Statistical Selection of Exact Answers

(MultiText Experiments for TREC 2002)

C. L. A. Clarke

G. Kemkes M. Laszlo

T. R. Lynam

G. V. Cormack

E. L. Terra P. L. Tilker

School of Computer Science, University of Waterloo, Canada
mt@plg.uwaterloo.ca

1 Introduction

For TREC 2002, the MultiText Group concentrated
on the QA track. We also submitted runs for the Web
track.

Building on the work of previous years, our TREC
2002 QA system takes a statistical approach to an-
swer selection, supported by a lightweight parser that
performs question categorization and query genera-
tion. Answer candidates are extracted from passages
retrieved by an algorithm that identifies short text
fragments containing weighted combinations of query
terms. If the parser is able to assign one of a prede-
termined set of question categories to a question, the
system employs a finite-state pattern recognizer to
extract answer candidates. Otherwise, one- to five-
word n-grams from the passages are used. Our sys-
tem assumes that an answer to every question ap-
pears in the TREC corpus, and it produces a NIL
result only in a few rare circumstances. Despite the
simplicity of the approach, our best QA run returned
correct answers to 37% of the questions.

Our basic question answering strategy is an exten-
sion of the technique we used for both TREC 2000
and 2001 [5]. In past years, our system ranked in-
dividual terms appearing in retrieved passages and
selected 50-byte responses from the passages that in-
cluded one or more of the highest ranking terms.
Since exact answers are required for TREC 2002,
much of our effort this year was focused on the ex-
tension of this technique to multi-term exact-answer
candidates.

Last year, a novel feature of our QA system was the
use of commercial Web search services to reinforce
answer candidates. This year we reduced our depen-
dence on these commercial services by generating our
own collections of structured and unstructured data
for use in question answering. The structured data

collection consists largely of tables containing answers
to questions of frequently occurring types, such as the
names of capital cities, the names of world leaders,
and the names of baby animals. The unstructured
data collection consists of a terabyte of Web data
gathered from the general Web in mid-2001. For com-
parison, half of our submitted runs use a commercial
Web search service (Altavista) in addition to our own
collection.

As a supplement to our basic question answering
strategy, we developed an “early answering” strat-
egy using our structured collection. Under this strat-
egy, if a question can be answered directly from the
structured data, the problem is reduced to one of an-
swer justification, in which our system attempts to
locate a document in the TREC corpus where ques-
tion and answer keywords appear in close proximity.
If no acceptable justification can be found, or if the
question cannot be answered with the structured col-
lection, our basic question answering strategy is in-
voked. This combination of two strategies — a strat-
egy that searches a federated collection of structured
data with a statistical strategy that searches a large
collection of unstructured text — is essentially the ap-
proach to question answering advocated by Lin [9].
Our experimental runs examine the impact of our
early answering strategy. Half our submitted runs
use the strategy and half do not.

In the next section we provide an overview of each
of the main components of our QA system, with a
particular focus on the components which are new to
our system for TREC 2002. Section 3 gives the results
of our QA track experiments. For the Web track we
submitted runs that took advantage of anchor text
and link information in addition to document con-
tent. In section 4 we describe the approach used for
our Web track experiments and discuss the results.

|

EarI&AnSNerl ng

etrieval

Early Answering

(Justification)

Unjustified Answers

O

Answer

TREC
Corpus

I

Local Web
orpus

ik

Trivia
Corpus

|

uestion
nalysis
Query
1
Altavista
Frontend
URLSs
‘%\ Category
Download
Web Pages
Passage
Retrieval
Passages
Entit
Extraction
Named Entities
Answer
Selection
Answer
Merging &
Ranking

Figure 1: QA System overview.

2

2 The MultiText QA System

Figure 1 provides an overview of our QA system,
showing the processing steps from question to an-
Not all the paths through this diagram are
used in all runs. Half of our runs omit the Altavista
path through the center of the diagram, and half of
our runs omit the early answering path down the left.

SWer.

