
Practical introduction to Agda

Gergő Érdi
http://gergo.erdi.hu/

Singapore Functional Meetup, June/July 2012.

module SGMeetup where

http://gergo.erdi.hu/

Introduction

“Agda is a proof assistant [. . .] for developing
constructive proofs based on the Curry-Howard
correspondence [. . .]. It can also be seen as a functional
programming language with dependent types.”

Wikipedia on Agda

My goal here is to explain what these key concepts mean and how
they combine to form Agda.

I am assuming familiarity with Haskell, or other mainstream
functional programming languages.

http://en.wikipedia.org/wiki/Agda_%28programming_language%29

Introduction

“Agda is a proof assistant [. . .] for developing
constructive proofs based on the Curry-Howard
correspondence [. . .]. It can also be seen as a functional
programming language with dependent types.”

Wikipedia on Agda

My goal here is to explain what these key concepts mean and how
they combine to form Agda.
I am assuming familiarity with Haskell, or other mainstream
functional programming languages.

http://en.wikipedia.org/wiki/Agda_%28programming_language%29

Part I

A crash course on the Curry-Howard
correspondence

Types as static guarantees

Types matter because they enable automated checking of certain
properties.

Trivial example: map

map :: (α→ β)→ [α]→ [β]

Haskell tracks side-effects, so by looking at map’s type, we already
know that it does no IO.

More involved example: ST

newSTRef :: α → ST σ (STRef σ α)
readSTRef :: STRef σ α → ST σ α
runST :: (∀ σ. ST σ α)→ α

The parametricity of the computation passed to runST ensures
that references don’t leak

Types as static guarantees

Types matter because they enable automated checking of certain
properties.

Trivial example: map

map :: (α→ β)→ [α]→ [β]

Haskell tracks side-effects, so by looking at map’s type, we already
know that it does no IO.

More involved example: ST

newSTRef :: α → ST σ (STRef σ α)
readSTRef :: STRef σ α → ST σ α
runST :: (∀ σ. ST σ α)→ α

The parametricity of the computation passed to runST ensures
that references don’t leak

Types as static guarantees

What properties can we express in types? Is this all just a
collection of ad-hoc kludges exploiting lucky coincidences?

The Curry-Howard Isomorphism

The simply typed lambda calculus

' Propostional logic

x : A ∈ Γ
Γ ` x : A

Γ ` f : A→ B Γ ` e : A
Γ ` f e : B

Γ, x :A ` e : B

Γ ` λx . e : A→ B

The type inference rules of the STLC directly parallel the
deduction rules of ZOL. Hence, types ' propositions.
Terms ' proofs, with functions corresponding to proofs that
assume other properties.

The Curry-Howard Isomorphism

The simply typed lambda calculus '

Propostional logic

x :

A ∈ Γ
Γ `

x :

A

Γ `

f :

A→ B Γ `

e :

A
Γ `

f e :

B

Γ,

x :

A `

e :

B

Γ `

λx . e :

A→ B

The type inference rules of the STLC directly parallel the
deduction rules of ZOL. Hence, types ' propositions.
Terms ' proofs, with functions corresponding to proofs that
assume other properties.

The Curry-Howard Isomorphism

The simply typed lambda calculus ' Propostional logic

x : A ∈ Γ
Γ ` x : A

Γ ` f : A→ B Γ ` e : A
Γ ` f e : B

Γ, x :A ` e : B

Γ ` λx . e : A→ B

The type inference rules of the STLC directly parallel the
deduction rules of ZOL. Hence, types ' propositions.

Terms ' proofs, with functions corresponding to proofs that
assume other properties.

The Curry-Howard Isomorphism

The simply typed lambda calculus ' Propostional logic

x : A ∈ Γ
Γ ` x : A

Γ ` f : A→ B Γ ` e : A
Γ ` f e : B

Γ, x :A ` e : B

Γ ` λx . e : A→ B

The type inference rules of the STLC directly parallel the
deduction rules of ZOL. Hence, types ' propositions.
Terms ' proofs, with functions corresponding to proofs that
assume other properties.

