
Dynamic Combinatorial Optimization:

a complexity and approximability study

David Adjiashvili

Institute for Operations Research (IFOR)
Eidgenössischen Technischen Hochschule (ETH) Zürich

Rämistrasse 101, 8092 Zürich, Switzerland
Email: david.adjiashvili@ifor.math.ethz.ch

Sandro Bosio

Institute for Operations Research (IFOR)
Eidgenössischen Technischen Hochschule (ETH) Zürich

Rämistrasse 101, 8092 Zürich, Switzerland
Email: sandro.bosio@ifor.math.ethz.ch

Robert Weismantel

Institute for Operations Research (IFOR)
Eidgenössischen Technischen Hochschule (ETH) Zürich

Rämistrasse 101, 8092 Zürich, Switzerland
Email: robert.weismantel@ifor.math.ethz.ch

Abstract

Dynamic optimization problems are widely studied in many areas of mathematics and
control theory. However, relatively little is known about dynamic counterparts of purely
combinatorial problems, except for specific structures such as network flows and scheduling
problems. This paper introduces a general setting for studying and analyzing over-time
versions of combinatorial optimization problems. We provide an extensive complexity study,
including a widely applicable oracle-based approximation algorithm.

In a combinatorial problem P we are given a set system (A,X) and a linear weight
function w, and the goal is to find a solution S ∈ X with maximum weight w(S). Given a
time window W = {1, . . . , T} and durations τa ∈W for each a ∈ A, in the temporal extension
of P we search for a solution over time with maximum weight over time. A solution over
time is a collection of static solutions St ∈ X , one for each t ∈ W , such that for each a ∈ A
the set of time points {t ∈ W : a ∈ St} at which a is selected is a disjoint union of intervals
of length τa. Informally, each ground-set element can be selected any number of times within
the time window W , but whenever it gets activated it must remain selected for its whole
duration. The weight over time is simply defined as

∑
t∈W w(St).

Our main result is an αβ-approximation algorithm, with α ≈ 1.691030, for the rather
general case in which (A,X) is an independence system and P admits a β-approximation
algorithm. This algorithm considerably generalizes the α-approximation total-value heuristic
by Kohli and Krishnamurti (1992) for integer knapsack. We discuss the connection to the
integer knapsack and mention applications to scheduling and orthogonal rectangle packing.

1 Introduction

The need to model the temporal dimension in real-world applications has sprung the development
of several new branches in combinatorial optimization. While such extensions have been studied
in depth in some fields, scheduling and network flow theory being notable examples, other areas
of combinatorial optimization did not receive a similar attention. This paper aims at reducing
the gap, presenting a new model for extending combinatorial optimization problems over time
that has natural applications in scheduling, packing, and knapsack problems.

Let (A,X) be a set system defined by a finite ground set A and a family X of feasible subsets1

of the ground set. Given weights wa ∈ Q for each a ∈ A, the standard linear maximization
problem associated with (A,X) is to find an element S ∈ X with maximum weight w(S) =∑

a∈S wa. Let [n] denote the set {1, . . . , n}, for n ∈ N+. Given a total duration T ∈ N+ and a
duration τa ∈ [T] for each a ∈ A, we define the corresponding linear maximization problem over
time as the problem of finding a collection S = (S1, . . . , ST) such that

1) St ∈ X for every t ∈ [T], and

2) for each a ∈ A the set {t : a ∈ St} is the disjoint union of intervals of length τa, i.e., the
disjoint union of sets {δai , . . . , δai + τa − 1}, where δai are called activation times,

so as to maximize the weight over time w(S) =
∑

t∈[T]w(St) of the solution. For brevity we will
refer to the time extension of a problem P by “P over time”. We will use uppercase letters to
denote solutions of P (sometime denoted static solutions), and use calligraphic uppercase letters
to refer to “solutions over time”, that is, solutions satisfying conditions 1) and 2). To avoid any
misunderstanding, we warn the reader that the network flow over time problems that can be
derived from this definition are not the standard network flow over times problems studied in
the literature, which use a temporal extension that is unique to flows and not directly applicable
to other problems. We will remark more on flows over time later in the paper.

A solution over time can be seen as an |A|×T binary matrix (xat), where each column x·t is
the incidence vector of some S ∈ X , and in each row xa· any maximal consecutive-one sequence
has length multiple of τa (see Figure 1). An informal phrasing of condition 2) is that whenever
an element is activated it remains in the solution for exactly τa time units, after which it becomes
inactive and can be reactivated again at any later time. A more formal equivalent definition is
that each row xa· corresponds to a solution of an integer knapsack with a single item of size τa
and knapsack capacity T , where xat = 1 if the knapsack position t is occupied and 0 otherwise.

As T is an integer parameter in the input, an explicit description of a solution over time
would in general be exponential in the input size. To avoid confusion with output-polynomial
algorithms, we stress here that all algorithms described in this paper run in input-polynomial
time, as the solutions over time they provide can be encoded efficiently. The study of output-
polynomial algorithms is an interesting direction for future work.

Deciding if a solution over time exists for a generic set system is NP-hard. In this paper we
focus our attention mostly on independence systems, for which existence of a solution is always
guaranteed. Let us recall that (A,X) is an independence system (IS) if X ∈ X and Y ⊆ X imply
Y ∈ X . Since optimizing over an IS is NP-hard in general (the set of all cliques of a graph is
an IS), the over-time case will be just as hard, as for T = 1 it reduces to the static case. The
following stronger negative result can be stated.

1For the sake of simplicity we consider simple subsets, but all results can be directly extended to consider
multisets. Note also that multisets can be directly modeled into the current notation by suitably expanding A
with additional elements, if multiplicity upper bounds are known.

1

e1

e2 e3

e4

1 2 3 4 5
e1
e2
e3
e4

(xat)

S

τe1 = 3

τe2 = 2

τe3 = 2

τe4 = 2

1 1 1 0 0

1 1 0 1 1

0 0 1 1 0

0 1 1 1 1

Figure 1: A graph (left) and a corresponding forest over time (right) for T = 5. Edge durations are
shown in the figure. The matrix elements corresponding to activations are shaded in gray. Assuming
uniform edge weight 1, this forest over time has total weight 13, which is also maximum.

Theorem 1. The linear maximization problem over time is APX-hard, even if T = 3, (A,X)
is an IS, and the linear maximization problem on (A,X) is in P.

The assumption T = 3 cannot be improved, as even for a generic set system for T < 3 the
problem over time is not harder than the original problem.

Theorem 2. Given a set system (A,X) for which the linear maximization problem admits a
polynomial time β-approximation, if T < 3 the corresponding linear maximization problem over
time admits a polynomial time β-approximation.

Moreover, if the linear maximization problem admits a constant factor approximation, then
APX-hardness cannot be strengthened either. This is a consequence of the main result of this
paper, which we state hereafter.

Theorem 3. Given an IS (A,X) admitting a polynomial time β-approximation algorithm for
linear maximization, with β = β(A,X), the corresponding linear maximization problem over
time admits a polynomial time αβ-approximation algorithm, with α ≈ 1.691030.