2.1 Question Analysis

The question-analysis component takes a natural lan-
guage question as input and yields a set of terms
amenable for input to the passage retrieval system.
Question analysis also yields answer categories used
by the entity extraction component.

To achieve its objectives, the question analyzer
looks for textual elements characteristic of some ques-
tion form. To this end, we use a context-free grammar
generating the forms of interest, and find the most
likely derivation of a question using a probabilistic
version of Earley’s algorithm. The context-free gram-
mar has been augmented to form an attribute gram-
mar and the attributes are evaluated based on the
most probable derivation.

Query generation has changed little from TREC
2001 [3] and is based primarily on part-of-speech and
quoted-string attributes. Queries are term vectors.
Our passage retrieval system provides a rich lan-
guage for term expressions that includes exact match-
ing of words and phrases, matching under stem-
ming, matching of term disjunctions, and other less-
standard operators. For query generation, part of
speech is used to determine the role of each word as
a query term. Nouns, adjectives, and adverbs are
used directly as query terms. Verbs are stemmed if
they are regular, and expanded if they are irregular.
Articles and prepositions are discarded unless other-
wise specified in the grammar rules. Quoted strings
are used directly as query terms, as are the individual
words contained in quoted strings.

Along with a query, the attribute evaluator out-
puts a set of global attributes and binary relation-
ships among words in the question. This information
was processed further using Prolog. As an example,
the parser output for TREC 2001 question 1383 is
shown in figure 2.

Global attributes are expressed as the unary rela-
tions qno for question number, inst for instance-of
and so on. The binary relationships are expressed as
4-tuples:

e(qno, source, sink, rel),

where gno is the question number, source and sink
are words in the question, and rel is the relationship
between source and sink. For example,

e(1382,"shepard", "make","subj")

indicates that “shepard” is the subject of “make”,
and

e(1383,"flight","make","obj")

indicates that “£1ight” is the object of “make”. More
importantly, we see that “spacecraft” is the object
of an adverbial phrase modifying “make”, and that
“what” (the question word) modifies “spacecraft”.
Our Prolog analyzer is able to deduce from these re-
lations that the answer being sought is the spacecraft
involved in Shepard’s flight.

We use WordNet to determine if a word named
in the instance-of attribute is a person, place, thing,
etc. and use this information in assigning the ques-
tion a category. We use word relationships as further
evidence in determining the category (e.g. authors
write books, inventors invent inventions, and so on).
Our original intent was to use the analysis to gener-
ate better queries and to aid in recognizing answer
contexts. Time permitted us to use the analysis only
for categorization.

2.2 Passage Retrieval

We have developed a passage-retrieval algorithm for
question answering that can identify small text frag-
ments that cover as many question terms as possible.
This retrieval algorithm has been applied in all our
TREC question-answering experiments to date. A
detailed description of the algorithm may be found
elsewhere [3, 5].

Unlike most other passage-retrieval algorithms,
ours does not retrieve predefined document elements,
but can retrieve any document substring within a
corpus. Usually, these fragments are considerably
smaller than the documents that contain them. The
score of a fragment depends on its length, the number
of question terms it contains and the relative weight
assigned to each of these terms.

Fragments are often only a few words in length, and
may cover only the question terms. To provide the
context necessary for entity extraction and answer
selection, each fragment is expanded by n words on
each side, and this larger passage is retrieved from the
corpus. The location of the original fragment within
each larger passage is marked as a “hotspot”. The
answer-selection algorithm takes into account the lo-
cation of answer candidates relative to this hotspot.

qno(1383).

inp(1383,"In in what spacecraft did U u S s astronaut Alan alan Shepard
shepard make his historic 1961 flight").

cat(1383,"what").
cat1(1383,"what").
e(1383,"what","spacecraft","adj").
e(1383,"in","spacecraft",'"prep").
e(1383,"alan","shepard","adj").
e(1383,"astronaut","shepard","adj").
e(1383,"us","shepard","adj").
e(1383,"1961","flight","adj").
e(1383,"historic","flight","adj").
e(1383,"his","flight","adj").
e(1383,"flight", "make","obj").
e(1383,"spacecraft", "make","adv").
e(1383,"shepard","make","subj").