Simple extensions to ZOL

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` A ∧ B
Γ ` A

Γ ` A
Γ ` A ∨ B

Γ ` x : A Γ ` y : B

Γ ` Pair x y : Pair

Γ ` xy : Pair

Γ ` fst x : A

Γ ` x : A
Γ ` Left x : Either

We can introduce these axioms as datatypes:

data Pair = Pair A B
fst (Pair x y) = x
snd (Pair x y) = y

data Either = Left A | Right B

Simple extensions to ZOL and STLC

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` A ∧ B
Γ ` A

Γ ` A
Γ ` A ∨ B

Γ ` x : A Γ ` y : B

Γ ` Pair x y : Pair

Γ ` xy : Pair

Γ ` fst x : A

Γ ` x : A
Γ ` Left x : Either

We can introduce these axioms as datatypes:

data Pair = Pair A B
fst (Pair x y) = x
snd (Pair x y) = y

data Either = Left A | Right B

Simple extensions to ZOL and STLC

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` A ∧ B
Γ ` A

Γ ` A
Γ ` A ∨ B

Γ ` x : A Γ ` y : B

Γ ` Pair x y : Pair

Γ ` xy : Pair

Γ ` fst x : A

Γ ` x : A
Γ ` Left x : Either

We can introduce these axioms as datatypes:

data Pair = Pair A B
fst (Pair x y) = x
snd (Pair x y) = y

data Either = Left A | Right B

The Hindley-Milner Type System

HM is already more expressive than these simple extensions
because it offers polymorphism. We can abstract over propositions:

const :: α→ β → α

or with parametric datatypes, introduce whole new axiom schemes:

data Pair α β = Pair α β
data Either α β = Left α | Right β

The Hindley-Milner Type System

HM is already more expressive than these simple extensions
because it offers polymorphism. We can abstract over propositions:

const :: α→ β → α

or with parametric datatypes, introduce whole new axiom schemes:

data Pair α β = Pair α β
data Either α β = Left α | Right β

Haskell as a proof assistant?

We could regard the Haskell type checker as a proof assitant: using
C-H, we can encode our propositions as types, and if the type
checker accepts our definition x :: A, then we can regard A as
proven.

Two problems with this approach:

I We can’t express predicates
This is a limitation of the type system

Agda uses a dependent type system

I undefined :: α
This is a limitation of the computational model

In Agda, definitions are total

Haskell as a proof assistant?

We could regard the Haskell type checker as a proof assitant: using
C-H, we can encode our propositions as types, and if the type
checker accepts our definition x :: A, then we can regard A as
proven.
Two problems with this approach:

I We can’t express predicates

This is a limitation of the type system

Agda uses a dependent type system

I undefined :: α
This is a limitation of the computational model

In Agda, definitions are total

Haskell as a proof assistant?

We could regard the Haskell type checker as a proof assitant: using
C-H, we can encode our propositions as types, and if the type
checker accepts our definition x :: A, then we can regard A as
proven.
Two problems with this approach:

I We can’t express predicates
This is a limitation of the type system

Agda uses a dependent type system

I undefined :: α
This is a limitation of the computational model

In Agda, definitions are total

Haskell as a proof assistant?

We could regard the Haskell type checker as a proof assitant: using
C-H, we can encode our propositions as types, and if the type
checker accepts our definition x :: A, then we can regard A as
proven.
Two problems with this approach:

I We can’t express predicates
This is a limitation of the type system

Agda uses a dependent type system

I undefined :: α

This is a limitation of the computational model

In Agda, definitions are total

Haskell as a proof assistant?

We could regard the Haskell type checker as a proof assitant: using
C-H, we can encode our propositions as types, and if the type
checker accepts our definition x :: A, then we can regard A as
proven.
Two problems with this approach:

I We can’t express predicates
This is a limitation of the type system

Agda uses a dependent type system

I undefined :: α
This is a limitation of the computational model

In Agda, definitions are total

Haskell as a proof assistant?

We could regard the Haskell type checker as a proof assitant: using
C-H, we can encode our propositions as types, and if the type
checker accepts our definition x :: A, then we can regard A as
proven.
Two problems with this approach:

I We can’t express predicates
This is a limitation of the type system
Agda uses a dependent type system

I undefined :: α
This is a limitation of the computational model
In Agda, definitions are total

Other type systems

The C-H correspondence generalizes to other type systems and
other logic systems.
To give more precise specifications to our definitions, we need
something that corresponds (via the C-H isomorphism) to a more
expressive logic.

