
MongoDB 4.2.6
Kyle Kingsbury
2020-05-15

MongoDB is a distributed document database which claims to offer “among the strongest data consistency, cor-
rectness, and safety guarantees of any database available today”, with “full ACID transactions”. Jepsen evaluated
MongoDB version 4.2.6, and found that even at the strongest levels of read and write concern, it failed to preserve
snapshot isolation. Instead, Jepsen observed read skew, cyclic information flow, duplicate writes, and internal
consistency violations. Weak defaults meant that transactions could lose writes and allow dirty reads, even down-
grading requested safety levels at the database and collection level. Moreover, the snapshot read concern did
not guarantee snapshot unless paired with write concern majority—even for read-only transactions. These de-
sign choices complicate the safe use of MongoDB transactions. This work was performed independently, without
compensation, and conducted in accordance with the Jepsen ethics policy. MongoDB, Fauna, and YugaByte, all
mentioned in this report, have previously engaged Jepsen for paid analyses.

1 Updates

2020-05-26: MongoDB identified a bug in the transac-
tion retry mechanism which they believe was responsi-
ble for the anomalies observed in this report; a patch is
scheduled for 4.2.8.

2 Background

MongoDB is a popular distributed document database.
It offers replication via a homegrown consensus pro-
tocol which draws inspiration from Raft, and can dis-
tribute data across shards via mongos. We previously
evaluated MongoDB at versions 2.4.3, 2.6.7, 3.4.0-rc3,
and 3.6.4.

Our most recent report on MongoDB 3.6.4 focused on
causal consistency and linearizability in sharded col-
lections. We found that sharded clusters appeared to
offer linearizable reads, writes, and compare-and-set
operations against single documents, so long as users
ran with read concern linearizable and write con-
cern majority. However, any weaker level of write
concern resulted in the loss of committed writes. Mon-
goDB’s default level of write concern was (and remains)
acknowledgement by a single node, which means Mon-
goDB may lose data by default. Although the write
concern documentation does not make this clear, the
rollback documentation states:

With the default write concern, data may
be rolled back if the primary steps down be-
fore the write operations have replicated to
any of the secondaries.

Similarly, MongoDB’s default level of read concern al-
lows aborted reads: readers can observe state that
is not fully committed, and could be discarded in the
future. As the read isolation consistency docs note,
“Read uncommitted is the default isolation level”.

We found that due to these weak defaults, MongoDB’s
causal sessions did not preserve causal consistency by
default: users needed to specify both write and read
concern majority (or higher) to actually get causal
consistency. MongoDB closed the issue, saying it was
working as designed, and updated their isolation doc-
umentation to note that even though MongoDB offers
“causal consistency in client sessions”, that guarantee
does not hold unless users take care to use both read
and write concern majority. A detailed table now
shows the properties offered by weaker read and write
concerns.

Curiously, MongoDB omitted any mention of these
findings in their MongoDB and Jepsen page. Instead,
that page discusses only passing results, makes no
mention of read or write concern, buries the actual re-
port in a footnote, and goes on to claim:

MongoDB offers among the strongest data

1

https://jepsen.io/ethics.html
https://jira.mongodb.org/browse/SERVER-48307
https://jira.mongodb.org/browse/SERVER-48307
https://docs.mongodb.com/manual/replication/
https://jepsen.io/analyses/mongodb-3-4-0-rc3#protocol-version-1
https://jepsen.io/analyses/mongodb-3-4-0-rc3#protocol-version-1
https://raft.github.io/
https://docs.mongodb.com/manual/sharding/
https://aphyr.com/posts/284-call-me-maybe-mongodb
https://aphyr.com/posts/322-call-me-maybe-mongodb-stale-reads
https://jepsen.io/analyses/mongodb-3-4-0-rc3
https://jepsen.io/analyses/mongodb-3-6-4
https://jepsen.io/analyses/mongodb-3-6-4
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/core/replica-set-rollbacks/
https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/
https://jepsen.io/analyses/mongodb-3-6-4#discussion
https://jira.mongodb.org/browse/SERVER-35316?focusedCommentId=2008354&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-2008354
https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/#causal-consistency
https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/#causal-consistency
https://docs.mongodb.com/manual/core/causal-consistency-read-write-concerns/
https://web.archive.org/web/20200508173236/https://www.mongodb.com/jepsen

consistency, correctness, and safety guar-
antees of any database available today.

