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Abstract

Here, we prove that there is no perfect number of the form Fmn/Fm,
where Fk is the kth Fibonacci number.

Keywords: Perfect numbers, Fibonacci numbers.

MSC: 11Axx, 11B39, 11Dxx.

1. Introduction

For a positive integer n let σ(n) be the sum of its divisors. A number n is called
perfect if σ(n) = 2n and multiperfect if n | σ(n). Let (Fk)k>0 be the Fibonacci
sequence given by F0 = 0, F1 = 1 and Fk+2 = Fk+1 + Fk for all k > 0.

In [6], it was shown that there is no perfect Fibonacci number. More generally,
in [1], it was shown that in fact Fn is not multiperfect for any n > 3.

In [8], it is was shown that the set {Fmn/Fm : m, n ∈ N} contains no perfect
number. The proof of this result from [8] uses in a fundamental way the claim that
if N is odd and perfect, then

N = paqa1

1 · · · qas
s (1.1)

for some distinct primes p and q1, . . . , qs, with p ≡ a ≡ 1 (mod 4), ai even for
i = 1, . . . , s and qi ≡ 3 (mod 4) for i = 1, . . . , s. We could not find neither a
reference nor a proof for the fact that the primes qi must necessarily be congruent
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to 3 (mod 4). The remaining assertions about p, a and the exponents ai for i =
1, . . . , s were proved by Euler.

In this paper, we revisit the question of perfect numbers of the shape Fmn/Fm

and give a proof of the fact that there are indeed no such perfect numbers. We
record our result as follows.

Theorem 1.1. There are no perfect numbers of the form Fmn/Fm for natural
numbers m and n.

Our proof avoids the information about the congruence classes of the primes qi

for i = 1, . . . , s from (1.1). Ingredients of the proof are Ribenboim’s description of
square-classes for Fibonacci and Lucas numbers [9], as well as an effective version
of Runge’s theorem from Diophantine equations due to Gary Walsh [11].

In what follows, for a positive integer n we use Ω(n), ω(n) and τ(n) for the
number of prime divisors of n (counted with and without multiplicities) and the
total numbers of divisors of n, respectively.

From now on, we put N := Fmn/Fm for some positive integers m and n, and
assume that N is perfect. Clearly, n > 1, and by the result from [6] we may assume
that m > 1 also. A quick computation with Mathematica confirmed that there is
no such example with mn 6 100. So, from now on, we also suppose that mn > 100.

2. The even perfect number case

While there is no problem with the treatment of the even perfect number case from
[8], we include it here for the convenience of the reader.

For every positive integer m, let z(m) be the minimal positive integer k such
that m | Fk. This always exists and it is called the index of appearance of m
in the Fibonacci sequence. Indices of appearance have important properties. For
example, m divides Fk if and only if z(m) divides k. Furthermore, if p is prime,
then

p ≡
(p

5

)

(mod z(p)), (2.1)

where for an odd prime q and an integer a we write

(

a

q

)

for the Legendre symbol

of a with respect to q. In particular, from congruence (2.1), we deduce that p ≡ 1
(mod z(p)) if p ≡ ±1 (mod 5), and p ≡ −1 (mod z(p)) provided that p ≡ ±2
(mod 5). Clearly, z(5) = 5.

So, if p is a prime factor of Fn, then z(p) divides n. If z(p) = n, then p is called
primitive for Fn. Equivalently, p is a primitive prime factor of Fn if p does not divide
Fm for any positive integer m < n. An important result of Carmichael [2] asserts
that Fn has a primitive prime factor for all n 6∈ {1, 2, 6, 12}. From congruence
(2.1), we have that if p is primitive for Fn, then p ≡ ±1 (mod n) unless p = n = 5.

So, let us now suppose that N = Fmn/Fm is even and perfect. By the structure
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theorem of even perfect numbers, we have that

Fmn

Fm
= 2p−1(2p − 1), (2.2)

where p and 2p − 1 are both primes. If p ∈ {2, 3}, then Fmn = 2 × 3 × Fm, or
22 × 7 × Fm. However, since mn > 100, it follows that Fmn has a primitive prime
factor q. The prime q does not divide Fm and since q ≡ ±1 (mod mn), it follows
that q > mn−1 > 99. Thus, q cannot be one of the primes 2, 3, or 7, and we have
obtained a contradiction.

Suppose now that p > 5. Then 16 | Fmn/Fm. Assume first that 3 ∤ m.
Since z(2) = 3 and 3 ∤ m, it follows that Fm is odd, therefore 16 | Fmn. Hence,
12 = z(16) | mn. However, since 9 divides F12, we get that 9 | F12 | Fmn. Relation
(2.2) together with the fact that p > 5 implies that N is coprime to 3, therefore
9 | Fm. Hence, 12 = z(9) | m, contradicting our assumption that 3 ∤ m. Thus,
3 | m. In particular, 2 | Fm, therefore 25 | Fmn. Write mn = 2s × 3 × λ for some
odd positive integer λ. Since 25 | Fmn, we get that 23 × 3 = z(25) | mn, therefore
s > 3. Next we show that m | 2s−3×3×λ. Indeed, for is not, since m is a multiple
of 3, it would follow that 2s−2 × 3 | m. It is known that if a is positive then the
exponent of 2 in the factorization of F2a×3×b is exactly a + 2 for all odd integers
b. Hence, the exponent of 2 in Fmn is precisely s + 2, while since 2s−2 × 3 divides
m, we get that the exponent of 2 in Fm is at least s. Thus, the exponent of 2 in
Fmn/Fm cannot exceed (s + 2) − s = 2, a contradiction. We conclude that indeed
m | 2s−3 × 3 × λ.

