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Abstract

We describe a robust, fast, and memory-efficient procedure that can cluster millions of structures 

derived from molecular  dynamics  simulations.  The essence of  the method is  based on a peak-

picking algorithm applied to three- and five-dimensional distributions of the principal components 

derived from the  trajectory  and automatically  supports  both  Cartesian  and dihedral  PCA-based 

clustering.  The  density  threshold  required  for  identifying  isolated  peaks  (which  correspond  to 

discrete  clusters)  is  determined through the  application of  a  variance-explained criterion  which 

allows  for  a  completely  automated  clustering  procedure  with  no  user  intervention.  In  this 

communication  we  describe  the  algorithm  and  present  some  of  the  results  obtained  from  the 

application of the method as implemented in the molecular dynamics analysis programs  carma, 

grcarma. and cluster5D. We conclude with a discussion of the limitations and possible pitfalls 

of this method.
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1. Introduction

Meaningful clustering of macromolecular molecular dynamics trajectories is a complex and open-

ended question. The main reason for this complexity is that the mode of clustering depends on the  

aim of  the  analysis  performed  and is  not  a  fundamental  property  of  any given trajectory. For 

example, significantly different clustering procedures are needed if the aim of the analysis is to 

identify  putative  transition  state  ensembles  from  a  folding  molecular  dynamics  simulation,  as 

opposed to identifying, for example, the most prominent and stable molecular conformations from 

this  same  folding  trajectory.  What  this  discussion  implies,  then,  is  that  the  development  of  a 

universally optimal clustering algorithm for macromolecular simulation is highly unlikely -if not 

meaningless. The conclusion from this analysis is clear : any new clustering algorithm -especially 

those  that  have  been  fully  automated-  must  explicitly  define  the  aims  and  limitations  of  the 

clustering performed. 

Here  we  describe  a  PCA-based  peak-picking  algorithm  which  has  been  implemented  in  the 

molecular  dynamics  analysis  programs  carma[1],  grcarma[2] and  cluster5D.  The  main 

reason that led us to develop this algorithm was mostly technical : the great majority of clustering 

procedures  currently  available  have  very  significant  physical  memory  requirements  and  are 

computationally quite expensive which makes their application to molecular dynamics trajectories 

containing several millions of structures rather impractical. Additionally, for most of these methods 

extra steps of pre- and post-processing of the trajectories are needed which further limits their direct 

application to the primary simulation data. It is for this reason that we have developed the algorithm 

described in this communication which has been shown to be able to cluster millions of frames both 

extremely fast and with negligible physical memory requirements. As will be discussed later, the 

aim of this clustering procedure is to quickly identify prominent molecular configurations based on 

a principal component analysis of the trajectories and supporting both Cartesian and dihedral PCA.

In the paragraphs that  follow we describe the algorithm, present results from its applications to 

several  different  macromolecular  trajectories,  and  then  critically  discuss  its  limitations  for  the 

analysis of biomolecular trajectories.
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2. Methods

2.1 Algorithms

The algorithm is essentially based on identifying isolated peaks in a three- or five-dimensional 

density map obtained from the distribution of the trajectory's  principal components.  In more  

detail.

1. The trajectory is  analyzed using either  Cartesian or dihedral  PCA [1,2 and references 

therein]. The result is a matrix containing the values of the top three (or five) principal  

components for each and every structure recorded in the trajectory. The choice of the 

maximum number of supported dimensions (five) is arbitrary and was selected in order 

to  make  the  programs  useable  even  on  computing  machines  with  limited  hardware 

resources.

2. The values of the principal components obtained from step (1) above are converted to a 

three-  or five-dimensional density distribution map. In these maps,  the three (or five)  

axes correspond to the respective principal components, and the value of each point of 

the map is  equal to the number of structures from the trajectory that have PC values 

closest to the that point. Figure 1 shows a two-dimensional example aiming to exemplify 

this  procedure  :  The two axes  in  panel  (A) of  this  Figure  correspond to  the  top  two 

principal components (the first component horizontal, the second vertical). The density 

of the map itself (with hot colors indicating high density) is proportional to the number  

of  structures  (from  the  trajectory)  that  have  values  for  their  principal  components  

corresponding to the specific point of the PC plane.

3. The  initial  three/five  dimensional  map  obtained  in  step  (2)  above  is  smoothed  using 

nearest-neighbor averaging. The aim of this smoothing step is to reduce the amount of  

statistical noise in the maps which arises from the limited and discontinuous sampling of  

the  trajectory.  It  should  be  noted  that  even  after  this  smoothing  step,  the  maps  still  

contain a significant amount of noise as can be seen in Figure 1(B) which depicts the  

logarithm of the distribution shown in panel (A). 