We encourage MongoDB to report Jepsen findings
in context: while MongoDB did appear to offer per-
document linearizability and causal consistency with
the strongest settings, it also failed to offer those prop-
erties in most configurations. We think users might
want to be aware that their database could lose data
by default, but MongoDB’s summary of our work omits
any mention of this behavior.

2.1 Transactional Consistency

So, does MongoDB offer “among the strongest data con-
sistency, correctness, and safety guarantees”? Past
work suggests that for individual document oper-
ations, the answer is, “yes; MongoDB offers per-
document linearizability with the strongest settings,
but not by default”. However in 2018, MongoDB intro-
duced multi-document transactions—limited to within
a shard—and in 2019, extended those transactions
across shards. What safety properties do these trans-
actions provide?

The MongoDB home page proudly advertises “full
ACID transactions”. The transactions page states
that MongoDB is “the only database that fully com-
bines the power of the document model and a dis-
tributed systems architecture with ACID guarantees,”
a combination also claimed by CosmosDB, DynamoDB,
FaunaDB, Oracle NoSQL, OrientDB, RavenDB, SAP
HANA, YugaByte DB, et al.

The MongoDB architecture guide promises ACID
transactions “maintain the same data integrity guar-
antees you are used to in traditional databases…”, and
that MongoDB offers “strong consistency by design”,
but offers no more specific claims. The ACID whitepa-
per clarifies that MongoDB transactions offer snapshot
isolation: a reasonably strong model which constitutes
the baseline level of consistency for systems like Post-
greSQL. The whitepaper states:

… snapshot read isolation ensures queries
and aggregations executed within a read-
only transaction will operate against
a globally consistent snapshot of the
database across each primary replica of
a sharded cluster.

MongoDB repeatedly summarizes snapshot isolation
as “transactions provide a consistent view of data, and
enforce all-or-nothing execution to maintain data in-
tegrity”. This is a concise and intuitive summary of
snapshot isolation, but we should note that a “con-
sistent view” under snapshot isolation may still be

surprising: as Fekete, O’Neil, and O’Neil wrote in
2004, read-only transactions can observe nonserializ-
able behavior under snapshot isolation. Nor does snap-
shot isolation necessarily maintain data integrity: in
their 1995 paper defining snapshot isolation, Beren-
son, Bernstein, et al. provided examples of applications
whose integrity constraints could be violated under
snapshot isolation—for instance, due to write skew.

3 Test Design

We designed a test suite using the Jepsen distributed
systems testing library, and used it to evaluate trans-
actional safety in MongoDB 4.2.6. Our tests installed
MongoDB’s official Debian packages on clusters of nine
Debian 9 nodes. We tested both in LXC and EC2;
both exhibited similar behavior. As per the deploy-
ment guidelines, we built two-shard clusters, with both
shards and the configsvr metadata system running
as three-node replica sets. All nine nodes ran an in-
stance of mongos, which serves as the frontend to
sharded MongoDB clusters.

Our test workload involved transactions over a rotat-
ing pool of documents in a single MongoDB collection,
each document containing a single array of integers.
Each transaction performed one to four operations over
those documents: either reading a single document by
primary key _id, or appending (using $push) a unique
integer to a single document’s value array, again by
_id. We sharded the collection by _id.

Using Elle, a new transaction analysis tool developed
in collaboration with UC Santa Cruz’s Peter Alvaro,
Jepsen automatically inferred dependencies between
these transactions, and searched for cycles in that
graph to identify isolation anomalies. Additional tech-
niques checked for aborted and intermediate reads, as
well as other non-cyclic anomalies.

During some of these tests, we introduced network par-
titions, targeted to isolate MongoDB primary nodes.