Hence, mn has at least

τ(2s × 3 × λ) − τ(2s−3 × 3 × λ) = (s + 1)τ(3λ) − (s − 2)τ(3λ) = 3τ(3λ) > 6

divisors d which do not divide m. These divisors are of the form 2αd1, where
α ∈ {s − 2, s − 1, s}, and d1 is odd. Since these numbers are all even, it follows
that for a most three of them (namely, for d ∈ {2, 6, 12}), the number Fd might
not have a primitive prime factor. Thus, for the remaining even divisors d of mn
which do not divide m (at least three of them in number), we have that Fd has a
primitive prime factor pd. The primes pd for such values of d are distinct and do
not divide Fm, therefore they appear in the factorization of N = Fmn/Fm. Hence,
ω(N) > 3, which contradicts relation (2.2) according to which ω(N) = 2.

Hence, N cannot be even and perfect.

3. The odd perfect number case

Here, we use a result of Ribenboim [9] concerning square-classes of Fibonacci and
Lucas numbers. We say that positive integers a and b are in the same Fibonacci
square-class if FaFb is a square. The Fibonacci square-class of a is called trivial if
FaFb is a square only for b = a. Then Ribenboim’s result is the following.

Theorem 3.1. If a 6= 1, 2, 3, 6, 12, then the Fibonacci square-class of a is trivial.
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In the same paper [9], Ribenboim also found the square-classes of the Lucas
numbers. Recall that the Lucas sequence (Lk)k>0 is given by L0 = 2, L1 = 1 and
Lk+2 = Lk+1 + Lk for all k > 0. We say that positive integers a and b are in the
same Lucas square-class if LaLb is a square. As previously, the Lucas square-class
of a is called trivial if LaLb is a square only for b = a. Then Ribenboim’s result is
the following.

Theorem 3.2. If a 6= 0, 1, 3, 6, then the Lucas square-class of a is trivial.

We deal with the case of the odd perfect number N = Fmn/Fm through a se-
quence of lemmas. We write N as in (1.1) with odd distinct primes p and q1, . . . , qs

and integer exponents a and a1, . . . , as such that p ≡ a ≡ 1 (mod 4) and ai are
even for i = 1, . . . , s. We use � to denote a perfect square.

Lemma 3.3. Both m and n are odd.

Proof. Assume that n is even. Then Fmn = Fmn/2Lmn/2 and Fm | Fmn/2. Thus,

N =
Fmn

Fm
=

(

Fmn/2

Fm

)

Lmn/2 = p�. (3.1)

Now it is well-known that gcd(Fℓ, Lℓ) ∈ {1, 2} and since N is odd, we get that
gcd(Fmn/2, Lmn/2) = 1. Hence, the two factors on the left hand side of equation
(3.1) above are coprime, and we conclude that either

{

Fmn/2

Fm
= p�

Lmn/2 = �
, or

{

Fmn/2

Fm
= �

Lmn/2 = p�
.

In the first case, since L1 = 1, we get that mn/2 is in the same Lucas square-class as
1, which is impossible by Theorem 3.2 because mn/2 > 50. In the second case, we
get that mn/2 and m are in the same Fibonacci square-class, which is impossible
by Theorem 3.1 for mn/2 > 50 unless mn/2 = m, which happens when n = 2. But
if n = 2, we then get that

N =
F2m

Fm
= Lm,

and the fact that Lm is not perfect was proved in [6]. The proof of the lemma is
complete. �

Lemma 3.4. We have ai ≡ 0 (mod 4) for all i = 1, . . . , s.

Proof. It is well-known that if ℓ is odd then every odd prime factor of Fℓ is
congruent to 1 modulo 4. One of the simplest way of seing this is via the formula
F2ℓ+1 = F 2

ℓ + F 2
ℓ+1 valid for all ℓ > 0, together with the fact that Fℓ and Fℓ+1 are

coprime. Since mn is odd (by Lemma 3.3), it follows that qi ≡ 1 (mod 4) for all
i = 1, . . . , s. Now

σ(qai

i ) = 1 + qi + · · · + qai

i ≡ ai + 1 (mod 4).
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If ai is a not a multiple of 4 for some i ∈ {1, . . . , s}, then ai ≡ 2 (mod 4), therefore
σ(qai

i ) ≡ 3 (mod 4). Hence, σ(qai

i ) has a prime factor q ≡ 3 (mod 4). However,
since q | σ(qai

i ) | σ(N) = 2N , it follows that q is a divisor of N , which is false
because from what we have said above all prime factors of N are congruent to 1
modulo 4. �

Lemma 3.5. The number n is prime.

Proof. Say n = rb1
1 · · · rbℓ

ℓ , where 3 6 r1 < · · · < rℓ are primes and b1, . . . , bℓ are
positive integers. Then

Fmn

Fm
=

(

Fmn/r1

Fm

)(

Fmn

Fmn/r1

)

= p�. (3.2)

It is well-known that the relation

gcd

(

Fa,
Far

Fa

)

=

{

r if r | Fa

1 otherwise
(3.3)

holds for all positive integers a and primes r. Furthermore, if the above greatest
common divisor is not 1, then r‖Far/Fa. We apply this with a := mn/r1 and
r := r1 distinguishing two different cases.

The first case is when Fmn/r1
and Fmn/Fmn/r1

are coprime. In this case, (3.2)
implies that

either
Fmn/r1

Fm
= �, or

Fmn

Fmn/r1

= �.

The second instance is impossible by Theorem 3.1 since mn > 100. By the same
theorem, the first instance is also impossible unless mn/r1 = m, which happens
when n = r1, which is what we want to prove.

