Matthew Pickering! Gergé Erdi> Simon Peyton Jones®
Richard A. Eisenberg*

LUniversity of Oxford
2Standard Chartered Bank
3Microsoft Research

4Bryn Mawr College

Haskell Symposium, September 2016.

1/17

Example

-- Datatype definition
data Type = TyApp String | Type]

-- Functions abstract construction
tyint :: Type
tylnt = TyApp "Int" []
mkFunTy :: Type — Type — Type
mkFunTy t u = TyApp "->" [t, u]
plusTy :: Type
plusTy = tylnt ‘mkFunTy' tylnt ‘mkFunTy' tyint

Example

-- Datatype definition
data Type = TyApp String | Type]

-- Pattern synonym abstracts matching
pattern FunTy :: Type — Type — Type
pattern FunTy t u = TyApp "->" [t, u]
funArgTys :: Type — ([Type], Type)
funArgTys (FunTy t u) = case funArgTys u of

(ts,r) — (t:ts,r)
funArgTys t = ([], t)

Pattern synonyms

» Goal: bring function-like abstraction to pattern matching
» Touches all parts of the GHC frontend:
> Parser, renamer
» Typechecker
» Desugarer
» Interface files
» No backend changes needed
» Our paper shows the breadth; here we show some depth:

» Typechecking
» Desugaring

3/17

4/17

It should be possible to determine whether a use of P is well-typed
based only on P's type, without reference to P’s definition.

What is the type of a pattern?

5/17

Scrutinee type:

pattern P1 = True
pattern P2 = Just True

pattern P3 = Nothing

Parametric patterns:

pattern P4 x = Just x

6/17

Scrutinee type:

pattern P1 :: Bool
pattern P1 = True

pattern P2 :: Maybe Bool
pattern P2 = Just True

pattern P3 ::Va.Maybe a
pattern P3 = Nothing

Parametric patterns:

pattern P4 x = Just x

6/17

Pattern types

Scrutinee type:

pattern P1 :: Bool
pattern P1 = True

pattern P2 :: Maybe Bool
pattern P2 = Just True

pattern P3 ::Ya.Maybe a
pattern P3 = Nothing

Parametric patterns:

pattern P4 ::Ya.a — Maybe a
pattern P4 x = Just x

6/17

Required constraints:

pattern P5 = 42

pattern P6 = (show — "foo")

7/17

Required constraints:

pattern P5 ::Va.(Num a, Eq a) = a
pattern P5 = 42

pattern P6 = (show — "foo")

7/17

Required constraints:

pattern P5 ::Va.(Num a, Eq a) = a
pattern P5 = 42

pattern P6 :: Ya.(Show a) = a
pattern P6 = (show — "foo")

7/17

Pattern types: existentials and provided constraints

data T a where
MKT :: (Eq a,Show b) ==a—>a—>b— T a

f (MKT x y v) = if x =y then Just (show v) else Nothing

Matching on MkT brings in scope
» the type b
» (Eq a, Show b)
allowing (=) and show to be used on the right-hand side

8/17

Pattern types: existentials and provided constraints

data T a where
MKT :: (Eq a,Show b) ==a—>a—>b— T a
f (MKT x y v) = if x =y then Just (show v) else Nothing

Matching on MkT brings in scope
» the type b
» (Eq a, Show b)
allowing (=) and show to be used on the right-hand side

f:: T a— Maybe String

8/17

Pattern types: existentials and provided constraints

data T a where
MKT :: (Eq a,Show b) ==a—>a—>b— T a
pattern Pxy v = MkKT x y v

Matching on P brings in scope
» the type b
» (Eq a, Show b)

8/17

Pattern types: existentials and provided constraints

data T a where
MKT :: (Eq a,Show b) ==a—>a—>b— T a

pattern Pxy v = MkKT x y v

Matching on P brings in scope
» the type b
» (Eq a, Show b)

pattern P ::Va.() = Vb.(Eq a,Show b) == a—>a—>b— T a

8/17

Pattern types: required & provided constraints

data T a where
MKT :: (Eq a,Show b) ==a—>b— T a

pattern Pv = MkT 1 v

» Matching on P requires (Eq a, Num a)
» Matching on P provides (Eq a, Show b)

9/17

Pattern types: required & provided constraints

data T a where
MKT :: (Eq a,Show b) ==a—>b— T a

pattern Pv = MkT 1 v

» Matching on P requires (Eq a, Num a)
» Matching on P provides (Eq a, Show b)

pattern P ::Va.(Num a) = Vb.(Eq a,Show b) = b — T a

9/17

Pattern synonym types

Pattern synonym types are fully specified on six axes:

1. Universially bound type variables univ

2. The required context Req (with univ in scope)

3. The scrutinee type t (with univ in scope)
Surface syntax for pattern synonym type signatures:

pattern P :: Yuniv.Req = t

10/17

Pattern synonym types

Pattern synonym types are fully specified on six axes:

Universially bound type variables univ
The required context Req (with univ in scope)

The scrutinee type t (with univ in scope)

Existentially bound type variables ex

The provided context Prov (with univ and ex in scope)

ook W

The types of parameters t1, t2, ... (with univ and ex in scope)

Surface syntax for pattern synonym type signatures:

pattern P :: Yuniv.Req = Vex.Prov = tl —» t2 — ... >t

10/17

11/17

Desugaring

pattern P ::Va.(Num a) = Vb.(Eq a, Show b) =
b—Ta
pattern P v = MkT 3 v

$mP ::Vr a.(Num a) =
Ta—
(Vb.(Eq a,Show b) = b —r) > r —r
$mP x sk fk = case x of
MkKT 3 v — sk v
_ — fk

12/17

Desugaring

Can be represented in existing GHC Core

» No changes needed anywhere downstream

» Exported, linked, and potentially inlined just like any other
function

» Synthetic Void# parameter can be used to prevent incorrect
strictness when r is unboxed

13/17

Desugaring

Semantics is different from macro-substitution!
The full (potentially nested) structure of the pattern synonym is

matched first:

f1 :: [Bool | — Bool
f1 [True] = True
f1_ = False

1L 1]=1
f1 (False: 1) = False

pattern Single a = [a]
f2 :: | Bool | — Bool

2 (Single True) = True
2 _ = False

2L, 1] = False
f2 (False: 1) =1

14 /17

15/17

v

Proposal added in 2011
» New in GHC 7.8 in 2014

» Incremental improvements in GHC 7.10 and 8.0

v

Used in 72 packages on Hackage (as of June 2016)

16 /17

Check our paper for more. .

» Lots of examples

» Pattern synonym directionality

» Record syntax support

» Importing/exporting

» Shorthand syntax for pattern synonym signatures

» Formalisation of pattern types (in the extended version)

http://unsafePerform.I0/patsyn

17/17

http://unsafePerform.IO/patsyn

	Pattern types
	Desugaring
	Conclusion