4 Results

4.1 Sometimes, Programs That Use Transac-
tions… Are Worse

We began by running our tests without transactions
to get a baseline: each Jepsen “transaction” per-
formed only a single read or append operation with-
out using the session or transaction APIs. Since
we know MongoDB loses updates with any setting
less than majority, and exhibits stale reads with-

2

https://www.mongodb.com/
https://www.mongodb.com/transactions
https://docs.microsoft.com/en-us/azure/cosmos-db/database-transactions-optimistic-concurrency
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html#transaction-isolation
https://docs.fauna.com/fauna/current/concepts/isolation_levels.html
https://www.oracle.com/database/nosql-cloud.html
https://orientdb.com/docs/last/Transactions.html
https://ravendb.net/why-ravendb/acid-transactions
https://help.sap.com/viewer/3e48dd3ad36e41efbdf534a89fdf278f/2.0.04/en-US/b4518419653e44daad99c285039b29c5.html
https://help.sap.com/viewer/3e48dd3ad36e41efbdf534a89fdf278f/2.0.04/en-US/b4518419653e44daad99c285039b29c5.html
https://docs.yugabyte.com/latest/architecture/transactions/isolation-levels/
https://www.mongodb.com/collateral/mongodb-architecture-guide
https://www.mongodb.com/collateral/mongodb-multi-document-acid-transactions
https://www.mongodb.com/collateral/mongodb-multi-document-acid-transactions
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/snapshot-isolation
https://www.postgresql.org/
https://www.postgresql.org/
https://www.mongodb.com/blog/post/mongodb-multi-document-acid-transactions-general-availability
https://www.mongodb.com/blog/post/multi-document-transactions-in-mongodb
https://www.mongodb.com/collateral/mongodb-multi-document-acid-transactions
https://www.cs.umb.edu/~poneil/ROAnom.pdf
https://www.cs.umb.edu/~poneil/ROAnom.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://github.com/jepsen-io/mongodb/tree/83548bb8e054170ecc4b8fda70390e40fcca5e30
https://github.com/jepsen-io/jepsen
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/db.clj#L281-L295
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/db.clj#L93-L223
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/db.clj#L361-L380
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/db.clj#L361-L380
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/list_append.clj#L74-L136
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/list_append.clj#L52-L72
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/list_append.clj#L84-L98
https://github.com/jepsen-io/elle
https://people.ucsc.edu/~palvaro/
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/nemesis.clj
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/nemesis.clj

out read concern linearizable, we set write con-
cern majority and read concern linearizable on the
client’s database handle. The resulting histories ap-
peared consistent with snapshot isolation.

We then wrapped those single operations in trans-
actions, and a surprising behavior appeared: with
network partitions, transactions appeared to lose ac-
knowledged writes. For instance, consider this history,
where in 30 seconds, updates to eight documents were
successfully acknowledged, then disappeared. Here is
the history of reads for document 555:

21 :ok :txn [[:r 555 [1]]]
23 :ok :txn [[:r 555 [1]]]
14 :ok :txn [[:r 555 [1]]]
6 :ok :txn [[:r 555 [1]]]
5 :ok :txn [[:r 555 [1]]]
21 :ok :txn [[:r 555 [1 2]]]
0 :ok :txn [[:r 555 [1 2 3 5 4 6 7]]]
6 :ok :txn [[:r 555 [1 2 3 5 4 6 7]]]
19 :ok :txn [[:r 555 []]]
0 :ok :txn [[:r 555 [8]]]

Clients observed a monotonically growing list of ele-
ments until [1 2 3 5 4 6 7], at which point the list
reset to [], and started afresh with [8]. This could
be an example of MongoDB rollbacks, which is a fancy
way of saying “data loss”.

This is bad, but a more subtle question arises: why
were we able to read these values at all? After all,
read concern linearizable is supposed to show only
majority-acknowledged (i.e. durable) writes. The an-
swer is a surprising—but documented—MongoDB de-
sign choice:

Operations in a transaction use the
transaction-level read concern. That is,
any read concern set at the collection and
database level is ignored inside the trans-
action.

The received wisdom in the database community is
that MongoDB has historically resisted raising the de-
fault level of read and write safety because doing so
would impact production users who have become ac-
customed to faster, occasionally unsafe defaults, and
because data loss might not be significant enough to
warrant the increased latency, throughput, and capital
expenditure entailed by stronger safety settings. Mon-
goDB’s researchers reported in VLDB that:

… users would prefer, of course, to
use readConcern level “majority” and
writeConcern w:“majority”, since everyone
wants safety. However, when users find

stronger consistency levels to be too slow,
they will switch to using weaker consis-
tency levels. These decisions are often
based on business requirements and SLAs
rather than granular developer needs. As
we argue throughout this paper, the deci-
sion to use weaker consistency levels of-
ten works in practice because failovers are
infrequent and data loss from failovers is
usually small.