So, let us analyze the second case. Then r1 | Fmn/r1
. Since r1 | Fz(r1), we get

that r1 | gcd(Fmn/r1
, Fz(r1)) = Fgcd(mn/r1,z(r1)). We know that r1 > 3 by Lemma

3.3. If r1 = 3, then z(r1) = 4 and r1 | Fgcd(mn/3,4) = F1 = 1, where the fact that
gcd(mn/r1, 4) = 1 follows from Lemma 3.3 which tells us that the number mn is
odd. We have reached a contradiction, so it must be the case that r1 > 5. Let us
observe that if r1 > 7, then z(r1) | r1 ± 1. Hence, in this case

r1 | Fgcd(mn/r1,r1±1).

Since r1 is the smallest prime in n, it follows that n/r1 is coprime to r1 ± 1,
therefore gcd(mn/r1, r1 ± 1) = gcd(m, r1 ± 1) | m. Consequently, r1 | Fm if
r1 > 7. We now return to equation (3.2) and use the fact that r1‖Fmn/Fmn/r1

and
r1 = gcd(Fmn/r1

, Fmn/Fmn/r1
).

We distinguish two instances.
The first instance is when r1 = p. We then get that

Fmn/r1

Fm
= �, and

Fmn

Fmn/r1

= p�.



112 F. Luca, V. J. Mejía Huguet

By Theorem 3.1, the first equation is not possible unless n = r1, which is what we
want.

The second instance is when r1 6= p. Then, by Lemma 3.4, we have that r4
1 | N ,

and since r1‖Fmn/Fmn/r1
, we get that r3

1 | Fmn/r1
/Fm. If r1 = 5, this implies that

r3
1 | n/r1, because it is well-known that the exponent of 5 in the factorization of Fℓ

is the same as the exponent of 5 in the factorization of ℓ. If r1 > 7, then r1 | Fm,
so z(r1) | m. It is then well-known that if re

1 denotes the exponent of r1 in the
factorization of Fz(r1), then for every nonzero multiple ℓ of z(r1), the exponent of
r1 in Fℓ is f (> e), where f − e is the precise exponent of r1 in ℓ/z(r1). It then
follows again that the divisibility relation r3

1 | Fmn/r1
/Fm together with the fact

that r1 | Fm imply that r3
1 | n/r1. Hence, in all cases (r1 = 5, or r1 > 7), we have

that r4
1 | n. Now we write

N =
Fmn

Fm
=

(

Fmn/r2

1

Fm

)

(

Fmn

Fmn/r2

1

)

= p�. (3.4)

Using (3.3), one proves easily that the greatest common divisor of the two factors
on the right above is r2

1 and that r2
1‖Fmn/Fmn/r2

1

. The above equation (3.4) then
leads to

either
Fmn/r2

1

Fm
= �, or

Fmn

Fmn/r2

1

= �.

Theorem 3.1 implies that the second instance is impossible and that the first in-
stance is possible only when n = r2

1 . However, we have already seen that r4
1 must

divide n. Thus, the first instance cannot appear either. The proof of this lemma
is complete. �

From now on, we shall assume that n is prime and we shall denote n by q.

Lemma 3.6. We have q ∤ m.

Proof. Say q | m. Then

Fmq

Fm
=

(

Fm

Fm/q

)(

Fmq/Fm

Fm/Fm/q

)

= p�. (3.5)

Both factors above are integers.
Suppose first that the two factors above are coprime. Then

either
Fm

Fm/q
= �, or

Fmq/Fm

Fm/Fm/q
= �.

The first instance is impossible by Theorem 3.1. The second instance leads to
Fmq/Fm/q = �, which is again impossible by the same Theorem 3.1.

Suppose now that the two factors appearing in the right hand side in relation
(3.5) are not coprime. But then if r is a prime such that

r | gcd

(

Fm

Fm/q
,

Fmq/Fm

Fm/Fm/q

)

, then r | gcd

(

Fm,
Fmq

Fm

)

,
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therefore r = q by (3.3). Since q | Fm/Fm/q, we get that q | Fm/q and q‖Fm/Fm/q,
and also q‖Fmq/Fm = N . Thus, q = p, and now equation (3.5) implies

Fm

Fm/q
= p�, and

Fmq/Fm

Fm/Fm/q
= �.

The second relation leads again to Fmq/Fm/q = �, which is impossible by Theorem
3.1. Hence, indeed q ∤ m. �

Lemma 3.7. We have q > 7.

Proof. We have q > 3 by Lemma 3.3. If q = 3, then since 3 ∤ m (by Lemma 3.6),
it follows that Fm is odd. But then N = F3m/Fm is even, which is a contradiction.
If q = 5, then N = F5m/Fm has the property that 5‖N . Thus, p = 5, and we get
the equation

F5m

Fm
= 5�,

which has no solution (see equation (8) in [1]). The lemma is proved. �

Lemma 3.8. (i) All primes p and q1, . . . , qs have their orders of appearance
divisible by q. In particular, they are all congruent to ±1 (mod q);

(ii) p ≡ 1 (mod 5) and p ≡ 1 (mod q). Furthermore, N ≡ 1 (mod 5) and N ≡ 1
(mod q);

(iii) If qi ≡ 1 (mod q) for some i = 1, . . . , s, then ai > 2q − 2;

(iv) We have q ≡ ±1 (mod 20). In particular, Fq ≡ 1 (mod 5);

(v) Fq 6= p.

