

NIST Internal Report NIST IR 8517 ipd

Hardware Security Failure Scenarios

Potential Weaknesses in Hardware Design

Initial Public Draft

Peter Mell Irena Bojanova

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8517.ipd

NIST Internal Report NIST IR 8517 ipd

Hardware Security Failure Scenarios

Potential Weaknesses in Hardware Design

Initial Public Draft

Peter Mell Computer Security Division Information Technology Laboratory

Irena Bojanova Software and Systems Division Information Technology Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8517.ipd

June 2024

U.S. Department of Commerce *Gina M. Raimondo, Secretary*

National Institute of Standards and Technology Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this paper in order to specify the experimental procedure adequately. Such identification does not imply recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at https://csrc.nist.gov/publications.

NIST Technical Series Policies

Copyright, Use, and Licensing Statements NIST Technical Series Publication Identifier Syntax

Publication History

Approved by the NIST Editorial Review Board on YYYY-MM-DD [will be added in final publication]

How to Cite this NIST Technical Series Publication

Mell P, Bojanova I (2024) Hardware Security Failure Scenarios: Potential Weaknesses in Hardware Design. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal Report (IR) NIST IR 8517 ipd. https://doi.org/10.6028/NIST.IR.8517.ipd

Author ORCID iDs

Peter Mell: 0000-0003-2938-897X Irena Bojanova: 0000-0002-3198-7026

Contact Information

nistir8517@nist.gov

National Institute of Standards and Technology Attn: Computer Security Division, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Public Comment Period

June 13, 2024 – July 31, 2024

Submit Comments

nistir8517@nist.gov

National Institute of Standards and Technology Attn: Computer Security Division, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information

Additional information about this publication is available at <u>https://csrc.nist.gov/pubs/ir/8517/ipd</u>, including related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

1 Abstract

- 2 Historically, hardware has been assumed to be inherently secure. However, chips are both
- 3 created with and contain complex software, and software is known to have bugs. Some of these
- 4 bugs will compromise security. This publication evaluates the types of vulnerabilities that can
- 5 occur, leveraging existing work on hardware weaknesses. For each type, a security failure
- 6 scenario is provided that describes **how** the weakness could be exploited, **where** the weakness
- 7 typically occurs, and **what** kind of damage could be done by an attacker. The 98 failure
- 8 scenarios provided demonstrate the extensive and broadly distributed possibilities for
- 9 hardware-related security failures.

10 Keywords

11 chips; design; failures; hardware; scenarios; security; vulnerability; weakness.

12 Reports on Computer Systems Technology

- 13 The Information Technology Laboratory (ITL) at the National Institute of Standards and
- 14 Technology (NIST) promotes the U.S. economy and public welfare by providing technical
- 15 leadership for the Nation's measurement and standards infrastructure. ITL develops tests, test
- 16 methods, reference data, proof of concept implementations, and technical analyses to advance
- 17 the development and productive use of information technology. ITL's responsibilities include
- 18 the development of management, administrative, technical, and physical standards and
- 19 guidelines for the cost-effective security and privacy of other than national security-related
- 20 information in federal information systems.

21 Audience

- 22 This report is intended for a broad audience who wants to understand the many ways in which
- 23 hardware can fail from a security perspective. This includes policymakers interested in
- 24 information technology (IT) security, IT security officers, operation security staff who must
- 25 secure deployed hardware, and developers of hardware. It is written for a technically oriented
- 26 audience, but it does not require specific knowledge of hardware security.
- 27

28 Call for Patent Claims

- 29 This public review includes a call for information on essential patent claims (claims whose use
- 30 would be required for compliance with the guidance or requirements in this Information
- 31 Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be
- 32 directly stated in this ITL Publication or by reference to another publication. This call also
- includes disclosure, where known, of the existence of pending U.S. or foreign patent
- 34 applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign
- 35 patents.
- 36 ITL may require from the patent holder, or a party authorized to make assurances on its behalf,37 in written or electronic form, either:
- a) assurance in the form of a general disclaimer to the effect that such party does not hold
 and does not currently intend holding any essential patent claim(s); or
- b) assurance that a license to such essential patent claim(s) will be made available to
 applicants desiring to utilize the license for the purpose of complying with the guidance
 or requirements in this ITL draft publication either:
- 43 i. under reasonable terms and conditions that are demonstrably free of any unfair44 discrimination; or
- 45 ii. without compensation and under reasonable terms and conditions that are46 demonstrably free of any unfair discrimination.
- 47 Such assurance shall indicate that the patent holder (or third party authorized to make
- 48 assurances on its behalf) will include in any documents transferring ownership of patents
- 49 subject to the assurance, provisions sufficient to ensure that the commitments in the assurance
- 50 are binding on the transferee, and that the transferee will similarly include appropriate
- 51 provisions in the event of future transfers with the goal of binding each successor-in-interest.
- 52 The assurance shall also indicate that it is intended to be binding on successors-in-interest
- regardless of whether such provisions are included in the relevant transfer documents.
- 54 Such statements should be addressed to: <u>nistir8517@nist.gov</u>.

55 Table of Contents

56	1. Introduction1
57	2. Background2
58	2.1. Weaknesses vs. Vulnerabilities2
59	2.2. Weakness Data Fields2
60	2.3. Weakness Abstractions
61	2.4. Weakness Views3
62	2.4.1. Hardware Design View
63	2.4.2. Research Concepts View4
64	2.4.3. Simplified Mapping of Published Vulnerabilities View4
65	3. Technical Approach6
66	3.1. Concept of Hardware Security Failure Scenarios6
67	3.1.1. Determining How Weaknesses Occur6
68	3.1.2. Determining Where Weaknesses Occur6
69	3.1.3. Determining What Damage Weaknesses Allow6
70	3.2. Creating Hardware Weakness Subgraphs6
71	4. Hardware Security Failure Scenarios9
72	4.1. Improper Access Control9
73	4.2. Improper Adherence to Coding Standards14
74	4.3. Improper Check or Handling of Exceptional Conditions16
75	4.4. Improper Control of a Resource Through its Lifetime18
76	4.5. Incorrect Comparison22
77	4.6. Insufficient Control Flow Management23
78	4.7. Protection Mechanism Failure25
79	5. Categories of Hardware Design Weaknesses28
80	5.1. Core and Compute Issues
81	5.2. Cross-Cutting Problems
82	5.3. Debug and Test Problems
83	5.4. General Circuit and Logic Design Concerns
84	5.5. Integration Issues
85	5.6. Manufacturing and Life Cycle Management Concerns
86	5.7. Memory and Storage Issues
87	5.8. Peripherals, On-chip Fabric, and Interface/IO Problems
88	5.9. Physical Access Issues and Concerns
89	5.10. Power, Clock, Thermal, and Reset Concerns

90	5.11. Privilege Separation and Access Control Issues
91	5.12. Security Flow Issues
92	5.13. Security Primitives and Cryptography Issues
93	6. Comparison With Software Weaknesses41
94	7. Software Assurance Trends Categories45
95	8. Conclusion
96	References49
97	Appendix A. List of Symbols, Abbreviations, and Acronyms60
98	Appendix B. Analysis of the Complete Hardware Weakness Graph61
99	B.1. Hardware Design Category Overlay61
100	B.2. Comparison of View-1000 and View-1194 Relationships62
101	Appendix C. Weakness Hierarchy — Improper Access Control64
102	Appendix D. Weakness Hierarchy — Improper Adherence to Coding Standards
103	Appendix E. Weakness Hierarchy — Improper Check or Handling of Exceptional Conditions
104	Appendix F. Weakness Hierarchy — Improper Control of a Resource Through its Lifetime70
105	Appendix G. Weakness Hierarchy — Incorrect Comparison73
106	Appendix H. Weakness Hierarchy — Insufficient Control Flow Management
107	Appendix I. Weakness Hierarchy — Protection Mechanism Failure

108 List of Figures

109	Fig. 1. Complete HW CWE graph created using View 1000 and View 11947
110	Fig. 2. HW CWE subgraph for pillar Improper Access Control (CWE-284)10
111	Fig. 3. HW CWE subgraph for pillar Improper Adherence to Coding Standards (CWE-710)15
112	Fig. 4. HW CWE subgraph for pillar Improper Adherence to Coding Standards (CWE-703)17
113	Fig. 5. HW CWE subgraph for pillar Improper Control of a Resource Through its Lifetime (CWE-664)19
114	Fig. 6. HW CWE subgraph for pillar Incorrect Comparison (CWE-697)23
115	Fig. 7. HW CWE subgraph for pillar Insufficient Control Flow Management (CWE-691)24
116	Fig. 8. HW CWE subgraph for pillar Protection Mechanism Failure (CWE-693)26
117	Fig. 9. HW CWEs under the category Core and Compute Issues (CWE-1201)28
118	Fig. 10. HW CWEs under the category Cross-Cutting Problems (CWE-1208)29
119	Fig. 11. HW CWEs under the category Debug and Test Problems (CWE-1207)30
120	Fig. 12. HW CWEs under the category General Circuit and Logic Design Concerns (CWE-1199)31
121	Fig. 13. HW CWEs under the category Integration Issues (CWE-1197)32
122 123	Fig. 14. HW CWEs under the category Manufacturing and Life Cycle Management Concerns (CWE- 1195)33

124	Fig. 15. HW CWEs under the category Memory and Storage Issues (CWE-1202)
125 126	Fig. 16. HW CWEs under the category Peripherals, On-chip Fabric, and Interface/IO Problems (CWE- 1203)
127	Fig. 17. Figure 18. HW CWEs under the category Physical Access Issues and Concerns (CWE-1388)36
128	Fig. 18. HW CWEs under the category Power, Clock, Thermal, and Reset Concerns (CWE-1206)37
129	Fig. 19. HW CWEs under the category Privilege Separation and Access Control Issues (CWE-1198)38
130	Fig. 20. HW CWEs under the category Security Flow Issues (CWE-1196)
131	Fig. 21. HW CWEs under the category Security Primitives and Cryptography Issues (CWE-1205)40
132 133	Fig. 22. HW CWE complete graph with View-1003 pillar and class CWEs that are not in View-1194 highlighted42
134 135	Fig. 23. HW CWE complete graph with View-1003 base CWEs that overlap with View-1194 highlighted 43
136	Fig. 24. HW CWE complete graph with memory-related weaknesses highlighted
137	Fig. 25. View-699 CWEs that overlap with View-1194 highlighted45
138	Fig. 26. The 12 CWEs in both View-1194 and View-69947
139	Fig. 27. HW CWE Category Graph: Improper Access Control65
140	