4. Having  obtained  the  smoothed  maps,  the  aim  is  to  identify  isolated  peaks  in  these 

distributions that have a density higher than a given threshold. The choice of threshold  
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for identifying isolated peaks is critical in the sense that an erroneously high threshold  

will lead to loss of structural information while an erroneously low threshold will fail to  

discriminate  between  distinct  molecular  conformations.  We  have  implemented  an 

automatic procedure for calculating a reasonable value for the density threshold through 

the application of a variance-explained criterion. The principal idea is that we test a large  

number  of  different  thresholds  (starting  from  a  very  high  value  and  progressively  

lowering  it  until  we  reach  the  map's  mean  density)  and  for  each  of  these  different 

thresholds  we calculate  the percentage of the map's  variance that  is  explained by the 

peaks above the threshold. Our implementation aims for a threshold that can explain at  

least 80% of the original PC map's variance.

5. In the last step, all peaks above the selected threshold are identified and classified, with 

each of these peaks corresponding to a distinct cluster. The trajectory frames belonging  

to  each cluster  can  easily  be identified  (and reported)  via  a  second pass  through the  

principal component matrix described in step (1) above. Panel (C) in Figure 1 shows the  

results obtained by applying the method to the distribution shown in panel (A) of the 

same figure. Notice how some of the less prominent conformations (lower density peaks) 

escaped  detection.  This  and  other  limitations  of  the  method  will  be  discussed  in  the  

Discussion section.

2.2 Implementation and availability

The  algorithm  described  above  has  been  fully  implemented  (for  both  the  three-  and  five-

dimensional cases) in the free, open-source programs carma, grcarma and cluster5D which 

are immediately available for download  via standard repositories. Complete packages containing 

pre-compiled  executables  suitable  for  all  major  architectures  are  also  available  via 

http://utopia.duth.gr/glykos/Carma.html .
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3. Results

The method described in the previous sections has been tested with numerous trajectories available 

to  us  and  covering  everything  from  peptides[3-8] to  large  proteins[9,10]  and  from  extreme 

stability[3,6,7]  to  significant  disorder[4,5,8,10,18].  Since  the  initial  release  of  carma,  several 

groups from the molecular dynamics community have tested and applied this algorithm. To our 

knowledge, and within the limitations discussed in the next section, the method has been shown to 

be robust,  extremely fast,  and capable of clustering millions  of frames with minimal  hardware 

requirements. Case studies exemplifying the application of the algorithm in real problems can be 

found in several papers[3-17]. 

4. Discussion

The major limitation of the method described above is that it does not even attempt to cluster all 

structures from the trajectory : the aim of the algorithm is to efficiently identify the most prominent 

molecular conformations, and not to comprehensively assign each frame of a trajectory to a cluster. 

Additionally, the fixed highest dimensionality of the PC-derived maps may in some cases lead to 

loss of structural information (this is more probable with highly flexible/disordered systems where a 

larger number of principal components may be required to capture the structural variance). Figure 2 

demonstrates  some  of  the  limitations  of  the  method  using  a  hypothetical  one-dimensional 

distribution : Depending on the peak-picking threshold selected by the variance-explained criterion, 

low lying peaks may escape detection (cluster D in Figure 2) or closely related -but otherwise 

distinct- conformations may be assigned to the same cluster (clusters A and B). It could be argued 

that a better (gradient-based) algorithmic treatment could be devised that would alleviate both of 

these problems. Practical experience with the algorithm has shown, however, that the presence of 

significant  noise  in  the  primary  data,  together  with  the  requirement  to  be  able  to  cluster  even 

trajectories containing only hundreds (instead of millions) of frames severely limits the ability to 

meaningfully extend the procedure described above.  Having noted these limitations,  we should 

close by stating that from the numerous simulations that this algorithm has been applied we have 

never observed a  case where this  method failed to produce a reasonable and convincing initial 

characterization of a trajectory's most prominent molecular configurations.
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Figure Captions

Figure 1 : Schematic representation of the peak-picking algorithm. Panel A shows a pseudo-

color representation of the distribution of the top two principal components obtained from a 2.1 μs 

molecular dynamics simulation of hepta-Alanine. Panel B is the same distribution on a logarithmic 

scale. Panel C indicates the five clusters automatically identified by the algorithm. Note that the 

actual clustering algorithm operates in either the three or five dimensional PCA space, and, thus, 

what is shown in this figure is a lower dimensionality projection.

Figure  2  :  Artifacts  and  limitations  of  the  peak-picking  algorithm. This  diagram shows  a 

hypothetical density distribution for one principal component. The horizontal axis is the value of the 

principal  component,  the  vertical  axis  is  the  respective  density  (number  of  structures  with  the 

corresponding value of the principal component). The red horizontal line is a hypothetical density 

threshold for identifying peaks which was selected through the variance-explained criterion. Notice 

how (a) only a subset of structures from the trajectory are assigned to clusters, (b) that some clusters 

escape detection (cluster D in the diagram), and, (c) how closely related clusters are being treated as 

a single peak (clusters A and B in the diagram). 
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