Figure 2: Parser output for TREC 2001 question 1383.

Passages are retrieved from at least three — and
in some cases four — corpora. The first of these is
the TREC corpus itself. The second corpus is our
own local terabyte Web corpus. The third is a small
27MB corpus containing 330,000 trivia questions and
answers, with each question/answer pair indexed as a
separate document and treated as unstructured text
by the passage-retrieval component.

Half of our runs use a fourth corpus generated by
querying the Altavista search engine. In these runs,
we download the top 200 documents returned by Al-
tavista to form a small question-specific corpus. Since
its contents are biased by the query, term statistics
from the TREC corpus are used during passage re-
trieval from this small corpus.

The top 20 passages are retrieved from the TREC
corpus, the top 40 from the local Web corpus and
up to 10 from the trivia corpus. In runs using an
Altavista corpus, the top 40 passages are retrieved.
The system merges the retrieved passages and passes
them to the entity-extraction component.

2.3 Entity Extraction

An entity-extraction component, with responsibility
for identifying answer candidates, is a major addi-
tion to our QA system for TREC 2002. Our overall
approach to entity extraction and answer selection is
similar to the “n-gram mining” technique described
by Dumais et al. [8]. An answer candidate is always a
word n-gram appearing in a retrieved passage. If the
question-analysis component assigns a category to a
question, simple pattern matching is used to extract

n-grams corresponding to the category. But when a
category cannot be assigned to a question, n-grams
of one to five words within a fixed window of the
hotspot become the answer candidates. The entity
extractor records the passage and document in which
each candidate appears, and its location relative to
the hotspot. All this information is passed to the
answer selection component.

The primary purpose of the entity extractor is to
eliminate unacceptable or unlikely answer candidates
from the set of all n-grams. Thus, we prefer to re-
tain questionable candidates and rely on the answer-
selection component to give a low score to spurious
candidates. As an example, for the PERSON cate-
gory the entity extractor will accept any capitalized
word surrounded by uncapitalized words, provided
that it is not a stopword or question term and pro-
vided it appears capitalized in the corpus more than
50% of the time.

Pattern matching is achieved with a tool that al-
lows the results of finite-state matching to be merged,
filtered and cascaded, similar to the tool described
by Abney [1]. The tool incorporates an algebra for
structured text search [4], which, along with other
capabilities, allows the context of a match to be con-
sidered. Finite-state automata may be specified by
regular expressions or by lists of terms, such as the
names of countries or states. In addition to finite-
state automata, hand-written matching code may be
called from the matching tool as needed.

A total of 48 categories are matched; a full
list is given in figure 3. Most of the categories
are self-explanatory, and many are standard in

AGE AIRPORT ANNIVERSARY AREA
BIRTHSTONE CODE COLOUR CONSTELLATION
CONTINENT CONVERSION=unit0,unitl COUNTRY CURRENCY
DATE ELEMENT LAKE LARGE
LENGTH LONG MASS MEASURE
MONEY MONTH MOON MOUNTAIN
NATURAL NUMBER OCEAN PERSON
PHONE PLACE PLANET PROPER
PROVINCE QUANTITY=unit RATE RIVER

SEASON SPEED STATE TEMPERATURE
THING TIME URL VOLUME
WEEKDAY YEAR ZIPCODE ZODIAC

Figure 3: Question categories.

question answering systems (e.g. DATE, CITY,
PERSON, TEMPERATURE). A few (ATRPORT,
BIRTHSTONE, SEASON) are inspired by previous
TREC evaluations. Two categories, CONVERSION
and QUANTITY are parameterized by units. After
matching, we normalize candidates corresponding to
time, measurement, and numeric categories to stan-
dard formats to assist the answer selection process.