The reason for stating Theorem 3 with respect to a β-approximation algorithm is twofold.
On the one hand it allows to state a result also for an IS for which linear maximization is
NP-hard, but that admits an approximation algorithm. On the other hand, we can consider
multi-dimensional extensions without extra effort. Indeed, consider the set of feasible solutions
over time corresponding to some given IS. It is easy to see that this feasible set is again an IS, as
removing an occurrence of an element a ∈ A from a solution over time (which means removing
a from some activation time t up to t + τa − 1) still gives a feasible solution over time. We
can hence treat the time extended version of the problem as an IS with an approximate linear
optimization oracle and extend it using the same algorithm along another dimension.

The exact value of α in Theorem 3 is α =
∑∞

i=1 1/si, where {si}i∈N+ is the sequence defined
recursively by s1 = 1 and sn+1 = sn(sn + 1) for n > 2. The sequence {si + 1}i∈N+ is known as
Sylvester’s sequence (see [23] for references regarding both sequences). The constant α appears as
the approximation guarantee of several well-known algorithms, including the total-value heuristic
for integer knapsack [15] and the Harmonic algorithm for Bin Packing [19]. As will be discussed
in more detail later, the link with integer knapsack is more than just casual. The algorithm on
which Theorem 3 is based is a generalization of the total-value heuristic. Moreover, choosing
as IS the uniform matroid of rank one, the resulting linear maximization problem over time is
exactly the integer knapsack, so that the result in [15] can be seen a corollary of Theorem 3.

The integer knapsack can be seen as the 1-dimensional version of the d-dimensional orthogo-
nal integer knapsack, which consists in filling a d-dimensional container with d-dimensional boxes

2

without rotation (note that this problem is different from the so called multi-dimensional integer
knapsack, where one has to satisfy several simultaneous knapsack criteria). This problem is also
known as the unbounded orthogonal rectangle packing problem. The binary case, in which each
box can be used at most once, has been studied in several contexts (see e.g. [7, 8] and the refer-
ences therein). The 2-dimensional binary case was studied by Jansen et al. [13], who proposed
a (2 + ε)-approximation algorithm. Recursively applying Theorem 3 (extended to ISs defined
on multisets) we directly obtain an αd-approximation algorithm for d-dimensional orthogonal
integer knapsack. Moreover, as the integer knapsack admits an FPTAS (see e.g. [12, 18]), we
can state the following stronger corollary of Theorem 3, which to the best of our knowledge is
the first nontrivial approximation algorithm for this problem:

Corollary 1. The d-dimensional orthogonal integer knapsack admits an αd−1(1+ε)-approximation
algorithm for any ε > 0.

We mention here a second application of Theorem 3. Consider a factory with a set M of
machines, where a set A of goods can be produced. Each good a ∈ A has a profit wa, and the
production of a unit of good a requires the cooperation (or joint operation) of a certain subset
Ma ⊆M of the machines, and occupies these machines for a certain production time τa (without
preemption). Goods can be produced in any quantity, and each machine can work on at most
one good at any given time. Assume that the factory is rented for a certain period of T time
units. It is required to find a production schedule that maximizes the total profit within the
time window [T]. We call this problem Cooperative Scheduling (CS).

It is easy to see that, by identifying M with a vertex set and each Ma with an hyperedge,
CS can be easily seen to be the maximum weight hypergraph matching problem over time, as
we want to find a collection of hypergraph matchings (subsets of goods that require no common
machine), for each time t ∈ [T], that satisfy conditions 2). Using the (k+1

2 + ε)-approximation
algorithm for k-uniform weighted hypergraph matching [4], and using a polynomial time algo-
rithm for the classical weighted matching problem, we can state the following two corollaries of
Theorem 3.

Corollary 2. When |Ma| 6 k for all goods a ∈ A, CS admits an (αk+1
2 + ε)-approximation

algorithm.

Corollary 3. When |Ma| 6 2 for all goods a ∈ A, CS becomes the weighted matching problem
over time, and hence admits an α-approximation algorithm.

We remark here that the weighted matching problem over time is APX-hard. This result,
which implies Theorem 1, is stated hereafter and proved in the appendix.

Theorem 4. Finding a maximum weighted matching over time is APX-complete, even if T = 3,
G is a bipartite graph, ∆(G) = 4, and wa = 1 for all a ∈ A.

Algorithms for many generalizations of CS can be directly derived as well. For example,
Corollary 3 can be extended to the case in which each machine can process at most bi ∈ N+

goods at the same time, which is the weighted b-matching problem over time and hence admits
an α-approximation algorithm as well.

The rest of the paper is organized as follows. Section 2 reviews related work. In Section 3,
after stating some preliminary results for time expansions of both general set systems and ISs, we
describe the algorithm on which Theorem 3 is based and prove the αβ approximation guarantee,
leaving the proofs of some technical claims in the appendix. Finally, Section 4 summarizes the
contribution and discusses open questions and further research directions.

3

2 Related Work

We start reviewing some related work on the integer knapsack. The integer knapsack is weakly
NP-hard, and admits a pseudo-polynomial time algorithm as well as an FPTAS [12, 18]. More
relevant for this paper, however, are the approximation guarantees obtained by greedy ap-
proaches. The classic density-based greedy algorithm is a 2-approximation algorithm, and the
total-value heuristic improves this to an α-approximation algorithm [15]. These heuristics will
be reviewed in more detail in the next section, where they will be generalized to IS linear maxi-
mization problems over time. For both these algorithms the approximation factor is guaranteed
by a single greedy iteration, which selects one specific item and fills as much left capacity as
possible. Iterating the process with respect to the remaining capacity can improve the solution,
but does not improve the worst case analysis. Iterative versions are however required for the
joint analysis of these two algorithms, for which an approximation guarantee of 1.5 was proved
in [16]. The average-case behavior of these algorithms was studied in [17].

Flows over time are a well-known temporal extension of network flows. The field originated
from a seminal paper by Ford and Fulkerson [9] which extended the standard maximum flow
problem, showing that computing a single minimum cost static flow and constructing a corre-
sponding “temporally repeated” flow gives an optimal flow over time (referred to as dynamic
flow in the paper). In network flows the classic temporal extension makes the rather natural as-
sumption that flow needs a given time τe to move from the source to the sink of an edge (think
about vehicles moving along a transportation network for the discrete case, or liquids/gases
moving into pipes for the continuous case). As such, discrete-time dynamic flow problems can
be stated as standard flow problems on a temporally expanded network, and hence typically
admit a pseudo-polynomial time algorithm. Following our definition, the temporal extension of
network flows would have instantaneous flow transmission and additional temporal conditions
on flow activation. This makes the problem closer to a path scheduling problem than to a flow
problem. As such, the definition “flows over time” should be reserved for the classical temporal
extension of flows. For an extensive review of flows over time we refer to [22]. We refer to [14] for
a recent development combining discrete and continuous flows over time in a unique framework.