However, transactions are an entirely new feature, and
users presumably expect to trade off some speed in
exchange for improved safety guarantees. A reason-
able user might expect that the default safety lev-
els for transactions provide, as promised, snapshot
isolation—or, at the very least, the same level of read
concern that the user has already requested from the
databases or collections involved. Instead, transac-
tions without an explicit read concern downgrade any
requested read concern at the database or collection
level to a default level of local, which offers “no guar-
antee that the data has been written to a majority of
replicas (i.e. may be rolled back).”

So: users should be careful to use the snapshot
level of read concern with every transaction which
requires snapshot isolation. The documentation con-
firms: “Read concern ‘snapshot’ returns data from a
snapshot of majority committed data…” which makes
sense, and then continues: “if the transaction commits
with write concern ‘majority’ ”, which does not. Specif-
ically:

If the transaction does not use write con-
cern “majority” for the commit, the “snap-
shot” read concern provides no guarantee
that read operations used a snapshot of
majority-committed data.

“What is the point,” an astute reader might ask, “of hav-
ing a snapshot read concern which does not provide
snapshot isolated reads?” An even more astute reader,
having observed a pattern, might inquire about the de-
fault level of write concern.

If the transaction-level write concern and
the session-level write concern are unset,
transaction-level write concern defaults to
the client-level write concern. By default,
client-level write concern is w: 1.

In order to obtain snapshot isolation, users must be
careful not only to set the read concern to snapshot
for each transaction, but also to set write concern for
each transaction to majority.

3

https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/client.clj#L265-L277
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/client.clj#L265-L277
http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/20200509T083112.000-0400.zip
https://docs.mongodb.com/manual/core/replica-set-rollbacks/
https://docs.mongodb.com/manual/reference/read-concern-linearizable/
https://docs.mongodb.com/manual/reference/read-concern-linearizable/
https://docs.mongodb.com/manual/core/transactions/
http://www.vldb.org/pvldb/vol12/p2071-schultz.pdf
https://docs.mongodb.com/master/core/transactions/#transactions-and-read-concern
https://docs.mongodb.com/master/core/transactions/#transactions-and-read-concern
https://docs.mongodb.com/master/reference/read-concern-local/#readconcern.%22local%22
https://docs.mongodb.com/master/core/transactions/#transactions-and-read-concern
https://docs.mongodb.com/master/core/transactions/#transactions-and-read-concern

Astonishingly, this applies even to read-only transac-
tions. In this test run, we set read concern snapshot
and write concern majority on single-operation write
transactions, and for single-operation read transac-
tions, set only read concern snapshot. When a
network partition occurred, reads observed divergent
timelines:

11 :ok :txn [[:r 77 []]]
12 :ok :txn [[:r 77 [1 5]]]
12 :ok :txn [[:r 77 [1 5 6]]]
23 :ok :txn [[:r 77 []]]
4 :ok :txn [[:r 77 [3]]]
13 :ok :txn [[:r 77 [3 7]]]

These updates weren’t lost exactly—the transactions
which wrote 1, 5, and 6 timed out, but their effects be-
ing both visible and not visible to reads implies that at
least one of these timelines was an instance of aborted
read.

This behavior might be surprising, but to MongoDB’s
credit, most of this behavior is clearly laid out in the
transactions documentation. The question is whether
users are closely reading that documentation, versus
relying on marketing claims, or assumptions like “us-
ing read concern snapshot means reading a commit-
ted snapshot”. We might also ask whether users can be
expected to remember to apply these settings to every
transaction which requires them. After all, MongoDB
offers database and collection-level safety settings pre-
cisely so users can assume all operations interacting
with those databases or collections use those settings;
ignoring read and write concern settings when users
perform (presumably) safety-critical operations is sur-
prising!

4.2 HowACID is Snapshot Isolation, Anyway

In subsequent tests, we used read concern
linearizable and write concern majority for all
single-operation reads and writes, and read concern
snapshot and write concern majority for multi-
operation transactions. In healthy clusters (e.g. with-
out faults), cursory testing appeared consistent with
snapshot isolation.

However, we note that while MongoDB’s home page
prominently claims to offer “full ACID transactions”,
which one might assume means that transactions are
fully atomic, isolated, consistent, and durable. This is
not exactly the case: transactions under snapshot iso-
lation are not, as previously noted, fully isolated.