Matching of the generic proper name categories
(PROPER, PERSON, PLACE, THING) is a two-
stage process that depends on corpus statistics. In
the first stage, we identify lexically acceptable candi-
dates using a longest-match approach. For example,
the first stage would identify only the string “U.S.
President Bill Clinton Thursday” as a candi-
date for the PERSON category in the passage:

...U.S. President Bill Clinton
Thursday proposed a five-year,

over 6 billion U.S. dollar package
to raise the ante on his nearly
fulfilled pledge to put 100,000 new
officers on the beat nationwide...

The second phase uses corpus statistics to propose
substrings of the first-stage candidates as additional
candidates. To generate these corpus statistics, we
applied the longest-match patterns for the generic
proper name categories to a concatenation of the
TREC 2001 and 2002 QA corpora and recorded a
count of each matching string. Any substring of a
first-stage candidate that appears more frequently
than the candidate itself is proposed as an additional
candidate. However, single terms are not proposed
if they are capitalized less than 50% of the time in
the combined corpus. In the example above, the
strings “U.S.”, “Bill Clinton”, “U.S. President
Bill Clinton” and “Thursday” would be proposed

as additional candidates. but not “S. President”
or “Clinton Thursday”.

The patterns for PERSON, PLACE and THING
match similar sets of strings. The pattern
for THING accepts acronyms (“I.B.M”) and un-
capitalized word combinations (“The Lord of the
Rings”) that would not be accepted by the PER-
SON pattern. The PLACE pattern attempts to ex-
tend matches by appending state and country names
(“Waterloo, Ontario, Canada”). The PROPER
pattern is a union of the PERSON, PLACE and
THING patterns.

When the question analyzer cannot assign a cat-
egory to a question, the entity extractor generates
a set of all 1- to 5-grams within within 30 words
of the hotspot. From this set, the entity extractor
eliminates n-grams that only appear in a single pas-
sage, n-grams that begin or end with prepositions,
and n-grams that consist primarily of stopwords and
question terms. The remaining n-grams are treated
as answer candidates and are passed to the answer-
selection component.

2.4 Answer Selection

From the entity extractor, the answer-selection com-
ponent receives a set of n-grams, a list of the pas-
sage and document identifiers where each n-gram is
found, and the location of each n-gram within these
passages. Along with corpus statistics, this informa-
tion is used to rank the n-grams. The highest ranking
n-gram is returned as the exact answer.

Candidate redundancy, the number of distinct pas-
sages in which an candidate occurs, has been an im-
portant factor in our QA system since TREC-9 [5].
To rank n-gram answer candidates, our TREC 2002
ranking formula combines redundancy with an idf-

table

| 4t elements

Biographies 25,000
Trivia Question and Answers 330,000
Airports(code, names, location) 1,500
Country Locations 800
Country Capitals and Populations 300
Currency by Country 235
Landmark Locations 2,000
Rulers (location,period,title) 25,000
Acronyms 112,000
University and College (name, location) 5,000
Major World Cites (name, location) 21,000
State and Province (name, population, date, capital, bird, flower) 63
Holidays 171
Previous TREC questions and answers 1393
Animal Name (baby, male, female, group) 500

Figure 4: Structured data for early answering.

like weight and information about the location of the
candidate relative to the hotspot in passages where
it occurs.

The distance of a candidate from a passage hotspot
is measured in token positions, with candidates oc-
curring in the hotspot itself treated specially. Given
P, an ordered set of m passages, we use the nota-
tion P; (1 < i < m) to refer to the ith passage in
‘P. Each passage is split into tokens, where tokens
are sequences of alphanumeric characters separated
by non-alphanumeric characters.

For each passage P; containing one or more oc-
currences of a candidate z (z € P;) we determine
loc(P;, z), the distance from the hotspot to the clos-
est occurrence of x If x is contained entirely in the
hotspot then loc(P;, z) = 0. Otherwise, loc(P;, z) >
0. For multi-token candidates, the distance is mea-
sured from the closest token in the hotspot to the
furthest token in the candidate. Thus for candidates
occurring before the hotspot, the distance is mea-
sured from the start of the candidate to the start of
the hotspot, and for candidates occurring after the
hotspot the distance is measure from the end of the
hotspot to the end of the candidate.

