
K-Ways Partitioning of Polyhedral Process
Networks: a Multi-Level Approach

Riccardo Cattaneo, Mahdi Moradmand, Donatella Sciuto, Marco D. Santambrogio

Politecnico di Milano, Milan, Italy

{riccardo.cattaneo, donatella.sciuto marco.santambrogio}@polimi.it

mahdi.moradmand@mail.polimi.it

Abstract—Process Networks(PNs)-based models of computa-
tion have proven as a successful framework for describing mul-
tiple kinds of applications in the Reconfigurable Hardware (RH)
domain. Due to their intrinsically parallel and reactive behavior,
and well-known techniques to automatically manipulate some of
their instances, they are very amenable to Field Programmable
Gate Arrays (FPGAs). One problem associated with PNs is
that the number of nodes is usually proportional with the
parallel portions of computation, and a tool to automatically
map tasks to FPGAs is required when multiple FPGAs are
employed to improve performance (via increased parallelism).
While it is possible to solve this problem in an exact manner
via dynamic programming approaches, this is not the case
when practical graphs are under examination, i.e. graphs with
potentially thousands nodes. In this work we extend a well-
known graph partitioning technique, namely Multi-Level K-ways
partitioning algorithm, in order to cope with such scenario.

I. INTRODUCTION

General Partitioning Problem (GPP) plays a major role in

data analysis, machine learning, computer science, engineer-

ing, and related fields. Most graph partitioning algorithms

optimize a ratio between the cut and the size of the partitions,

leading to an NP-Complete problem [1]. However, this makes

it impractical to partition large networks, which is the reason

why an entire field arose to cope with this problem, namely

Approximated Graph Partitioning.

Given an un-weighted graph G with V nodes and E edges

and given a number K, the Graph Partitioning Problem is

to divide the V nodes into K parts such that the number of

edges connecting nodes in different parts is minimized given

the condition that each part contains roughly the same number

of nodes. If the graph is weighted, i.e. the nodes and edges

have weights associated with them, the problem considers the

sum of the weights of the edges connecting nodes in different

parts, while roughly keeping the weights in each partition the

same. The problem can be reduced into one where the graph

is split into N parts and then merging these nodes to build a

smaller graph with fewer nodes, intrinsically easier to partition

in the so called initial partitioning phase. In the approximated

version of this problem, adequate (possibly random) heuristics

are employed to do so [2], [3].

Among the many successful heuristics for partitioning large,

highly interconnected graphs, the Multi-Level Graph Parti-

tioning approach stands apart for both the average quality

of the result (i.e.: difference in the resulting final partitions

and cut sizes and those generated via the solution of an

equivalent optimal problem) and the execution time, usually

confined to few minutes on large instances (millions of nodes

and arcs) on commodity-level machines. In this approach the

graph is recursively contracted to create smaller and smaller

graphs which should reflect the same basic structure as the

input graph [4]. After that, an initial partitioning algorithm

is applied to the smallest graph, in order to obtain a seeding

partitioning. Then, each partition of this initial partitioning is

further de-contracted (un-coarsening) and, at each level, a local

search method is used to improve the subsequent partitioning

(decontraction/uncoarsening step) induced by the coarser level.

The Fiduccia-Mattheyses heuristic for refining the partition

after initial partitioning step is employed in this (and other)

work to improve the edge cut [3].

Although several successful Multi-Level partitioners have

been developed in the last two decades, to the best of our

knowledge, none cope with a specific scenarios. Suppose

to have a graph (G,V) representing an application. Each

node (which we will call process) represents a potentially

recurrent, potentially periodic task, while edges (which we

will call channels) represent FIFOs between processes. In this

scenario, each process is further characterized by an amount

of resources required in order to implement such process p on

an FPGA (Rp), and channels are characterized by an amount

of sustained data transferred. Additionally, we want to fully

exploit this model to compute (i.e. execute processes and data

transfers) in parallel, on a multi-FPGA system. In this case,

between each FPGA involved in the system, only Bmax data

can be transferred each unit of time, and each FPGA has

an amount of resource Rmax. This is a basic yet accurate

representation of the common scenario where a multi-FPGA is

designed. In this case, partitioning of the network (for mapping

purposes) must take into account how many processes can run

onto a single FPGA, and which nodes to map onto which

FPGA, in order to cope with given resource constraints. First

constraint is related to cut size between each pair of final

partitions. In order to meet this constraint we must consider

the cut size not only in the original graph but also between

each final partition, so that the cut size between each pair of

partitions is less or equal to Bmax. The second constraint is

related to resources consumed by each node (and eventually,

by each partition). These two constraints, along with the

problem formulation, makes up for the novel contribution of

this work.

