
jetcd 0.8.2
Kyle Kingsbury
2024-08-08

Jetcd is the official Java client library for the etcd coordination service. We show that jetcd contains an improper
retry mechanism which allows transactions to execute multiple times, or to appear to fail but actually succeed.
To users, these behaviors may appear as lost update, circular information flow, and aborted read. These issues
have been outstanding for two and a half years. No patch is available, but disabling the retry mechanism is
straightforward. This work was performed independently by Jepsen without compensation, and conducted in
accordance with the Jepsen ethics policy.

1 Background

Etcd is a coordination service designed to offer Strict
Serializable reads, writes, and micro-transactions
over a small, in-memory key-value store. In 2022,
Jepsen re-tested etcd as a part of a private engage-
ment covering an assortment of databases. We re-
ported several issues to the etcd team during that en-
gagement. Some of those issues remained unresolved,
and the etcd team periodically speculated as to possi-
ble causes, asking for Jepsen’s assistance.

In July 2024, Jepsen performed an independent in-
vestigation1 to identify the cause of some of these is-
sues, and traced them to a bug in jetcd, the official
etcd client library for the Java programming language.
In short: jetcd incorrectly retries non-idempotent re-
quests which may have actually succeeded, leading to
a variety of serious invariant violations. We present
those behaviors here.

2 Test Design

We expanded upon the test harness written for etcd
3.4.3 in 2020. Our workloads and faults were essen-
tially unchanged from that analysis. We focused on
the list-append and wr-register workloads, which con-
sist respectively of transactions reading and append-
ing unique values to lists of integers, and transactions
which read and write integer registers. Our sole fault
was process crashes, induced by kill -9.

This work focused on the jetcd client library, not
etcd itself. We evaluated jetcd 0.5.0, 0.6.0, and 0.8.2.
Jepsen provides built-in support for capturing packets

from database nodes using tcpdump. We used Wire-
shark, a network protocol analyzer, to trace exactly
what messages the client sent over the wire. Wire-
shark includes HTTP2 and Protocol Buffer analyzers
which understand etcd’s wire protocol. The Protocol
Buffers specification files are available from etcd.

3 Results

When an application makes a single call to (e.g.)
Txn.commit(), jetcd may automatically retry, send-
ing multiple copies of the network request. This is
fine when the client can prove the first request could
never execute, or that the request is idempotent. How-
ever, jetcd retries requests in unsafe contexts, like non-
idempotent transactions which have been sent over
the wire. This manifests as several kinds of safety
violations when processes crash or the network loses
messages.

3.1 Lost Update

Consider this this wr-register test run, which contains
the following three transactions executed around the
time one of the etcd servers crashed. First, transac-
tion 𝑇0 set key 3731 to 11. Then transactions 𝑇1 and
𝑇2 both read value 11, and overwrote it with values 20
and 17, respectively:

T0: [[:w 3731 11] [:w 3732 17]]
T1: [[:r 3731 11] [:w 3731 20] [:w 3733 5]]
T2: [[:r 3731 11] [:w 3731 17] [:r 3732 19]]

1In the 2022 engagement, the client’s engineers were enthusiastic about the prospect of a public analysis, and Jepsen was allowed
to file public issues against systems including etcd. Following the conclusion of the contract, Jepsen independently completed a
written report discussing the behaviors we’d found in etcd. However, Jepsen was unable to secure official permission from the
client’s legal department to disclose that the client had funded part of the work. This created an unusual state of affairs: the
issues, test suite, and reproduction instructions were all public, but per Jepsen’s ethics policy, the analysis itself could not be
published. Jepsen shelved that analysis and it remains unpublished. The present analysis is based on entirely new work and
verifies a different software system: jetcd, rather than etcd.

1

https://github.com/etcd-io/jetcd
https://etcd.io
https://jepsen.io/analyses/ethics
https://etcd.io
https://jepsen.io/consistency/models/strict-serializable
https://jepsen.io/consistency/models/strict-serializable
https://github.com/etcd-io/jetcd
https://jepsen.io/analyses/etcd-3.4.3#test-design
https://github.com/jepsen-io/etcd/tree/fbe693e00ada458c292d58c3a81d2a28834f62b1
https://github.com/jepsen-io/jepsen/blob/20924ace7b125256599a7d49a8a75296b40bcca3/jepsen/src/jepsen/db.clj#L88-L99
https://github.com/jepsen-io/jepsen/blob/20924ace7b125256599a7d49a8a75296b40bcca3/jepsen/src/jepsen/db.clj#L88-L99
https://www.wireshark.org/
https://www.wireshark.org/
https://github.com/etcd-io/etcd/tree/4488f2c9b6aa4f3f97cd231f3378e53f777d3212/api
https://github.com/etcd-io/jetcd/blob/639bb27d21faf02727575a949df7c4d843dbba46/jetcd-core/src/main/java/io/etcd/jetcd/support/Errors.java#L29-L32
https://s3.amazonaws.com/jepsen.io/analyses/jetcd-0.8.2/wr-retry-lost-update.zip


Writes in this workload are always unique: no other
transaction wrote 11 to key 3731. From the client’s
perspective, this behavior is indistinguishable from
lost update:2 𝑇1 and 𝑇2 both read the version of key
3731 that 𝑇0 wrote, and overwrote it. Since neither
observed the other’s write, one of their updates has
effectively been silently discarded.

