
WaterlooClarke: TREC 2015 Temporal
Summarization Track

Ahsan Raza
University of Waterloo

Waterloo, Ontario N2L 3G1
Email: m6raza@uwaterloo.ca

Devin M. Rotondo
University of Waterloo

Waterloo, Ontario N2L 3G1
Email: drotondo@uwaterloo.ca

Charles L. A. Clarke
University of Waterloo

Waterloo, Ontario N2L 3G1
Email: charles.clarke@uwaterloo.ca

I. TEMPORAL SUMMARIZATION TRACK

The Temporal Summarization Track looks at providing
meaningful summaries of major events and sub-events as they
occur. Difficulties arise due to the unique nature of the tem-
poral summarization task in which the corpora is constantly
changing along with the known information about the event
[1]. This year, the temporal summarization track consists of
three tasks, two filtering and summarization tasks and an on-
topic summarization task. In the filtering and summarization
tasks, relevant content must be extracted from a continuous
stream of documents and gradually summarized while main-
taining low redundancy, latency and verbosity. In the third task,
only the summarization must take place on a corpora filled
with many documents related to the event [2]. The overall
goal of the track is to provide a sequence of short meaningful
sentence length updates over the duration of the events taking
into account sentence redundancy and latency. The summaries
are scored using an expected latency gain metric (ELG) in
which sentences are rewarded for containing handpicked key
updates (nuggets) and are penalized for redundancy, latency
and verbosity [3]. This track can help users deal with all of the
vast information that comes as major events progress through
the use of general impersonal updates.

Our approach for this track consists of a two step process.
The first stage is a data preprocessing stage which extracts the
information from the supplied web documents and only retains
the information considered necessary for the second stage. The
second stage is the filtering and summarization stage used to
find and push the relevant sentence length updates. We have
applied this methodology to both the second and third task.
A total of six different runs have been submitted with all of
them being judged. The run scores are comparable to those in
2014, however, with a larger latency gain and lower latency
comprehensiveness. The submitted task 2 runs appear to have
a slightly better performance than those of task 3. However,
there were no apparent differences between the task 2 or the
task 3 runs.

II. DATA PREPROCESSING

It seems to be very common to usually filter out irrelevant
content when searching and summarizing data no matter the
source. For the temporal summarization corpus, once the
data was decrypted and decompressed into a binary form, it

was taken and processed using the TREC-KBA streamcorpus
tool which provides three different views on each document.
In order to better clean and extract information from the
documents, the clean HTML view was used. The clean HTML
was processed with python-goose [4], a data processing tool
which obtains the “relevant text” and document title from news
articles, and python-readability [5] to get document statistics
such as the number of paragraphs and images. Additionally,
for UWCTSRun3 and UWCTSRun6, the cleaned HTML is
transformed into a cleaner form first using python-readability
before processing with python-goose. A simple way to look
at the “relevant text” extraction is that it removes most of the
advertisements and irrelevant data that make it harder to find
the focus of the article. The last step of the preprocessing is
to extract all of the sentences from the python-goose text and
store them for streaming. This step was performed for each
document and the preprocessed data for each document was
stored in its own file.

A document metadata file was created which contained the
metadata about each document, such as the document ID,
stream time and document type. The metadata file allows
for the documents to be looked up in an easy to process
time ordered sequence. The entire data preprocessing did not
take too long and would be well suited for a live temporal
summarization task.

III. APPROACH

A. High-level Approach

Dealing with a large continuous stream of data brings with it
some issues. There are several additional details that should be
considered such as deciding to filter and summarize the docu-
ments as they arrive or to wait a while until you have a perhaps
more representative corpus of the event. It is reasonable to
say that the first relevant documents on an event immediately
after it occurs will contain some important information such
as the date, time, and location and perhaps initial estimates
of damages. The corpus should later expand to provide more
precise information in the form of updates. Additionally, if we
only look at news articles then these documents have a specific
structure ideal for temporal summarization. News articles often
have a short and relevant sentence as the title pertaining to the
newest information on the event and are then structured as an
inverted pyramid in which the first paragraph explains the new



Algorithm 1 Document Summarization Algorithm
1: startTime ← query.startTime() , endTime ← query.endTime() , maxHits ← 20
2: previousHighWatermarkDocument ← NULL , previousDocumentsSentAsUpdate ← {}
3: for i = startTime, i ≤ endTime, i += MINS 5 do
4: lookAheadTime ← min(i + MINS 5, endTime)
5: documentsWithinTimeRange ← getDocumentsWithinTimeRange(i, lookAheadTime)
6: DocumentIndex.index(documentsWithinTimeRange)
7: documentHits ← DocumentIndex.queryIndex(maxHits, query.getQuery())
8: if documentHits 6= Empty then
9: if previousHighWatermarkDocument = NULL then