In this work we present an algorithm that seeks and finds the

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.17

182

2015 IEEE International Parallel and Distributed Processing Symposium Workshop

978-1-4673-7684-6/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.17

182

solution of the Approximated Graph Partitioning Problem in

order to satisfy two major constraints that arise when mapping

process networks (like Polyhedral Process Networks or Khan

Process Networks, to name just a few) onto FPGAs. We use

a classical approach to ratio problems where we repeatedly

ask whether the solution is greater than or less than some

constant which refers to our constraints, based on the Multi-

Level Approach.

The rest of the dissertation proceeds as follows. As the state

of art of GPP is vast, Section II presents a thorough review of

it in order to understand where this work fits and what problem

we addressed. Section III reviews, in particular, the basics of

Multi-Level, K-ways partitioning. Section IV describes how

we extended previous work in order to cope with the mapping

problem at hand. Section V presents experimental results, and

the dissertation is ended by Section VI with comments and

future work.

II. RELATED WORK

There has been a large amount of research on GPP so

that we refer the readers to [5]–[7] for most of the material.

Since finding an optimal partitioning is NP-Complete (and is

a well-known, solved problem [8]), one is forced to set up

for approximation algorithms in order to find a solution (even

though non optimal, in the general case) in a practical amount

of time. The part of the investigation in this area concentrates

on approaches to solving the Two-Ways Partitioning Problem

(TWPP) for bi-sectioning the graph (partitioning the graph

into exactly two parts), which is also a NP-Complete Problem.

One of the primary attempts and maybe the most well-known

heuristic algorithm for partitioning graphs was described in

[9], which takes two separate sets as an initial solution of the

problem, and trades pairs of nodes between them in order to

obtain a candidate solution.

Branch and Bound(B&B) strategy solves the partitioning

in the case of K = 2, for general weighted graphs have also

been presented in [10]. Y an and Hsiao have presented a fuzzy

clustering algorithm to solve the GBP and apply it to Circuit

Partitioning [11]. Other authors have been presented methods

based on Genetic Algorithms [12], Divide & Conquer
approximation algorithms [13] and even Ant Colony opti-

mization [14]. Linear programming(LP) methods became

more popular after being shown that they were able to find

better cuts over KL.

Spectral methods additionally got vastly used, since they

were faster and produced great results. These are focused

on the computation of eigenvectors of the adjacency matrix.

Several works have used such techniques like [15]–[17]. As

an alternative, Multi-Level algorithms for partitioning graphs

were initially presented by [18] and [19]. Regularly such

Multi-Leveling systems match pairs of adjacent nodes to define

new merged graphs and recursively iterate this procedure in

order to make a graph with arbitrary nodes. The coarsest graph

is then partitioned and the partitions is refined on all the graphs

back to the original graph.

Besides to heuristics and approximate algorithms for solving

the GPP , many authors have analyzed the lower bounds of

known algorithms and in special case of graphs(e.g. [20] and

[21]).

Since GP is a hard problem, practical solutions are focused

on heuristics. There are two broad categories of methods,

Local and Global which we consider here in greater detail.

A. Local Search Methods

The partitioning can be described as breaking a graph into

sub-graphs and recursively do it in this way under some

constraints in order to make a graph with arbitrary nodes or

less than a specific marginal number. Here we will describe

this problem by a method known as iterative improvement.

The idea behind iterative improvement is to begin with an

initial solution, and make a new solution iteratively until we

have a solution that is “good enough”. Optimality is measured

with respect to a given goodness criteria.

Most iterative improvement techniques are greedy. In a

greedy algorithm, the new solution is accepted only if it

is better than the old one. Non-Greedy methods (like: hill-

climbing algorithms) will sometimes accept a solution that

is worse than the existing solution, the reason being that

hill-climbing algorithms are used is to avoid getting trapped

in local minima. A hill-climbing algorithm can sometimes

climb out of a local minimum and find a better solution by

temporarily accepting a solution that is worse than the existing

solution.