Proof. (i) Observe first that all primes p and q1, . . . , qs are > 7. Indeed, it is clear
that they are all odd. If one of them is 3, then 3 | Fmq, so that 4 = z(3) | mq,
which is impossible by Lemma 3.3, while if one of them is 5, then 5 | Fmq/Fm,
which implies that q = 5, contradicting Lemma 3.7. Thus, p and qi are congruent
to ±1 (mod z(p)) and ±1 (mod z(qi)) for i = 1, . . . , s, respectively. If q | z(p)
and q | z(qi) for i = 1, . . . , s, we are through. So, assume that for some prime
number r in {p, q1, . . . , qs} we have that q ∤ z(r). Then r | Fmq and r | Fz(r), so
that r | gcd(Fmq , Fz(r)) = Fgcd(mq,z(r)) | Fm. Thus, r | Fm and r | N = Fmq/Fm,
therefore r | gcd(Fm, Fmq/Fm), so r = q by (3.3). In this case, q‖Fmq/Fm, therefore
q = p. The above argument shows, up to now, that all prime factors of N are either
congruent to ±1 (mod q), or the prime q itself, but if this occurs, then p = q. But
with p = q, we have that (q + 1) = (p + 1) | σ(N) = 2N , therefore (q + 1)/2 is a
divisor of N . Thus, all prime factors of (q+1)/2 are either q, which is not possible,
or primes which are congruent to ±1 (mod q), which is not possible either. This
contradiction shows that in fact q ∤ N , therefore indeed all prime factors of N have
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their orders of appearance divisible by q and, in particular, they are all congruent
to ±1 (mod q) by (2.1).

(ii) Clearly, (p + 1) | σ(N) = 2N . By (i), p ≡ ±1 (mod q), and by relation

(2.1), we have that p ≡
(p

5

)

(mod q). If p ≡ −1 (mod q), then q | (p + 1) | 2N , so

that q | N , which is impossible by (i). So, p ≡ 1 (mod q), showing that
(p

5

)

≡ 1

(mod 5), therefore p ≡ ±1 (mod 5). Finally, if p ≡ −1 (mod 5), then 5 | (p + 1) |
σ(N) = 2N , so 5 | N , which is impossible by (i). Thus, indeed p ≡ 1 (mod 5) and
p ≡ 1 (mod q). The fact that N ≡ 1 (mod q) is now a consequence of the fact that
p ≡ 1 (mod 5), qi > 5 and ai is a multiple of 4 for all i = 1, . . . , s (see Lemma 3.4),
therefore qai

i ≡ 1 (mod 5) for all i = 1, . . . , s. The fact that N ≡ 1 (mod q) follows
because by (i) p ≡ 1 (mod q), qi ≡ ±1 (mod q), and ai is even for all i = 1, . . . , s.

(iii) Assume that qi ≡ 1 (mod q) for some i = 1, . . . , s. Then

σ(qai

i ) = 1 + qi + · · · + qai

i ≡ ai + 1 (mod q).

Since σ(qai

i ) is an odd divisor of σ(N) = 2N , we get that σ(qai

i ) is a divisor of N ,
so, by (i), all its prime factors are congruent to ±1 (mod q). Hence, σ(qai

i ) ≡ ±1
(mod q), showing that ai ≡ −2, 0 (mod q). Since ai is also even, we get that
ai ≡ −2, 0 (mod 2q). In particular, ai > 2q − 2, which is what we wanted.

(iv) We use the formula

Fqm =
1

2q−1

(q−1)/2
∑

i=0

(

q

2i + 1

)

5iF 2i+1
m Lq−1−2i

m . (3.6)

Assume that 5b‖m with some integer b > 0. We then see that all the terms in the
sum appearing on the right hand side of formula (3.6) above are multiples of 5b+1,
whereas the first term (with i = 0) is qFmLq−1

m , which is divisible by 5b, but not
by 5b+1. It then follows that

Fqm

Fm
≡ q

2q−1
Lq−1

m (mod 5). (3.7)

Since m is odd, the sequence (Lk)k>0 is periodic modulo 5 with period 4, and
L1 = 1, L3 = 4 ≡ −1 (mod 5), it follows that Lm ≡ ±1 (mod 5), so that Lq−1

m ≡ 1
(mod 5). Hence, from congruence (3.7), we get N ≡ q/2q−1 (mod 5). Since also
N ≡ 1 (mod 5) (see (ii)), we get that q ≡ 2q−1 (mod 5). In particular, q is a
quadratic residue modulo 5, therefore q ≡ ±1 (mod 5). If q ≡ 1 (mod 5), we then
get that the congruence 2q−1 ≡ 1 (mod 5) holds, so that q ≡ 1 (mod 4) as well.
If q ≡ −1 (mod 5), we then get that the congruence 2q−1 ≡ −1 (mod 5) holds, so
that q ≡ −1 (mod 4) as well. Summarizing, we get that q ≡ ±1 (mod 20), and, in
particular, Fq ≡ 1 (mod 5).

(v) Assume that Fq = p. Then Fq + 1 = p + 1 divides σ(N) = 2N . Now let us
recall that if a > b are odd numbers, then

Fa + Fb = F(a+δb)/2L(a−δb)/2,
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where δ ∈ {±1} is such that a ≡ δb (mod 4). Applying this with a := q and b := 1,
we get that 5 | F(q+δ)/2L(q−δ)/2 divides 2Fqm. Observe that since q ≡ δ (mod 4),
it follows that (q− δ)/2 is even. Now it is well-known and easy to prove that if u is
even and v is odd, then gcd(Lu, Fv) = 1, or 2. Thus, L(q−δ)/2 cannot divide 2Fmq,
unless L(q−δ)/2 6 4, which is not possible for q > 7. �

From now on, we write r for the minimal prime factor dividing m.

Lemma 3.9. There exists a divisor d ∈ {r, r2} of m such that

Fmq/Fmq/d

Fm/Fm/d
= �. (3.8)

Furthermore, the case d = r2 can occur only when r | Fq.

Proof. Write again, as often we did before,

N =
Fmq

Fm
=

(

Fmq/r

Fm/r

)(

Fmq/Fmq/r

Fm/Fm/r

)

= p�. (3.9)

Suppose first that the two factors appearing in the left hand side of equation (3.9)
above are coprime. Then

either
Fmq/r

Fm/r
= �, or

Fmq/Fmq/r

Fm/Fm/r
= �.

The first instance is impossible by Theorem 3.1, while the second instance is the
conclusion of our lemma with d := r.