10: documentHits.retainAll(documentsWithinTimeRange)
11: hitDocument ← getNonRedundantHit(documentHits, previousDocumentsSentAsUpdate);
12: if hitDocument 6= NULL then
13: PUSH hitDocument
14: previousHitTime ← lookAheadTime
15: previousHighWatermarkDocument ← hitDocument
16: previousDocumentsSentAsUpdate.add(hitDocument)
17: end if
18: else
19: previousHighWatermarkRank ← documentHits.indexOf(previousHighWatermarkDocument)
20: if previousHighWatermarkRank ≥ 0 then
21: newHits ← documentHits.subList(0, previousHighWatermarkRank)
22: else
23: newHits ← documentHits
24: end if
25: newHits.retainAll(documentsWithinTimeRange)
26: hitDocument ← getNonRedundantHit(newHits, previousDocumentsSentAsUpdate)
27: if hitDocument 6= NULL then
28: PUSH hitDocument
29: previousHitTime ← lookAheadTime
30: previousHighWatermarkDocument ← hitDocument
31: previousDocumentsSentAsUpdate.add(hitDocument)
32: else if lookAheadTime - previousHitTime ≥ MINS 60 then
33: previousHighWatermarkDocument ← NULL
34: else if lookAheadTime - previousHitTime ≥ MINS 15 then
35: if previousHighWatermarkRank = -1 then
36: newWatermarkRank ← length(documentHits)
37: else
38: newWatermarkRank ← min(length(documentHits), currentWatermarkRank ∗ 2)
39: end if
40: previousHighWatermarkDocument ← documentHits.get(newWatermarkRank)
41: end if
42: end if
43: end if
44: end for

information on the event followed by supportive information
in the later paragraphs [6]. This tends to make summarization
of these types of articles a lot easier than the less structured
web blogs or other such documents. Our approach attempts to
build on this reasoning in creating event summaries.

In our approach we first index 20,000 documents prior to
the event in order to have a reasonable document baseline for
the event in task 2. These documents should all be irrelevant
to the event assuming that the start time given by the user is

a reasonable start time for the event. In the case of task 3,
only those documents from the task 3 corpus are used which
amounts to a much smaller amount of documents indexed
prior to the event. Apache Lucene [7] has been used in this
application for indexing, ranking and searching the documents
using the Okapi BM25 ranking. Then at every five minute
interval, the new data is indexed and ranked. The new data is
additionally filtered prior to indexing in task 2 by removing
those articles that are not news or MAINSTREAM NEWS



from the stream. The Rocchio relevance feedback algorithm
is also subsequently applied in order to complement the
user query with additional search terms in order to obtain
a more relevant top match. Based on this, the document
summarization algorithm above is applied to decide if any of
the new documents should be pushed for an update.

B. Algorithm

The document summarization algorithm is given a query
object (query) —an object containing information about the
event such as the name of the event, the start and end time
of the event— and attempts to PUSH updates for that event.
The document summarization algorithm processes documents
in 5 minutes intervals, by looking at documents in each 5
minute interval after the event start time. It obtains the list
of documents within the current interval and adds them to
the document index (line 5-6). Following this, the top 20
(maxHits) documents with the highest score according to the
Okapi BM25 scoring and relevance feedback are returned (line
7). If no hits were found, the algorithm will continue checking
at every 5 minute interval for a hit. Alternatively, if any hits
were found then there are several options that can be taken. If
a document has not recently been pushed, then the top ranked
hit that is not redundant with any of the previous updates will
be pushed (line 9-16). This document is now set as the high
watermark, which is used to determine whether to push new
updates later on or not.

If a document has recently been pushed then a high wa-
termark will exist. All of the hits that are ranked higher than
the high watermark document are obtained (line 21), and from
those only documents that are within the current time interval
are kept (line 25). From the remaining hits, the hits that are not
redundant with any of the previous updates are retained (line
26). If any documents remain then the highest ranked one is
pushed (line 28). If no documents remain, then the algorithm
proceeds either to decrease the high watermark document (line
34-40) or to remove the high watermark (line 32-33).

The document summarization algorithm promotes pushing
an update when updates have not been pushed for a while. The
algorithm attempts to push lower scoring documents as time
passes even though these documents may not contain the best
information on the event at the time in order to consistently
provide some new information on the event. The algorithm
avoids pushing updates that are redundant to previous any of
the previous updates, regardless of how long ago the update
was sent. To do this, it uses cosine similarity on document
titles in order to determine which documents are similar to
each other. When the corpus is rapidly changing with respect
to the event in the query, the algorithm tries to only give out
updates that are ranked higher than the previous hits. This
requirement decreases exponentially as time passes and no
new hits are found, allowing for lower ranked hits to be sent
as updates.