In scheduling theory the dimension of time is inherent in most problems. We refer the reader
to the book of Pinedo [21] for a thorough treatment of this topic. The scheduling problems which
are most relevant to this work are profit maximization scheduling problems [3, 2, 5], in which
not all given jobs need to be processed. Instead, each job is associated with a certain profit
that is gained in case it is completed before its deadline. Jobs can also have different release
times and time-dependent profits. Further variants of the problem are achieved by specifying
the number of available machines, whether the machines are identical or unrelated, etc. To
the best of our knowledge the problem CS was not studied previously. CS can be viewed as a
throughput maximization problem with identical release times and deadlines for all jobs, with
time-independent profits and processing times. On the other hand the resource constraint is
significantly more general than the one considered in most scheduling problems: while most
scheduling problems specify a knapsack-type constraint on the total work performed in each
time step (typically given by a number of available machines), CS requires that the set of jobs
active at any given time is an element of an IS. The latter type of constraint is relevant in
applications in which the set of resources is highly non-homogeneous, and every resource has a
very specific utilization. In such applications resources are not interchangeable, hence a given
job requires a predetermined subset of the resources to be processed.

A time extension of the matroid intersection problem was considered in [10]. Given two
matroids M1 = (A, I1) and M2 = (A, I2), installation times τ : A → N+ and a total duration

4

T ∈ N+ the goal is to find T elements X1, . . . , XT ∈ I1 satisfying the following additional
conditions. Let Yt ⊆ A be defined as the set of elements a ∈ A such that a ∈ Xt−τa . Then
Y1, . . . , YT ∈ I2. Furthermore, if a ∈ Xt it must hold that t+ τa 6 T . A polynomial algorithm is
obtained via a reduction to an ordinary matroid intersection problem on certain time-expanded
matroids, and some applications are mentioned. This work was generalized in [11].

3 Results

Consider a set system (A,X) corresponding to some combinatorial problem P, and let weights
w, durations τ , and a total duration T be given. While deciding if a solution over time exists
for a general set system is NP-hard, even if P is polynomial time solvable, we can nevertheless
state some simple positive conditional results. For T = 1 the problem P over time is simply the
original problem P. The following proposition asserts that, in general, if all durations divide T ,
then the complexity of P over time is the same as the complexity of P for any problem P.

Proposition 1. If all durations τa divide T , then a maximum weight solution over time can be
derived by computing a single static maximum weight solution.

Proof. Let S∗ ∈ X be a maximum weight solution. For any solution over time S we have the
trivial upper bound w(S) 6 Tw(S∗), as w(St) 6 w(S∗) for all t ∈ [T]. As τa divides T for very
a ∈ A, it is easy to see that S∗ = {St = S∗, t ∈ [T]} is a feasible solution over time of value
w(S∗) = Tw(S∗), hence it is also optimal.

A direct corollary of this is the following.

Corollary 4. Let S∗ be an optimal solution for P, and G∗ be an optimal solution for P when
only elements a ∈ A whose duration divide T are allowed (if such a solution exists). Then
S∗ = {St = G∗, t ∈ [T]} is a solution over time providing an approximation guarantee of
w(S∗)/w(G∗).

Moreover, since for T = 2 all durations are either 1 or 2, we obtain as a corollary Theorem 2,
which we state again hereafter for convenience.

Theorem 2. Given a set system (A,X) for which the linear maximization problem admits a
polynomial time β-approximation, if T < 3 the corresponding linear maximization problem over
time admits a polynomial time β-approximation.

In contrast, for T = 3 deciding if a solution over time exists is NP-complete. This is stated
hereafter, and proved in the appendix.

Corollary 5. For a generic set system (A,X), deciding if a solution over time exists is NP-hard,
even if linear optimization on (A,X) is in P and T = 3.

Note that when T is polynomial in the input size, or more generally if T
τa

is polynomial in
the input size for every a ∈ A, any solution over time admits a compact representation.

3.1 Approximation algorithms for IS linear optimization over time

If (A,X) is an independence system, existence of a feasible solution over time can always be
guaranteed. On the other hand, the problem over time can be harder than its static version, as
stated in Theorem 1. In this section we prove that the hardness jump cannot be too large. That

5

is, if the static problem admits a constant factor approximation, then the over time version also
admit a constant factor approximation (albeit not the same one).

As the relation to the integer knapsack is fundamental, let us recall it here. We will use
slightly different notation from the classical one, so as to underline the connection with our
over-time setting. Given a knapsack capacity T and a set A of items, where for each item a ∈ A
a volume τa ∈ [T] and a value pa are given, the integer knapsack consists of finding nonnegative
integers xa for each a ∈ A that satisfy the knapsack condition

∑
a∈A τaxa 6 T and that maximize

the total gain
∑

a∈A paxa.

Proposition 2. Integer knapsack is a linear optimization problem over time.

Proof. The transformation can be done by defining the set system (A,X) to be the uniform
matroid of rank one X = {S ⊆ A : |S| 6 1}, and defining item weights to be the unitary weight
(or item density, in the integer knapsack terminology) wa = pa/τa.

Let Ta = bT/τac be the number of times an item a ∈ A fits into the knapsack capacity, and
note that Taτa > T/2 for any a ∈ A. A classic heuristic for the integer knapsack is the density-
based greedy algorithm, which provides the approximation guarantee 2. This greedy algorithm
chooses the item g ∈ A with highest density wg and uses g as many times as possible, that is,
sets xg = Tg. As this solution has value Tgpg = Tgτgwg > T

2wg, and Twg is an upper bound on
the optimum, the guarantee is easily verified. Note also that iterating the procedure so as to fill
any remaining capacity does not improve the worst case guarantee. The following algorithm is
a simple extension of the density-based heuristic to IS linear optimization over time.

Algorithm 1 Repeat Best(A,X , [T], τ, w)

Requires: A β-approximation for linear optimization on the IS (A,X)
Output: A solution over time G

1: find G ∈ X such that βw(G) > w(S) for all S ∈ X
2: set Gt ← {a ∈ G : t 6 Taτa} for all t ∈ [T]
3: return G = {Gt : t ∈ [T]}

When (A,X) is an IS, the solution G returned by Repeat Best is a feasible solution over
time. It is also easy to see that G provides an approximation guarantee of 2β. Indeed, let S∗ be
an optimal solution over time. As Tβw(G) is an upper bound on w(S∗), we have

w(G) =
∑
a∈G

Taτawa >
∑
a∈G

T

2
wa =

T

2
w(G) >

w(S∗)
2β

.

Note also that Repeat Best makes a single call to the β-approximation oracle, and that the
solution over time returned can be encoded efficiently due to its “repeated” nature.

A better worst-case greedy algorithm for the integer knapsack is the total-value heuristic [15].
Instead of repeating the item with highest density, this heuristic chooses the item that gives the
highest total repeated value. Namely, it performs the same greedy choice as in the density
heuristic, but using the total-value weights w′a = Tapa instead of the unitary weight wa. As this
choice dominates the density-based one, the total-value heuristic guarantee is at least a factor
2. The analysis in [15] proves that this greedy choice provides the approximation guarantee
α, which is asymptotically tight and cannot be improved by iterating the greedy choice on the
remaining capacity. The following algorithm is the natural extension of the total-value heuristic
to IS linear optimization over time.