Two well known local methods in the context of iterative

algorithms for GPP are are Kernighan-Lin and Fiduccia-
Mattheyses algorithms, which were the first two-way cuts

heuristics adopted by local search strategies. Their significant

disadvantage is the arbitrary initial partitioning of the node set,

which might have a negative affect on final solution quality.

Broadly speaking, given a partition of a graph, a local search

algorithm tends to enhance an objective function by moving

nodes between partitions. These algorithms let a node move at

most once during one iteration of the algorithm. More costly

local search algorithms such as Tabu Search eliminate this

restriction as far as possible, i.e. a node can be moved different

times during one iteration. However, today majority of the

methods for enhancing a given partition are variations of the

FM algorithm.

1) Kernighan-Lin Algorithm: The Kernighan−Lin(KL)
Algorithm is one the most popular algorithm for the TWPP.

KL algorithm works as follows:

1) The initial partition is generated Randomly. Create two

sub-graphs G1, and G2. If the graph has N nodes, the

first n
2 are assigned to G1, and the rest are assigned to

G2.

2) A solution is acceptable only if both sub-graphs contain

more or less the same number of nodes.

3) The goodness of a solution is equal to the number of

graph edges that are cut between partitions.

4) The technique for generating new solutions from old

solutions is to select a subset of nodes from G1, and

a subset of nodes from G2 and swap them. To maintain

acceptability, we always select two subsets of the same

size.

183183

KL drawbacks are:

1) handling of unit node weights only,

2) handling of exact bi-sections only,

3) time complexity of a pass is high, O(n3).

2) Fiduccia-Mattheyses Algorithm: There have been great

improvements made to the KL algorithm. The most imper-

ative change is a slight adjustment of the algorithm and the

decrease in running time that was provided by Fiduccia −
Mattheyses(FM) [22]. Fiduccia and Mattheyses sug-

gested following modifications:

1) Only one node is moved at a time,

2) The consecutive moves are made in the opposite direc-

tions,

3) The algorithm maintains a sorted list of candidate interior

nodes for moving to the other sub-graph, and updates it

after each move.

They succeed to decrease the complexity for a single pass to

O(n) by using modern data structures. Like the KL strategy,

the FM strategy performs passes where each node is moved at

most once, and the best bi-section observed during an iteration

is used as input for the next iteration. In any case, instead of

selecting pairs of nodes, the FM method chooses just single

nodes for moving. Fiduccia-Mattheyses balanced the algorithm

and adopted adequate date structures such that the asymptotic

running time of their local search algorithm is reduced to linear

time O(n).

B. Global Search Methods

Global search relies on the properties of the entire graph

and do not rely on an arbitrary initial partition.

One such technique (specifically aimed at solving the

TWPP) is to formulate it as a quadratic optimization problem.

However, due to the nature of the optimization problem,

realistic graphs still result unmanageable. For this reason, a

class of graph partitioning methods, called Spectral Methods

– the most common example of which is Spectral Partition-

ing, where a partition is derived from the analysis of the

spectrum of the adjacency matrix – relax this optimization.

Spectral techniques have been enhanced by several works

like [23], [24]. Unfortunately, to the best of our knowledge,

none of the previous methods contemplate the partitioning

of applications in the presence of simultaneous resource and

bandwidth problem constraints (or the equivalente in the

respective formulations).

Other methods contemplate Multi-Way Spectral Bisection

Algorithm and Parallel Graph Partitioning [25], [26] and Multi

Level, K-Ways Partitioning. As this last technique is the basis

for this work, we detail the inner workings in the following

Section.

Previous work – as presented in this brief recall of the

state of art – focuses on heuristically minimizing the cut

size associated to the partitionings found. However, as the
techniques focus on such minimization, to the best of our
knowledge, none address the problem that we approach in this
work: a cut size minimization algorithm with novel constraints
tightly related to the reconfigurable hardware domain.

Initial Partitioning Phase

C
oa

rs
en

in
g

Ph
as

e

U
n-C

oarsening Phase

Fig. 1: Multi-Level Scheme [27]

III. MULTI-LEVEL, K-WAYS PARTITIONING

[19] formulated this strategy as it is known now. The Multi-

Level approach to GP comprises of three main phases, which

are reported in Figure 1.