For example, consider this test run, which used read
concern snapshot, write concern majority, and did
not involve network partitions or other exogenous

faults. The resulting history does not appear to vio-
late snapshot isolation, but nonetheless exhibits cyclic
transaction dependencies, like the following:

One transaction appends 1 to document 1047, and
reads document 1045, finding it empty. The other ap-
pends 1 to document 1045, and reads 1047, finding it
empty. Lines marked rw denote these read-write anti-
dependencies. These transactions cannot possibly be
isolated: if the top transaction executed first, in iso-
lation, its write to 1047 would have been visible to
the second—and vice-versa. Since these transactions
didn’t write to the same documents, they are allowed
(under snapshot isolation) to execute concurrently.

4

http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/20200509T093640.000-0400.zip
https://docs.mongodb.com/manual/core/transactions/#read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#read-concern-write-concern-read-preference
https://www.mongodb.com/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/20200508T195637.000-0400.zip

Other cycles are more complex. Here, for instance, is
a cluster of twelve transactions, again executed under
MongoDB’s strongest possible safety settings. Each of
these transactions depends (in various ways) on every
other. Arrows labeled ww show a write-write depen-
dency, wherein one transaction overwrote another’s
write. Those with wr show a write-read dependency:
one transaction read another’s write.

Or consider this cluster of 123 transactions, all of
which appeared to execute before—but also after!—
every other. Is this cluster “full ACID”? Perhaps, but
if so, we must accept that the “I” in ACID means only
partial isolation, or “full” means somewhat less than
full.

These anomalies are not rare. This history, for ex-
ample, contains roughly 100 transactions per second,
and we identified 1461 transactions (out of 13914 total)
with cyclic dependencies. Roughly 10% of transactions
exhibited anomalies during normal operation, without
faults.

It’s important to remember that just because we can
detect anomalies in this simple workload doesn’t mean
those anomalies matter to users. Concurrency could be
low enough that concurrency control is largely unnec-
essary. Some sets of transactions can be proven to exe-
cute serializably under snapshot isolation—e.g., when
their write sets intersect. Others exhibit nonserializ-
able anomalies, but don’t violate application-level con-
sistency constraints. Still others do violate constraints,
but not frequently enough for users to notice or care.
For these purposes, snapshot isolation is good enough!

4.3 Indeterminate Errors

When we introduced network failures into our tests, we
encountered (as one would expect) a variety of client er-

rors. The MongoDB transaction documentation says:

When a transaction aborts, all data
changes made in the transaction are dis-
carded without ever becoming visible. For
example, if any operation in the transac-
tion fails, the transaction aborts and all
data changes made in the transaction are
discarded without ever becoming visible.1

However, the converse is not necessarily true:
some transaction error messages seem to indicate
a transaction has aborted, but do not. For ex-
ample, a TransactionCoordinatorSteppingDown
exception may actually mean the transaction
has committed. Likewise, Command failed
with error 6 (HostUnreachable): 'unable
to initialize targeter for write op for
collection jepsendb.jepsencoll :: caused by
:: Connection refused' also appears to denote an
indeterminate failure. We repeatedly encountered
these errors in our tests, only to find that their writes
were visible to later reads.

This is not necessarily a bug—there will always be a
class of errors in any distributed system which could in-
dicate either success or failure. However, it is helpful
when those errors are clearly marked, or offer textual
guidance. Error 6, like most of the errors we encoun-
tered, is undocumented; only a few codes remain in the
official docs, and Google has little to say. Complete er-
ror documentation, perhaps with a table of which codes
indicate determinate vs indeterminate failures, could
offer a pragmatic alternative to error message harus-
picy.

4.4 Duplicate Effects

With errors interpreted correctly, we found that net-
work partitions could cause MongoDB to duplicate the
effects of transactions. Despite never appending the
same value to an array twice, we repeatedly observed
arrays with multiple copies of the same element. For
example, take this test run, which contained the fol-
lowing transaction:

[[:r 436 [2 4 1 6 8 7 6]]
[:r 456 [3 4 8 1 2]]
[:append 456 5]
[:r 456 [3 4 8 1 2 5]]]

Here, element 6 appeared twice in a read of document
436. This duplication raises the possibility that the
transaction which wrote 6 to key 436 occurred both be-
fore and after other transactions; depending on which

1This is, of course, only true for read and write concern majority or higher.