141 **1. Introduction**

- 142 Historically, hardware has been viewed as "an immutable root-of-trust" with no security issues
- 143 [1]. It has been assumed to be inherently secure. However, chips are created with and contain
- 144 complex software, and software is known to have bugs. It is not unusual to have 1-25 bugs per
- 145 1000 lines of code for delivered software [2], and some of these bugs will have security
- 146 implications. Further complicating matters, many of these bugs are hard-coded onto silicon,
- 147 which can make mitigation challenging.
- 148 This work describes and categorizes ways in which computer hardware (HW) (i.e., chips) can fail
- 149 from a security perspective. It does this by enumerating 98 scenarios that represent potential
- 150 weaknesses in the programming and physical aspects of HW design. The purpose is to highlight
- 151 the dangers of vulnerabilities potentially being introduced into the HW design process.
- 152 The Common Weakness Enumeration (CWE) [8][9] is a list of weaknesses. In this context, a
- 153 weakness is defined as "a condition in a software, firmware, hardware, or service component
- that, under certain circumstances, could contribute to the introduction of vulnerabilities" [4].
- 155 CWE designators of the form (CWE-XXXX) are given to each of the 934 listed weaknesses (as of
- 156 January 26, 2024). Each weakness entry contains complex, multi-page data elements with
- detailed security information. Since the inception of CWEs, a primary focus has been software
- 158 weaknesses, while coverage of hardware-specific weaknesses has been more recent. All CWEs
- 159 can be viewed by using the 'ID Lookup' search box on the CWE webpage [9].
- As of April 29, 2024, the HW CWE Special Interest Group (HW CWE SIG) [5] has curated a list of
- 161 108 HW CWEs focused on HW design issues. The list includes a few CWEs that were created for
- 162 software weaknesses but that are also relevant to HW weaknesses. These 'software' CWEs have
- 163 been expanded to include HW-specific details and examples. However, the majority of the
- 164 CWEs on the list are HW-specific and do not apply to the software domain. This indicates that
- 165 HW security is fundamentally different from software security, despite the fact that both are
- 166 created with and contain code. This publication demonstrates the uniqueness of HW security
- and the very different challenges presented compared to software security. At the same time,
 HW can contain weaknesses commonly found in software, and an HW weakness may be linked
- 169 in a chain of weaknesses that include software weaknesses.
- 170 The HW security failure scenarios in this publication are based on the HW CWEs. For the
- 171 purposes of this publication, an HW security failure scenario briefly describes how an attacker
- can cause a particular type of damage where the exploit typically occurs. Focusing on
- 173 weaknesses enables one to look at the set of potential dangers, inclusive of and beyond the set
- 174 of publicly published vulnerabilities. While reasonably comprehensive, the failure scenarios are
- not intended to provide exhaustive coverage. Their purpose is to highlight the significant
- 176 danger presented by each HW weakness.

177

178 2. Background

- 179 This section provides the background for understanding the technical approach and
- 180 categorization system used in creating and organizing the HW security failure scenarios.
- 181 Readers interested in simply perusing the failure scenarios without understanding how they
- 182 were derived or organized should go directly to Sec. 4.

183 **2.1. Weaknesses vs. Vulnerabilities**

- 184 A weakness can also be defined as a bug or fault type that can be exploited through an
- 185 operation that results in a security-relevant error [3]. The word 'type' is critical as it conveys
- 186 that a weakness is a concept that can be instantiated in software or hardware; a weakness is
- 187 not specific to a particular program or chip. A vulnerability, however, is tied to a specific piece
- 188 of code or chip. A vulnerability is an instantiation of a weakness. Complicating matters, some
- 189 vulnerabilities arise only in the context of a chain of weaknesses [3].
- 190 Vulnerabilities are enumerated in the Common Vulnerabilities and Exposures (CVE) list [6]. The
- 191 National Vulnerability Database contains details on each CVE [7]. There are over 25,000 CVEs
- 192 published annually, with the rate usually growing each year. As of February 22, 2024 only 131
- 193 of these are HW CVEs.

194 2.2. Weakness Data Fields

- Every weakness in the CWE is described by a set of elements. The following are the CWE datafields leveraged in the creation of the HW failure scenarios:
- 197 1. **Description/Extended Description** Detailed explanation of the fault type
- Relationships/Memberships Taxonomic information to organize weaknesses into
 hierarchies and categories
- 3. Modes of Introduction Descriptions of the life cycle phase where the CWE can be
 introduced
- 202 4. Applicable Platforms Involved languages and technologies
- 203 5. Common Consequences Affected security attributes along with likelihoods (e.g.,
 204 confidentiality, integrity, availability, access control, authentication, and authorization)
- 205 6. **Demonstrative Examples** Hypothetical examples of the weakness
- 206 7. Observed Examples Actual observed examples of the weakness, usually with CVE
 207 references
- 208 8. **Potential Mitigations** Protection methods

209 **2.3. Weakness Abstractions**

- 210 The CWE weaknesses model is composed of four layers of abstraction: pillar (P), class (C), base
- 211 (B), and variant (V)¹. The abstraction reflects the extent to which issues are being described in
- terms of five dimensions: behavior, property, technology, language, and resource. Variant
- 213 weaknesses are at the most specific level of abstraction and describe at least three dimensions.
- Base weaknesses are more abstract than variants and more specific than classes; they describe
- 215 two to three dimensions. Class weaknesses are very abstract and not typically specific about
- any language or technology; they describe one to two dimensions. Pillar weaknesses are at the
- 217 highest level of abstraction. In this work, pillars and classes are used to organize the HW
- 218 security failure scenarios.

219 2.4. Weakness Views

- 220 CWE designators of the form (CWE-XXXX) are given to weaknesses, views, and categories. A
- view provides a hierarchical organization of CWEs from a particular perspective (e.g., software
- development, research, and hardware design). A category is a simpler construct that groups a
- set of CWEs that have some similarity. Views may contain categories within their hierarchy.
- As of February 9, 2024, the CWE contains 49 views and 374 categories. There are three views
- 225 pertinent to this work: Hardware Design view (<u>CWE-1194</u>), Research Concepts view (<u>CWE-</u>
- 226 <u>1000</u>), and the Weaknesses for Simplified Mapping of Published Vulnerabilities view (<u>CWE-</u>
- 227 <u>1003</u>).

228 2.4.1. Hardware Design View

- 229 The Hardware Design view (<u>CWE-1194</u>) organizes the 108 HW weakness CWEs using 13
- 230 categories. This view is a three-level hierarchy with CWE-1194 as its root, the 13 categories² as
- children of the root, and a tree of HW weakness CWEs under each category. HW weaknesses
- 232 may occur under multiple categories, although most do not.
- 233 The 13 categories of HW design weaknesses are:
- 1. Core and Compute Issues (<u>CWE-1201</u>)
- 235 2. Cross-Cutting Problems (<u>CWE-1208</u>)
- 236 3. Debug and Test Problems (<u>CWE-1207</u>)
- 237 4. General Circuit and Logic Design Concerns (<u>CWE-1199</u>)
- 238 5. Integration Issues (<u>CWE-1197</u>)
- 239 6. Manufacturing and Life Cycle Management Concerns (<u>CWE-1195</u>)
- 240 7. Memory and Storage Issues (<u>CWE-1202</u>)

¹ A compound element (linking together weaknesses) associates two or more interacting or co-occurring CWEs. None of the HW CWEs are of the compound abstraction.

² Section 5 provides details on the 13 categories.

- 241 8. Peripherals, On-chip Fabric, and Interface/IO Problems (<u>CWE-1203</u>)
- 242 9. Physical Access Issues and Concerns (<u>CWE-1388</u>)
- 243 10. Power, Clock, Thermal, and Reset Concerns (CWE-1206)
- 244 11. Privilege Separation and Access Control Issues (<u>CWE-1198</u>)
- 245 12. Security Flow Issues (CWE-1196)
- 246 13. Security Primitives and Cryptography Issues (<u>CWE-1205</u>)

247 2.4.2. Research Concepts View

- 248 The Research Concepts view (<u>CWE-1000</u>) organizes all weakness CWEs by the method through
- 249 which an exploitation can occur. It is a directed acyclic graph with a single source node, <u>CWE-</u>
- 250 <u>1000</u>. In this hierarchy, some CWEs can have multiple parents, and all of them have <u>CWE-1000</u>

as their oldest ancestor. These properties allow a CWE (even one with only one parent) to

- 252 possibly be reached through multiple paths from the root.
- 253 The children of <u>CWE-1000</u> are 10 pillars that organize the weakness CWEs. The pillar CWEs

254 marked with * contain HW CWEs. However, none of these pillars are hardware-specific and 255 cover many software security weaknesses as well.

- 256 1. Improper Access Control (<u>CWE-284</u>) *
- 257 2. Improper Adherence to Coding Standards (<u>CWE-710</u>) *
- 258 3. Improper Check or Handling of Exceptional Conditions (<u>CWE-703</u>) *
- 4. Improper Control of a Resource Through its Lifetime (<u>CWE-664</u>) *
- 260 5. Improper Interaction Between Multiple Correctly-Behaving Entities (<u>CWE-435</u>)
- 261 6. Improper Neutralization (<u>CWE-707</u>)
- 262 7. Incorrect Calculation (<u>CWE-682</u>)
- 263 8. Incorrect Comparison (<u>CWE-697</u>)*
- 264 9. Insufficient Control Flow Management (<u>CWE-691</u>) *
- 265 10. Protection Mechanism Failure (<u>CWE-693</u>) *

266 **2.4.3. Simplified Mapping of Published Vulnerabilities View**

- 267 The Weaknesses for Simplified Mapping of Published Vulnerabilities view (<u>CWE-1003</u>) organizes
- the weaknesses that are most commonly seen in software CVEs to assist organizations that deal
- with such data (e.g., vulnerability databases and security tool vendors).
- 270 It is a three-level tree with <u>CWE-1003</u> as its root (i.e., there is only one path to each CWE, and
- all CWEs have exactly one parent). It has no categories and organizes the CWEs by pillars and
- classes. The children of the root are 35 classes and two pillars. It contains a total of 130

NIST IR 8517 ipd (Initial Public Draft) June 2024

- 273 weaknesses, and only three of these weaknesses are also HW CWEs (<u>CWE-203</u>, <u>CWE-276</u>, and
- 274 <u>CWE-319</u>).

275 **3. Technical Approach**

- 276 This section describes the concept of a hardware security failure scenario and the approach to
- 277 creating weakness graphs to organize them.

278 **3.1. Concept of Hardware Security Failure Scenarios**

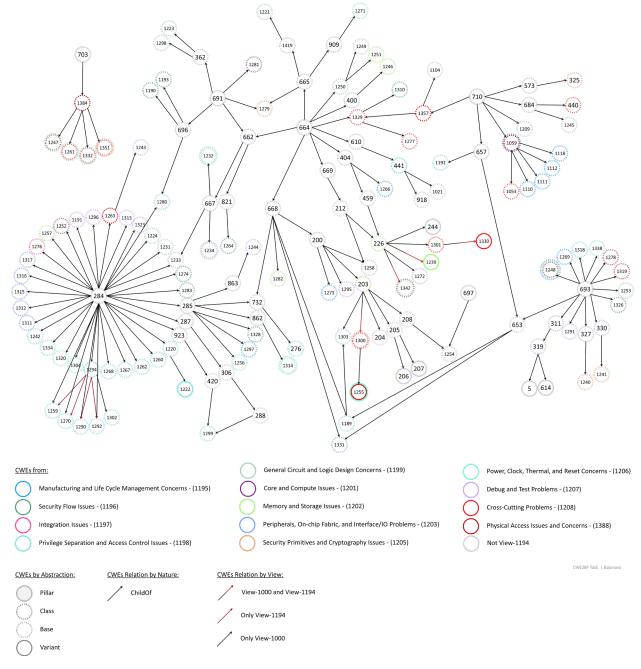
- 279 For the purposes of this work, a hardware security failure scenario describes a malicious entity
- 280 (e.g., human attacker or automated malware) leveraging a weakness to violate security policy.
- 281 Each failure scenario has three aspects: **how** the weakness could be exploited, **where** the
- weakness typically occurs, and **what** kind of damage could be done.
- 283 While reasonably comprehensive, the failure scenarios are not intended to provide exhaustive
- 284 coverage. Their purpose is to highlight the dangers presented by each HW weakness.