In the contraction (coarsening) phase, a hierarchy of

graphs is created. The most common way to build this hier-

archy is to iteratively identify matching M ⊆ E and contract

the edges in M . Contraction should rapidly reduce the size of

the input and each computed level should reflect the global

structure of the input network.

Contraction is halted when the graph is small enough to

be directly partitioned using some costly other algorithm like

the ones described in the previous Section (such as KL, FM
algorithms and spectral partitioning).

In the un-coarsening phase, matching nodes and arcs –

which had been previously been merged together in the

coarsening phase – are iteratively un-coarsened.

During un-contraction of matching graphs, a local improve-

ment algorithm moves nodes between partitions to enhance

the cut-size or balancing constraint. Generally variants of the

FM algorithm are used. The vision behind this technique is

that a good partition at one level will also be a good partition

on the next finer level, so that local search will rapidly find

a good solution. Moving a node on a coarse level hierarchy

typically corresponds to the movement of a whole set of node

movements of the finest level of the hierarchy. Intuitively, the

Multi-Level scheme has a global view on the optimization

problem on the coarse levels of the hierarchy and a very local

view on the finest levels with respect to the primary one.

[15] is the first work to report a linear time O(n) imple-

mentation of this scheme to obtain K − Partitions (using

Recursive Multi-Level Bi-section only on the coarsest level

and a direct K − Way local search algorithm). A variant

of the Multi-Level algorithm has been proposed in [2]. Their

n− level approach is based on the extreme idea of contracting

only one single edge between two consecutive levels of the

Multi-Level hierarchy. During un-coarsening, local search is

done highly localized around the un-constructed edge. Using

complicated data structures their algorithm requires sub-linear

time on real graphs.

184184

Compared with Multi-Level Spectral Bisection, Multi-Level

K-Way partitioning is usually two orders of magnitude faster,

and produces partitioning with generally smaller edge-cuts.

This is why we employed this basic scheme for the imple-

mentation of our partitioning algorithm, which is described in

Section IV.

IV. ALGORITHM’S INTERNALS

The proposed method is based on a variant of the aforemen-

tioned Multi-Level, K-Ways Partitioning (MLKWP) scheme.

In the proposed algorithm, the input graph is coarsened to

a parametrized size (default is 100). However, it is not un-

coarsened and refined back to the original graph in just one

step. Rather, it is un-coarsened up to a certain intermediate

level and then coarsened back to the lowest level if needed.

This process of un-coarsening and refining up to an intermedi-

ate level and coarsening again to the lowest level is repeated a

number of parametrized times, depending on whether we are

already meeting the constraints or not.

At each iteration, we generate different intermediate cluster-

ings, that are compare a posteriori using a goodness function;

the best (i.e. the one that is nearest to meeting the constrains) is

chosen as the ”correct” intermediate un-coarsening candidate.

This step incentives rapid convergence while accounting for

broad exploration of different clusterings.

After the coarsening phase, we try to meet the K different

partitions with the help of initial partitioning phase.

A. Coarsening Phase

In the coarsening phase we use three type of different

matchings in order to better explore different results given

multiple search strategies:

• Random Maximal Matching,

• Heavy Edge Matching,

• K-Means Matching.

Random Maximal Matching Nodes of a graph are randomly

visited. If there is a node u which is not matched, then one of

its un-matched neighboring nodes is randomly selected. Two

nodes are said to be adjacent if there exists an edge that is

incident to those two nodes. If there exists such a node v,

the edge (u, v) is included in the matching and the nodes u
and v are marked as matched. Node u remains un-matched

in the random matching if there is no un-matched adjacent

node v. The goal in the GP is to minimize the sum of the

weights of the edges between the nodes on the boundary of the

parts of the graph. Using a randomized algorithm, a maximal

matching can be found so a randomized matching method may

not always produce satisfactory results for every graph. In

order to decrease the edge cut value, heavy edge matching

[3] can be used.

Heavy Edge Matching As the name suggests, the edges

are sorted according to their weights and matching begins

by selecting the heaviest edge. All the edges are visited in

descending order and edges with un-matched end points are

selected. This heuristic is used when the graph size has been

reduced substantially so that not much work is done in sorting

the edges.