5

http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/g2-large.svg
http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/20200508T195637.000-0400.zip
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/client.clj#L189-L263
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/client.clj#L189-L263
https://docs.mongodb.com/manual/core/transactions/
https://github.com/jepsen-io/mongodb/blob/83548bb8e054170ecc4b8fda70390e40fcca5e30/src/jepsen/mongodb/client.clj#L227-L239
https://jira.mongodb.org/browse/DOCS-10757
https://docs.mongodb.com/manual/reference/exit-codes/
https://docs.mongodb.com/manual/reference/exit-codes/
https://www.google.com/search?&q=mongodb+%22error+6%22
http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/20200508T222527.000Z.zip

(if any) interpretation one chooses, the resulting his-
tory also exhibits G-single and G2 anti-dependency
cycles. This anomaly occurred even with read con-
cern snapshot and write concern majority, which
suggests that even at the strongest settings, MongoDB
transactions do not provide snapshot isolation.

This behavior could point to an improper transaction
retry mechanism—MongoDB advertises automatic re-
tries as a feature. To identify whether the retry mech-
anism might be at fault, we attempted to disable it—
only to discover that MongoDB transactions ignore the
retryWrites setting, and retry regardless. We are un-
sure if users can work around this behavior.

4.5 Read Skew

In this case, a test running with read concern
snapshot and write concern majority executed a trio
of transactions with the following dependency graph:

The topmost transaction appended 2 to document 79,
which was followed by the middle transaction’s append
of 5. We can infer these writes took place in this order
because another transaction (not part of this cycle) ob-
served:

[:r 79 [1 2 5 6 7]]

Following these writes, the bottom transaction ap-
pended 5 to document 77, which was not observed by
the middle transaction’s read of 77. However, that ap-
pend of 5 was visible to the topmost transaction!

Because this cycle contains exactly one anti-
dependency (rw) edge, it’s likely2 an example of Adya’s
G-single anomaly, also known as read skew. In essence,
the middle transaction observed some, but not all, ef-
fects of logically prior transactions. Read skew is pro-
hibited by snapshot isolation.

Curiously, this anomaly appeared in a history without
(observed) duplicate writes. This suggests there could
be multiple problems in the MongoDB transaction pro-
tocol, but it’s difficult to say for sure.

4.6 Cyclic Information Flow

Worse yet, transactions running with the strongest iso-
lation levels can exhibit G1c: cyclic information flow.
Take this example, in which two transactions (both
running at read concern snapshot and write concern
majority) observe one another’s effects:

The top transaction appended 3 to document 68, and
the bottom transaction’s read of 68 observed that write.
However, the bottom transaction also appended 5 to
document 59, and the top transaction read that write!
These anomalies appear relatively infrequently, but
we have collected a dozen-odd examples in a day’s
worth of testing.

4.7 Read Your (Future) Writes

It’s even possible for a single transaction to observe its
own future effects. In this test run, four transactions,
all executed at read concern snapshot and write con-
cern majority, append 1, 2, 3, and 4 to key 586—but
the transaction which wrote 1 observed [1 2 3 4] before
it appended 1.

This is, of course, impossible: our test submits each
transaction’s operations in strict order, and unless
MongoDB has built a time machine, it cannot return
values which it doesn’t yet know will be written. This

2It could also be the case that some or all of these transactions observed garbage data, or values from aborted transactions. Since these
anomalies are in a sense “worse” than G-single, we choose the more charitable interpretation here.

6

https://docs.mongodb.com/manual/core/retryable-writes/
https://docs.mongodb.com/manual/core/retryable-writes/
https://docs.mongodb.com/manual/core/retryable-writes/#retryable-writes-and-multi-document-transactions
http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/20200508T211458.000Z.zip
http://pmg.csail.mit.edu/papers/icde00.pdf
http://pmg.csail.mit.edu/papers/icde00.pdf
http://pmg.csail.mit.edu/papers/adya-phd.pdf
http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/20200508T151522.000-0400.zip
http://jepsen.io.s3.amazonaws.com/analyses/mongodb-4.2.6/20200508T215706.000Z.zip

suggests that the retrocausal transaction actually ran
twice, and on its second run, observed an effect of
its own prior execution. This could be another conse-
quence of an inappropriate retry mechanism.