285 **3.1.1. Determining How Weaknesses Occur**

- 286 The 'Extended Description' and 'Modes of Introduction' sections of each CWE entry provide
- 287 information on how an HW CWE can occur. The CWE Research Concepts view (<u>CWE-1000</u>)
- 288 organizes HW CWEs by abstractions of behavior. The path of nodes from the Research Concepts
- view root to the HW CWE under analysis describes how a weakness can occur with increasing
- 290 granularity as the path is traversed. Some HW CWEs have multiple paths that typically describe
- 291 simultaneously occurring behaviors and provide a more complete picture of how these CWEs
- 292 occur.

293 3.1.2. Determining Where Weaknesses Occur

- The Hardware Design view (<u>CWE-1194</u>) organizes the HW CWEs into 13 categories. They generally describe where an HW CWE can occur, potentially from different points of view (e.g.,
- physically on the chip, security operations, and life cycle). Section 5 describes each of these
- categories and the CWE classes associated with them. The 'Extended Description' of each CWE
- 298 is usually helpful in determining the "where."


299 **3.1.3. Determining What Damage Weaknesses Allow**

- 300 The CWE entry 'Common Consequences' section provides a high-level list of the security areas
- affected (e.g., access control, confidentiality, integrity, and availability) and the technical
- 302 impacts (e.g., read data, modify data, bypass access control). The 'Observed Examples' section
- 303 provides more granular and concrete damage explanations that are often useful for creating
- 304 failure scenarios. The 'Extended Description' section often discusses potential damage.

305 **3.2. Creating Hardware Weakness Subgraphs**

The failure scenarios are organized by their associated HW CWEs. The HW CWEs are primarily organized by the Research Concepts view (<u>CWE-1000</u>) and then secondarily by the Hardware

- 308 view (<u>CWE-1194</u>). This approach provides directed graphs that hierarchically show how HW
- 309 CWEs occur at increasing levels of granularity as the graph is traversed and additional
- 310 information is added about **where** the weaknesses can occur.
- 311 Figure 1 shows the complete HW CWE graph, all of the HW CWEs, and the non-HW CWEs
- 312 necessary to connect them together.

313 314

Fig. 1. Complete HW CWE graph created using View 1000 and View 1194

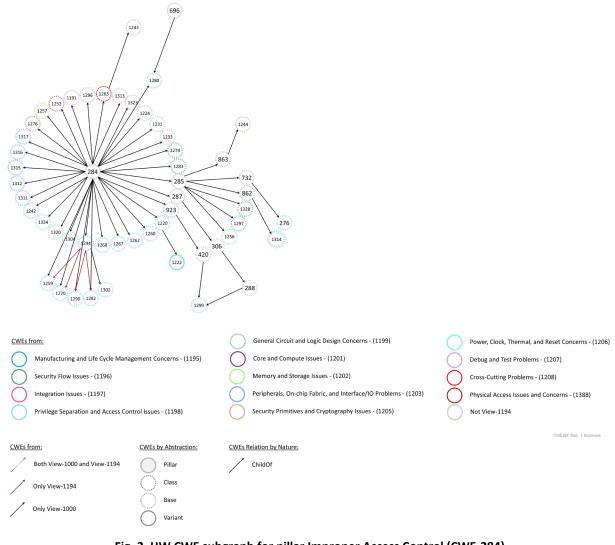
315 The HW CWE graph contains a root node for each of the seven Research Concepts view (<u>CWE-</u>

316 <u>1000</u> pillars that contain HW CWEs. It shows the Hardware Design view (<u>CWE-1194</u>) categories

- to which each CWE belongs and the view from which each relationship was defined. It also
- 318 shows the abstraction for each CWE pillar, class, base, and variant.
- 319 Section 4 shows the subgraphs of the CWEs reachable from each respective HW-associated
- 320 pillar. Appendix B provides an analysis and statistics for Fig. 1 and describes the algorithm used
- for the construction of the graphs. Appendix C through Appendix I provide an alternative
- 322 textual view of the pillar subtrees using a strict hierarchical tree layout. This latter approach is
- 323 convenient for a quick perusal of the HW CWEs but cannot capture the complex relationships
- that only become apparent from the complete graph view.
- 325 The HW CWE graphs in this publication primarily use arrows to show the relationships between
- the CWEs and colors to quickly provide additional information about each CWE (e.g., the HW
- 327 category it belongs to and the abstraction). For readers with difficulties discerning the colors,
- 328 this same information is available for each CWE on the associated CWE web page and can be
- 329 accessed using the format https://cwe.mitre.org/data/definitions/XXX.html, where XXX is
- 330 replaced with the CWE number.

331

332 **4. Hardware Security Failure Scenarios**


- 333 The HW security failure scenarios were created by reviewing the full CWE entries, extracting the
- three failure scenario aspects (the 'how', 'when', and 'what' from Sec. 3.1), and then writing a short summary of those aspects.
- This section contains an enumeration of 98 HW security failure scenarios distributed among the CWE pillars as follows:
- 338 1. Improper Access Control (<u>CWE-284</u>, 43 scenarios)
- 339 2. Improper Adherence to Coding Standards (<u>CWE-710</u>, 14 scenarios)
- 340 3. Improper Check or Handling of Exceptional Conditions (<u>CWE-703</u>, five scenarios)
- 341 4. Improper Control of a Resource Through its Lifetime (<u>CWE-664</u>, 40 scenarios)
- 342 5. Incorrect Comparison (<u>CWE-697</u>, one scenario)
- 343 6. Insufficient Control Flow Management (<u>CWE-691</u>, 11 scenarios)
- 344 7. Protection Mechanism Failure (<u>CWE-693</u>, 15 scenarios)
- The presence of a failure scenario in a product indicates the presence of the associatedweakness and an issue with one of the above pillars.
- 347 A small number of HW CWEs fall under multiple pillars. For these CWEs, the associated security
- failure scenario is located in the section for the pillar that qualitatively has the strongest linkage
- to the CWE. The full CWE Research Concepts view graph in Appendix B shows which HW CWEs
- are shared under which pillars.
- 351 The HW CWEs are grouped by the classes underlying the pillar. The CWE Research Concepts
- 352 view often provides finer grained delineations (e.g., organizing bases and variants under other
- 353 bases or providing subclasses under classes). For clarity of reading, this additional information is
- 354 provided in the associated figures for each subsection with directed subgraphs of the HW CWEs
- 355 under each pillar.

356 4.1. Improper Access Control

- 357 The CWE Improper Access Control (<u>CWE-284</u>) applies when a "product does not restrict or
- incorrectly restricts access to a resource from an unauthorized actor." Access control involves
 the use of protection mechanisms, such as:
- Authentication (i.e., proving the identity of an actor)
- Authorization (i.e., ensuring that a given actor can access a resource)
- Accountability (i.e., tracking activities that were performed)
- The HW CWEs under this pillar occur within the following pillar/class hierarchy. The CWEs marked with * are HW CWEs.

365 CWE-284 P Improper Access Control

- 366 <u>CWE-1263</u> C Improper Physical Access Control *
- 367 <u>CWE-1294</u> C Insecure Security Identifier Mechanism *
- 368 <u>CWE-285</u> C Improper Authorization
- 369 Figure 2 shows the directed graph of HW CWEs under this pillar with their parent-child
- 370 relationships.

371 372

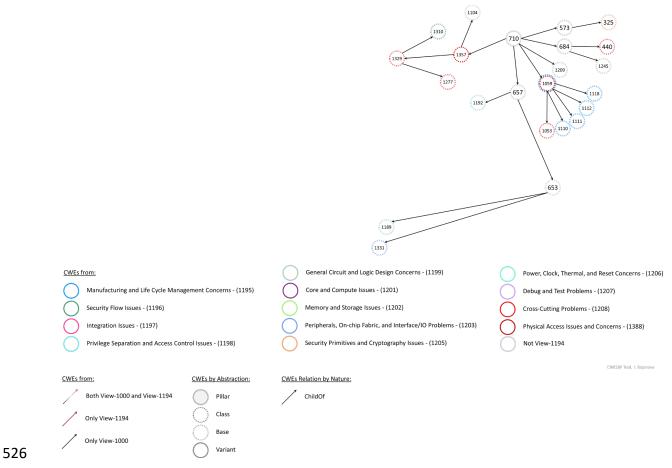
Fig. 2. HW CWE subgraph for pillar Improper Access Control (CWE-284)

- The HW class Improper Physical Access Control (<u>CWE-1263</u>) has one HW CWE child (<u>CWE-1243</u>).
 The security failure scenario is:
- A malicious human can leverage physical access to obtain restricted information
 because the physical security features are insufficient [CWE-1263].
- 377a. During debug operations, an untrusted agent can read security-sensitive device378information (e.g., encryption keys and manufacting data) that is permanently

- 379stored in fuses but loaded into protected registers due to code that does not380take the debug mode into account [CWE-1243].
- 381 The HW class Insecure Security Identifier Mechanism (<u>CWE-1294</u>) has five HW CWE children.