Packet capture reveals that 𝑇0’s single call to
Txn.commit() caused two separate network requests:
one 29.10 seconds into the test, and a second at 31.94
seconds. The client submitted these on separate TCP
connections, and constructed different HTTP2 head-
ers for them, but their payloads were identical. Each
set key 3731’s value to 11 (and key 3732’s value to
17).

Because jetcd secretly submitted 𝑇0 twice, transac-
tions 𝑇1 and 𝑇2 actually interacted with two differ-
ent versions of key 3731. The first copy of 𝑇0 pro-
duced version 6 of key 3731 at revision 54505. Trans-
action 𝑇1 read and overwrote that version at revision
54507. Two seconds later jetcd submitted a second
copy of 𝑇0, which blindly overwrote key 3731 with
value 11 again—this time producing version 19, at re-
vision 55104. Then 𝑇2 read and overwrote this second
version of value 11 with value 17.

Lost update is prohibited by Read Committed, Snap-
shot Isolation, and Serializable. It should not happen
in etcd, which is intended to offer at least Serializable
consistency.

3.2 Circular Information Flow

Client retries can also cause circular information flow.
Take for example this wr-register run, which contains
the following cycle:

r 3115 23 w 3115 11 r 3115 11 r 3107 28

w 3114 9 r 3115 11 w 3115 5 w 3107 27

:wr

r 3115 6 r 3114 9 w 3107 28

:wr

:wr

Each of these transactions appears to read the other’s
writes. The top set key 3115 to 11, which was read by
the middle transaction. That transaction set key 3114
to 9, which wass read by the bottom transaction. The
bottom transaction set key 3107 to 28, which was read
by the top transaction. This is Adya’s G1c: circular in-
formation flow. G1c should be impossible in any Read
Committed system, not to mention a Serializable one.
This too is a serious violation of etcd’s guarantees.

This cycle occured because the client secretly submit-
ted the middle transaction twice. The first execution
succeeded, allowing the bottom transaction to observe
its effects. However, the client opted to submit it
again, three and a half seconds later. This second ex-
ecution observed the effects of the top transaction, ty-
ing the causal loop.

Transactions can even observe their own effects from
the future. In this test run, a single transaction ob-
served a write it hadn’t performed yet:

r 2127 28 r 2128 32 w 2127 28

:wr

Again, packet capture shows that the client submitted
this transaction twice, roughly three seconds apart.
It executed both times, and the second execution ob-
served the state from the first.

3.3 Aborted Reads

One might be inclined to add guard expressions to
prevent transactions from executing more than once.
Our list-append workload does just that: it performs a
read-only transaction to establish current values, then
performs a write transaction which commits only if
the versions of any objects read are unchanged. This
allows another anomaly: aborted read. For example,
this list-append runs contains dozens of transactions
like these:

T0: [[:r 4511 nil] [:append 4513 13] ...]
T1: [[:r 4513 [3 5 9 13]]]

Transaction 𝑇0 aborted: its append of 13 should never
have been visible to anyone. However, 𝑇1 committed
and observed value 13. Since writes are unique, 𝑇1
must have observed the specific version of key 4513
written by 𝑇0: an aborted read.

The values returned from 𝑇0’s call to Txn.commit()
indicate that its write transaction executed at
revision 38343, and definitively failed: jetcd’s
TxnResponse.isSucceeded() returned false. But this
cannot be the whole story, because 𝑇1 ostensibly ex-
ecuted earlier, at revision 34777, and observed key
4513’s value as [3 5 9 13]. How is this possible? Be-
cause jetcd secretly issued 𝑇0 twice. The client did not
receive an acknowledgement from the first attempt,
and the second returned a failure. Jetcd returned
that failure to the caller—unsafely representing an
indefinite failure as if it were definite.

Aborted reads are prohibited under a broad range of
consistency models from Read Committed to Strict Se-
rializable; this behavior is a serious violation of etcd’s
intended guarantees.

2Careful analysis of the revisions included in etcd’s response metadata hints at the fact that from etcd’s perspective, there were
multiple executions of 𝑇0. From the application’s perspective 𝑇0 only executed once, making this lost update.