6

Algorithm 2 Best Repeat(A,X , [T], τ, w)

Requires: A β-approximation for linear optimization on the IS (A,X)
Output: A solution over time G

1: set w′a ← Taτawa for all a ∈ A
2: return Repeat Best(A,X , [T], τ, w′)

The algorithm performs a single call to Repeat Best, and hence a single call to the β-
approximation oracle. Note that the solution can again be encoded efficiently. As for the
total-value heuristic, Repeat Best dominates Best Repeat, as it provides the best (up to the
β factor) among all repeated solutions over time, and hence provides a guarantee of at least 2β.
Moreover, as integer knapsack is a special case of IS linear optimization over time, it certainly
cannot provide a guarantee better than αβ, as α is asymptotically tight for the integer knapsack.
The main result of this paper is that Best Repeat actually guarantees the factor αβ.

Theorem 3. Given an IS (A,X) admitting a polynomial time β-approximation algorithm for
linear maximization, with β = β(A,X), the corresponding linear maximization problem over
time admits a polynomial time αβ-approximation algorithm.

The proof in [15] is based on the fact that g has highest total-value, that is, that w′g > w′a
for every a ∈ A, allows to rather directly bound the guarantee by an infinite dimensional
integer program, which is then shown to have optimum α. In our case we have the condition
w′(G) > βw′(S) for every S ∈ X , which is an aggregate bound only. The proving techniques we
employ are substantially different, but will nonetheless allow us to draw a remarkable parallel
with the proof in [15]. Indeed, we will eventually show that the guarantee can be bounded by
an infinite dimensional linear program whose optimum is α. The rest of the paper is devoted to
the proof of Theorem 3. The proofs of some technical claims are given in the appendix.

Proof. Let G ∈ X be the static solution chosen by Best Repeat, so that βw′(G) > w′(S) for
all S ∈ X , and let Alg = w(G) =

∑
a∈G Taτawa be the value of the solution over time returned

by Best Repeat. Let moreover S∗ = (S1, . . . , ST) be an optimal solution over time, with value

Opt = w(S∗), and let δ = 1
β
Opt
Alg . Our goal is to show that δ 6 α.

For each k ∈ [T], we define the subset of elements that can be repeated k times by

Ak =

{
a ∈ A : τa ∈

(
T

k + 1
,
T

k

]}
. (1)

As the durations τa are integers in [T], the sets Ak partition A. By construction, for each k ∈ [T]

one has Ta = k and τa > Γk for all a ∈ Ak, where Γk =
⌊

T
k+1

⌋
+ 1. We then similarly partition

each solution set St into the sets Skt = St ∩Ak, for k, t ∈ [T].
For a fixed value q ∈ [T], we define sets M1, . . . ,Mq ∈ X by choosing Mj = Stj for tj =⌈

j T
q+1

⌉
. For each set Mj we have that

βAlg = β
∑
a∈G

Taτawa >
∑
a∈Mj

Taτawa >
q∑

k=1

∑
a∈Mj∩Ak

Taτawa =

q∑
k=1

∑
a∈Mj∩Ak

kτawa,

so that summing over all sets Mj for j ∈ [q] we get

qβAlg >
q∑
j=1

q∑
k=1

∑
a∈Mj∩Ak

kτawa =

q∑
k=1

k

q∑
j=1

∑
a∈Mj∩Ak

τawa. (2)

7

In the last term, when we sum over j ∈ [q] we are counting the elements a ∈ Skt for all t with
some repetitions. In the following counting argument we assume that T > 2, as for T = 2 and
T = 1 the argument does not hold (these are the only cases in which

⌊
T
2

⌋
+ 1 6< T). Note that

for T 6 2 Corollary 4 guarantees that δ = 1.
Consider a fixed k 6 q and a t ∈ [T]. Since elements in Skt have duration at least Γk, and the

(fractional) distance in time between two solutions Mj is T/(q + 1), each element a ∈ Skt will
belong to at least bΓk(q + 1)/T c different solutions Mj . Note that we stop at k = q because,
due to the choice of the solutions Mj , for k > q some (or all) of the elements in Skt might never
appear in the sets Mj . Let zk be the fraction of Opt due to elements in Ak. Using the counting
argument outlined above, for every k 6 q we can write

q∑
j=1

∑
a∈Mj∩Ak

τawa >

⌊
Γk
q + 1

T

⌋ T∑
t=1

w(Skt) =

⌊
Γk
q + 1

T

⌋
zkOPT. (3)

Finally, combining (2) and (3) we get the bound

q∑
k=1

1

q

⌊
Γk
q + 1

T

⌋
kzk 6

1

δ
. (4)

By collecting all bounds (4) for q ∈ [T] together with the convexity constraint
∑T

k=1 zk = 1,
and applying the variable change yk = δkzk, we can bound δ by means of the following LP:

δT = max
T∑
k=1

1

k
yk

(PT) s.t.

q∑
k=1

1

q

⌊
Γk
q + 1

T

⌋
yk 6 1 q ∈ [T] (5)

yk > 0 k ∈ [T].

This derivation is shown in detail in the appendix in the proof of the following claim.

Claim 1. δ 6 δT for any T > 2.

The value δT can be numerically computed, and provides an upper bound on the approx-
imation guarantee for an instance with total duration T . Let us remark that given a specific
instance (or instance class) the bound can be further specialized by setting yk = 0 whenever
Ak is empty. This can improve the guarantee, in particular if Ak = ∅ for small values of k. To
obtain a global approximation guarantee we need to bound δT for every possible T ∈ N+. To
do so, we use the following infinite-dimensional linear program:

δ∞ = max
∑
k∈N+

1

k
yk

(P∞) s.t.

q∑
k=1

1

q

⌊
q + 1

k + 1

⌋
yk 6 1 q ∈ N+ (6)

∑
k∈N+

1

k + 1
yk 6 1 (7)

yk > 0 k ∈ N+.

8

P∞ can be understood intuitively as follows. Constraint (6) is obtained from constraint (5)
by fixing q and taking T to infinity. Constraint (7) is obtained by taking the asymptotic version
of constraint (5) for q = T , which can be equivalently stated in the simpler form

T∑
k=1

Γk
T
yk 6 1. (8)

Regardless of how P∞ is derived, considering also the fact that the sequence δT is not monotonic,
one has to formally prove that it provides an upper bound to each problem PT . This is stated
in the following claim, and proved in the appendix.

Claim 2. δT 6 δ∞ for every T ∈ N+.

To show that δ∞ 6 α, we make use of duality for infinite-dimensional linear programming.
Let vq be the dual variable to the q-th constraint (6), and let w be the dual variable corresponding
to constraint (7). The standard linear programming dual of P∞ reads:

δ′∞ = min w +
∑
q∈N+

vq

(D∞) s.t.
1

k + 1
w +

∑
q>k

1

q

⌊
q + 1

k + 1

⌋
vq >

1

k
k ∈ N+ (9)

w > 0, vq > 0 q ∈ N+.

In infinite-dimensional linear programming there are situations in which strong duality does
not hold, and remarkably there are also situations in which weak duality fails as well. Moreover,
while optimal primal and dual solutions exist in our case, in general one should speak about
suprema (infima) instead than maxima (minima). For problems P∞ and D∞ strong duality can
be claimed due to a classical result in [6]. This is stated hereafter, and proved in the appendix.

