,....dr My

A function f € .%, is said to be multiplicative if it is not identically zero and
f(mung,...,mne) = f(my,...,my) f(ng,...,np)

holds for anymy,...,my,ny,....n, € Nsuchthatgefm---my,ng---n) = 1.

If fis multiplicative, then it is determined by the valugg®,...,p%* ), where
p is prime anday,...,a € No:={0,1,2,...}. More exactly,f(1,...,1) = 1 and for
anym,...,m; € N,

fmuem) = [ 1", )

wherem = [, p®(™) is the prime power factorization of; (1 <i <r), the products
being over the primep and all but a finite number of the exponeegém;) being zero.

If r =1, i.e., in case of functions of a single variable, we recdkierfamiliar
notion of multiplicativity.

For example, the functior(sny, ..., my) — gcdmy,....my) and(my,...,m) —
lem[my, ..., m] are multiplicative for any € N.

The convolution (14) preserves the multiplicativity of fitions. This property,
well known in the one variable case, follows easily from tledimtions.

The product and the quotient of (honvanishing) multipligatunctions are both
multiplicative. Leth € .1 andf € %, be multiplicative functions. Then the functions

(m,...,m;) —h(my)---h(m) and (my,...,m;)— h(f(my,...,m))

are multiplicative. In particular, the functiorigy,...,m) — h(gcdmy,...,m)) and
(my,...,my) — h(lem[my,...,m]) are multiplicative.
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The definition and properties of multiplicativity for furnchs of several vari-
ables go back to the work of Vaidyanathaswamy [20]. See 4¥5p [

In the one variable cask id, id: and@ (t € C) will denote the functions given
by 1(n) = 1, id(n) = n, idi(n) = n and@ (n) = n' [, (1—1/p') (n € N), respectively.

Let G = (g1,...,0r) be a system of polynomials with integer coefficients and
consider the simultaneous congruences

(15) 01(x) =0 (modmy),...,gr(X) = 0 (modmy).

Let Ng(my,...,m) denote the number of solutiomgmod lcrmmy, ..., my]) of
(15). Also, letng(my,...,m;) denote the number of solutiorgmod lcnimy, ..., m])
of (15) such that goc,my) =1, ..., gcdx,m) = 1. These are other examples of
multiplicative functions of several variables, propestieghich might be known, but we
could not locate them in the literature. We give their preofemma 1.

If r =1, m = mandg: = g, thenNg(m) := Ng(m) is the number of solutions
(modm) of the congruencg(x) = 0 (modm), which is multiplicative as a function of
a single variable. This is well known, see e.g., [1, Th. 5.28]

LEMMA 1. Forevery system & (gu,...,0r) of polynomials with integer coeffi-
cients the function@my,...,my) — Ng(my,...,my) and(my, ..., my) —ng(mg,...,m)
are multiplicative.

Proof. We prove the multiplicativity of the functiobg. In case ofng the proof is
similar.

Let my,...,my,ny,...,ny € N such that gc@my ---my,ng---n;) = 1. Consider
the simultaneous congruences (15) together with

(16) g1(x) =0 (modny), ..., gr(x) =0 (modny),
a7 01(x) =0 (modmyny), ..., gr(xX) =0 (modmn;).

If xis any solution of (17), theris a solution of both (15) and (16).

Conversely, assume thgt is a solution of (15) ana** is a solution of (16).
Consider the simultaneous congruences

(18) x=X* (mod lemmy,...,my]), x=x" (mod lcnny,...,n]).

Letm:=lcm[my,...,m], n:=lcm[ny,...,n;]. Then by the Chinese remainder
theorem (18) has a unique solutimodmn), wheremn= lcm[myny, ..., myn;]. Here
Xis a solution of (17), completing the proof. O

The following lemma is a known property, it follows easily the inclusion-
exclusion principle, cf. [1, Th. 5.32].

LEMMA 2. Letnd,xe Nsuchthatdn,1<x<d,gcdx,d)=1. Then
#{ke N:1<k<nk=x(modd),gcdk,n) =1} =@(n)/¢(d).
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3. Main results

Formy,....m € N (r e N) letm:=lcm[my,...,m] and letM e N, m| M. LetF =
(f1,..., fr) be a system of arithmetical functions of one variable &nd (g,...,0r)
be a system of polynomials with integer coefficients.