2

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://s3.amazonaws.com/jepsen.io/analyses/jetcd-0.8.2/retry-g1c.zip
https://pmg.csail.mit.edu/papers/icde00.pdf
https://s3.amazonaws.com/jepsen.io/analyses/jetcd-0.8.2/retry-retrocausal.zip
https://github.com/etcd-io/etcd/issues/14890#issuecomment-2247177272
https://pmg.csail.mit.edu/papers/icde00.pdf
https://s3.amazonaws.com/jepsen.io/analyses/jetcd-0.8.2/retry-g1a.zip


4 Discussion

These problems affect jetcd 0.6.0 (released 2021-12-
15) through 0.8.2 (the most recent version, released
2024-05-30). Users of these versions may observe ap-
parent instances of aborted read, circular information
flow, lost update, and other anomalies when processes
crash or the network loses messages. Transactions
may appear to fail but actually succeed. Transac-
tions may be applied multiple times. Relying on condi-
tional writes is not sufficient to obtain Serializability:
aborted read occurs even when every write is guarded
by a version check. These behaviors are not difficult
to observe: we can reliably reproduce them in under a
minute.

Jepsen reported these problems to both etcd and jetcd
in 2022, filing jetcd-1072, etcd-14092, and etcd-14890.
The etcd maintainers suggested a number of possible
explanations, including that these were not actually
anomalies, that they represented a bug in Jepsen, or
that they were caused by a bug in jetcd. No one fol-
lowed up on the jetcd issue, and it was automatically
closed as stale. The etcd team closed 14092 as a jetcd
bug, and eventually closed 14890, incorrectly conclud-
ing the report was inaccurate and most likely repre-
sented a mistake in Jepsen.

As always, we caution that Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. While
we make extensive efforts to find problems, we cannot
prove jetcd’s correctness

4.1 Recommendations

One can disable jetcd’s retry mechanism by creat-
ing clients with ClientBuilder.retryMaxAttempts(0).
This appears to resolve the issues discussed in this re-
port. We recommend jetcd users disable retries until
a patch is available and tested.

Unsafe retries are a recurring cause of safety er-
rors. For instance, TiDB 2.1.7 exhibited read skew
and lost update thanks to an automatic retry mech-
anism. MongoDB 4.2.6’s retry system allowed retro-
causal transactions which read their own future ef-
fects. Retrying is safe when a client can prove that the

operation cannot have taken place (e.g. because DNS
resolution failed or the node receiving the message re-
fused to execute it). It is also safe when the operation
is idempotent (e.g. adding an element to a grow-only
set, or committing only if a unique ID for that oper-
ation has not already been applied). For this reason,
distributed systems engineers should take particular
care to separate definite failures (operations which def-
initely did not happen) from indefinite failures (oper-
ations which may or may not have happened). Engi-
neers should also be careful when classifying opera-
tions as idempotent. It is easy to assume that set(x,
5) is idempotent because applying it twice in a row
still produces the state x = 5. However, this opera-
tion is not longer idempotent if its executions are in-
terleaved with other writes—then, it leads to lost up-
date.
In general, clients are a part of distributed systems.
From the perspective of an application, the client and
servers together are the system. Safety errors in the
client library can be indistinguishable from those in
servers. It is therefore especially important that dis-
tributed systems maintainers test and resolve issues
in not only servers but clients as well.
Since jetcd is “the official [J]ava client for etcd v3”, it is
particularly worrying that it has contained a serious
safety bug for two and a half years, and that these is-
sues went unresolved for so long. We recommend that
the etcd and jetcd teams find a way to jointly investi-
gate and resolve critical safety issues in official client
libraries.

4.2 Future Work

This analysis focuses on jetcd, rather than etcd itself.
Other issues in etcd may remain. For example, etcd
currently experiences a broad array of crashes when
nodes encounter filesystem corruption or the loss of
un-fsynced writes. Further research on etcd safety
would likely prove fruitful.
Jepsen wishes to thank C Scotta Andreas, Tim Kordas,
Ben Linsay, Nathan Taylor, and James Turnbull for
their review of early drafts. This work was performed
independently by Jepsen without compensation, and
conducted in accordance with the Jepsen ethics pol-
icy.

3

https://github.com/etcd-io/etcd/issues/14890#issuecomment-2247177272
https://github.com/etcd-io/etcd/issues/14890#issuecomment-2247177272
https://github.com/etcd-io/jetcd/issues/1072
https://github.com/etcd-io/etcd/issues/14092
https://github.com/etcd-io/etcd/issues/14890
https://github.com/etcd-io/jetcd/issues/1072#issuecomment-1214265463
https://github.com/etcd-io/jetcd/issues/1072#issuecomment-1214265463
https://github.com/etcd-io/etcd/issues/14092#issuecomment-1260571355
https://github.com/etcd-io/etcd/issues/14092#issuecomment-1260571355
https://github.com/etcd-io/etcd/issues/14890#issuecomment-2265039691
https://jepsen.io/analyses/tidb-2.1.7
https://jepsen.io/analyses/tidb-2.1.7
https://jepsen.io/analyses/mongodb-4.2.6
https://jepsen.io/analyses/mongodb-4.2.6
https://github.com/etcd-io/jetcd
https://jepsen.io/analyses/ethics
https://jepsen.io/analyses/ethics

	Background
	Test Design
	Results
	Lost Update
	Circular Information Flow
	Aborted Reads

	Discussion
	Recommendations
	Future Work