So, from now on let’s assume that the two factors appearing in the left hand
side of equation (3.9) are not coprime. Let λ be any prime dividing both num-
bers Fmq/r/Fm/r and (Fmq/Fmq/r)/(Fm/Fm/r). Then λ | gcd(Fmq/r , Fmq/Fmq/r).
By (3.3), we get that λ = r. In this last case, r = gcd(Fmq/r , Fmq/Fmq/r),
r‖Fmq/Fmq/r, and also r | Fmq/r/Fm/r. If r | Fm/r, it then follows that r |
gcd(Fm/r, Fmq/r/Fm/r), so, by (3.3), we get that r = q, which contradicts Lemma
3.6. Hence, r ∤ Fm/r. Thus, r | Fmq/r and r ∤ Fm/r . Now if r | Fm, then
r | gcd(Fm, Fmq/r) = Fgcd(m,mq/r) = Fm/r, which is impossible. Thus, r ∤ Fm, so
that r ∤ Fm/Fm/r. Since r‖Fmq/Fmq/r, we get that r‖(Fmq/Fmq/r)/(Fm/Fm/r).

We now distinguish two instances.
The first instance is when r = p, case in which equation (3.9) leads to

Fmq/r

Fm/r
= �, and

Fmq/Fmq/r

Fm/Fm/r
= p�. (3.10)

The first relation in (3.10) above is impossible by Theorem 3.1.
The second instance is when r 6= p.
Let r = qi for some i = 1, . . . , s, and suppose first that r‖m. Then rai−1 |

Fmq/r . Furthermore, since r ∤ mq/r, we also get that rai−1‖Fz(r). Hence, rai−1 |
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gcd(Fmq/r, Fz(r)) = Fgcd(mq/r,z(r)). Since r | N , we have that r > 7 (by (i) of
Lemma 6, for example), therefore z(r) | r ± 1. Since r is the smallest prime
in m and r‖m, we get that gcd(mq/r, z(r)) | gcd(mq/r, r ± 1) | q. Thus, ei-
ther gcd(mq/r, z(r)) = 1, leading to rai−1 | F1, which is of course impossible, or
gcd(mq/r, z(r)) = q, leading to rai−1 | Fq .

Next, we get from equation (3.9) that

either
Fmq/Fmq/r

Fm/Fm/r
= r�, or

Fmq/Fmq/

Fm/Fm/r
= pr�. (3.11)

By (v) of Lemma 3.8, we have that q ≡ ±1 (mod 20). Hence, mq ≡ ±m (mod 20),
therefore Fmq ≡ F±m ≡ Fm (mod 5). The last relation, namely Fm ≡ F−m

(mod 5), holds because m is odd. Similarly, mq/r ≡ ±m/r (mod 20), so that
Fmq/r ≡ Fm/r (mod 5). Since Fm/r, Fmq/r, Fm and Fmq are all invertible modulo
5 (because the smallest prime factor of m which is r divides Fq, therefore r >

2q− 1 > 5), it follows that (Fmq/Fmq/r)/(Fm/Fm/r) ≡ 1 (mod 5). Relation (3.11)
together with the fact that p ≡ 1 (mod 5), which is (ii) of Lemma 3.8, now shows

that 1 ≡ r� (mod 5), therefore
(r

5

)

= 1, so, by (2.1), we have r ≡ 1 (mod q).

Hence, by (iii) of Lemma 3.8, we have that ai > 2q − 2, therefore ai − 1 > 2q − 3.
Since rai−1 | Fq and r > 2q − 1, we get the inequality

(2q − 1)2q−3
6 Fq,

which is false for all primes q > 7.
This contradiction shows that in this case it is not possible that r‖m. Thus,

r2 | m, and then we can write

N =
Fmq

Fm
=

(

Fmq/r2

Fm/r2

)(

Fmq/Fmq/r2

Fm/Fm/r2

)

= p�. (3.12)

Furthermore, one shows easily that r2‖(Fmq/Fmq/r2)/(Fm/Fm/r2) by applying
(3.3) twice. Since r = qi for some i ∈ {1, . . . , s} and ai is even, it follows that
the exponent of r in the factorization of Fmq/r2/Fm/r2 is also even. We now get
from equation (3.12) that

either
Fmq/r2

Fm/r2

= �, or
Fmq/Fmq/r2

Fm/Fm/r2

= �.

The first instance is impossible by Theorem 3.1, while the second instance is the
conclusion of our lemma for d := r2. Notice that along the way we also saw that
this case is possible only when r | Fq. The lemma is therefore proved. �

Lemma 3.10. Let q and d ∈ {r, r2}, where q and r are two distinct odd primes.
Then the coefficients of the polynomial

fq,d(X) =
(Xqd − 1)(X − 1)

(Xq − 1)(Xd − 1)

are in the set {0,±1}.
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Proof. When d := r, the given polynomial is Φqr(X), where Φℓ(X) stands for the
ℓth cyclotomic polynomial, and the fact that all its coefficients are in {0,±1} has
appeared in many papers (see, for example, [4] and [5]). When d := r2, we have
fq,d(X) = Φqr(X)Φqr2(X), and the fact that the coefficients of this polynomial are
also in {0,±1} was proved in Proposition 4 in [3]. �

Lemma 3.11. The inequality m < 2d3q2 holds.

Proof. We start with the Diophantine equation (3.8). Recall that if we put α :=
(1 +

√
5)/2 and β := (1−

√
5)/2 for the two roots of the characteristic polynomial

x2 − x − 1 of the Fibonacci and Lucas sequences, then the Binet formulas

Fn =
αn − βn

α − β
and Ln = αn + βn hold for all n > 0.