Where does this “dependency” thing come from?

In Haskell. . .

I Terms can depend on terms: regular function definitions

I Types can depend on types: type constructors like
Maybe : ?→ ?

I Terms can depend on types: polymorphism
(parametric/typeclasses)

So what about types depending on terms? This would correspond,
via C-H, to predicates. A dependent type system is one where
types can depend on terms.

Where does this “dependency” thing come from?

In Haskell. . .

I Terms can depend on terms: regular function definitions

I Types can depend on types: type constructors like
Maybe : ?→ ?

I Terms can depend on types: polymorphism
(parametric/typeclasses)

So what about types depending on terms? This would correspond,
via C-H, to predicates. A dependent type system is one where
types can depend on terms.

Dependent types: Π

In a dependently-typed setting, the type construction schema Π
generalizes the notion of function types, so that the type of the
result depends on the value of the argument:

Γ ` A : ? Γ, x : A ` B : ?

Γ ` Πx : A.B : ?

Γ ` A : ? Γ, x : A ` e : B

Γ ` λx : A.e : Πx : A.B

Γ ` f : Πx : A.B Γ ` e : A
Γ ` f e : B[e/x]

Dependent types: Σ

The type construction schema Σ generalizes the notion of product
types, so that the type of the second coordinate depends on the
value of the first coordinate:

Γ ` A : ? Γ, x : A ` B : ?

Γ ` Σx : A.B : ?

Γ ` e1 : A Γ ` e2 : B[e1/x]

Γ ` (e1, e2) : Σx : A.B

Γ ` e : Σx : A.B
Γ ` proj1 e : A

Γ ` e : Σx : A.B
Γ ` proj2 e : B[proj1 e/x]

Part II

A taste of Agda

Agda syntax

To understand the following slides, we need to know about a couple
of important syntactic distinctions between Haskell and Agda:

I Implicit arguments: enclosed between { } symbols

map : {A B : Set } → (A→ B)→ List A→ List B

I Arguments with inferred types: prefixed with ∀

map : ∀ {A B } → (A→ B)→ List A→ List B

I Mixfix notation & unicode characters:

+ : N→ N→ N

Defining datatypes

It seems every introduction to Agda aimed at programmers has to
start with vectors. . .

data Nat : Set where
zero : Nat
suc : Nat → Nat

data Vec (A : Set) : Nat → Set where
nil : Vec A zero
cons : (n : Nat)→ A→ Vec A n→ Vec A (suc n)

The type of a vector contains its length (a value of type Nat)

Defining datatypes

It seems every introduction to Agda aimed at programmers has to
start with vectors. . .

data N : Set where
zero : N
suc : N→ N

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : ∀ {n} → A→ Vec A n→ Vec A (suc n)

The type of a vector contains its length (a value of type N)

map for vectors

With just these definitions, we can already give a richer
specification of map: one that records the fact that it preserves
length.

map : ∀ {A B n} → (A→ B)→ Vec A n→ Vec B n
map f [] = []
map f (x :: xs) = f x :: map f xs

If instead, we wrote

map f = []

we would get a type error:

zero != .n of type N

when checking that the expression [] has type Vec .B .n

But couldn’t you do the same with GADTs1?

{-# LANGUAGE GADTs, DataKinds #-}
data Nat = Z | S Nat

data Vec a n where
Nil :: Vec a Z
Cons :: a → Vec a n → Vec a (S n)

vmap :: (a → b) → Vec a n → Vec b n
vmap f Nil = Nil
vmap f (Cons x xs) = Cons (f x) $ vmap f xs

1and data kinds

So what couldn’t we have done with GADTs?

The power of Π types is that you can lift arbitrary terms into your
types, not just (types representing lifted) constructors. E.g. if we
have:

+ : N→ N→ N
zero + m = m
(suc n) + m = suc (n + m)

then we can also write:

++ : ∀ {A n m} → Vec A n→ Vec A m→ Vec A (n + m)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

So what couldn’t we have done with GADTs? (cont.)