Consider the arithmetical functions of/ariables

M
(19)  S§¥(m,....m):= - 3 fi(gods(k) m)) - fr(god (K, m).
k=1

M
(200  RE(my,...,m):= ﬁ > fa(gedan(k,m))- fr(gedg (k). m)).
gcdk,M)=1

THEOREM 1. If F and G are arbitrary systems of arithmetical functionsdan
polynomials with integer coefficients, respectively, tferany m,....m; € N,

Ng(dy,...,dr),
dp|my,....dr|me

which does not depend on M.

Proof. Writing fi = 1% (ux fj) (1 <i <r) we obtain

1M

§7 (M. m) = (e fa)(dr) - 5 (e ) (dh)

k=1 dq|gcd(g1(k),my) dr|ged(gr (k),my)

1
= — * f1)(dy)--- *fr dr ’
S et @G 5 1

d|my....dr [my <k<
01(k)=0 (modd),...,gr (k)=0 (modd,)

where the inner sum igM/lcm|ds, ..., d])Ng(dy,...,dr). O

COROLLARY 1. If F is a system of multiplicative arithmetical functionsb@
is any system of polynomials with integer coefficients, therfunctionmy,...,my) —

S<FG) (my,...,m) is multiplicative.

Proof. By Theorem 1 and Lemma 1 the functiSfaG) is the convolution of multiplica-
tive functions; hence it is multiplicative. O

For the functiomA(my, ...,my) given by (12) we have the next representation.

COROLLARY 2 ([18, Prop. 12]f1 =...=f, =id, g1(X) = ... = gr(X) = X).
13 @(d1)--- @(dr)
(22) IVl ng(k, ml) T QCd(kv m) = )
M kZl My o Iy Icm[dl,...,dr]

which is multiplicative.



Menon'’s identity 103

For other special choices 6fandG similar results can be derived if the values

Ng(ds,...,dr) are known, but we turn our attention to the functl@,&?)(ml, cee,My)
defined by (20).

THEOREM 2. If F and G are arbitrary systems of arithmetical functionsdan
polynomials with integer coefficients, respectively, tferany m,....m; € N,

ollcmidr. .d)  ne(du-dh);

(23) RE(my,...m) =
dp|my,....dr My

which does not depend on M.

Proof. Similar to the proof of Theorem 1,

1 M
RO (my,.omy) = > S (Ef)) o Y (xf)(d)
M) & ageaioom) dlgcd 5K m)

=——= > (uxf)(dy)- (b fr)(ch) Z 1
1<fem

.....

gedk,M)=1
g1(k)=0 (modd,),...,gr (k)=0 (modd,)

where the inner sum i8p(M)/@(lcmldy, ...,d]))ng(ds,...,dr) by Lemma 2. O

In the one variable case £ 1) Theorem 2 is a special case of [7, Theorem],
giving, with fy = f, g1 =g, m =m,

@y L C _ o (Hxf)( )
@4 REM = CI(IT<Z1) f(gedg(k) c”zm o) @
gcdk,m)=1

and forf = id this reduces to (4).

COROLLARY 3. Assume thatg=... =g =g and m,...,m, are pairwise
relatively prime. Then
G
(25) R (my,....m) =RY(my)---RY(m).

Proof. Foranyd; | my,...,dr |my, ng(lemldy, ..., d]) =ng(di---dr) =ng(d1)---ng(dr)
and obtain from (23) that

(G) (p.* fl |J.>k fr
my,..., = g(d
RF ( 1 m) s (P(dl %} (P(dr I’)
giving (25) using the notation of (24). O

COROLLARY 4. If F is a system of multiplicative arithmetical functionsb@
is any system of polynomials with integer coefficients, therfunctionmy,...,my) —

R<FG)(m1, ...,my) is multiplicative.



104 L. Téth

Proof. By Theorem 2 and Lemma 1 the functiBéG) is the convolution of multiplica-
tive functions; hence it is multiplicative. O

In case of multiplicative function$; (1 <i <r) we can assume thaty > 1
(1 <i <), since formy = 1 the corresponding factors of (20) are equal to 1.

COROLLARY 5 (fy =idy,,..., fr =idy).

M

R umum) = o 5 (gedga(,mn)--(gedgs (k. m)
gchlf(,:Nll):l
@y (d) @, (@)

=y BRI (e d).

.....

representing a multiplicative function.