K-Means Matching Clusters are formed on the basis of

their weight; a subset of near nodes is chosen accordingly.

The main objective and theme of this method is to divide

the graph into smaller partitions and based on the concept

that it first divides the problem into multiple sub-partitions by

dividing the total number of the nodes by the number of sub

problem you want and assign the nodes to the partitions which

is near to the specific cluster [28].

We use in this work all three heuristics algorithms (Random,

HEM, K-Means) to get the matching. These heuristics are

employed at different times, multiple times, in order to find

the best matching for the given graph. Each time we compare

the results of the three heuristics with each other and choose

the best one.

Once we obtain the matching of nodes to coarsened graphs,

we create a map from the nodes in the un-coarsend graph to

those in the coarsened graph. Then, using the matches and the

map, the coarser graph is built, ready for the next iteration of

the coarsening step. Thea adjacency matrix of the coarsened

graph is adjusted according to the new incidence between

coarser nodes in the graph. The edge weights, in particular, are

all copied over but when the matched nodes have a common

neighbor: in this case weights are merged into one and the

new edge has a weight equal to the sum of the weights of the

merged edges. Similarly, the new node gets the sum of the

weights of the merged nodes. Any duplicate edge resulting

from the process is merged together with their weights added.

The coarsening phase of our algorithm continues until few

nodes remain (for example 100 nodes – this is a parameter

in our implementation). The resultant most coarsened graph

is considered an initial partitioning for the initial partitioning

phase.

B. Initial Partitioning Phase

After reducing the original graph into multiple sub-

partitions we produce an initial partitioning of it, with a

number of partitions much lesser than the required one.

We adopt a greedy approach, as it is a heuristic that usually

yields good results. Specifically, we partition the graph in such

a way that we have a balanced number of resources in each

part (note how balancing resources is not a priority in our case,

while meeting the resource and bandwidth constrain is). After

that, we check the bandwidth between each pair of partitions

and use the FM algorithm to meet the bandwidth constraint.

We start off with the heaviest nodes. After finding the

heaviest one, we’ll take it in the first partition among K

partitions available and add its neighbors (which are connected

via edges to this node) as long as the total number of resources

assignable to each partition (Rmax) is not violated. After this

we apply the same for the other partitions as far as all nodes

assigned to exactly one partition. Since this method is sensitive

to the initial node selection, the whole process is repeated with

a parametrized number of randomly chosen initial nodes (10

is default). Since the coarsest graph is no more than a few

hundred nodes (100 is our default), running this algorithm K

times does not add much to the total partitioning cost. The

final partitioning that gives the best cut-size is returned.

185185

After this allocation we pay attention to the remaining nodes

(if any) which are not assigned to any partitions. First we try to

put each remaining node in accordance to its resources to the

first partition which has biggest free space for that node and do

it for all remaining nodes. If after this step there are still nodes

to assign, we assign each node to the partition which has the

biggest free space even though this implies violating the Rmax

constraint. After this step we check the Bandwidth between

each pair. If it doesn’t meet the constraints we use an FM-

based algorithm to minimize it as far as possible. Partitions

will be changed and nodes will move between partitions as

far as constraints met.

We then un-coarsen as necessary, as described in the next

Section, in order to obtain the right number of partitions, each

meeting the constraints.

C. Un-Coarsening Phase

During the un-coarsening (refining) phase, the initial parti-

tion of the coarsest graph is projected onto the lower level,

finer graph. This procedure is repeated until a partition is

projected onto the top level graph and is refined to obtain

the final partition and cut-size and resource allocation for the

graph. The mapping vector is used to project the coarse graph

partition onto the finer graph. But if we do not met constraints,

we go back to coarsening phase and then partitioning phase

(randomly), cyclically. If after a predetermined number of

iterations a feasible partitioning is still missing, a message

will signal that partitioning with these constraints is either

impossible or we have to give the tool more time (i.e.:

iterations) to compute such solution.