Just like with GADTs, when you pattern match on e.g. [], locally
(for the right-hand side) the type of ++ is specialized to

++ : ∀ {A m} → Vec A zero → Vec A m→ Vec A (zero + m)

On the other hand, the type of the right-hand side is:

ys : Vec A m

When this right-hand side is typechecked, it has to reduce the
function application zero + m to m at compile type. That’s the
magic sauce.

So what couldn’t we have done with GADTs? (cont.)

Just like with GADTs, when you pattern match on e.g. [], locally
(for the right-hand side) the type of ++ is specialized to

++ : ∀ {A m} → Vec A zero → Vec A m→ Vec A (zero + m)

On the other hand, the type of the right-hand side is:

ys : Vec A m

When this right-hand side is typechecked, it has to reduce the
function application zero + m to m at compile type. That’s the
magic sauce.

Equality by normalization

If we, instead, wrote

++ : ∀ {A n m} → Vec A n→ Vec A m→ Vec A (m + n),

then the typechecker would reject the same definition, because e.g.
for the first branch of append setting n to zero, zero + m and
m + zero are not the same terms: the first one reduces to m,
whereas the second one cannot be reduced further without
knowing anything about m.

Propositional equality

We can define our own equality relation by reflexivity:

data ≡ {A : Set } : A→ A→ Set where
refl : ∀ {x } → x ≡ x

When we pattern match on refl , we learn about other arguments
as well. That’s why we can prove the following congruence:

cong : ∀ {A B x y } → (f : A→ B)→ x ≡ y → f x ≡ f y
cong f refl = refl

since by matching refl , the type for that branch becomes

cong : ∀ {A B x .x } → (f : A→ B)→ x ≡ .x → f x ≡ f x

Proving equalities

Proofs about equalities simpy encode the needed equality in their
types. So let’s try to prove something:

+ 0 : ∀ n→ n ≡ (n + zero)
n +0 = refl

Of course, this will be rejected by the type checker, since n + zero
and n are not the same terms, and neither can be reduced further.
To reduce n + zero, we need to know about n’s constructor:

+ 0 : ∀ n→ n ≡ (n + zero)
zero +0 = refl
suc n +0 = cong suc (n +0)

Proving equalities: + is commutative

To get a better feel of these proofs, let’s prove that + is
commutative:

+− comm : ∀ n m→ (n + m) ≡ (m + n)

Let’s consider each of the four cases separately:

I 0 + 0 ≡ 0 + 0 : Both sides reduce to 0

+− comm zero zero = refl

I 0 + Sm ≡ Sm + 0 : Since 0 + Sm Sm and
Sn + m S (n + m), we can recurse by taking the suc of
both sides:

+− comm zero (suc m) = cong suc (+− comm zero m)

I Sn + 0 ≡ 0 + Sn: Analogous to the previous one:

+− comm (suc n) zero = cong suc (+− comm n zero)

Proving equalities: + is commutative

To get a better feel of these proofs, let’s prove that + is
commutative:

+− comm : ∀ n m→ (n + m) ≡ (m + n)

Let’s consider each of the four cases separately:

I 0 + 0 ≡ 0 + 0 : Both sides reduce to 0

+− comm zero zero = refl

I 0 + Sm ≡ Sm + 0 : Since 0 + Sm Sm and
Sn + m S (n + m), we can recurse by taking the suc of
both sides:

+− comm zero (suc m) = cong suc (+− comm zero m)

I Sn + 0 ≡ 0 + Sn: Analogous to the previous one:

+− comm (suc n) zero = cong suc (+− comm n zero)

Proving equalities: + is commutative

To get a better feel of these proofs, let’s prove that + is
commutative:

+− comm : ∀ n m→ (n + m) ≡ (m + n)

Let’s consider each of the four cases separately:

I 0 + 0 ≡ 0 + 0 : Both sides reduce to 0

+− comm zero zero = refl

I 0 + Sm ≡ Sm + 0 : Since 0 + Sm Sm and
Sn + m S (n + m), we can recurse by taking the suc of
both sides:

+− comm zero (suc m) = cong suc (+− comm zero m)

I Sn + 0 ≡ 0 + Sn: Analogous to the previous one:

+− comm (suc n) zero = cong suc (+− comm n zero)

Proving equalities: + is commutative (cont.)