382 The security failure scenarios are:

- A malicious agent can initiate an unauthorized transaction (e.g., read, write, program, reset, fetch, compute) by taking advantage of incorrectly implemented security identifiers that define the privilege level of the agent in a system-on-a-chip (SoC) [<u>CWE-</u> 1294].
- a. A malicious agent on an SOC may assign itself inappropriate security tokens to
 give itself additional privileges (e.g., read, write, fetch, program, compute, reset)
 because the security tokens are improperly protected [<u>CWE-1259</u>].
- b. A malicious agent can gain inappropriate privileges over assets due to an
 incorrect assignment of security tokens to agents. A single token may be
 assigned to multiple agents, or multiple tokens may be assigned to a single agent
 (CWE-1270).
- 394 c. A malicious agent can gain unauthorized access to an asset by taking advantage
 395 of the incorrect decoding of security identifier information in bus-transaction
 396 signals [<u>CWE-1290</u>].
- 397 d. An agent can gain unauthorized access to an asset by taking advantage of a
 398 bridge incorrectly performing a protocol conversion between agents that use
 399 different bus protocols [<u>CWE-1292</u>].
- 400 e. A security identifier is not included with an agent-to-agent transaction. This can
 401 result in a denial of service (DoS) for the agent's requests or the ability of a
 402 malicious agent to enact unauthorized actions due to inappropriate handling of
 403 the missing identifier by the destination agent [CWE-1302].
- 404 The non-HW class Improper Authorization (<u>CWE-285</u>) has five security failure scenarios:
- Malicious software can take advantage of software-controllable device functionality
 (e.g., power control, clock management, and memory access) to modify
 registers/memory or to perform side-channel attacks without the need for physical
 access to the chip [CWE-1256].
- 409
 409
 410
 410
 411
 411
 411
 412
 413
 414
 414
 414
 415
 415
 416
 416
 417
 417
 418
 418
 419
 419
 419
 410
 410
 410
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
 411
- An attacker can modify the hardware-stored firmware version number used in the
 secure or verified boot process. The attacker can then execute older vulnerable versions
 of firmware with plans to exploit known vulnerabilities and possibly prevent upgrades
 [CWE-1328].
- 416 4. Malicious software can change non-write-protected parametric data values, thus
 417 changing the unit conversion/scaling for sensor reporting (e.g., thermal, power, voltage,


- 418 current, and frequency). This can cause hardware to operate outside of design limits
 419 even though the limit values themselves have not been modified [<u>CWE-1314</u>].
- 420 5. A human can use a physical debug or test interface to obtain sensitive information from
 421 an asset due to an incorrect debug access level assignment [<u>CWE-1244</u>].
- There are 27 non-class HW CWEs that are direct children of pillar Improper Access Control
 (<u>CWE-284</u>). The security failure scenarios are:
- An attacker with physical access to a chip can leverage a lack of or faults in debug/test
 interface access control to read and set registers (e.g., via a scan chain using a Joint Test
 Action Group [JTAG] interface) and bypass normal on-chip protections [CWE-1191].
- 427 2. Malicious code on a device may leverage a lack of granularity in hardware access control
 428 to read or modify assets (e.g., device configuration and keys) by taking advantage of
 429 unintended privileges [<u>CWE-1220</u>].
- 430
 430
 431
 431
 432
 432
 433
 434
 434
 435
 435
 435
 436
 436
 436
 437
 438
 438
 439
 439
 430
 430
 430
 430
 431
 431
 432
 432
 431
 432
 432
 433
 434
 434
 435
 435
 436
 436
 437
 437
 438
 438
 438
 439
 439
 430
 430
 430
 431
 431
 432
 432
 432
 433
 434
 434
 435
 435
 436
 436
 437
 437
 438
 438
 438
 438
 438
 439
 439
 439
 430
 430
 430
 431
 431
 432
 432
 432
 432
 433
 434
 434
 435
 435
 436
 437
 437
 438
 438
 438
 439
 439
 439
 430
 430
 431
 431
 432
 432
 432
 432
 432
 432
 432
 432
 433
 434
 434
 434
 435
 434
 435
 435
 435
 436
 436
 437
 437
 436
 437
 437
 437
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 439
 439
 439
 430
 431
 431
 431
 432
 431
 432
 432
 432
 432
 433
 434
 434
 434
 435
 434
 435
 436
 436
 437
 438
 438
- 4. Malicious code can take advantage of an improper implementation of write-once
 register bits to reprogram system settings (e.g., boot time configuration) [<u>CWE-1224</u>].
- 435 5. Attackers may unlock a secured system by leveraging design or code errors to modify
 436 trusted lock bits that should have their values immutable after the initial set, thereby
 437 enabling writes to protected registers or address regions [CWE-1231].
- 438
 438
 438
 439
 439
 439
 440
 440
 440
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
- Attackers can write malicious code to memory and then execute it because the central processing unit (CPU) does not support a bit that defines read-only and write-only regions of memory. This can also happen if the CPU relies on an improperly configured memory protection unit (MPU) and memory management unit (MMU) for read and write exclusivity [CWE-1252].
- 447 8. Attackers can access protected memory regions and perform both read and write by
 448 using memory alias addresses (i.e., redundant addresses that point to the same memory
 449 region) or mirrored memory regions that do not have the same protections. An attacker
 450 could possibly create memory address aliases to perform such an attack [CWE-1257].
- 451 9. Lower privilege software can write to memory regions for higher privileged software
 452 due to overlapping memory regions, thus enabling malicious software to perform
 453 privilege escalation or a DoS attack [<u>CWE-1260</u>].
- 454 10. Malicious software can access registers that provide hardware functionality interfaces
 455 due to an access control fault, allowing confidentiality and integrity violations [<u>CWE-</u>
 456 <u>1262</u>].

- 457 11. A malicious agent on an SoC may gain inappropriate or even full access to another agent
 458 when sending a bus transaction because the policy encoder mapping bus transactions to
 459 security tokens uses an obsolete encoding [<u>CWE-1267</u>].
- 460
 461
 461
 462
 462
 463
 464
 464
 465
 465
 466
 466
 466
 467
 468
 469
 469
 460
 460
 461
 461
 461
 461
 461
 462
 461
 461
 461
 462
 461
 462
 461
 462
 461
 462
 461
 462
 462
 463
 464
 464
 465
 464
 465
 465
 466
 466
 467
 468
 468
 469
 469
 469
 469
 460
 461
 461
 462
 461
 462
 462
 462
 462
 463
 464
 464
 465
 464
 465
 465
 466
 467
 468
 468
 469
 469
 469
 469
 469
 469
 460
 461
 461
 462
 461
 462
 462
 462
 462
 462
 463
 464
 464
 465
 464
 465
 465
 466
 466
 467
 468
 468
 468
 468
 468
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
- 463
 463 13. An attacker can change or replace boot loader code by leveraging inadequate access
 464 control for the volatile memory (VM) in which the code is copied. This code is copied
 465 from non-volatile memory (NVM) to VM and then authenticated by the SoC read-only
 466 memory (ROM) code, but it is vulnerable to change after this occurs [<u>CWE-1274</u>].
- 467 14. Hardware intellectual property (IP) an independently developed component may
 468 be improperly connected to its parent and result in security risks due to incorrectly
 469 connected signaling. Functionality may be maintained but security weakened, enabling
 470 unauthorized access by external agents [CWE-1276].
- 471 15. Malicious code can modify the registers containing the attestation data that measures
 472 the boot code (i.e., secure hashes of the boot code), thereby enabling altered boot code
 473 to be executed without being detected [CWE-1283].
- 474 16. A human can obtain unauthorized access permissions through a test access port (TAP)
 475 or similar design element by leveraging logic errors that misconfigure the
 476 interconnections of debug components [CWE-1296].
- 477 17. When a product is powering down, an attacker can modify the configuration state being
 478 saved to persistent storage to alter the security or safety configuration upon restart
 479 (e.g., modify privileges, disable protections, or damage hardware) [CWE-1304].
- 480 18. Malicious software can bypass access controls by leveraging a bridge between IP blocks
 481 that use different fabric protocols (i.e., interconnecting components) that is incorrectly
 482 translating security attributes from one protocol to another [CWE-1311].
- 483 19. An attacker can bypass a firewall in an on-chip fabric by writing to an unprotected
 484 mirrored memory region that then propagates the changes to the original data [<u>CWE-</u>
 485 <u>1312</u>].
- 486 20. An attacker can leverage a hardware feature that allows for the activation of test or
 487 debug logic at runtime, thus enabling unauthorized reads and modifications to system
 488 data and bus messages [<u>CWE-1313</u>].
- 489 21. A malicious IP responder in a fabric may initiate control transactions to other devices
 490 through an incorrectly set register bit that allows an IP block to access other peripherals
 491 [CWE-1315].
- 492 22. Protected and unprotected memory regions for an on-chip fabric may have overlapping
 493 mappings (either accidentally or intentionally and maliciously) that enable an attacker to
 494 send a transaction that modifies protected memory [<u>CWE-1316</u>].

- 495 23. An attacker can gain unauthorized access to an IP block by leveraging a lack of access
 496 control checks by a fabric bridge that is translating transactions between two different
 497 protocols [<u>CWE-1317</u>].
- 498 24. A malicious agent can cause hardware to operate outside of its design limits (potentially
 499 causing physical damage) by disabling sensor alerts or initiate a DoS attack by
 500 generating alerts. The attacker may also disrupt the response mechanism that receives
 501 the alerts [CWE-1320].
- 502 25. An attacker can read security-sensitive traces (i.e., log data of IP blocks) from trace
 503 aggregation IP blocks that either store this data in unprotected memory or allow
 504 transport to unprivileged users (e.g., via a debug-trace port). These traces can include
 505 instructions executed from a CPU, transaction types and destinations from a fabric, and
 506 cryptographic keys from cryptographic coprocessors [CWE-1323].
- 507 26. An attacker can make unauthorized use of hardware error injection capabilities
 508 (normally used for testing) to disrupt redundant IP blocks, thereby degrading
 509 redundancy or forcing the IP component into a degraded operational mode [CWE-1334].
- 27. An attacker can bypass access control-protected assets by using unprotected alternate
 paths (e.g., shadow registers and external interfaces) [<u>CWE-1299</u>].

512 **4.2. Improper Adherence to Coding Standards**

- 513 The CWE Improper Adherence to Coding Standards (<u>CWE-710</u>) applies when a "product does
- not follow certain coding rules for development, which can lead to resultant weaknesses or
 increase the severity of the associated vulnerabilities."
- 516 The HW CWEs under this pillar occur within the following pillar/class hierarchy. The CWEs 517 marked with * are HW CWEs.
- 518 <u>CWE-710 P Improper Adherence to Coding Standards</u>
- 519 <u>CWE-573</u> C Improper Following of Specification by Caller
- 520 <u>CWE-684</u> C Incorrect Provision of Specified Functionality
- <u>CWE-1059</u> C Insufficient Technical Documentation *
- <u>CWE-1357</u> C Reliance on Insufficiently Trustworthy Component *
- 523 <u>CWE-657</u> C Violation of Secure Design Principles
- 524 Figure 3 shows the directed graph of HW CWEs under this pillar with their parent-child
- 525 relationships.

527

Fig. 3. HW CWE subgraph for pillar Improper Adherence to Coding Standards (CWE-710)

- 528 Under the non-HW class Improper Following of Specification by Caller (<u>CWE-573</u>), there is one 529 security failure scenario:
- An attacker can decipher cryptographic output because the cryptographic algorithm used by the IP block does not implement a required step [<u>CWE-325</u>].
- 532 Under the non-HW class Incorrect Provision of Specified Functionality (<u>CWE-684</u>), there are two 533 security failure scenarios:
- An attacker can compromise security due to an IP block that fails to perform according to its specification [<u>CWE-440</u>].
- Attackers can cause a DoS or possibly gain privileges by providing input to a finite state
 machine (FSM) that drives it in an undefined state (the FSM code does not cover all
 possible state transitions) [CWE-1245].
- No security failure scenarios were written for HW class Insufficient Technical Documentation
 (<u>CWE-1059</u>) because it is too general to do so.