Candidates are then scored using the following for-

mula:
>

1<i<m, z€P;

o () O

where N is sum of the lengths of all documents in
the corpus and f; is the number of occurrences of
the candidate in the database.

2.5 Early Answering

The “early answering” subsystem answers questions
by referencing a database of structured knowledge
gathered from the Web. The subsystem comprises
two components: a retrieval component that de-
termines when questions can by answered from the
structured knowledge and proposes possible answers,
and a justification component that uses IR techniques
to identify documents that support the proposed an-
swers.

We gathered Web pages from standard sources like
the CIA Factbook and from other sources identified
by searching the Web. The Web pages were parsed
into tables and manually filtered to remove irregu-
lar information. We supplemented the data gathered
from the Web with a table of acronyms extracted
from the TREC 2001 and 2002 QA corpora and a
table of past TREC questions and answers. Figure 4
gives a summary of the tables in the database.

One table in the database contains a collection of
trivia questions with their answers. This is the same
collection accessed by the passage retrieval compo-
nent as unstructured text. Here, the trivia collection
is treated as structured data and an exact match with
the normalized text of a trivia question is required for
the associated answer to be proposed. The text of a
question is normalized by converting to lower case,
removing punctuation and a few stopwords, sorting
the words, and eliminating duplicate words.

The early-answering subsystem is geared to answer
specific question types. Regular expressions are used
to match question forms corresponding to these types

ANNIVERSARY, DATE, LENGTH, MOUNTAIN, PERSON, PLACE, PROPER, THING

0) results from the early-answering subsystem
1) CONTINENT, CURRENCY, LAKE, OCEAN, PLANET, PROVINCE
2) COLOUR, COUNTRY, SEASON, STATE, YEAR
3)
4) LONG, TIME
5) CODE, LARGE, SPEED
6) NUMBER, RATE, TEMPERATURE
7) MONEY
8) all other categories
9) wuncategorized questions
10) unanswered questions (“NIL”)

Figure 5: Confidence

(ie. “What is the capital of X?”). Once the question
type is identified, the answer is retrieved directly from
the corresponding table. When possible, we order the
tables so that the first occurrence is the most likely
answer. When the time-frame of a question is impor-
tant, the question is answered in the time-frame of
the corpus rather than the time-frame of the gath-
ered data. For example, the question, “Who is the
president?” should be answered with “Bill Clinton”
rather than “George W. Bush.”

To meet the requirements of the QA track, our sys-
tem not only must return an exact answer, but also
must identify a document in the TREC corpus that
supports this answer. Given a question and a pro-
posed answer, the justification component searches
the TREC corpus for a document containing the an-
swer and keywords from the question in close prox-
imity. If no supporting document can be found, the
proposed answer is rejected.

2.6 Merging & Ranking

The final component of our system merges the output
of the statistical answer-selection component with the
answers generated by the early-answering subsystem
and applies a confidence ranking to the result. The
decisions made by this merging-and-ranking compo-
nent are based on our experience with 1393 training
questions drawn from the QA tracks for TREC 1999-
2001.

Whenever the early-answering subsystem produces
an answer for a question in this training set, we
judged it to be correct (but not necessarily justi-
fied) 96% of the time. Since this performance is su-
perior to that of statistical answer selection for all
question categories, answers generated by the early-
answering subsystem are always given precedence and
are ranked first in the system output. Unfortunately,
over the training set, the early-answering subsystem

ranking by category.

produces an answer for only 12% of the questions.

The ranking of the answers produced by statistical
answer selection is entirely based on the question cat-
egory, with the answers for uncategorized questions
ranked lower than categorized questions. The rank-
ing order by category is shown in figure 5. Each line
of the figure gives an equivalence class for confidence
ranking purposes.