5 Discussion

MongoDB 4.2.6 claims to offer “full ACID transactions”
via snapshot isolation. However, the use of these
transactions is complicated by weak defaults, confus-
ing APIs, and undocumented error codes. Snapshot
isolation is questionably compatible with the market-
ing phrase “full ACID”. Even at the highest levels of
read and write concern, MongoDB’s transaction mech-
anism exhibited various anomalies which violate snap-
shot isolation.

MongoDB’s default read and write concern for single-
document operations remains local, which can ob-
serve uncommitted data, and w: 1, which can lose
committed writes. Even when users select safer set-
tings in their clients at the database or collection
level, transactions ignore these settings and default
again to local and w: 1. The snapshot read concern
does not actually guarantee snapshot isolation, and
must always be used in conjunction with write concern
majority. This holds even for transactions which per-
form no writes.

Default behavior has significant impact: MongoDB’s
user research suggests roughly 80% of users of their
hosted MongoDB service use the default write concern,
and 99.6% of users use the default read concern. While
it might be the case that many of these users intend to
occasionally lose data or observe uncommitted state, it
might also be the case that users are simply unaware
of this behavior.

Nor can users rely on examples to demonstrate snap-
shot isolated behavior. MongoDB’s transaction docu-
mentation and tutorial blog posts show only write-only
transactions, using read concern local rather than
snapshot. Other examples from MongoDB don’t spec-
ify a read concern or run entirely with defaults. Learn
MongoDB The Hard Way uses read concern snapshot
but write concern local, despite performing writes.
Tutorials from DZone, Several Nines, Percona, The
Code Barbarian, and Spring.io all claim that trans-
actions are either ACID or offer snapshot isolation,
but none set either read or write concern. There are
some examples of MongoDB transactions which are
snapshot isolated—for instance, from BMC, +N Con-
sulting, and Maciej Zgadzaj, but most uses of Mon-
goDB transactions we found ran—either intentionally
or inadvertently—with settings that would (in general)

allow write loss and aborted reads.

Snapshot isolation is a reasonably strong consistency
model, but claiming that snapshot isolation is “full
ACID” is questionable. We routinely observed histories
which appeared compatible with snapshot isolation,
but also included hundreds of G2 (anti-dependency cy-
cle) anomalies, wherein transactions failed to observe
one another’s effects. This is normal and allowed under
snapshot isolation, but whether these transactions are
fully isolated—in the sense of ACID I—seems debat-
able.

Finally, even with the strongest levels of read and
write concern for both single-document and transac-
tional operations, we observed cases of G-single (read
skew), G1c (cyclic information flow), duplicated writes,
and a sort of retrocausal internal consistency anomaly:
within a single transaction, reads could observe that
transaction’s own writes from the future. MongoDB
appears to allow transactions to both observe and not
observe prior transactions, and to observe one an-
other’s writes. A single write could be applied multi-
ple times, suggesting an error in MongoDB’s automatic
retry mechanism. All of these behaviors are incompat-
ible with MongoDB’s claims of snapshot isolation.

5.1 Recommendations

We continue to recommend that users of MongoDB
consider their read and write concerns carefully, both
for single-document and transactional operations. Set-
tings applied at the database and collection level do
not transfer to transactional contexts, even when those
database or collection handles are used within the
transaction. Instead, users must be careful to set read
and write concern on each transaction directly. More-
over, the snapshot read concern does not guarantee
snapshot isolation—even for read-only transactions;
users must take care to use write concern majority
whenever snapshot isolated reads are required. We rec-
ommend users perform careful review of safety-critical
codepaths to look for potential mistakes.

Given this behavior, and the relative scarcity of users
who actually set their read and write concern, we
continue to recommend that MongoDB select safer
defaults for all operations—but especially for trans-
actions: a feature specifically intended to provide
stronger safety guarantees! We also question why
it’s even possible for read concern snapshot to return
non-snapshot-isolated reads, especially for read-only
queries. While these behaviors are clearly documented,
we think MongoDB would be better off with more con-
servative behavior, at least where transactions are con-
cerned.