Putting d ∈ {r, r2}, Lemma 3.9 tells us that

(αmq − βmq)(αm/d − βm/d)

(αm − βm)(αmq/d − βmq/d)
= �. (3.13)

We recognize the expression on the left of (3.13) above as f∗
q,d(α

m/d, βm/d), where
for a polynomial P (X) we write P ∗(X, Y ) for its homogenization, and fq,d(X) is the
polynomial appearing in Lemma 3.10. It is clear that f∗

q,d(X, Y ) is monic and sym-
metric since it is the homogenization of either the cyclotomic polynomial Φqr(X), or
of the product Φqr2(X)Φqr(X), and both these polynomials have the property that
they are monic, their last coefficient is 1, and they are reciprocal, meaning that if ζ is
a root of one of these polynomials, so is 1/ζ. These conditions lead easily to the con-
clusion that their homogenizations are symmetric. By the fundamental theorem of
symmetric polynomials, we have that f∗

q,d(X, Y ) = Fq,d(X+Y, XY ) is a monic poly-
nomial with integer coefficients in the basic symmetric polynomials X+Y and XY .
Specializing X := αm/d, Y := βm/d, we have that X + Y = αm/d + βm/d = Lm/d,

and XY = (αβ)m/d = −1, where the last equality holds because m is odd. Hence,
f∗

q,d(α
m/d, βm/d) = Gq,d(Lm/d) is a monic polynomial in Lm/d. Its degree is obvi-

ously D := (q − 1)(d − 1), which is even. Hence, equation (3.13) can be written
as

Gq,d(x) = y2, (3.14)

where x := Lm/d, y is an integer, and Gq,d(X) is a monic polynomial of even degree
D. The finitely many integer solutions (x, y) of this equation can be easily bounded
using Runge’s method. This has been done in great generality by Gary Walsh [11].
Here is a particular case of Gary Walsh’s theorem.

Lemma 3.12. Let F (X) ∈ Z[X ] be a monic polynomial of even degree without
double roots. Then all integer solutions (x, y) of the Diophantine equation

F (x) = y2
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satisfy

|x| < 22D−2

(

D

2
+ 2

)2

(h(F ) + 2)D+2,

where h(F ) denotes the maximum absolute value of the coefficients of the polynomial
F (X).

From Lemma 3.12, we read that all integer solutions (x, y) of the Diophantine
equation (3.14) satisfy

|x| 6 22D−2

(

D

2
+ 2

)2

(h(Gq,d) + 2)D+2, (3.15)

where h(Gq,d) is the maximum absolute value of all the coefficients of Gq,d(X).
Theorem 3.12 requires that the polynomial Gq,d(X) has only simple roots. Let’s
prove that this is indeed the case.

Let us take a closer look at how we got Gq,d(X) from f∗
q,d(X, Y ). Note that the

roots of fq,d(X) are the roots of unity ζ of order dq, which are neither of order d,
nor of order q. Let ζ and η stand for such roots of unity. Then Gq,d(X) is obtained
from fq,d(X) first by homogenizing, next by replacing Y by −X−1, and finally by
rewriting the resulting expression as a polynomial in X + Y = X − X−1. Thus,
Gq,d(X) is a polynomial whose roots are ζ − ζ−1. To see that they are all distinct,
note that if ζ−ζ−1 = η−η−1, then either ζ = η, or ζ = −1/η. However, the second
option is not possible when both ζ and η are roots of unity of odd orders qd (to see
why, raise the equality ζ = −1/η to the odd exponent dq to get the contradiction
1 = −1). Thus, the numbers ζ − ζ−1 remain distinct when ζ runs through roots of
unity of order dq which are neither of order d nor of order q, showing that Gd,q(X)
has only simple roots, and therefore inequality (3.15) applies in our instance.

It remains to bound h(Gq,d). For this, let us start with

f∗
q,d(X, Y ) =

D
∑

t=0

ctX
tY D−t,

where ct ∈ {0,±1} by Lemma 3.10. Since f∗
q,d(X, Y ) is symmetric, we have ct =

cD−t for all t = 0, . . . , D, therefore

f∗
q,d(α

mt/d, βmt/d) =
∑

06t6D
t≡0 (mod 2)

ct(α
mt/d + βmt/d)(αβ)(D−t)/2.

Now for even t we have

αmt/d + βmt/d = Lmt/d =

t/2
∑

i=0

t

t − i

(

t − i

i

)

(−1)iLt−2i
m/d . (3.16)

The knowledgeable reader would recognize the expression on the right as the Dick-
son polynomial Dt(Z,−1) specialized in Z := Lm/d. Thus,

Gq,d(Lm/d) = f∗
q,d(α

mt/d, βmt/d)
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=
∑

06t6D
t≡0 (mod 2)

ct(−1)(D−t)/2

t/2
∑

i=0

t

t − i

(

t − i

i

)

(−1)iLt−2i
m/d ,

=
∑

06u6D
u≡0 (mod 2)

buLu
m/r,

where

bu :=
∑

u6t6D
t≡0 (mod 2)

ct(−1)(D−t)/2+(t−u)/2 2t

t + u

( t+u
2

t−u
2

)

. (3.17)

Hence,

Gq,d(X) =
∑

06u6D
u≡0 (mod 2)

buXu,

where bu is given by (3.17). Since |ct| 6 1, 2t/(t + u) 6 2 and (t + u)/2 6 D, we
get that

|bu| 6 2

D
∑

t=0

(

D

t

)

= 2D+1 for all u = 0, 1, . . . , D,

therefore h(Gq,d) 6 2D+1. Inserting this into (3.15) and using the fact that D >
q > 4, therefore D > D/2 + 2, we get

Lm/d 6 22D−2

(

D

2
+ 2

)2

(2D+1 + 1)D+2 < 22DD22(D+2)2 . (3.18)

Since both sides of the inequality (3.18) are integers, we get that

Lm/d 6 2(D+2)222DD2 − 1,

and since Lm/d = αm/d + βm/d > αm/d − 1, we get that

αm/d < 2(D+2)222DD2,

which is equivalent to

m

d
<

(

log 2

log α

)

(D + 2)2
(

1 +
2D

(D + 2)2
+

2 logD

(D + 2)2 log 2

)

.