Claim 3. δ∞ = δ′∞.

To prove that δ′∞ 6 α, and hence to conclude the proof, we determine analytically a feasible
dual solution of value α. To this end, recall the sequence {sn}n∈N+ used to define α. Our dual
solution (w̃, ṽ) is defined by setting w̃ = 1 and

ṽsj−1 =
1

sj−1
− 1

s2j−1
+

1

s2j

for j > 2, and 0 elsewhere. That is, it assigns nonzero values only to variables vq where q = sj−1
for some integer j > 2. The following claims, proved in the appendix, conclude the proof.

Claim 4. The solution (w̃, ṽ) has objective function value α.

Claim 5. The solution (w̃, ṽ) is feasible for D∞.

We can also easily show that indeed δ∞ = α. This can be done in two different ways. The
first, informally speaking, is that α is asymptotically tight for the integer knapsack, and hence
Repeat Best cannot provide a better guarantee. The second approach is to compare P∞

9

with the infinite-dimensional integer programming problem resulting from the analysis of the
total-value heuristic in [15], which reads as follows:

α = max
∑
k∈N+

1

k
yk

(PIK) s.t.

q∑
k=1

1

k + 1
yk < 1 q ∈ N+ (10)

yk ∈ N k ∈ N+.

The following claim, proved in the appendix, shows that P∞ is a relaxation of PIK , and
hence that δ∞ > α. In particular, the primal solution defined by setting ysj = 1 for j ∈ N+ and
0 elsewhere is feasible for both problems and attains the value α.

Claim 6. Any solution y feasible for PIK is also feasible for P∞.

4 Conclusion and Future Work

This paper introduces a novel model for combinatorial optimization over time. The main contri-
bution is a polynomial time αβ-approximation algorithm when the static combinatorial problem
P admits a β-approximation and its solution set is an independence system (IS). This algorithm
is the analog of the total-value heuristic for the integer knapsack, which attains the approxima-
tion guarantee α. As the integer knapsack is a special case of IS problem over time for which
β = 1, our analysis does indeed generalize the result for the total-value heuristic. The result
is somewhat surprising, as while the integer knapsack admits an FPTAS, for other IS problems
with β = 1 the over time version is APX-hard. In other words, our algorithm is oblivious to
this complexity increase. We conclude the paper by stating some of many promising directions
for ongoing and future work.

Complexity thresholds for IS problems over time. It would be interesting to narrow
the gap between approximability and inapproximability result for IS problems over time in which
the static problem is polynomial time solvable (β = 1). Improving the gap for matching over
time is particularly interesting, due to is application in cooperative scheduling.

Matroid optimization over time. Study the special case in which the set system (A,X)
on which the problem is defined is a matroid. In particular, either prove the existence of a PTAS
(an FPTAS), or prove APX-hardness (strong NP-hardness).

General set systems over time. Identify cases, which do not correspond to independent
systems, for which it is possible to decide the existence of a solution over time in polynomial
time. For those cases devise approximation algorithms for the maximization and minimization
versions.

Joint analysis. A combined analysis of the iterated versions of the density-based heuristic
and of the total-value heuristic provides an approximation guarantee of 1.5 for the integer
knapsack [16]. It would be interesting to perform a similar study for a general IS over time.
Note that in this case there is not a unique natural definition of “iterative” version.

Upper bounds on element multiplicity. It is of particular relevance, both from the
viewpoint of theory as well as for applications, to study the over-time extension in which each
element a ∈ A can be used at most ua times over the time window. This extends the standard
binary (or bounded) knapsack, and it would be interesting for example to extend the classical 2-
approximation algorithm for binary knapsack to this case, or to prove hardness of approximation.

10

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. V. Kann, M. Marchetti-Spaccamela, and M. Pro-
tasi. Complexity and Approximation. Springer, 1999.

[2] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. (S.) Naor, and B. Schieber. A unified approach to
approximating resource allocation and scheduling. In Journal of the ACM, pages 735–744,
2000.

[3] A. Bar-Noy and S. Guha. Approximating the throughput of multiple machines in real-time
scheduling. SIAM J. Comput., 31:331–352, February 2002.

[4] P. Berman. A d/2 approximation for maximum weight independent set in d-claw free
graphs. Nordic J. of Computing, 7:178–184, September 2000.

[5] C. Chekuri, A. Gal, S. Im, S. Khuller, J. Li, R. McCutchen, B. Moseley, and L. Raschid. New
models and algorithms for throughput maximization in broadcast scheduling. In Proceedings
of the 8th international conference on Approximation and online algorithms, WAOA’10,
pages 71–82, Berlin, Heidelberg, 2011. Springer-Verlag.

[6] R. J. Duffin and L. A. Karlovitz. An infinite linear program with a duality gap. Management
Science. Journal of the Institute of Management Science. Application and Theory Series,
12(1):122–134, 1965.

[7] S. P. Fekete and J. Schepers. A new exact algorithm for general orthogonal d-dimensional
knapsack problems. In Rainer E. Burkard and Gerhard J. Woeginger, editors, ESA, volume
1284 of Lecture Notes in Computer Science, pages 144–156. Springer, 1997.

[8] S. P. Fekete, J. Schepers, and J. C. van der Veen. An Exact Algorithm for Higher-
Dimensional Orthogonal Packing. Operations Research, 55(3):569–587, 2007.

[9] L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static flows.
Operations Research, 6(3):419–433, 1958.

[10] H. W. Hamacher. A time expanded matroid algorithm for finding optimal dynamic matroid
intersections. Zeitschrift für Operations Research. Serie A. Serie B, 29(5):203–215, 1985.

[11] H. W. Hamacher. Maximal dynamic polymatroid flows and applications. Discrete Applied
Mathematics. The Journal of Combinatorial Algorithms, Informatics and Computational
Sciences, 15(1):41–54, 1986.

[12] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. J. ACM, 22:463–468, October 1975.

[13] K. Jansen and G. Zhang. On rectangle packing: maximizing benefits. In Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’04, pages 204–213,
Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

[14] R. Koch, E. Nasrabadi, and M. Skutella. Continuous and discrete flows over time: A
general model based on measure theory. Mathematical Methods Of Operations Research,
73(3):301–337, 2011.

[15] R. Kohli and R. Krishnamurti. A total-value greedy heuristic for the integer knapsack
problem. Operations Research Letters, 12(2):65–71, 1992.

11

[16] R. Kohli and R. Krishnamurti. Joint performance of greedy heuristics for the integer
knapsack-problem. Discrete Applied Mathematics, 56(1):37–48, 1995.

[17] R. Kohli, R. Krishnamurti, and P. Mirchandani. Average performance of greedy heuristics
for the integer knapsack problem. European Journal Of Operational Research, 154(1):36–45,
2004.

[18] E. L. Lawler. Fast approximation algorithms for knapsack problems. In Foundations of
Computer Science, 1977., 18th Annual Symposium on, pages 206 –213, 31 1977-nov. 2
1977.

[19] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32:562–572,
July 1985.

[20] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[21] M. L. Pinedo. Scheduling: Theory, Algorithms and Systems. Springer, third edition, 2008.