In the rare cases where neither early answering nor
statistical answer selection produces an answer, a no-
answer (“NIL”) result is generated and ranked last.
Statistical answer selection fails to produce an answer
only when the entity extraction component fails to
identify any candidates from the TREC QA corpus.
We took this failure as an indication that an answer
may not be present in the corpus. This situation is
only one in which a “NIL” result is produced by our
system.

3 QA Track Results

Our QA track results are summarized in figure 6. The
figure reports results for two judgment sets: the offi-
cial NIST judgments and our own judgments, which
were made immediately after the runs were submit-
ted in August. The NIST judgments for uwmtBO were
generated from the answer list provided by NIST,
since this run was not officially judged. All the an-
swers we marked correct in this run are exact and
supported according to the NIST answer list, but it
is possible that some correct answers from this run do
not appear in the NIST answer list. In judging our
own runs, we were far more forgiving than the NIST
judges. Nonetheless, the relative differences between
runs under each judgment set is remarkably consis-
tent.

The use of Altavista as a supplement to our own
QA resources had an impact of less than 4% on both

run tag | uwmtB3 uwmtB2 uwmtB1l uwmtBO

uses early answering? y y n n

uses Altavista? y n y n
NIST iudements percent correct | 36.8% 36.6.X% 33.4% 32.4Y%
Juce confidence-weighted score | 0.512 0.511 0.441 0.429
MultiText judements percent correct | 44.4Y% 44 .0Y% 39.4% 38.6Y%
uce confidence-weighted score | 0.614 0.610 0.509 0.493

Figure 6: QA track results.

the number of correctly answer questions and the
confidence-weighted score. The use of early answer-
ing provided a 10-14% improvement in the number of
correctly answered questions and a 16-24% improve-
ment in the confidence-weighted score.

When it was used in a run, the early-answering
subsystem generated answers for 65 questions. Of
these, 44 (67.7%) were correct. In uwmtB2, where
early answering was not used, only 27 of these same
65 questions (41.5%) were answered correctly.

In uwmtB3, our best run, 126 questions could nei-
ther be answered by the exact-answering subsystem
nor assigned a category from figure 3 by the question
analyzer. For these questions we took a purely sta-
tistical approach, using n-grams of 1- to 5-words in
length as the answer candidates. Of these 126 ques-
tions, 27 (21.4%) were answered correctly.

As an additional experiment, we disabled the ques-
tion categorization and exact answering, and applied
purely statistical answer selection to the entire ques-
tion set. Of the 500 questions, 73 (14.6%) were cor-
rect.

4 'Web Track Experiments

Our Web track runs were the result of an intensive
48-hour effort intended to resurrect some the older
MultiText work in this area and to provide a prelim-
inary evaluation of a few new ideas.

We submitted five runs. One run (uwmtBWO) used
only document content for retrieval, one (uwmtBW1)
used pagerank in addition to document content, one
(uwmtBW2) used anchor text along with document
content, one (uwmtBW3) used a combination of doc-
ument content, pagerank and anchor text, and one
(uwmtBW4) used anchor text only.

For content retrieval, we used the current imple-
mentation of our cover-density ranking algorithm,
which is essentially the same technique used in our
MultiText TREC-8 Web track runs [6] and is re-
lated to the passage-retrieval algorithm used in our

QA track runs. The cover-density ranking algorithm
locates hotspots that contain combinations of query
terms, and bases a document’s score on the number
and score of the hotspots it contains.

For anchor text retrieval, we applied the cover-
density ranking algorithm in a novel way. Anchor
points were indexed and hotspots were required to
contain an anchor point in addition to the query
terms. The score associated with each hotspot was
then applied to the score of the document referenced
by the anchor, rather than the document where the
anchor appears. This approach is similar to other
anchor text retrieval techniques [7], but takes advan-
tage of the text surrounding the anchor, as well as
the anchor text itself.

Our version of pagerank is a direct implementa-
tion of the original pagerank algorithm described by
Brin and Page [2]. To apply pagerank to the Web
track task, we re-ranked the top 1000 documents re-
trieved by document content or anchor text according
to their pagerank values.