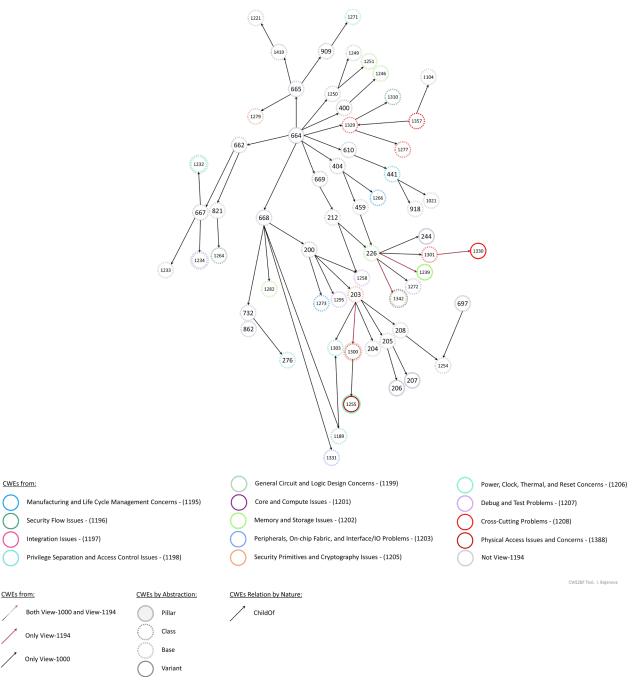
541 The HW class Reliance on Insufficiently Trustworthy Component (<u>CWE-1357</u>) has two security

542 failure scenarios:

- Attackers can compromise an SoC because it relies on the composition of IP blocks, one
 of which is untrustworthy [<u>CWE-1357</u>].
- Attackers can compromise an SoC because it contains a vulnerable component that
 cannot be updated (e.g., firmware or ROM used in secure booting) [<u>CWE-1329</u>] [<u>CWE-1329</u>]
 <u>1277</u>] [<u>CWE-1310</u>].
- 548 Under the non-HW class Violation of Secure Design Principles (<u>CWE-657</u>), there are three 549 security failure scenarios:
- An attacker can gain unauthorized access to IP blocks if the secure operation of an SoC is
 not achieved because the IP blocks are not securely and uniquely identified (e.g.,
 missing, ignored, or insufficient identifiers) [CWE-1192].
- A malicious agent can access sensitive assets because multiplexed resources (e.g., pins that are used by both trusted and untrusted agents but not at the same time) do not properly isolate accessible assets (e.g., between trusted and untrusted agents) [<u>CWE-</u>
 <u>1189</u>].
- An attacker can use timing channels to infer sensitive data when a network-on-chip
 (NoC) does not provide proper isolation on the fabric and other resources between
 trusted and untrusted agents [CWE-1331].
- 560 One non-class HW CWE is a direct child of pillar Improper Adherence to Coding Standards 561 (CWE-710). It has one security failure scenario:
- An attacker can compromise a hardware state by writing to reserved bits (i.e., unused
 bits reserved for future functionality) that were covertly activated by developers for
 debugging or undocumented capabilities [<u>CWE-1209</u>].
- 565 **4.3. Improper Check or Handling of Exceptional Conditions**
- The CWE Improper Adherence to Coding Standards (<u>CWE-703</u>) applies when a "product does
 not properly anticipate or handle exceptional conditions that rarely occur during normal
 operation of the product."
- 569 The HW CWEs under this pillar occur within the following pillar/class hierarchy. The CWEs
- 570 marked with * are HW CWEs.
- 571 <u>CWE-703 P Improper Check or Handling of Exceptional Conditions</u>
- 572 <u>CWE-1384</u> C Improper Handling of Physical or Environmental Conditions *
- 573 Figure 4 shows the digraph of hardware CWEs under this pillar with their parent-child
- 574 relationships.

NIST IR 8517 ipd (Initial Public Draft) June 2024

575 576


703 (1384) (1384					
CWEs from: Manufacturing and Life Cycle Management (Security Flow Issues - (1196) Integration Issues - (1197) Privilege Separation and Access Control Issue	(000000	General Circuit and Logic Design Concerns - (1199) Core and Compute Issues - (1201) Memory and Storage Issues - (1202) Peripherals, On-chip Fabric, and Interface/IO Problems - (1203) Security Primitives and Cryptography Issues - (1205)	00000	Power, Clock, Thermal, and Reset Concerns - (1206) Debug and Test Problems - (1207) Cross-Cutting Problems - (1208) Physical Access Issues and Concerns - (1388) Not View-1194
Both View-1000 and View-1194 Only View-1194 Only View-1000) Pillar) Class) Base) Variant	/	elation by Nature: childof ar Improper Adherence to Coding St		CW228' Tool, L Bajanova

577 The HW class Improper Handling of Physical or Environmental Conditions (<u>CWE-1384</u>) has five 578 security failure scenarios:

579 580 581 582	1.	or env power	acker can leverage natural or maliciously created design-limit-exceeding physical ironmental conditions (e.g., atmospheric, electromagnetic interference, lasers, variance, overclocking, component aging, cosmic radiation) to compromise the operations of a chip [<u>CWE-1384</u>].
583 584 585		a.	An attacker can compromise security functionality (e.g., secure boot) by introducing voltage and clock glitches (this can also happen naturally) [<u>CWE-</u> <u>1247</u>].
586 587		b.	An attacker can leverage the degradation of secure operations on a chip or a DoS due to single-event upsets (SEUs) (i.e., random bit flip errors) [<u>CWE-1261</u>].
588 589		с.	An attacker can bypass security-critical code by using fault injection techniques to skip security-critical instructions [<u>CWE-1332</u>].
590 591 592		d.	An attacker can cool hardware below the minimum design operating temperature to vary hardware behavior to compromise deployed security (e.g., power cycling not clearing volatile memory) [<u>CWE-1351</u>].

593 **4.4. Improper Control of a Resource Through its Lifetime**

- 594 The CWE Improper Control of a Resource Through its Lifetime (<u>CWE-664</u>) applies when a
- 595 "product does not maintain or incorrectly maintains control over a resource throughout its596 lifetime of creation, use, and release."
- 597 The HW CWEs under this pillar occur within the following pillar/class hierarchy. No child class of 598 the pillar is itself an HW CWE.
- 599 <u>CWE-664 P Improper Control of a Resource Through its Lifetime</u>
- 600 <u>CWE-400</u> C Uncontrolled Resource Consumption
- 601 <u>CWE-404</u> C Improper Resource Shutdown or Release
- 602 <u>CWE-610</u> C Externally Controlled Reference to a Resource in Another Sphere
- 603 <u>CWE-662</u> C Improper Synchronization
- 604 <u>CWE-665</u> C Improper Initialization
- 605 <u>CWE-668</u> C Exposure of Resource to Wrong Sphere
- 606 <u>CWE-669</u> C Incorrect Resource Transfer Between Spheres
- Figure 5 shows the digraph of hardware CWEs under this pillar with their parent-childrelationships.

609 610

Fig. 5. HW CWE subgraph for pillar Improper Control of a Resource Through its Lifetime (CWE-664)

- 611 Under the non-HW class Uncontrolled Resource Consumption (<u>CWE-400</u>), there is one security
 612 failure scenario:
- An attacker can cause a premature failure of NVM by taking advantage of non implemented or incorrectly implemented wear leveling operations (e.g., by repeated
 writing) [<u>CWE-1246</u>].

- 616 Under the non-HW class Improper Resource Shutdown or Release (<u>CWE-404</u>), there is one
- 617 security failure scenario:
- 618
 1. An attacker can retrieve sensitive information from decommissioned hardware that was
 619 not scrubbed of sensitive information [<u>CWE-1266</u>].
- 620 Under the non-HW class Externally Controlled Reference to a Resource in Another Sphere
 621 (<u>CWE-610</u>), there is one security failure scenario:
- An attacker can violate access control by sending a message to a hardware component
 via an intermediary, whereby the message is interpreted by the recipient as having the
 privileges of the intermediary (not the original unprivileged sender) [CWE-441].
- 625 Under the non-HW class Improper Synchronization (<u>CWE-662</u>), there are four security failure626 scenarios.
- An attacker can change system configuration information stored in lock-protected
 registers after a power state transition that causes improper lock behavior (e.g., making
 the lock programmable, clearing the lock, or resetting protected registers) [<u>CWE-1232</u>].
- An attacker can violate access controls by directly changing system configurations
 protected by a register lock bit since the one-way lock that was properly set after
 system startup does not prevent the changes [<u>CWE-1233</u>].
- An attacker can modify security-sensitive configuration information by using a debug
 mode to remove lock bit protections [<u>CWE-1234</u>].
- An attacker can obtain access to sensitive data that is transmitted before security
 approval by taking advantage of errors in the separate control and data channels in
 hardware bus protocols [<u>CWE-1264</u>].
- 638 Under the non-HW class Improper Initialization (<u>CWE-665</u>), there are three security failure639 scenarios:
- An attacker can read cryptographic output by taking advantage of weakened or broken
 cryptography that was encrypted before the cryptographic support units were ready
 (e.g., an external random number generator) [CWE-1279].
- An attacker can compromise system security if register or IP parameter defaults
 (initialized at hardware reset) are incorrectly hard-coded with insecure values in the
 hardware description language code [CWE-1221].
- An attacker can violate system security by taking advantage of an uninitialized security critical register (e.g., before register initialization during system startup) [<u>CWE-1271</u>].
- 648 Under the non-HW class Exposure of Resource to Wrong Sphere (<u>CWE-668</u>), there are seven
 649 security failure scenarios:
- An attacker can violate system security by changing security-sensitive and assumedimmutable data (e.g., golden digests) that are insecurely stored in writable memory instead of immutable memory (e.g., ROM, fuses, or one-time programmable memory
 [OTP]) [CWE-1282].

- An attacker can unlock hardware (e.g., to enter debug mode) using leaked or stolen credentials that were often necessarily shared among multiple entities (e.g., for hardware products not created by a single company, via vertical integration) [<u>CWE-</u>
 <u>1273</u>].
 An attacker can obtain sensitive information from debug messages that unnecessarily
- An attacker can obtain sensitive information from debug messages that unnecessarily
 reveal security details, often reducing security by obscurity (e.g., location of password
 hashes) [<u>CWE-1295</u>].
- 4. An attacker can obtain security-relevant state information by observing different
 behaviors that are indicative of the hardware state (e.g., in timing, responses, and
 control flow) [<u>CWE-203</u>].
- An attacker can obtain security-sensitive information by leveraging physical access to
 the hardware to measure phenomena (e.g., physical side channels, such as real-time
 power consumption) [<u>CWE-1300</u>] [<u>CWE-1255</u>].
- 6. An attacker can obtain sensitive data by evaluating and probing shared
 microarchitectural resources in contexts that should be isolated (e.g., caches and branch
 prediction logic) [<u>CWE-1303</u>].
- 670
 7. Malicious software can take advantage of incorrectly assigned default permissions to
 671 obtain unauthorized access [<u>CWE-276</u>].
- 672 Under both the non-HW classes Exposure of Resource to Wrong Sphere (<u>CWE-668</u>) and
- 673 Incorrect Resource Transfer Between Spheres (<u>CWE-669</u>), there is one HW CWE with one 674 security failure scenario:
- Attackers can obtain security-sensitive values from registers that are not cleared prior to
 entering debug mode [<u>CWE-1258</u>].
- Under the non-HW class Incorrect Resource Transfer Between Spheres (<u>CWE-669</u>), there is one
 security failure scenario:
- An attacker can infer sensitive data by observing discrepancies left behind by transient executions (i.e., speculative processing that was not needed and rolled back), detecting the transiency, and gaining evidence of the sensitive data values being processed [<u>CWE-</u> <u>1420</u>] [<u>CWE-1421</u>] [<u>CWE-1422</u>] [<u>CWE-1423</u>].
- Under both the non-HW classes Improper Resource Shutdown or Release (<u>CWE-404</u>) and
 Incorrect Resource Transfer Between Spheres (<u>CWE-669</u>), there are four security failure
 scenarios:
- Malicious software can read sensitive information from resources (e.g., registers) that
 were not cleared after use and that are made available due to a state change in the
 device (e.g., entering sleep or debug mode) or an execution change between privilege
 levels [<u>CWE-226</u>] [<u>CWE-1272</u>].
- A malicious user of a hardware IP block can extract sensitive information stored in
 registers that were not zeroed after IP block use from a previous user (e.g., input/output
 registers) [<u>CWE-1239</u>].