[22] M. Skutella. An introduction to network flows over time. In William Cook, L. Lovász, and
J. Vygen, editors, Research Trends in Combinatorial Optimization, pages 451–482. Springer
Berlin Heidelberg, 2009.

[23] N. J. A. Sloane. Sequences A000058 and A007018. The On-Line Encyclopedia of Integer
Sequences, http://oeis.org.

Appendices

A Complexity proofs

Theorem 4. Finding a maximum weighted matching over time is APX-complete, even if T = 3,
G is a bipartite graph with ∆(G) = 4, and we = 1 for all e ∈ E.

Proof. We prove Theorem 4 with a simple reduction from 3-SAT. In 3-SAT the input consists
of a set X of variables and a set C of clauses, each being a disjunction of at most three literals,
and the goal is to find an assignment of truth values to the variables that satisfies all the clauses.
3-SAT is NP-complete even if each variable appears in at most three clauses [20]. Note that
this is not true if each clause is required to be a disjunction of exactly three (distinct) literals.

Let us prove first NP-hardness of our problem. The reduction generates a graph G = (V,E)
as follows. For each variable xi ∈ X, two literal nodes vTi , vFi and one variable node vi are
created, linked by the variable edges {vi, vFi } and {vi, vTi }. Then, for each clause cj ∈ C, two
clause nodes ωj and ω′j are added, together with the clause edge {ωj , ω′j}. Finally, for each
clause cj ∈ C, the clause node ωj is connected with a clause-literal edge to the (at most three)
literal nodes corresponding to the literals appearing in the clause. Figure 2 gives an example of
our graph construction. It is easy to see that G is bipartite and has maximum degree ∆(G) = 4.
The total duration is T = 3. Edge durations τe are set to 1 for clause-literal edges, 2 for clause
edges, and 3 for variable edges. Finally, the edge weights are set to we = 1 for all edges.

Given a satisfying assignment x̄, a matching over time S = {S1, S2, S3} with value 3(|X|+|C|)
can be derived as follows. For each variable xi, we add to St for all t ∈ [T] the variable edge
{vi, vFi } if x̄i = true, and the variable edge {vi, vTi } otherwise. As each variable appears in at

12

2

1

3

ω1 ω2 ω3

ω′
1 ω′

2 ω′
3

vF
1 vF

2 vF
3 vF

4vT
1 vT

2 vT
3 vT

4

v1 v2 v3 v4

Figure 2: Example of the reduction for a 3-SAT instance with four variables x1 . . . x4 and the
three constraints c1 = x1 ∨ x2 ∨ x3, c2 = x1 ∨ x2 ∨ x4, and c3 = x2 ∨ x3 ∨ x4. The edge
duration is depicted for one clause edge, one clause-literal edge, and one variable edge.

most three clauses, we can assume that each literal node is connected to at least one and at most
two clause nodes, as otherwise the corresponding variable can be fixed. For each literal we then
add one clause-literal edge to S1 and the other (if any) to S3. As x̄ is a satisfying assignment,
for each clause node ωj one or more incident clause-literal edges will be selected within [T]. We
then arbitrarily keep one of them in S and remove the others. This allows to add all clause
edges {ωj , ω′j} to S2 as well as either S1 or S3, depending on which clause-literal edge has been
chosen for ωj . The resulting collection S is a matching over time with value 3(|X|+ |C|).

Conversely, a matching over time of value 3(|X| + |C|) induces a satisfying assignment for
the 3-SAT instance. The maximum joint contribution given by clause edges and clause literal
edges to any matching over time is 3|C|, and the maximum contribution for variable edges is
3|X|. Therefore, 3(|X| + |C|) is an upper bound on the value of any matching over time. It is
also clear that this value can only be achieved if all variable nodes are matched, which induces
a truth assignment x̄, and if all clause nodes are matched at all times t ∈ [T], which due to the
edge durations implies that x̄ is a satisfying assignment.

Let us now show APX-completeness. As stated in Corollary 3, maximum weighted matching
over time admits an α-approximation algorithm, so the problem is in APX. Indeed, for T = 3
the approximation factor guarantee obtained from PT is actually 1.3̄, as we have A2 = ∅. We
now prove that maximum weighted matching over time is APX-hard, i.e., there exist some
approximation guarantee that cannot be achieved unless P = NP. To do so, we consider the
maximization version of the 3-SAT variant we consider, which is denoted MAX-3-SAT(3). This
problem is APX-complete (see e.g. [1], Corollary 8.15), and therefore there is some constant
approximation factor β > 1 that cannot be achieved in polynomial time unless P = NP.

Let Opt be the optimum of an instance of MAX-3-SAT(3). As stated above, there exists
some β > 1 such that finding a truth assignment satisfying at least 1

βOpt clauses is NP-hard. Let
G be a matching over time obtained by some algorithm for the instance constructed in the above
reduction. We assume without loss of generality that in G all variable nodes vi and all clause
nodes ω′j are matched at t = 2 (at least), as otherwise one can construct a matching over time G′
satisfying this condition for which w(G′) > w(G). Let then S∗ be a maximum weight matching
over time satisfying the same condition as G. Then both G and S∗ induce a truth assignment,
and it is easy to see that w(S∗) = 3|X|+2|C|+Opt and that w(G) = 3|X|+2|C|+Alg, where
Alg is the number of clauses satisfied by the assignment induced by G.

Assume that G provides an approximation guarantee γ > 1, so that w(G) > 1
γw(S∗). This

gives Alg > 1
γOpt−3|X|(1− 1

γ)−2|C|(1− 1
γ). As the best among any random assignment and

13

its complement satisfy at least half of the clauses, we have Opt > 1
2 |C|. Moreover, assuming

each variable appears in at least two clauses, the number of clause-literal edges is at least 2|X|
and at most 3|C|, which gives |X| 6 3

2 |C|. Using these bounds we obtain Alg > (14 1
γ −13)Opt,

which allows to conclude that achieving a factor γ = 14β/(13β + 1) is NP-hard.

Corollary 5. For a generic set system (A,X), deciding if a solution over time exists is NP-
complete, even if T = 3 and linear optimization on (A,X) is in P.

Proof. A direct consequence of Theorem 5.

Theorem 5. Finding a perfect matching over time is NP-complete, even if |T | = 3 and G is a
bipartite graph with ∆(G) = 4.

Proof. We modify the reduction in the proof of Theorem 4 as follows. Take two copies of the
graph G described in the reduction, and add edges of duration one between the two copies of
nodes vTi , vFi , and w′j . The graph remains bipartite, and as these new edges are incident to
nodes that previously had degree at most three, the maximum degree does not increase.

Now, a perfect matching can be obtained if and only if each node vi is matched to one of
the two nodes vTi or vFi , and each node ωj is matched for (at least) one time unit to some literal
node vTi or vFi . The inter-copy edges added above guarantee that any such partial matching
over time can be extended to a perfect matching over time. It is then easy to see that a perfect
matching induces a satisfying assignment (actually, one for each copy of G, as the assignments
corresponding to the two copies do not need to be the same).

B Proof of Claims for Theorem 3

Claim 1. δ 6 δT for any T > 2.