To combine the results of pagerank and/or anchor
text retrieval with document content retrieval we sim-
ply added the rank of each document in each run and
re-sorted them in ascending order. For the purposes
of combining runs, a document not appearing in a
particular run is treated as if it has a rank one greater
than the number of documents retrieved by the run.

Our Web track results are summarized in figure 7.
In comparison with content-only retrieval, the com-
bination of anchor text and content retrieval pro-
vided a 5% improvement in average reciprocal rank
and a 7% improvement in precision at 10 documents.
Alone, anchor text retrieval exhibited very poor per-
formance. The inclusion of pagerank had a devastat-
ing impact on performance. Since our implementa-
tion of pagerank has been throughly tested in other
projects, we suspect the problem lies in the approach
used to incorporate pagerank into our runs.

run tag | uwmtBWO uwmtBW1 uwmtBW2 uwmtBW3 uwmtBW4
uses document content? y y y y n
uses pagerank? n y n y y
uses anchor text? n n y y n
average reciprocal rank | 0.509 0.150 0.535 0.103 0.1086
precision at 10 0.747 0.320 0.800 0.260 0.307

Figure 7: Web track results.

5 Conclusions & Future Work

We continue to improve all aspects of our QA sys-
tem. In future, we intend to expand the number of
question categories and improve the recall of the en-
tity extractor on the existing categories. The current
version of our early answering system was two-person
effort undertaken in the week preceding the question
download date; it could be improved with additional
answer sources and more a careful answer justifica-
tion algorithm. In contrast, we expended consider-
able effort over several months attempting to exploit
syntactic information, by parsing retrieved passages
and unifying the result with a parse of the question.
While we made considerable progress along this path,
we ultimately were not able to develop the approach
to the point where it made a positive impact on our
QA system.

We are encouraged by the results of our Web exper-
iments. In particular, we plan further experiments to
explore our approach to using the text surrounding
anchors. Our use of pagerank was a failure. In fu-
ture, we hope to determine how to exploit pagerank
more effectively in our system.

References

[1] Steven Abney. Partial parsing via finite-state cas-
cades. Journal of Natural Language Engineering,

2(4):337-344, December 1996.

[2] Sergey Brin and Lawrence Page. The anatomy of
a large-scale hypertextual Web search engine. In
Seventh International World Wide Web Confer-
ence, pages 107-117, Brisbane, Australia, April
1998.

[3] C. L. A. Clarke, G. V. Cormack, T. R. Lynam,
C. M. Li, and G. L. McLearn. Web reinforced
question answering. In 2001 Text REtrieval Con-
ference, Gaithersburg, MD, 2000.

[4] Charles L. A. Clarke, G. V. Cormack, and F. J.

Burkowski. An algebra for structured text search

and a framework for its implementation. Com-

puter Journal, 38(1):43-56, 1995.

[5] Charles L. A. Clarke, Gordon V. Cormack, and
Thomas R. Lynam. Exploiting redundancy in
question answering. In 2/th Annual International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 358-365,
New Orleans, September 2001.

[6] G. V. Cormack, C. L. A. Clarke, C. R. Palmer,
and D. I. E. Kisman. Fast automatic passage
ranking. In Fighth Text RFEtricval Conference
(TREC-8), Gaithersburg, Maryland, November
1999.

[7] Nick Craswell, David Hawking, and Stephen
Robertson. Effective site finding using link an-
chor information. In 24/th Annual International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 250-257,
New Orleans, September 2001.

[8] Susan Dumais, Michele Banko, Eric Brill, Jimmy
Lin, and Andrew Ng. Web question answering:
Is more always better? In 25th Annual Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, Tampere,
Finland, August 2002.

[9] Jimmy Lin. The Web as a resource for question
answering: Perspectives and challenges. In 3rd
International Conference on Language Resources
and Fvaluation, May 2002.

Acknowledgments

Our thanks to Ed Fox and Virginia Tech for providing
us with the computing resources and network band-
width to generate the TB Web crawl used in our QA
track runs.