V. EXPERIMENTAL SETTING

We compare METIS and GP using random generated

graphs. We employ particularly small instances in the fol-

lowing part of this Section in order to visualize the different

behavior of the two tools when partitioning the given net-

works. In all cases, these graphs represent Process Networks

generated via suitable tools. Each process (i.e.: node) is

characterized by an amount of resources required to implement

such process on an FPGA (only one resource is considered at

this time, for example LUTs) and each channel (i.e.: edge)

is characterized by an amount of bandwidth consumed. Only

bandwidth outgoing from and incoming to different partitions

consume bandwidth – we assume that there is enough band-

width on the FPGA to sustain enough computation between

nodes belonging to the same partition (i.e.: FPGA).

We synthetically generated few graphs with the following

goal in mind: to demonstrate that GP can always partition
the given network while respecting resource and bandwidth
constraints (or fail while doing so) while METIS always par-
titions, regardless of said constraints. Graphs are represented

as incidence matrices, and are given as inputs to MATLAB.

Table(5.1)∼Table(5.3) compare the results obtained run-

ning both METIS and GP. Various GP parameters are used

across all experiments . For METIS, we used the default

parameter values and decode the results in Matlab in order

to compare the results with GP.

We compare:

1) Local Edge Cut (i.e. bandwidth insisting between each

pair of partitions),

2) Maximum Resources Allocation (i.e. the maximum

amount of resources consumed by all partitions),

3) Algorithm’s Execution Runtime,

4) Global Edge Cut Sum.

The machine we employed is a 2.53 GHz Intel(R) Core(TM)

i5-M 460 CPU with 8GB RAM running Ubuntu14.0464bit.
The code runs under MATLABR2013a. METIS5.1.0 is

used for comparisons. We refer to the Graph Partitioner of

this work as GP.

A. Experiment 1

We consider a graph with 12 nodes and 33 edges for the

first experiment. Maximum bandwidth constraint is 16 units.

Maximum resources constraint is 165 units.

As it is possible to see in experimental table I – red font

– METIS violates both constraints while GP meets both of

them. However, the size of the cut is slightly bigger for GP,

which is a consistent result as METIS tries to minimize the

overall cut, but generally violating bandwidth and/or resource

constraint. GP does not violate any partition-to-partition band-

width constraint, but it fails at globally minimizing the edge

cut. Actually, it does, under the bandwidth constraint.

Figure 2 reports the unpartitioned graph (radius of nodes

proportional to weight), Figure 3 the same graph with weight

and edges allocation, Figure 4 partitioning with GP, and Figure

5 partitioning with METIS.

B. Experiment 2

In Table II we consider a graph with 12 nodes and 30

edges for the second experiment. We apply the following

constraints: 25 for bandwidth and 130 for resources. METIS
violates bandwidth while meeting (incidentally) resources,

while, again, GP meets both of them.

Incidentally, the local refinement strategy employed trans-

lates, in this graph, in a better overall global cut, as reported

in Table II.

Figure 6 reports the unpartitioned graph (radius of nodes

proportional to weight), Figure 7 the same graph with weight

and edges allocation, Figure 8 partitioning with GP, and Figure

9 partitioning with METIS.

C. Experiment 3

In the last experiment, whose data are shown in Table III ,

we consider a graph with 12 nodes and 32 edges. I apply the

following constraints: 20 for bandwidth and 78 for resources.

METIS violates bandwidth while meeting (incidentally) re-

sources, while, again, GP meets both of them.

Figure 10 reports the unpartitioned graph (radius of nodes

proportional to weight), Figure 11 the same graph with weight

and edges allocation, Figure 12 partitioning with GP, and

Figure 13 partitioning with METIS.

186186

Fig. 2: Un-partitioned sample graph 1 before weighting and resource allocation.

��
��

��

��

�����

��

��

��

��

��

��

��

��

��
��

��

��

��

�� �� ��
��

��

��

��

�

�	�

��

��

��

��

���

��

���

���

���

���
���

��

��

���

���

��

��

Fig. 3: Un-partitioned sample graph 1 after weighting and resource allocation

�

��������

������	�

������
�

���

���

���

���

��

����

����

����

��

������
���

	��

��

���

��

		�

��

���

���

��������

����

Fig. 4: Partitioning of the sample graph 1 with GP algorithm, both constraints are
met, constraints are : bandwidth = 16 and resources = 163.

�

��������

������	�

������
�

�
�

��

��

��

���

�
��
����

����

����

��� ���

��

���

���

��� ���

��

���

���
��

���

�

��������

Fig. 5: Partitioning of the sample graph 1 with METIS algorithm, both constraints
are violated, constraints are : bandwidth = 16 and resources = 163.