Proof. By collecting all bounds (4) for q ∈ [T] into a single problem, for any given T > 2 we can
bound δ by the optimum of the following LP:

max δ

s.t.

q∑
k=1

1

q

⌊
Γk
q + 1

T

⌋
kzk 6

1

δ
q ∈ [T]

T∑
k=1

zk = 1

zk > 0 k ∈ [T].

Applying the variable change yk = δkzk we obtain

max δ

s.t.

q∑
k=1

1

q

⌊
Γk
q + 1

T

⌋
yk 6 1 q ∈ [T]

T∑
k=1

1

k
yk = δ (11)

1

δk
yk > 0 k ∈ [T].

Noting that 1
δkyk > 0 if and only if yk > 0, as δk > 1, and removing δ due to constraint (11),

we obtain problem PT , and hence the guarantee δ 6 δT .

14

Claim 2. δT 6 δ∞ for every T ∈ N+.

Proof. For T 6 2 we have δT = 1, and we will show that δ∞ > 1. Therefore, let T > 2, let ȳ be
an optimal solution for PT , and consider the solution y for P∞ defined by

yk =

{
ȳk if k 6 T

0 otherwise.

As the objective function value of y is δT , to prove the claim one only needs to show that y is
feasible for P∞. Consider first constraints (6). As Γk >

T
k+1 , for q 6 T we have

1 >
q∑

k=1

1

q

⌊
Γk
q + 1

T

⌋
ȳk >

q∑
k=1

1

q

⌊
T

k + 1

q + 1

T

⌋
ȳk =

q∑
k=1

1

q

⌊
q + 1

k + 1

⌋
yk

We now show that, for the solution y, each q-th constraint (6) for q > T is implied by the T -th
constraint (5), which as T > 2 is equivalent to constraint (8). Let q = T +S, and, given k ∈ [q],
let ρk, ρ

′
k > 0 and rk, r

′
k 6 k be integers such that T = ρk(k + 1) + rk and S = ρ′k(k + 1) + r′k.

As rk 6 k, we have that
⌊

T
k+1

⌋
=
⌊
ρk + rk

k+1

⌋
= ρk, which applied to constraint (8) gives

1 >
T∑
k=1

Γk
T
ȳk =

T∑
k=1

ρk + 1

T
ȳk

We can similarly bound constraint (6) by

q∑
k=1

1

q

⌊
q + 1

k + 1

⌋
yk =

T∑
k=1

1

T + S

⌊
T + S + 1

k + 1

⌋
ȳk

=

T∑
k=1

1

T + S

⌊
ρ′k + ρk +

rk + r′k + 1

k + 1

⌋
ȳk 6

T∑
k=1

ρ′k + ρk + 1

T + S
ȳk

where the last inequality is due to rk+r′k+1 < 2(k+1). It remains to show that ρk+1
T >

ρ′k+ρk+1
T+S

for any S > 0, i.e., that S(ρk + 1)− Tρ′k > 0. By substituting T and S, and using the fact that
rk 6 k, we obtain

S(ρk + 1)− Tρ′k =
(
ρ′k(k + 1) + r′k

)
(ρk + 1)− (ρk(k + 1) + rk) ρ

′
k

= r′k(ρk + 1) + ρ′k(k + 1− rk) > r′k(ρk + 1) + ρ′k > 0.

We finish the proof of the claim by observing that constraint (7) is also satisfied, as applying
rk 6 k < k + 1 to constraint (8) we obtain

1 >
T∑
k=1

Γk
T
ȳk =

T∑
k=1

ρk + 1

ρk(k + 1) + rk
ȳk >

T∑
k=1

ρk + 1

(k + 1)(ρk + 1)
ȳk =

T∑
k=1

1

k + 1
yk.

Claim 3. δ∞ = δ′∞.

15

Proof. We apply a classical result in [6], which states that if D∞ is weakly consistent and has a
finite weak value M then P∞ is strongly consistent and has finite strong value M .

Weak consistence of D∞ means that the problem D(r) defined by removing all constraints
for k > r is feasible for any r ∈ N+, which in our case is easily seen as setting w = 2 and v = 0
gives a dual solution of value 2 that is feasible for all D(r). The weak value M is defined as the
limit for r → ∞ of the optimum δ′r of D(r). The sequence δ′r is monotonically non-increasing
by construction, and as we have seen we have δ′r 6 2 for all r, which means that M is finite.

We remark that in our case weak duality suffices, as we show explicit primal and dual
feasible solutions attaining the same value. Although we did not find explicit references in the
literature, weak duality in our case is a consequence of the fact that all variables and all constraint
coefficients are nonnegative, which allows to perform the index-reordering on which weak duality
in linear programming is based without caring about convergence of the corresponding series
(series with positive coefficients can always be rearranged as desired).

Claim 4. The solution (w̃, ṽ) has objective function value α.

Proof. The objective function value of this dual solution is

1 +
∑
j>2

vsj−1 = 1 +
∑
j>2

(
1

s2j
− 1

s2j−1
+

1

sj−1

)
.

As all terms converge to zero for j →∞, we can reorder the series and get

= 1 +
∑
j>2

(
1

s2j
− 1

s2j−1

)
+
∑
j>2

1

sj−1
= 1− 1 + α = α.

Claim 5. The solution (w̃, ṽ) is feasible for D∞.

Proof. Using sj = sj−1(sj−1 + 1), let us start by writing ṽsj−1 in the following equivalent form:

ṽsj−1 =
1

sj−1
− 1

s2j−1
+

1

s2j
=
sj(sj−1 + 1)− (sj−1 + 1)2 + 1

s2j

=
sjsj−1 − s2j−1 − 2sj−1 + sj

s2j
=
sj − (sj−1 + 1)− 1

sj(sj−1 + 1)
+

1

sj

=
1

sj−1 + 1
− 1

sj(sj−1 + 1)
=
sj − 1

sj

1

sj−1 + 1
,

so as to define

σ(ṽ, k) =
∑
q>k

1

q

⌊
q + 1

k + 1

⌋
ṽq =

∑
j:sj−1>k

1

sj − 1

⌊
sj − 1 + 1

k + 1

⌋
ṽsj−1

=
∑
j:sj>k

1

sj − 1

⌊
sj

k + 1

⌋
ṽsj−1 =

∑
j:sj>k

1

sj

1

sj−1 + 1

⌊
sj

k + 1

⌋
.

We want to show that for every k ∈ N+ we have

σ(ṽ, k) >
1

k
− 1

k + 1
w̃ =

1

k(k + 1)
.

16

Indeed, we claim that for this dual solution all constraints for k = s`, ` ∈ N+ are tight, while
the remaining ones are redundant.

Let us first prove that all constraints for k = s` are tight. Note that by definition s` and s`+1
divide sj for any j > `. Moreover, one has

∑
j>`

1
sj+1 = 1

s`
, and in particular

∑
`∈N+

1
s`+1 = 1.

We can then write

σ(ṽ, k) =
1

s` + 1

∑
j>`

1

sj−1 + 1
=

1

s`(s` + 1)
=

1

k(k + 1)
.