We are left with the fourth case: Sn + Sm ≡ Sm + Sn. To prove
that, we will need a property of equality (transitivity) and a lemma
about +.

infixl 10 〈trans〉
〈trans〉 : ∀ {A} {x y z : A} → x ≡ y → y ≡ z → x ≡ z

refl 〈trans〉 refl = refl

+− comm (suc n) (suc m) = cong suc (
+− comm n (suc m)
〈trans〉

cong suc (+− comm m n)
〈trans〉

+− comm (suc n) m
)

Proving equalities: the nicer way

The previous proof is basically unreadable. . .
Fortunately, the standard library has a couple of combinators to
make equality proofs read like informal ones:

+− comm (suc n) (suc m) = cong suc $
begin

n + suc m ≡〈 +− comm n (suc m) 〉
suc m + n ≡〈 cong suc (+− comm m n) 〉
suc n + m ≡〈 +− comm (suc n) m 〉
m + suc n

Using equalities à la Leibniz

Now that we have proven that n + m ≡ m + n, we can use the
equality to substitute one for the other in types:

subst : {A : Set } → (P : A→ Set)
→ ∀ {x y } → x ≡ y
→ P x → P y

subst P refl prf = prf

Which allows us to write:

++′ : ∀ {A n m} → Vec A n→ Vec A m→ Vec A (m + n)
++′ {n = n} {m = m} xs ys =
subst (Vec) (+− comm n m) (xs ++ ys)

Part III

The MU Puzzle

The MU Puzzle

In Gödel, Escher, Bach, Hofstadter describes a very simple string
rewriting system with the following rules:

I MI is a valid string

I You can append a U to any valid string ending with I

I You can double the string after the initial M

I Any III can be replaced with a single U

I Any occurances of UU can be removed

Hofstadter then asks whether it’s possible to derive MU from MI
using these rules.

module MU where

Words of MU

Since strings of the MU system always start with an M and
contain only I and U afterwards, we can represent words as such:

data Symbol : Set where
I : Symbol
U : Symbol

open import Data.List

Word : Set
Word = List Symbol

Rules of MU

We can transliterate the rules into a datatype, where each
constructor corresponds to one of the derivation rules. The type is
indexed by the word that results from that particular sequence of
derivation steps.

data M : Word → Set where
MI : M [I]
MxI → MxIU : ∀ {x } → M (x ++ I :: [])→

M (x ++ I :: U :: [])
Mx → Mxx : ∀ {x } → M x →

M (x ++ x)
III → U : ∀ {x y } → M (x ++ I :: I :: I :: y)→

M (x ++ U :: y)
UU → ε : ∀ {x y } → M (x ++ U :: U :: y)→

M (x ++ y)

Rules of MU , examples

We can use this definition to prove that e.g. MIUIU is a valid
string:

MIUIU : M (I :: U :: I :: U :: [])
MIUIU = Mx → Mxx (MxI → MxIU {[]} MI)

Note that we had to help Agda a bit when applying MxI → MxIU,
since it cannot automatically determine that if
x ++ I :: [] = I :: [], then x = [].

Is MU a valid string?

It can be proven that MU is not a valid string, using the invariant
that the number of I characters in every valid string is not divisible
by 3. Since the number of I ’s in MU is 0, and 0 is trivially divisible
by 3, we can conclude that MU is not a valid string.
How can we write such a proof in Agda?

Negation

So far, every proposition was a positive one, and every proof has
been constructive. How can we encode negation and proof by
contradiction into this system?

By using an absurd type to denote false statements, and giving an
elimination rule that encodes ex falso quodlibet:

data ⊥ : Set where

¬ : Set → Set
¬ A = A→ ⊥
⊥− elim : ∀ {P : Set } → ⊥ → P
⊥− elim ()

This works because Agda knows there is no pattern that can
match ⊥. It also means we can’t introduce values of type ⊥
without matching on some other absurd pattern.