Cosine similarity is used with a threshold of 0.4 in order
to avoid pushing redundant updates. This threshold was de-
termined empirically after some testing with the documents.

The similarity check is based on the titles from each of the
previously pushed documents with the title of the proposed
documents. Additionally, a custom metric has been added
to remove irrelevant documents based on their content. In
order to exclude these documents, only articles with at least
3 paragraphs along with articles where number of paragraphs
is greater than the number of images times 1.5 are kept. This
ensures that if a sentence from a document is pushed for an
update, the document is a news focused article and not an
article that is primarily image or video-based.

IV. TRACK RUNS

Each run differs in the summarization strategy that it
uses or on the task in which it is ran. The summarization
strategy in UWCTSRun1, UWCTSRun2 and UWCTSRun3
for task 2 correspond to UWCTSRun4, UWCTSRun5, and
UWCTSRun6 in task3. UWCTSRun1(4) follow the strategy of
pushing the first sentence found in each article as determined
natively by python-goose. For UWCTSRun2(5), the document
summarization algorithm pushed only the document headline
for each of the selected documents. For UWCTSRun3(6) a
combination of python-readability and python-goose is used.
Python-readability parses the clean HTML and only keeps the
HTML containing the main article. Then python-goose is used
to extract sentences from the HTML and the first sentence
is pushed. All these approaches differ in that the updates
pushed for UWCTSRun2(5) will be a short concise update for
each event whereas for UWCTSRun1(4) and UWCTSRun3(6),
the updates will be much more detailed and perhaps more
informative. Table 1 illustrates the average results for all
judged runs across all queries. Bold numbers representing best
run results across the different evalation measures.

TABLE I
TRACK RUN RESULTS FOR UWCTS RUN 1 TO RUN 4.

Run ID EGτ (S) Cτ (S) H

— Task 2 —
UWCTSRun1 0.1547± 0.13 0.2065± 0.09 0.1553± 0.09
UWCTSRun2 0.1811± 0.13 0.1496± 0.08 0.1523± 0.09
UWCTSRun3 0.1491± 0.12 0.2026± 0.09 0.1511± 0.09
— Task 3 —
UWCTSRun4 0.0751± 0.09 0.0583± 0.06 0.0571± 0.06
UWCTSRun5 0.0830± 0.12 0.0279± 0.04 0.0398± 0.06
UWCTSRun6 0.0753± 0.09 0.0545± 0.07 0.0553± 0.07

From Table 1, there does not appear to be any difference
between the task 2 or the task 3 runs. The only apparent
difference appears to be between task 2 and task 3 showing
a better overall performance across all of the task 2 runs.
This suggests that the algorithm may require modifications
when dealing with a smaller and more focused corpus such as
pushing updates more frequently.

V. IMPROVING THE PROCESSING AND RESULTS

The document preprocessing and processing should perform
adequately with a real-time continuous stream of articles.
However, as the current metric limits scoring to the original
tokenized sentences, the sentences that are pushed to the user



must currently be matched to those sentences for an update.
This increases the amount of processing done currently for
each update. Additionally, the proposed document summariza-
tion algorithm assumes that the top hits are well structured
and focused primarily on the one query topic. However, in
rare occasions the news articles contain information about
more than one news story leading the summary to stray off-
topic. Possible future considerations could be taken by further
applying additional natural language processing in order to
obtain a more relevant sentence for these documents.

REFERENCES

[1] Q. Guo, F. Diaz, and E. Yom-Tov, “Updating users about time critical
events,” in Advances in Information Retrieval. Springer Berlin Heidel-
berg, 2013, vol. 7814, pp. 483–494.

[2] J. Aslam, F. Diaz, M. Ekstrand-Abueg, V. Pavlu, and T. Sakai, “Temporal
Summarization 2015 Guidelines,” in Proc. of the Twenty-Fourth Text
REtrieval Conference, 2015.

[3] J. Aslam, F. Diaz, M. Ekstrand-Abueg, V. Pavlu, and T. Sakai, “Tem-
poral Summarization 2015 Metrics,” in Proc. of the Twenty-Fourth Text
REtrieval Conference, 2015.

[4] X. Grangier, “Python-goose,” 2015. [Online]. Available: https://github.
com/grangier/python-goose

[5] Y. Baburov and R. Harding, “Python-readability,” 2015. [Online].
Available: https://github.com/buriy/python-readability

[6] E. A. Thomson, P. R. R. White, and P. Kitley, “Objectivity and Hard
News Reporting across Cultures: Comparing the News Report in English,
French, Japanese and Indonesian Journalism,” Journalism studies, vol. 9,
no. 2, pp. 212–228, 2008.

[7] Apache, “Lucene,” 2015. [Online]. Available: https://lucene.apache.org/