Since q > 7 and r > 3, we get that D > 12. The functions D 7→ D/(D + 2)2 and
log D/(D + 2)2 are decreasing for D > 12, so the expression in parenthesis is

6 1 +
2 × 12

(12 + 2)2
+

2 log 12

(12 + 2)2 log 2
< 1.2.
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Since log 2/ logα < 1.5, it follows that

m

d
< 1.5 × 1.2(D + 2)2 < 2(D + 2)2.

Since D = (q − 1)(d − 1), it follows that D + 2 = qd − q − d + 3 < qd, so that

m < 2d(qd)2 = 2d3q2,

which is what we wanted to prove. �

Lemma 3.13. The number N has at most three distinct prime factors < 1014.

Proof. Assume that this is not so and that N has at least four distinct primes
< 1014. One of them might be p, but the other three, let’s call them ri for i =
1, 2, 3, have the property that r4

i | N (see Lemma 3.4). A calculation of McIntosh
and Roettger [7] showed that the divisibility relation r‖Fz(r) holds for all primes
r < 1014. In particular, ri‖Fz(ri) for i = 1, 2, 3. Since r4

i | N for i = 1, 2, 3, we get
that r3

i | m for i = 1, 2, 3. Hence,

r3
1r

2
2r

3
3 6 m 6 2d3q2 6 2r6q2.

Clearly, r1 > r and r2 > r, since r is the smallest prime factor of m, therefore
r3
3 6 2q2. Since r3 ≡ ±1 (mod q) (see Lemma 6 (i)), we get that r3 > 2q − 1.

Thus, we have arrived at the inequality

(2q − 1)3 < 2q2,

which is false for any prime q > 7. Thus, the conclusion of the lemma must hold.
�

We are now ready to finally show that there is no such N . By Lemma 3.13, it
can have at most three prime factors < 1014. Since q > 7 and all prime factors of
N are congruent to ±1 (mod q), it follows that the smallest three such primes are
at least 13, 17, and 19, respectively. Thus,

2 =
σ(N)

N
<

N

φ(N)
6

(

1 +
1

12

)(

1 +
1

16

)(

1 +
1

18

)

∏

p|N

p>1014

(

1 +
1

p − 1

)

,

which, after taking logarithms and using the fact that the inequality log(1+x) < x
holds for all positive real numbers x, leads to

0.494 < log(1.64) <
∑

p|N

p>1014

log

(

1 +
1

p − 1

)

<
∑

p|N

p>1014

1

p − 1
. (3.19)

Let’s call a prime good if p < z(p)3 and bad otherwise. We record the following
result.
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Lemma 3.14. We have
∑

p>1014

p bad

1

p − 1
< 0.002. (3.20)

Proof. Observe first that since p > 1014, it follows that z(p) > 69. For a positive
number u let Pu := {p : z(p) = u}. Let u > 69 be any integer and put ℓu := #Pu.
Then, since p ≡ ±1 (mod u) for all p ∈ Pu, we have that

(u − 1)ℓu 6
∏

p∈Pu

p 6 Fu < αu−1,

therefore

ℓu <
(u − 1) logα

log(u − 1)
.

Thus, for a fixed u, we have

∑

p∈Pu
p bad

1

p − 1
<

ℓu

u3 − 1
<

log α

(u2 + u + 1) log(u − 1)
<

log α

u2 log(u − 1)
,

which leads to

∑

p>1014

p bad

1

p − 1
<
∑

u>69

log α

u2 log(u − 1)
<

log α

log 68

∑

u>69

1

u2
<

log α

68 log 68
< 0.002.

�

Returning to inequality (3.19), we get

0.49 <
∑

p>1014

p|N
p good

1

p − 1
. (3.21)

The following result is Lemma 8 in [1].

Lemma 3.15. The estimate

∑

p∈Pu

1

p − 1
<

12 + 2 log log u

φ(u)
holds for all u > 3. (3.22)

Let U be the set of divisors u of mq of the form u := z(p) for some good prime
factor p of N with p > 1014. Observe that all elements of U exceed 1014/3 > 46415.
Inserting the estimate (3.22) of Lemma 3.15 into estimate (3.21), we get

0.49 <
∑

u∈U

12 + 2 log log u

φ(u)
. (3.23)
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Let u1 be the smallest element in U . We distinguish two cases.

Case 1. q < r/
√

2.

By Lemma 3.11, we have that m < 2r6q2 < r8, therefore Ω(m) 6 7, so ω(m) 6

7, and τ(m) 6 27. Observe that U is contained in the set of divisors of qm which
are not divisors of m, and this last set has cardinality τ(qm)− τ(m) = τ(m) 6 27.
Here, we used the fact that τ(qm) = 2τ(m), which holds because q ∤ m (see Lemma
3.6). Hence, #U 6 27. Furthermore, since ω(m) 6 7, we get that ω(qm) 6 8 and

qm

φ(qm)
6

8
∏

i=1

(

1 +
1

pi − 1

)

< 5.9,

where we used the notation pi for the ith prime number. Hence, the inequality

1

φ(u)
6

6

u

holds for all divisors u of mq. Using also the fact that the functions u 7→ 1/u and
u 7→ log log u/u are decreasing for u > q > 7, we arrive at the conclusion that
inequality (3.23) implies

0.49 <
∑

u∈U

12 + 2 log log u

φ(u)
< 6

∑

u∈U

12 + 2 log log u

u

< 6#U
(

12 + 2 log log u1

u1

)

6 6 × 27

(

12 + 2 log log u1

u1

)

.