COROLLARY 6 (f1 =... = f, =id).
M
RO o) = s >, gedil.m)--ged (k.m)
gcdk,.M)=1
= z Mﬂe(dl,---,dr),

¢@(lcm[dy,...,d/])

dy|my,....dr[my

representing a (positive) integer-valued multiplicatfuection.

Proof. The function(my,...,m) — @(my)---@(m)/@(lcm[my, ..., m]) is multiplica-
tive and its values are integers, sirg@®)---@(p*)/@(lcm[p%,..., p*]) are integers
for any primep and anyey,...,& € N. O

COROLLARY 7 (fy =idy,,..., fr =idy, 91(X) =Xx—ay,...,0r(X) = X—a).
Foranya:= (as,...,a) € Z',

M
(@) . 1 .
RY o (Mp,...,m) = ) k; (gedk—ag,my))" - (gedk— ar,my))"
gcdk,M)=1

%(dl)"'(ﬂr (df) (a)(dl dr)

(26) = n

wheren@ (dy, ..., d;) is defined by9).
Proof. Itis well known that fords, ..., d; € N the simultaneous congruences

X=a; (moddy), ...,x=a (modd,)
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admit solutions if and only if gddli,dj) | & —a; (1 <i,j <r) and in this case there is
a unique solutiox (mod lcndy, . ..,d;]). Here

gedX,d1) = ged(as, di), ..., gedX,dr) = gcd(ar, dr)
and we obtain for the values qf? (dy, ..., d;) formula (9). O

Fort; = ... =t; = 1 we obtain from (26) formula (8) given in the Introduction.

COROLLARY 8 (r =2, f1 = fo =1id).

M

G) : 1

R (m,mp) = —— gcd(91(K),mp) ged(gz(k), mp

5 ( ) <P('V')k; d(g1(k),m1) ged(gz(k), mp)

gcdk,M)=1
= (P(gccxdladZ))ﬂG(dlvdZ)-
dp|my, da|my

Proof. Use thatp(a)@(b) = ¢(gcd(a, b))@(lcm[a, b)) for anya, b € N, which holds for
any multiplicative function written instead gf O

COROLLARY 9 (r=2,f1=fy=id, g1(X) = x—ag, 92(X) = x—ap, a1,az € Z).

M

1
RS (my,my) = o) > gedk—ay,m)gedk—az,mp)
gco(kk,:Ml):l
(27) = > @(gcd(ds, d2)).
dy|my,da|mp

ged(dg,a1)=1,9cddz,a2)=1
gcddy,do)|ag —ap

COROLLARY 10 (=2, f1 = fo =id, g1(X) = Xx— a1, g2(X) = X — a,
lag —az| = 1).

Let &, a2 € Z with |a; — ap| = 1. The multiplicative function %"aZ)(ml,mz),
given by(27) can be represented as

(28) R (my, mp) = > 1,
dy|my,dp|mp
gcd(dg,a;)=1,gcddy,a2)=1
ged(dy,dp)=1

and for any prime p and any,uc N,

u+v+1, pfag,ptay,

. 1, ptai,p|a,

29 R(al,aZ) U, v e u+

(29) 5 (P pY) Vil bl a1 ptap.
1, plag,plas.

Now we deduce formula (10) given in the Introduction.
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COROLLARY 11 (r =2, f1="fy=id, g1(X)=02(X)=x—a,a€ Z, gcda,m) = 1).
If gcd(a,m) = 1, then

M

R(Za)(ml,rrh) = ﬁ kzl gcdk —a,my)gedk — a, mp)

gcdk,M)=1

(30) = Y o(gedd,da)).

dy|my,do|mp

Note that other special systemsfofindG can be considered too. We give the
following example.

COROLLARY 12 (r =2, fi="fa=id, g1(X) = g2(x) = X2 —a, gcda,m) =1).
For every m= lem[my, mp] odd withged(a,m) = 1,

m

> gcdk? —a,my) ged(k? — a, my)
QCdkl:n%n):l
a
—om 5 eeeddd) [ (1+(3)).
dq|my,do|mp pllcm(dy,do] P

which is a multiple ofp(m), where(%) is the Legendre symbol.
In particular, for a= 1 and every m,n, odd,

m
S gedk’—1,m)gedk®—1,mp) = @(m) Y @(ged(ds,dp))2eXomcn el
k=1

gcoKk:m):l d1|my,da|mp

and wheraw(n) denotes the number of distinct prime factors of n.