7

https://web.archive.org/web/20200510151604/https://www.mongodb.com/
http://www.vldb.org/pvldb/vol12/p2071-schultz.pdf
http://www.vldb.org/pvldb/vol12/p2071-schultz.pdf
https://docs.mongodb.com/manual/core/transactions/
https://docs.mongodb.com/manual/core/transactions/
https://www.mongodb.com/blog/post/quick-start-nodejs--mongodb--how-to-implement-transactions
https://www.mongodb.com/blog/post/java-and-mongodb-40-support-for-multidocument-acid-transactions
https://www.mongodb.com/blog/post/java-and-mongodb-40-support-for-multidocument-acid-transactions
https://developer.mongodb.com/quickstart/python-acid-transactions
http://learnmongodbthehardway.com/article/transactions/
http://learnmongodbthehardway.com/article/transactions/
https://dzone.com/articles/mongodb-transactions-your-very-first-transaction-w
https://severalnines.com/database-blog/overview-multi-document-acid-transactions-mongodb-and-how-use-them
https://www.percona.com/blog/2018/06/25/mongodb-transactions-your-very-first-transaction-with-mongodb-4-0/
https://thecodebarbarian.com/a-node-js-perspective-on-mongodb-4-transactions.html
https://thecodebarbarian.com/a-node-js-perspective-on-mongodb-4-transactions.html
https://spring.io/blog/2018/06/28/hands-on-mongodb-4-0-transactions-with-spring-data
https://www.bmc.com/blogs/mongodb-transactions/
https://www.plusnconsulting.com/post/Transactions-with-MongoDB-4-0/
https://www.plusnconsulting.com/post/Transactions-with-MongoDB-4-0/
https://zgadzaj.com/development/mongodb/mongodb-multi-document-transactions-in-symfony-4-with-doctrine-and-mongodb-odm-bundle

MongoDB’s claim of “full ACID transactions” which
“maintain the same data integrity guarantees you are
used to in traditional databases” could be misleading.
We recommend that users who are accustomed to se-
rializable behavior evaluate critical transactions care-
fully, to identify whether running at snapshot isolation
could violate application-level constraints. MongoDB
may wish to revise their marketing language to use
“snapshot isolated” instead of “ACID”.

In theory, transactions running on a snapshot isolated
system like MongoDB could be lifted, via static anal-
ysis, into transactions which execute serializably by
materializing selected read conflicts as writes. Some
database users perform a similar technique by hand,
introducing no-op writes into selected transactions.
However, MongoDB may optimize those writes away.
MongoDB recommends incrementing a counter to force
conflicts where desired.

Our research suggests that users of MongoDB 4.2.6
may experience transactional anomalies during net-
work partitions. We suspect MongoDB may investigate
and resolve these issues in future versions, and encour-
age users to upgrade when appropriate.

5.2 Future Work

This report represents a brief investigation relative to
most Jepsen reports; we have not investigated pauses,
crashes, or clock skew in depth; nor have we introduced
membership changes or shard reallocation. Disk and
filesystem-related issues could also prove fruitful.

Going forward, we would like to investigate collection-
level transactional behavior with respect to predicates,
as well as apply Elle to MongoDB’s causal sessions. In
addition, we would like to generalize the present tests
to those with reads or writes via secondary indices or
scans, as well as changing shard keys.

This work was performed independently, without com-
pensation, and conducted in accordance with the Jepsen
ethics policy. MongoDB, Fauna, and YugaByte have
previously engaged Jepsen for paid analyses. Jepsen
wishes to thank C. Scott Andreas, Peter Alvaro, Silvia
Botros, Nicole Forsgren, Camille Fournier, Coda Hale,
Marc Hedlund, Ben Linsay, Dan McKinley, Kit Patella,
Marco Rogers, and James Turnbull for their invaluable
feedback on early drafts. Zach Bjornson and Alex ter
Weele helped correct a pair of typos in the published
report. We also wish to thank MongoDB’s Maxime
Beugnet for inspiration.

8

https://www.cse.iitb.ac.in/infolab/Data/Courses/CS632/2009/Papers/p492-fekete.pdf
https://www.cse.iitb.ac.in/infolab/Data/Courses/CS632/2009/Papers/p492-fekete.pdf
https://www.mongodb.com/blog/post/mongodb-multi-document-acid-transactions-general-availability
https://jepsen.io/ethics.html
https://jepsen.io/ethics.html
https://twitter.com/MBeugnet/status/1253622755049734150

	Updates
	Background
	Transactional Consistency

	Test Design
	Results
	Sometimes, Programs That Use Transactions… Are Worse
	How ACID is Snapshot Isolation, Anyway
	Indeterminate Errors
	Duplicate Effects
	Read Skew
	Cyclic Information Flow
	Read Your (Future) Writes

	Discussion
	Recommendations
	Future Work