- An attacker can read sensitive data that was incompletely deleted or for which residual
 evidence or data remanence remains (e.g., performance optimizations that do not fully
 delete, physical properties that make data resistant to full deletion) [CWE-1301] [CWE1330].
- 4. An attacker can take advantage of a process performing a transient execution (i.e.,
- 698speculatively executed code) that leaves sensitive data in the microarchitectural state by699provoking exceptions that allow the data to be read [CWE-1342].
- There are HW CWEs that do not have an intervening class between them and pillar (<u>CWE-664</u>).
 They have one security failure scenario:
- An attacker can violate system security by taking advantage of the need for multiple hardware components to keep local copies of a shared state (e.g., caches and MMUs) when they are unable to maintain full consistency [CWE-1250] [CWE-1251].

705 **4.5. Incorrect Comparison**

The CWE Incorrect Comparison (<u>CWE-697</u>) applies when a "product compares two entities in a
 security-relevant context, but the comparison is incorrect, which may lead to resultant
 weaknesses." For example, the comparison:

- Checks one factor incorrectly
- Should consider multiple factors but does not check at least one of those factors at all
- Checks the wrong factor
- The HW CWEs under this pillar occur within the CWE-697 P Incorrect Comparison pillar/classhierarchy.
- 714 Figure 6 shows the digraph of hardware CWEs under this pillar with their parent-child
- 715 relationships.
- 716

			(1254)	
CWEs from:		General Circuit and Logic Design Concerns - (1199)	\bigcirc	Power, Clock, Thermal, and Reset Concerns - (12
Manufacturing and Life Cycle Mana	gement Concerns - (1195)	Core and Compute Issues - (1201)	ŏ	Debug and Test Problems - (1207)
Security Flow Issues - (1196)		Memory and Storage Issues - (1202)	Ŏ	Cross-Cutting Problems - (1208)
Integration Issues - (1197)		Peripherals, On-chip Fabric, and Interface/IO Problems - (1	203)	Physical Access Issues and Concerns - (1388)
Privilege Separation and Access Co	ntrol Issues - (1198)	Security Primitives and Cryptography Issues - (1205)	ŏ	Not View-1194
CWEs from:	CWEs by Abstraction:	CWEs Relation by Nature:		CWE28F Tool, 1. Bojanova
Both View-1000 and View-1194	Pillar	ChildOf		
Only View-1194	Class	,		
	Base			
Only View-1000	Variant			

718

717

Fig. 6. HW CWE subgraph for pillar Incorrect Comparison (CWE-697)

719 The HW security failure scenario pertaining to this pillar is:

An attacker can make informed guesses of security credentials when evaluation of those credentials is performed iteratively as opposed to all at once (i.e., atomically) [<u>CWE-</u>
 1254].

723 4.6. Insufficient Control Flow Management

The CWE Insufficient Control Flow Management (<u>CWE-691</u>) applies when "the code does not

sufficiently manage its control flow during execution, creating conditions in which the controlflow can be modified in unexpected ways."

The HW CWEs under this pillar occur within the following pillar/class hierarchy. No child class ofthe pillar is itself an HW CWE.

- 729 <u>CWE-691 P Insufficient Control Flow Management</u>
- <u>CWE-362</u> C Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
- 732 <u>CWE-662</u> C Improper Synchronization
- 733 o <u>CWE-667</u> C Improper Locking
- 734 <u>CWE-696</u> C Incorrect Behavior Order
- 735 Figure 7 shows the digraph of hardware CWEs under this pillar with their parent-child
- 736 relationships.

		662			
CWEs from:		Q	General Circuit and Logic Design Concerns - (1199)	0	Power, Clock, Thermal, and Reset Concerns - (1206)
Manufacturing and Life Cycle Manag	ement Concerns - (1195)	Q	Core and Compute Issues - (1201)	Q	Debug and Test Problems - (1207)
Security Flow Issues - (1196)		Q	Memory and Storage Issues - (1202)	Q	Cross-Cutting Problems - (1208)
Integration Issues - (1197)		Q	Peripherals, On-chip Fabric, and Interface/IO Problems - (1203)	Q	Physical Access Issues and Concerns - (1388)
Privilege Separation and Access Cont	rol Issues - (1198)	\bigcirc	Security Primitives and Cryptography Issues - (1205)	0	Not View-1194
CWEs from:	CWEs by Abstraction:	CIMES	Relation by Nature:		CWE28F Tool, L Bejanova
Both View-1000 and View-1194	Pillar	/	ChildOf		
Only View-1194	Class	/			
	Base				
Only View-1000	Variant				

737	
738	

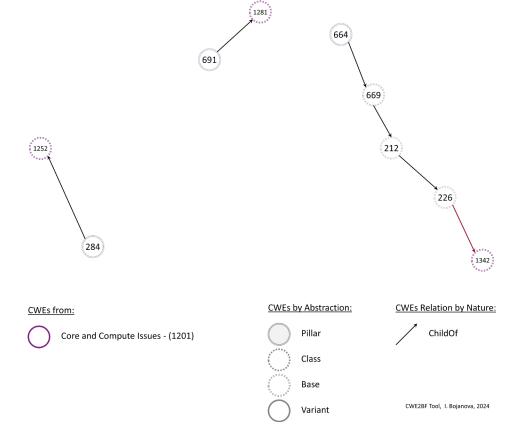
Fig. 7. HW CWE subgraph for pillar Insufficient Control Flow Management (CWE-691)

- 739 Under the non-HW class Concurrent Execution using Shared Resource with Improper
- 740 Synchronization ('Race Condition') (<u>CWE-362</u>), there are two security failure scenarios:
- Malicious software can violate the system security model by writing to write-once
 registers that typically hold system configuration data prior to trusted code writing to
 them [CWE-1223].
- An attacker can circumvent security protections by taking advantage of a race condition
 in hardware logic [<u>CWE-1298</u>].
- 746 The non-HW class Improper Synchronization (<u>CWE-662</u>) has four security failure scenarios that
- 747 were previously provided in Sec. 4.4. This is because <u>CWE-662</u> also falls under pillar Improper
- 748 Control of a Resource Through its Lifetime (<u>CWE-664</u>). The full graph in Fig. 1 shows the749 relationships.
- 750 Under the non-HW class Incorrect Behavior Order (<u>CWE-696</u>), there are three security failure751 scenarios:
- An attacker can leverage an early boot IP with direct memory access (DMA) prior to
 security configuration settings being established in order to access security-sensitive
 data and potentially gain privileges by bypassing the operating system (OS) and
 bootloader [CWE-1190].
- An attacker can leverage an untrusted IP or peripheral microcontroller after system
 reset to access memory and fabric (e.g., to obtain privileges or read sensitive data) prior
 to trusted firmware asserting security controls during the boot sequence [CWE-1193].

- A malicious agent can gain access to a protected asset if the hardware-based access
 control check does not complete prior to the asset being accessed [CWE-1280].
- 761 The HW child of pillar <u>CWE-691</u> has one security failure scenario:
- Malicious code can cause undesirable processor behavior (e.g., lock a processor) by
 executing a special sequence of instructions [<u>CWE-1281</u>].
- 764 **4.7. Protection Mechanism Failure**
- 765 The CWE Protection Mechanism Failure (<u>CWE-693</u>) applies when:
- 766 The product does not use or incorrectly uses a protection mechanism
- 767 that provides sufficient defense against directed attacks against the
- 768 product. This weakness covers three distinct situations. A 'missing'
- 769 protection mechanism occurs when the application does not define any
- 770 mechanism against a certain class of attack. An 'insufficient' protection
- 771 mechanism might provide some defenses for example, against the
- most common attacks but it does not protect against everything that is
 intended. Finally, an 'ignored' mechanism occurs when a mechanism is
 available and in active use within the product, but the developer has
- not applied it in some code path.
- There are 15 HW CWEs under this pillar. They occur within the following pillar/class hierarchy.No child class of the pillar is itself an HW CWEs.
- 778 CWE-693 P Protection Mechanism Failure
- CWE-311 C Missing Encryption of Sensitive Data
- 780 <u>CWE-327</u> C Use of a Broken or Risky Cryptographic Algorithm
- 781 <u>CWE-330</u> C Use of Insufficiently Random Value
- 782 Figure 8 shows the digraph of hardware CWEs under this pillar with their parent-child
- 783 relationships.