D. Summary

As it is possible to see from experimental Figures and

summary Tables, GP can always (on the test cases) partition

without violating given constraints, which is not guaranteed to

be true with METIS. Additionally, in our test cases the increase

in cut size is near to negligible; however, this might not be

the case if we employed stricter constraints.

VI. CONCLUSIONS

We presented a novel approach to partitioning a process

network in the presence of simultaneous bandwidth and re-

source constraints, based on the Multi-Level, K-Ways ap-

proach already known in literature. We developed a tool that

extends METIS in that it copes with situations where par-

titioning must happen within precise bandwidth and resource

constraints. Future work contemplates the test of this system

on actual multi-FPGA based systems where the mapping of

potentially large application graphs (process networks) is a

difficult task to do by hand.

REFERENCES

[1] E. Mezuman and Y. Weiss, “Globally optimizing graph partitioning
problems using message passing,” in Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, 2012.

[2] V. Osipov and P. Sanders, “n-level graph partitioning,” In Proceedings
of the 18th European Conference on Algorithms: Part I, vol. 6346, pp.
278–289, 2010.

[3] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” Society for Industrial and Applied
Mathematics Journal of Scientific Computing, vol. 20, pp. 359–392,
1998.

[4] P. Sanders and C. Schulz, “Distributed evolutionary graph partitioning.”
SIAM.

[5] P. O. Fjällström, “Algorithms for graph partitioning : A survey,”
Linköping Electronic Articles in Computer and Information Science,
vol. 3, 1998.

[6] K. Schloegel, G. Karypis, , and V. Kumar, “Graph partitioning for
high performance scientific simulations,” In The Sourcebook of Parallel
Computing, pp. 491–541, 2003.

[7] C. Bichot and P. Siarry, Graph Partitioning, 2011.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: application in vlsi domain,” Proceedings of the
34th annual Design Automation Conference, p. 526ñ529, 1997.

[10] C. Roucairol and P. Hansen, “Cut cost minimization in graph partition-
ing,” Numerical and Applied Mathematics, pp. 585–587, June 1989.

[11] J. Yan and P. Hsiao, “A fuzzy clustering algorithm for graph bisection,”
Information Processing Letter, vol. 52, December 1994.

[12] T. N. Bui and B. R. Moon, “Genetic algorithm and graph partitioning,”
IEEE Trans-actions on Computers, vol. 45, no. 7, July 1996.

[13] S. R. G. Even, J. Naor and B. Schieber, “Fast approximate graph
partitioning algorithms,” In SIAM Journal on Computing, vol. 28, pp.
639–648, July 1997.

[14] T. N. Bui and L. C. Strite, “An ant system algorithm for graph
bisection,” In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’02), W. B. Langdon et al. (Eds.), pp. 43–51, 2002.

[15] B. Hendrickson and R. Leland, “An improved spectral graph partitioning
algorithm for mapping parallel computations,” SIAM Journal on Scien-
tific Computing, vol. 95, pp. 452–469, 1995.

187187

Fig. 6: Un-partitioned sample graph 2 before weighting and resource allocation.

��

���
��

��

��

���
��

��

��

��

��

��

��

���

��

�� ���

���

��

��
���

��

�	�

���
��

��

���

��

���

��

���

��

���
��

���

��

���

��

�	�

�
�

���

���

Fig. 7: Un-partitioned sample graph 2 after weighting and resource allocation.

������
�

���

���

���

��

��

��� �	��

����
��
�

���

���

��

��� �
�

��

��� ��
���

���

��

�	�

��������

��������

������	�

Fig. 8: Partitioning of the sample graph 2 with GP algorithm, both constraints are
met, constraints are : bandwidth = 25 and resources = 130.

������
�

���

���

���

��
�
����

���
����

�
�

�	�

���

���

���

���
��

��� ����� �� ��

��������

��������

������	�

Fig. 9: Partitioning of the sample graph 2 with algorithm, resources is violated
while bandwidth is met, constraints are : bandwidth = 25 and resources = 130.

Fig. 10: Un-partitioned sample graph 3 before weighting and resource allocation.