Negation

So far, every proposition was a positive one, and every proof has
been constructive. How can we encode negation and proof by
contradiction into this system?
By using an absurd type to denote false statements, and giving an
elimination rule that encodes ex falso quodlibet:

data ⊥ : Set where

¬ : Set → Set
¬ A = A→ ⊥
⊥− elim : ∀ {P : Set } → ⊥ → P
⊥− elim ()

This works because Agda knows there is no pattern that can
match ⊥. It also means we can’t introduce values of type ⊥
without matching on some other absurd pattern.

Aside: No law of excluded middle

In some logic systems, the following is true:

excluded −middle : {A B : Set } → ¬ ¬ A→ A

However, the proof scheme this encodes is necessarily
non-constructive.

In Agda, we cannot prove this.

Aside: No law of excluded middle

In some logic systems, the following is true:

excluded −middle : {A B : Set } → ¬ ¬ A→ A

However, the proof scheme this encodes is necessarily
non-constructive.
In Agda, we cannot prove this.

Proving MI is not a valid word

Our goal is to prove the following proposition:

¬MU : ¬ M [U]

and our plan is to do it via the following invariant, which we’ll
prove inductively:

open import Data.Nat

#I : Word → N
#I [] = 0
#I (I :: x) = suc (#I x)
#I (U :: x) = #I x

open import Data.Nat.Divisibility

- : N→ N→ Set
q - n = ¬ q | n

Invariant : Word → Set
Invariant x = 3 - #I x

invariant : ∀ {x } → M x → Invariant x

Divisibility

The type | we use in the declaration of inv comes from the
standard library, and is defined as the following:

data | : N→ N→ Set where
divides : {m n : N} (q : N) (eq : n ≡ q ∗ m)→ m | n

keep : ∀ {x y } → x ≡ y → 3 | x → 3 | y
keep = subst (| 3)

A couple of proofs about #I

See the full code for the definitions; for now, it’s enough to
understand the statements themselves.

#I −++ : ∀ x y →
#I (x ++ y) ≡ #I x + #I y

#I − xIU : ∀ x →
#I (x ++ I :: U :: []) ≡ #I (x ++ I :: [])

#I − xUy : ∀ x y →
#I (x ++ y) ≡ #I (x ++ U :: y)

#I − xIIIy : ∀ x y →
3 + #I (x ++ y) ≡ #I (x ++ I :: I :: I :: y)

Proving the invariant: Base case

To prove the base case, we only need to prove 3 - 1 , which we can
do by trying to pattern-match on the equation inside divides, and
realizing it cannot hold:

invariant : ∀ {x } → M x → Invariant x
invariant MI = 3 - 1

where
3 - 1 : 3 - 1
3 - 1 (divides zero ())
3 - 1 (divides (suc q) ())

Proving the invariant: Induction

Using the properties of #I we proved earlier, it’s easy to use
induction to prove some of the other cases:

invariant (MxI → MxIU {x } MxI)
= invariant MxI ◦ keep (#I − xIU x)

invariant (UU → ε {x } {y } MxUUy)
= invariant MxUUy ◦ keep lemma

where
lemma : #I (x ++ y) ≡ #I (x ++ U :: U :: y)
lemma = #I − xUy x y 〈 trans 〉 #I − xUy x (U :: y)

So the tricky ones that remain are:

invariant (III → U {x } {y } MxIIIy)
= invariant MxIIIy ◦ ?

-- Need a proof that if 3 | #I xUy , then 3 | #I xIIIy
invariant (Mx → Mxx {x } Mx)

= invariant Mx ◦ keep ?
-- Need a proof that if 3 | x , then 3 | x + x

Proving the invariant: Induction

Using the properties of #I we proved earlier, it’s easy to use
induction to prove some of the other cases:

invariant (MxI → MxIU {x } MxI)
= invariant MxI ◦ keep (#I − xIU x)

invariant (UU → ε {x } {y } MxUUy)
= invariant MxUUy ◦ keep lemma

where
lemma : #I (x ++ y) ≡ #I (x ++ U :: U :: y)
lemma = #I − xUy x y 〈 trans 〉 #I − xUy x (U :: y)

So the tricky ones that remain are:

invariant (III → U {x } {y } MxIIIy)
= invariant MxIIIy ◦ ?