Hardware Security Failure Scenarios Potential Weaknesses in Hardware Design

	CWEs from: General Circuit and Logic Design Concerns - (1199) Power, Clock, Thermal, and Reset Concerns - (1206) Manufacturing and Life Cycle Management Concerns - (1195) Core and Compute Issues - (1201) Debug and Test Problems - (1207) Security Flow Issues - (1196) Memory and Storage Issues - (1202) Coress-Cutting Problems - (1208) Integration Issues - (1197) Peripherals, On-chip Fabric, and Interface/IO Problems - (1203) Physical Access Issues and Concerns - (1388) Privilege Separation and Access Control Issues - (1198) Security Primitives and Cryptography Issues - (1205) Not View-1194
784 785	CWEs from: CWEs by Abstraction: CWEs Relation by Nature: Both View-1000 and View-1194 Only View-1194 Class Base Variant Child Of Class Base Variant Fig. 8. HW CWE subgraph for pillar Protection Mechanism Failure (CWE-693)
786 787	Under the non-HW class Missing Encryption of Sensitive Data (<u>CWE-311</u>), there is one security failure scenario:
788 789 790	 An attacker may gain access to sensitive information if it is transmitted unencrypted through on-chip component interconnects or external debug channels (e.g., JTAG debug port) [<u>CWE-319</u>].
791 792	Under the non-HW class Use of a Broken or Risky Cryptographic Algorithm (<u>CWE-327</u>), there is one security failure scenario:
793 794 795 796	 An attacker can read encrypted information since HW-implemented cryptographic primitives may not be easily patchable or upgradeable, resulting in a weakening of cryptographic services over time as the computational power of attackers increases and vulnerabilities are discovered that weaken implemented algorithms [<u>CWE-1240</u>].
797 798	Under the non-HW class Use of Insufficiently Random Values (<u>CWE-330</u>), there is one security failure scenario:
799 800 801	 An attacker may break encryption by leveraging the ability to predict generated 'random' numbers that come from pseudorandom number generators (RNGs) as opposed to hardware-based true random number generators (TRNGs) [<u>CWE-1241</u>].
802	The non-class children of pillar <u>CWE-693</u> have the following nine security failure scenarios:
803 804	 An attack can leverage a security-sensitive hardware module that may fail due to semiconductor defects that already existed in a new chip or that occurred over time


- 805 (e.g. due to thermal/electrical stress). Such failures can freeze signals to either 0 or 1.
 806 [CWE-1248].
- An attacker can blow a fuse to put a chip into an insecure state with one-directional
 fuses on chips used to permanently set a configuration (e.g., 'Manufacturing Complete')
 when such fuses incorrectly implement a reverse security logic [CWE-1253].
- An attacker can gain unauthorized capabilities (e.g., bypass cryptographic checks, read
 and change an internal state, and adjust system configurations) when a chip is not set to
 a production configuration, thereby allowing debug capabilities [<u>CWE-1269</u>].
- An attacker can read confidential information from a chip (e.g., secret keys, device identifiers, proprietary code, and circuit designs) with imaging technology (e.g., x-ray microscopy and scanning electron microscopes) after the removal of chip packaging and individual integrated circuit layers [<u>CWE-1278</u>].
- 817 5. An attacker can run leaked debug firmware on a chip and gain greater insight into the
 818 inner workings and state of the chip if both the debug and production firmware are
 819 signed with the same public key [<u>CWE-1291</u>].
- An attacker can bypass security by leveraging peripherals and chip components that
 require the transfer of information for security features (e.g., privileges and immutable
 identity) but that are connected to on-chip fabrics or buses that do not support those
 features [CWE-1318].
- An attacker can generate magnetic pulses to induce temporary faults on a chip (known as electromagnetic fault injection), thereby circumventing or changing security
 functionality (e.g., bypassing security features, reading confidential information, changing program flow, or perturbing RNGs) [CWE-1319].
- 8. An attacker can compromise secure boot capabilities and execute their choice of code
 by modifying memory or fuses that should have been made immutable [<u>CWE-1326</u>].
- 830
 9. Malicious software can execute code to trigger overheating on chips that contain
 831 inadequate thermal protection (e.g., heat sensors and cooling capabilities), resulting in
 832 temporary DoS, permanent failure ("bricking"), reliability issues, and physical safety
 833 hazards [<u>CWE-1338</u>].

834 5. Categories of Hardware Design Weaknesses

- The HW CWE SIG groups HW weaknesses into 13 categories that describe where a security
- problem may exist in an HW design. This section presents these categories and the associatedHW CWEs.

838 5.1. Core and Compute Issues

- 839 Weaknesses in the category Core and Compute Issues (<u>CWE-1201</u>) are "typically associated
- 840 with CPUs, Graphics, Vision, AI, FPGA, and microcontrollers." There are three HW CWEs in this
- 841 category, none of which are classes.

842

843

Fig. 9. HW CWEs under the category Core and Compute Issues (CWE-1201)

844 5.2. Cross-Cutting Problems

845 Weaknesses in the category Cross-Cutting Problems (<u>CWE-1208</u>) can "arise in multiple areas of 846 hardware design or apply to a wide cross-section of components." There are nine HW CWEs in

this category. Three are classes Insufficient Technical Documentation (CWE-1059), Improper

- 848 Physical Access Control (<u>CWE-1263</u>), and Reliance on Insufficiently Trustworthy Component
- 849 (<u>CWE-1357</u>).

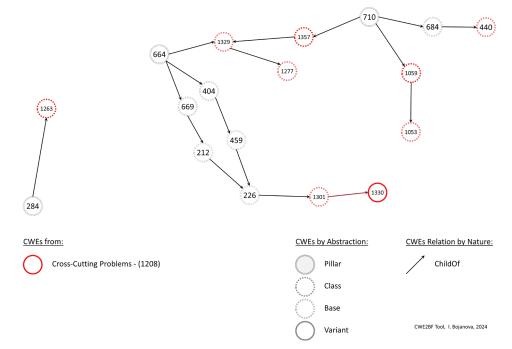
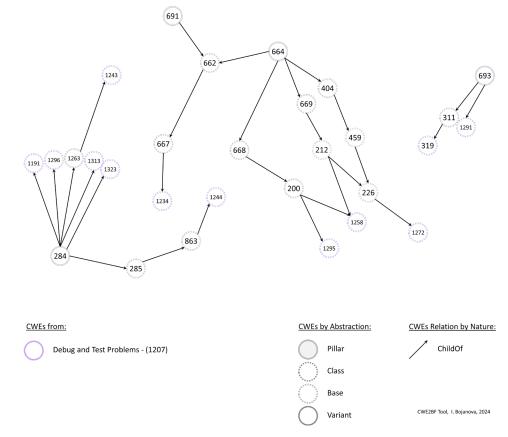


Fig. 10. HW CWEs under the category Cross-Cutting Problems (CWE-1208)


850 851

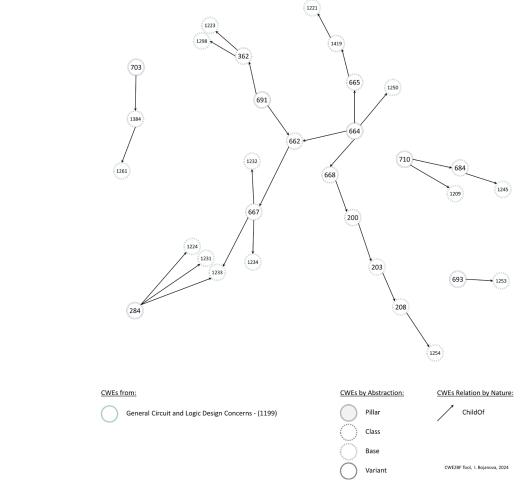
29

852 **5.3. Debug and Test Problems**

853 Weaknesses in the category Debug and Test Problems (<u>CWE-1207</u>) are "related to hardware

- debug and test interfaces such as JTAG and scan chain)." There are 12 HW CWEs in this
- 855 category, none of which are classes.

856 857


Fig. 11. HW CWEs under the category Debug and Test Problems (CWE-1207)

858 5.4. General Circuit and Logic Design Concerns

859 Weaknesses in the category General Circuit and Logic Design Concerns (<u>CWE-1199</u>) are "related

860 to hardware-circuit design and logic (e.g., CMOS transistors, finite state machines, and

- registers) as well as issues related to hardware description languages such as System Verilog 861
- and VHDL)." There are 14 HW CWEs in this category, none of which are classes. 862

864

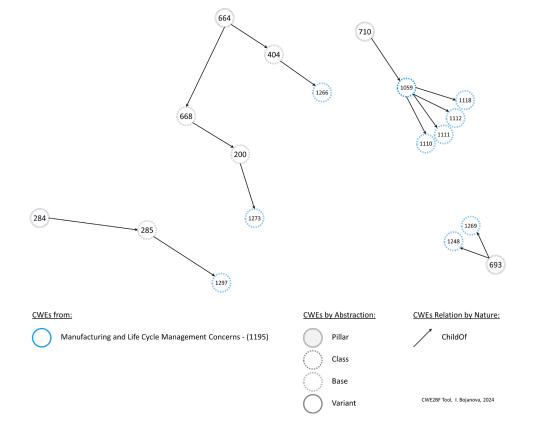
Fig. 12. HW CWEs under the category General Circuit and Logic Design Concerns (CWE-1199)

865 **5.5. Integration Issues**

- 866 Weaknesses in the category Integration Issues (<u>CWE-1197</u>) arise from the integration of
- 867 multiple hardware IP cores, SoC subsystem interactions, or hardware platform subsystem 868 interactions. There is only one HW CWE in this category.

1226		
284	, ,	
<u>CWEs from:</u>	CWEs by Abstraction:	CWEs Relation by Nature:
Integration Issues - (1197)	Pillar	ChildOf
	Class	
	Base	
	Variant	CWE2BF Tool, I. Bojanova, 2024

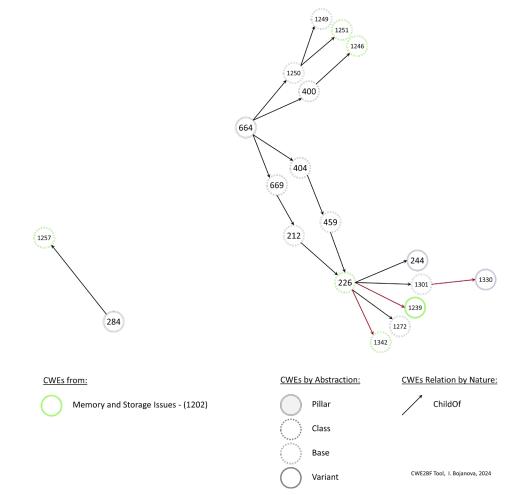
869 870


Fig. 13. HW CWEs under the category Integration Issues (CWE-1197)

871 **5.6.** Manufacturing and Life Cycle Management Concerns

- 872 Weaknesses in the category Manufacturing and Life Cycle Management Concerns (<u>CWE-1195</u>)
- are "root-caused to defects that arise in the semiconductor-manufacturing process or during

876


- the life cycle and supply chain." There are six HW CWEs in this category, one of which is class
- 875 Insufficient Technical Documentation (<u>CWE-1059</u>).

877 Fig. 14. HW CWEs under the category Manufacturing and Life Cycle Management Concerns (CWE-1195)

878 **5.7. Memory and Storage Issues**

- 879 Weaknesses in the category Memory and Storage Issues (CWE-1202) are "typically associated
- 880 with memory (e.g., DRAM, SRAM) and storage technologies (e.g., NAND Flash, OTP, EEPROM,
- and eMMC)." There are seven HW CWEs in this category, none of which are classes.

882

883

Fig. 15. HW CWEs under the category Memory and Storage Issues (CWE-1202)

884 **5.8.** Peripherals, On-chip Fabric, and Interface/IO Problems

885 Weaknesses in the category Peripherals, On-chip Fabric, and Interface/IO Problems (<u>CWE-1203</u>)

- are "related to hardware security problems that apply to peripheral devices, IO interfaces, on-
- chip interconnects, NoC, and buses. For example, this category includes issues related to design
- of hardware interconnect and/or protocols, such as PCIe, USB, SMBUS, general-purpose IO pins,

- and user-input peripherals such as mouse and keyboard." There are six HW CWEs in this
- 890 category, none of which are classes.