It remains to show that the other constraints are satisfied with strict inequality. First note
that the nonzero variables appearing in all constraints for s`−1 < k < s` are the same, that is:

σ(ṽ, k) =
∑
j>`

1

sj

1

sj−1 + 1

⌊
sj

k + 1

⌋
.

Also, we only need to consider ` > 2, as there are no constraints between s1 = 1 and s2 = 2.
Using the first term of the summation we bound σ(ṽ, k) for for all s`−1 < k < s` as follows:

σ(ṽ, k) >
1

s`

1

s`−1 + 1

⌊
s`

k + 1

⌋
>

1

s`

1

s`−1 + 1

(
s` − k
k + 1

)
=

s` − k
s`(s`−1 + 1)

1

k + 1
,

where we used the fact that
⌊
a
b

⌋
> a−b+1

b , for a, b integers. We thus want to get

s` − k
s`(s`−1 + 1)

>
1

k
,

which is the same as to say that we want to satisfy the quadratic inequality

k2 − ks` + s`(s`−1 + 1) 6 0.

This allows to conclude that for ` > 4 the constraints are satisfied for all k between s`−1 + 3
and s` − s`−1 − 3. We verify this by showing that in both extremes the quadratic inequality is
satisfied, so that it must be satisfied also for the intermediate values. For k = s`−1 + 3 we have

k2 − ks` + s`(s`−1 + 1) = s2`−1 + 6s`−1 − 2s` + 9

= s2`−1 + 6s`−1 − 2s`−1(s`−1 + 1) + 9

= −s2`−1 + 4s`−1 + 9,

which is negative for ` > 4. For k = s` − s`−1 − 3 we also get

k2 − ks` + s`(s`−1 + 1) = s2`−1 + 6s`−1 − 2s` + 9.

We are now left to prove that the constraints are satisfied for k ∈ [s`−1 + 1, s`−1 + 2] and
k ∈ [s` − s`−1 − 2, s` − 1] for ` > 4, and for k ∈ [3, 5], which are the values of k between s2 and
s3. For k = s` − 1 this is easily verified. Indeed, as k+ 1 = s` divides sj for all j > `, we obtain

σ(ṽ, k) =
1

s`

1

s`−1
>

1

(s` − 1)s`
=

1

k(k + 1)
.

Moreover, noting that σ(ṽ, k) is nonincreasing between s`−1 and s`, we can say that all con-
straints for which s`−1 < k < s` that satisfy

1

s`

1

s`−1
>

1

k(k + 1)

17

are also satisfied with strict inequality, which is true for k2 + k − s`s`−1 > 0. Therefore for

k > k0` , where k0` =

√
4s`s`−1+1−1

2 is the larger root of the quadratic equation k2 +k−s`s`−1 = 0,
the constraints will be satisfied. As we have that

k0` =

√
1 + 4s`s`−1 − 1

2
6

√
4s`s`−1

2
= s`−1

√
s`−1 + 1,

and as x
√
x+ 1 6 x2 − 3 for x > 3, we have that k0` 6 s2`−1 − 3 = s` − s`−1 − 3 for ` > 4.

Moreover, as one can verify that k03 = 3, we are only left to prove that the constraints are
satisfied for k ∈ {s`−1 + 1, s`−1 + 2} for all ` > 4. For these two cases we bound σ(ṽ, k) by the
first two terms of the summation:

σ(ṽ, k) >
1

s`

1

s`−1 + 1

⌊
s`

k + 1

⌋
+

1

s`+1

1

s` + 1

⌊
s`+1

k + 1

⌋
,

which, defining rj = sj mod(k + 1), gives

(k + 1)σ(ṽ, k) >
s` − r`
s`

1

s`−1 + 1
+
s`+1 − r`+1

s`+1

1

s` + 1
.

We now find explicit values for r` and r`+1 for the two values of k that remain to be proved.
We will use the fact that sj = sj−1(sj−1 + 1) and that abmod c = (a+λc)(b+λc) mod c for any
a, b, c ∈ N+ and λ ∈ Z. Let k̄ = k + 1. For k = s`−1 + 1, and hence k̄ = s`−1 + 2, we can write

r` = s`−1(s`−1 + 1) mod k̄ = (s`−1 − k̄)(s`−1 + 1− k̄) mod k̄ = 2

and

r`+1 = s`(s` + 1) mod k̄ = (s` − k̄(s`−1 − 1))(s` + 1− k̄(s`−1 − 1)) mod k̄,

which as k̄(s`−1 − 1) = s2`−1 + s`−1 − 2 = s` − 2 gives

r`+1 = 6.

Let us now consider k = s`−1 + 2, for which k̄ = s`−1 + 3. Then we similarly obtain

r` = (s`−1 − k̄)(s`−1 + 1− k̄) mod k̄ = 6

and

r`+1 = (s` − k̄(s`−1 − 2))(s` + 1− k̄(s`−1 − 2)) mod k̄,

which as k̄(s`−1 − 2) = s2`−1 + s`−1 − 6 = s` − 6 gives

r`+1 = 6 · 7 mod k̄,

which gives r`+1 = 6 for ` = 4 and r`+1 = 42 for ` > 4.

18

Using the values for r` and r`+1, we now show that (k+1)σ(ṽ, k) > 1
k . To simplify the proof,

as k > s`−1 + 1, let us use the following bound:

(k + 1)σ(ṽ, k) >
s` − r`
s`

1

s`−1 + 1
+
s`+1 − r`+1

s`+1

1

s` + 1

>
s` − r`
s` + 1

1

s`−1 + 1
+
s`+1 − r`+1

s`+1

1

s` + 1

>
1

s` + 1

(
s` − r`
k

+ 1− r`+1

s`+1

)
We can thus prove that (k + 1)σ(ṽ, k) > 1

k by showing that

1

s` + 1

(
s` − r`
k

+ 1− r`+1

s`+1

)
>

1

k
,

namely, that

1− r`+1

s`+1
− r` + 1

k
> 0.

For k = s`−1 + 1 and ` > 4 this gives

1− 6

s`+1
− 3

s`−1 + 1
> 1− 6

s5
− 3

s3 + 1
> 0.

Similarly, for k = s`−1 + 2 and ` = 4 we get

1− 6

s5
− 7

s3 + 2
> 0,

while for k = s`−1 + 2 and ` > 5 we get

1− 42

s`+1
− 7

s`−1 + 2
> 1− 42

s6
− 7

s4 + 2
> 0,

which concludes the proof.

Claim 6. Any solution y feasible for PIK is feasible also for P∞.

Proof. Let yl be a feasible solution to PIK . Constraint (7) is clearly satisfied. Then, assume by
absurd that for some q ∈ N+ we have that the corresponding constraint (6) is violated, i.e., that

q∑
k=1

⌊
q + 1

k + 1

⌋
yk > q.

As all coefficients are integer, and y is integer as well, this implies that

q∑
k=1

⌊
q + 1

k + 1

⌋
yk > q + 1.

On the other hand, we have

q∑
k=1

⌊
q + 1

k + 1

⌋
yk 6

q∑
k=1

q + 1

k + 1
yk = (q + 1)

q∑
k=1

1

k + 1
yk,

which leads to the contradiction
q∑

k=1

1

k + 1
yk > 1.

19