��

��

��
��

��

��

��

��

��

��

��

��

��
��

��

��

��
��

��

��

��

��

��

�

��

��

��

��

��

��

�� ��

�� ��
��

��

��

��

��

���

���

���

�
���

���

���

�
�

�	�

�	�

���

�

�

�

�

�

�

�

�

�

�

Fig. 11: Un-partitioned sample graph 3 after weighting and resource allocation.

���

���

��

���

��

��

��

��

���
���

�
�

�	�

���

���

���
���

��

�

�	�

���

��������

������	� ������
�

��������

Fig. 12: Partitioning of the sample graph 3 with GP algorithm, both constraints
are met, constraints are : bandwidth = 25 and resources = 130.

��

�	�

��

��

���

��

���

�	�

���

���

���

�
�

�	�

���

�

���

��� �

��������

������	� ������
�

��������

Fig. 13: Partitioning of the sample graph 3 with METIS algorithm, resources is
violated while bandwidth is met, constraints are : bandwidth = 25 and resources
= 130.

188188

K = 4

Algorithms
Total

Edge-Cuts

Total

Time(S)

Maximum

Resource

Allocation

Maximum

Local

bandwidth

METIS 58 0.02 172 20

GP 70 0.33 163 16

EXPERIMENT I: Number of Nodes = 12, Number of
Edges = 33, both constraints are violated in METIS and
in GP both constraints are met.

K = 4

Algorithms
Total

Edge-Cuts

Total

Time(S)

Maximum

Resource

Allocation

Maximum

Local

bandwidth

METIS 77 0.02 137 25

GP 62 0.25 127 18

EXPERIMENT II: Number of Nodes = 12, Number of
Edges = 30, resource is violated in METIS but bandwidth
is met and in GP both constraints are met.

K = 4

Algorithms
Total

Edge-Cuts

Total

Time(S)

Maximum

Resource

Allocation

Maximum

Local

bandwidth

METIS 90 0.02 78 38

GP 96 7.76 76 19

EXPERIMENT III: Number of Nodes = 12, Number of
Edges = 32, bandwidth is violated in METIS but resource
is met and in GP both constraints are met.

[16] F. Rendl and H. Wolkowicz, “A projection technique for partitioning the
nodes of a graph,” Annals of Operations Research, vol. 58, pp. 155–179,
1995.

[17] S. T. D. A. Spielman, “Nearly-linear time algorithms for graph partition-
ing, graph sparsification, and solving linear systems,” In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing, pp. 81–90,
2004.

[18] S. T. Barnard and H. D. Simon, “A fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems,” In
Proceedings of the 6th SIAM Conference on Parallel Processing for
Scientific Computing, pp. 711–718, 1993.

[19] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graphs,” In Proceedings of the ACM/IEEE Conference on Supercomput-
ing, p. 626ñ657, December 1995.

[20] R. K. U. Feige and K. Nissim, “Approximating the minimum bisection
size (extended abstract),” In Proceedings of the 32nd Annual ACM
symposium on Theory of computing, May 21-23 2000.

[21] R. H. E. M. Arkin, “Graph partitions with minimum degree constraints,”
Journal of Discrete Mathematics, pp. 55–65, August 1998.

[22] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partition,” in Proc. 19th Design Automation Conf.,
pp. 175–181, 1982.

[23] R. B. Boppana, “Eigenvalues and graph bisection , an average-case
analysis (extended abstract),” In Proceedings of the 28th Symposium
on Foundations of Computer Science, pp. 280–285, 1987.

[24] A. Pothen, H. D. Simon, and K. P. Liou, “Partitioning sparse matrices
with eigenvectors of graphs,” SIAM Journal on Matrix Analysis and
Applications, vol. 11, pp. 430–452, 1990.

[25] S. Barnard, “Pmrsb: Parallel multilevel recursive spectral bisection,” In
Proc. Supercomputing, 1995.

[26] J. Gilbert and E. Zmijewski, “A parallel graph partitioning algorithm
for a message-passing multiprocessor,” International Journal of Parallel
Programming, pp. 498–513, 1987.

[27] P. K. AURORA, “Multi-level graph partitioning,” 2007.

[28] M. U. Khan, “Use multilevel graph partitioning scheme to solve traveling
salesman problem,” Master’s thesis, Department Of Computer Engineer-

ing, Dalarna University, Sweden, 2010.

189189