-- Need a proof that if 3 | #I xUy , then 3 | #I xIIIy
invariant (Mx → Mxx {x } Mx)

= invariant Mx ◦ keep ?
-- Need a proof that if 3 | x , then 3 | x + x

3 | #I xUy → 3 | #I xIIIy

First of all, we know #I xUy ≡ #I xy , and also that
#I xIIIy ≡ 3 + #I xy , so the important lemma is that
3 | x → 3 | 3 + x :

invariant (III → U {x } {y } MxIIIy)
= invariant MxIIIy ◦ proof

where

lemma1 : ∀ n→ 3 | n→ 3 | 3 + n

3 | #I xUy → 3 | #I xIIIy

First of all, we know #I xUy ≡ #I xy , and also that
#I xIIIy ≡ 3 + #I xy , so the important lemma is that
3 | x → 3 | 3 + x :

invariant (III → U {x } {y } MxIIIy)
= invariant MxIIIy ◦ proof

where

lemma1 : ∀ n→ 3 | n→ 3 | 3 + n

lemma1 n (divides q n ≡ q ∗ 3)
= divides (suc q) (cong (+ 3) n ≡ q ∗ 3)

3 | #I xUy → 3 | #I xIIIy

invariant (III → U {x } {y } MxIIIy)
= invariant MxIIIy ◦ proof

where

lemma2 : 3 + #I (x ++ U :: y) ≡
#I (x ++ I :: I :: I :: y)

3 | #I xUy → 3 | #I xIIIy

invariant (III → U {x } {y } MxIIIy)
= invariant MxIIIy ◦ proof

where

lemma2 : 3 + #I (x ++ U :: y) ≡
#I (x ++ I :: I :: I :: y)

lemma2
= cong (+ 3) (sym (#I − xUy x y))
〈 trans 〉
#I − xIIIy x y

3 | #I xUy → 3 | #I xIIIy

invariant (III → U {x } {y } MxIIIy)
= invariant MxIIIy ◦ proof

where

lemma1 : ∀ n→ 3 | n→ 3 | 3 + n

lemma2 : 3 + #I (x ++ U :: y) ≡
#I (x ++ I :: I :: I :: y)

proof : 3 | #I (x ++ U :: y)→
3 | #I (x ++ I :: I :: I :: y)

proof
= keep lemma2 ◦ lemma1 (#I (x ++ U :: y))

3 | #I xx → 3 | #I x

For the indirect proof here, the crucial lemma is that if 3 | 2 ∗ n,
then 3 | n would also hold, which is in contradiction with our
inductive assumption.

invariant (Mx → Mxx {x } Mx)
= invariant Mx ◦ lemma ◦ keep (#I − dup x)

where
dup : ∀ n→ n + n ≡ 2 ∗ n
dup n = cong (+ n) (n +0)

#I − dup : ∀ x → #I (x ++ x) ≡ 2 ∗ #I x
#I − dup x = #I −++ x x 〈 trans 〉 dup (#I x)

lemma : ∀ {n} → 3 | 2 ∗ n→ 3 | n

3 | 2 ∗ n→ 3 | n

The standard library contains definitions and proofs of some pretty
high-level stuff, so we can prove 3 | 2 ∗ n→ 3 | n by observing
that 2 and 3 are co-primes. . .

lemma : ∀ {n} → 3 | 2 ∗ n→ 3 | n

lemma = coprime − divisor 3 −coprime − 2
where
open import Data.Nat.Coprimality

3 −coprime − 2 : Coprime 3 2
3 −coprime − 2 = prime ⇒ coprime 3 −prime 2

(from − yes (1 6? 2))
(from − yes (3 6? 3))
where
open import Data.Nat.Primality
open import Relation.Nullary .Decidable

3 −prime : Prime 3
3 −prime = from − yes (prime? 3)

We’re finished. . . but there’s a lot more to Agda!

Stratified universes
Totality and the termination checker
Coinductive types & corecursive definitions

And lot more...

We’re finished. . . but there’s a lot more to Agda!

Stratified universes
Totality and the termination checker
Coinductive types & corecursive definitions
And lot more...

Questions?

	A crash course on the Curry-Howard correspondence
	A taste of Agda
	The MU Puzzle