Proof. The congruence? = a (mod p®) has 1+ (%) solutions (modp®) for any prime

p>2,pfaandanyeec N. Thereforeng(n) = pn <1+ (%)) for anyn € N odd with
gcdn,a) = 1. Apply Corollary 6. O

4. The number of cyclic subgroups of the direct product of segral cyclic groups

THEOREM3. Letmy,...,my € N. The number of cyclic subgroups of the group
Cmy, X --- x Cyy is given by the formula

(31) C(Cimy % -+ % Cry) = _0d) - 9(d)

.....

representing a multiplicative function of r variables.
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In particular, the number of cyclic subgroups ghCx Cp, is

(32) C(le X sz) = Z (p(gccxdla dz))a
dy|my,da|mp

and for any prime p and any,uc Nwithu>v,
(33) c(Cp xCpv) =2(1+p+p*+...+p" 1) + (u—v+1)p".

Proof. Formula (31) follows at once from (7), deduced in the Intrctéhn, by applying
(8)witha; =...=a =21andM =my---m,. For the case = 2 see Corollary 11. The
values ofc(Cpu x Cpv) are easily obtained by (32). O

Note that certain formulae for the number of cyclic subgapthe p-group
Cpar X -+- x Cpor (a1,...,ar € N), including (33) were deduced in the recent paper [17,
Section 4] by a different method. Formulae (31) and (32) arerg without proof, in
[21] in cases = 3,my = mp = mg andr = 2, my = My, respectively.

5. Further remarks

In caser =1 formulae (21) and (23) can be used to deduce new identigéipsgsenting
functions of a single variable, if the valuég, (n), respectivelyng (n) (n € N) are
known. As examples, we point out the next identities.

COROLLARY 13. Let je N. Forevery ne N,

“ 9N (d)
34 K on) =y RO
(34) 3 ekl = 3 £

:SII—\

where the multiplicative function®™ is given by Ni) (p?) = pli—a/il for every prime
power ' (a € N), [y] denoting the greatest integery.

Proof. Apply formula (21) forr =1, fl =id, g(x) = x} where the number of solutions
of the congruencel = 0 (modp?) is pli—V a/” as it can be checked easily. O

In what follows, consider formula (23) for= 1, f; = id andg; = g. Then (23)
reduces to (4).

COROLLARY 14. Let a b € Z with gcdb,n) = 1. Then for every & N,
(35) Z gcdbk—a,n) = @(n)t(n,a).
gcd(k n)

Proof. Apply formula (4) in case of the linear polynomgg(x) = bx—a. Hereng(n) =
1 forgcda,n) = 1 andng(n) = O otherwise. O
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Fora=b=1 (35) reducesto (1).

COROLLARY 15. Letne N. Then

(36) S godk— 1,n) = @nh(n),
QCCKkﬁ)zl
where
(mP), n=m odd
(37) h(n) = ¢ 2t(nm?), n=2m, modd

40— 1)t(m?), n=2‘m ¢>2 modd

Proof. Apply formula (4) for the polynomiat)(x) = x> — 1. Any solution ofx? = 1
(modn) is coprime ton; henceng(n) = Ng(n). For the numbeNg(p?) of solutions of
x> = 1 (mod p?) it is well known thatNg(p?) = 2 (p odd prime,a € N), Ng(2) = 1,
Ng(4) =2,Ng(2/) = 4 (¢ > 3). O

Finally, let j € N be fixed. Group the prime factors ofe N according to the
values gcdp — 1, j) = d and writen = [q|; ng, Where for anyd | j,

k

Ng = p-.
p¥(In

gedp-1,j)=d

COROLLARY 16. For every ne N odd,

(38) i gedk! —1,n) = @(n) [t(nd).
k=1 d

gedkn)=1 !

Proof. Forg(x) =x/ — 1 we haveng(n) = Ng(n) with n(p?) = ged(j, p— 1) for every
p odd prime anca € N. Apply formula (4). Now, forF(n) := y4nng(d) one has
F(p?) =1+agcedj,p—1) = 1(p29cdi-P-1)) for any p odd prime and € N. O

COROLLARY 17 (j = 6). For every ne N odd,
n
(39) Y gedk®-1,n) = gn)t(A°)T(B?),
K

=1
gedk,n)=1

where A is the product, with multiplicity, of the prime fastgp = 1 (mod6) of n, and
B=n/A.
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