Since 6 × 27 × 0.49−1 < 1600, we get that

u1 < 1600(12 + 2 log log u1). (3.24)

Inequality (3.24) yields u1 < 27000 < 46415, which is a contradiction.

Case 2. q > r/
√

2.

Note that in this case we necessarily have d = r, for otherwise we would have
d = r2, but by Lemma 3.9 this situation occurs only when r is a prime factor of Fq.
If this were so, we would get that r > 2q−1, therefore q > r/

√
2 > (2q−1)/

√
2, but

this last inequality is not possible for any q > 7. Hence, d = r and m < 2r4q2 < 8q6.
Since members u of U are the product between q and some divisor v of m (see
Lemma 3.8 (i)), we deduce from inequality (3.23) that

0.49 <
12 + 2 log log(8q7)

q − 1

∑

v|m

1

φ(v)
. (3.25)

It is easy to prove that the inequality

∑

v|ℓ

1

φ(v)
<

ζ(2)ζ(3)

ζ(6)

ℓ

φ(ℓ)
holds for all positive integers ℓ. (3.26)
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Inserting inequality (3.26) for ℓ := m into inequality (3.25), we get that

q − 1 <

(

ζ(2)ζ(3)

ζ(6) · 0.49

)

(

12 + 2 log log(8q7)
) m

φ(m)
. (3.27)

The constant in parenthesis in the right hand side of inequality (3.27) above is < 4.
Furthermore, Theorem 15 in [10] says that the inequality

ℓ

φ(ℓ)
< 1.8 log log ℓ + 2.51/log log ℓ holds for all ℓ > 3. (3.28)

The function ℓ 7→ 1.8 log log ℓ + 2.51/ log log ℓ is increasing for ℓ > 26, and since
m < 8q6, we get, by inserting inequality (3.28) with ℓ := m into inequality (3.27),
that the inequality

q − 1 < 4
(

12 + 2 log log(8q7)
) (

1.8 log log(8q6) + 2.51/ log log(8q6)
)

, (3.29)

holds whenever m > 26. Inequality (3.29) yields q 6 577. This was if m > 26. On
the other hand, if m < 26, then m/φ(m) 6 15/8 < 2, so we get

q − 1 < 8
(

12 + 2 log log(8q7)
)

,

which yields q 6 151. So, we always have q 6 577.

Let us now get the final contradiction. The factorizations of all Fibonacci
numbers Fℓ with ℓ 6 1000 are known. A quick look at this table convinces us that
Fq is square-free for all primes q 6 577.

If Fq is prime, then Fq 6= p by Lemma 3.8 (v). Furthermore, by Lemma 6
(iv), putting qi = Fq for some i = 1, . . . , s, we get that qi ≡ 1 (mod q), therefore

ai > 2q − 2. So q2q−3
i divides m, leading to

(2q − 1)2q−3
6 q2q−3

i 6 m 6 8q6, (3.30)

and this last inequality is false for any q > 7.

If Fq is divisible by at least three primes, it follows that at least two of them,
let’s call them qi and qj , are not p. By Lemma 3.4, we get that q3

i and q3
j divide

m. Thus,

(2q − 1)6 6 q3
i q3

j 6 m 6 8q6, (3.31)

and again this last inequality is again false for any q > 7.

Finally, if Fq has precisely two prime factors, then either both of them are
distinct from p, and then we get a contradiction as in (3.31), or Fq = pqi for some
i ∈ {1, . . . , s}. But in this case, by Lemma 3.8 (ii) and (iv), we get that qi ≡ 1
(mod 5), therefore qi ≡ 1 (mod q), so q2q−3

i divides m by Lemma 3.8 (iii), and we
get a contradiction as in (3.30).

This completes the proof of our main result.



124 F. Luca, V. J. Mejía Huguet

References

[1] Broughan, K. A., González, M., Lewis, R., Luca, F., Mejía Huguet, V. J.,

Togbé, A., There are no multiply perfect Fibonacci numbers, INTEGERS , to ap-
pear.

[2] Carmichael, R. D., On the numerical factors of the arithmetic forms αn
± βn,

Ann. Math. (2), 15 (1913), 3–70.

[3] Kaplan, N., Bounds on the maximal height of divisors of xn
−1, J. Number Theory,

129 (2009), 2673–2688.

[4] Lam, T. Y., Leung, K. H., On the cyclotomic polynomial Φpq(X), Amer. Math.
Monthly, 103 (1996) 562–564.

[5] Lenstra, H. W., Vanishing sums of roots of unity, Proceedings, Bicentennial
Congress Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, (1979)
249–268.

[6] Luca, F., Perfect Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (2), 49
(2000), 313–318.

[7] McIntosh, R., Roettger, E. L., A search for Fibonacci-Wieferich and Wolsten-
holme primes, Math. Comp., 76 (2007), 2087–2094.

[8] Phong, B. M., Perfect numbers concerning the Fibonacci sequence, Acta Acad.
Paed. Agriensis, Sectio Math., 26 (1999), 3–8.

[9] Ribenboim, P., Square-classes of Fibonacci and Lucas numbers, Portugaliae Math.,
46 (1989), 159–175.

[10] Rosser, J. B., Schoenfeld, L., Approximate formulas for some functions of prime
numbers, Illinois J. Math., 6 (1962), 64–94.

[11] Walsh, P. G., A quantitative version of Runge’s theorem on Diophantine equations,
Acta Arith., 62 (1992), 157–172; ‘Correction to: A quantitative version of Runge’s
theorem on Diophantine equations’, Acta Arith., 73 (1995), 397–398.

Florian Luca

C. P. 58089, Morelia Michoacán, México

e-mail: fluca@matmor.unam.mx

V. Janitzio Mejía Huguet

Av. San Pablo # 180

Col. Reynosa Tamaulipas

Azcapozalco, 02200, México DF, México

e-mail: vjanitzio@gmail.com