891

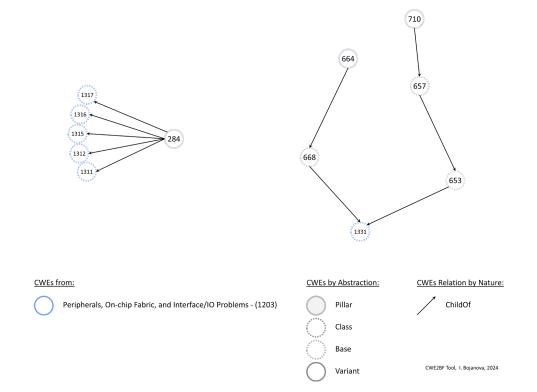
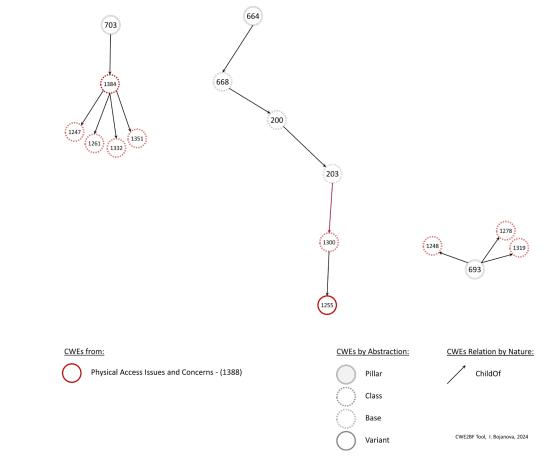
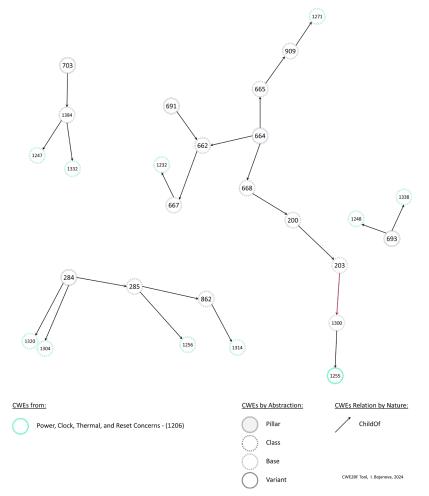



Fig. 16. HW CWEs under the category Peripherals, On-chip Fabric, and Interface/IO Problems (CWE-1203)

893 **5.9. Physical Access Issues and Concerns**

- 894 Weaknesses in the category Physical Access Issues and Concerns (<u>CWE-1388</u>) are related to
- 895 physical access concerns. There are 10 HW CWEs in this category, one of which is class
- 896 Improper Handling of Physical or Environmental Conditions (<u>CWE-1384</u>).


898 Fig. 17. Figure 18. HW CWEs under the category Physical Access Issues and Concerns (CWE-1388)

899 5.10. Power, Clock, Thermal, and Reset Concerns

897

- 900 Weaknesses in the category Power, Clock, Thermal, and Reset Concerns (<u>CWE-1206</u>) are
- 901 "related to system power, voltage, current, temperature, clocks, system state saving/restoring,

- and resets at the platform and SoC level." There are 11 HW CWEs in this category, none of
- 903 which are classes.

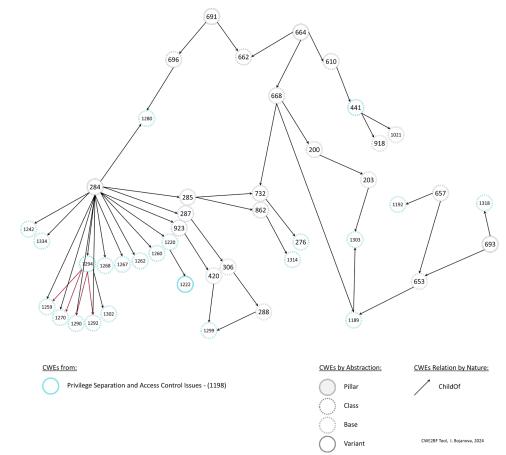

904 905

Fig. 18. HW CWEs under the category Power, Clock, Thermal, and Reset Concerns (CWE-1206)

906 5.11. Privilege Separation and Access Control Issues

- 907 Weaknesses in the category Privilege Separation and Access Control Issues (<u>CWE-1198</u>) are
- 908 "related to features and mechanisms providing hardware-based isolation and access control
- 909 (e.g., identity, policy, locking control) of sensitive shared hardware resources, such as registers
- 910 and fuses." There are 23 HW CWEs in this category, two of which are classes Unintended Proxy

- 911 or Intermediary ('Confused Deputy') (<u>CWE-441</u>) and Insecure Security Identifier Mechanism
- 912 (<u>CWE-1294</u>).

913

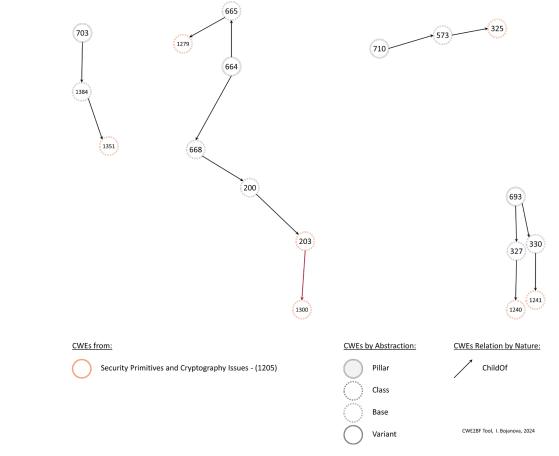
914 Fig. 19. HW CWEs under the category Privilege Separation and Access Control Issues (CWE-1198)

915 5.12. Security Flow Issues

916 Weaknesses in the category Security Flow Issues (<u>CWE-1196</u>) are "related to improper design of

917 full-system security flows, including but not limited to secure boot, secure update, and

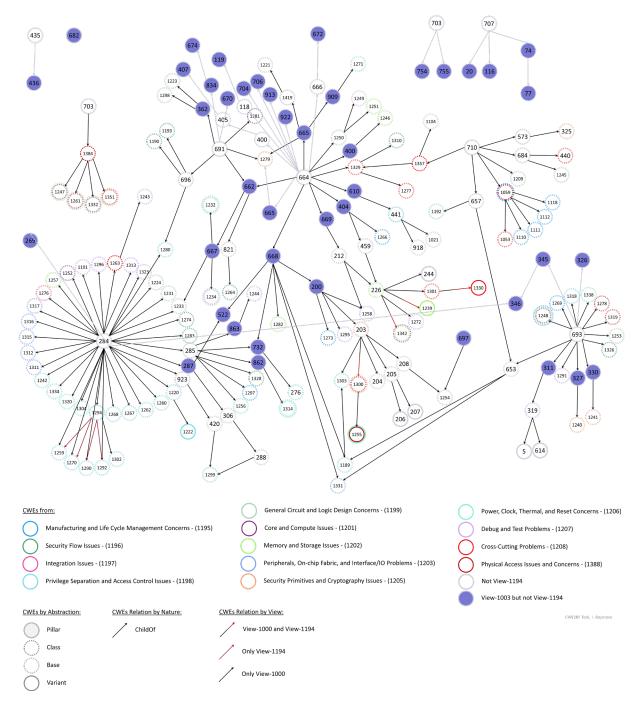
- 918 hardware-device attestation." There are eight HW CWEs in this category, none of which are
- 919 classes.


920 921

922 5.13. Security Primitives and Cryptography Issues

- 923 Weaknesses in the category Security Primitives and Cryptography Issues (<u>CWE-1205</u>) are
- 924 "related to hardware implementations of cryptographic protocols and other hardware-security

- 925 primitives, such as physical unclonable functions (PUFs) and random number generators
- 926 (RNGs)." There are seven HW CWEs in this category, none of which are classes.



927 928

Fig. 21. HW CWEs under the category Security Primitives and Cryptography Issues (CWE-1205)

929 **6. Comparison With Software Weaknesses**

- 930 As presented in Sec. 2.4.3, the Weaknesses for Simplified Mapping of Published Vulnerabilities
- view (<u>CWE-1003</u>) includes the CWEs that cover the majority of CVEs. As presented in Sec. 2.4.1,
- 932 the Hardware Design view (<u>CWE-1194</u>) contains the HW CWEs.
- There are only three CWEs that overlap in View-1003 and View-1194: <u>CWE-203</u>, <u>CWE-276</u>, and
 <u>CWE-319</u>. The have the following View-1194 categories:
- 935
 935 1. Observable Discrepancy (<u>CWE-203</u>) is in View-1194 category Security Primitives and 936 Cryptography Issues (<u>CWE-1205</u>).
- 937
 937
 938
 938 Incorrect Default Permissions (<u>CWE-276</u>) is in View-1194 category Privilege Separation 938 and Access Control Issues (<u>CWE-1198</u>).
- 939 3. Cleartext Transmission of Sensitive Information (<u>CWE-319</u>) is in View-1194 category
 940 Debug and Test Problems (<u>CWE-1207</u>).
- 941 Figure 22 shows the complete HW CWE graph created using View-1000 and View-1194 (from
- 942 Fig. 1) with the View-1003 software CWEs added and highlighted in dark purple. Twenty of
- 943 these CWEs occur within the HW CWE graph even though 17 of them are not HW CWEs. These
- 944 17 are intermediary CWEs that connect an HW CWE with its respective pillars.

945 946

Fig. 22. HW CWE complete graph with View-1003 pillar and class CWEs that are not in View-1194 highlighted

- 947 Figure 23 shows the complete HW CWE graph created using View-1000 and View-1194 (from
- 948 Fig. 1) with the three CWEs that occur both in View-1003 and View-1194 highlighted in purple.

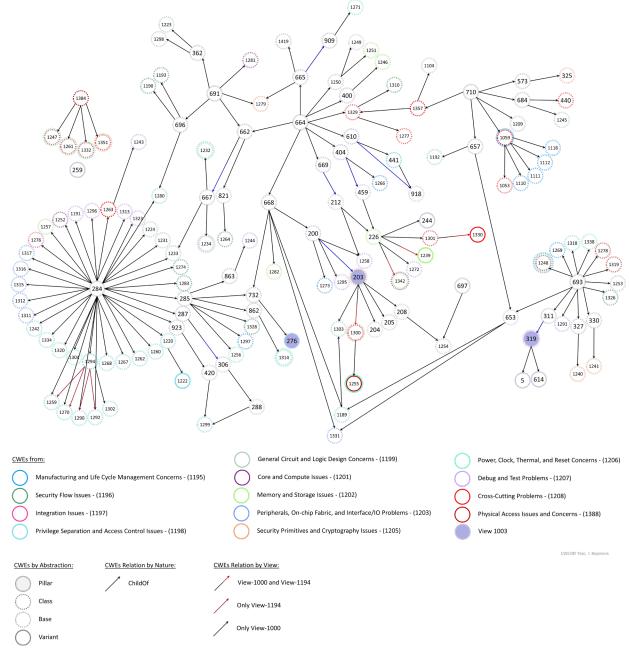


Fig. 23. HW CWE complete graph with View-1003 base CWEs that overlap with View-1194 highlighted

- 951 Figure 24 shows the complete HW CWE graph with memory-related weaknesses darkly shaded
- 952 in purple. These may be candidates to be analyzed for addition as HW CWEs if firmware
- 953 (including microcode) weaknesses are considered HW weaknesses.

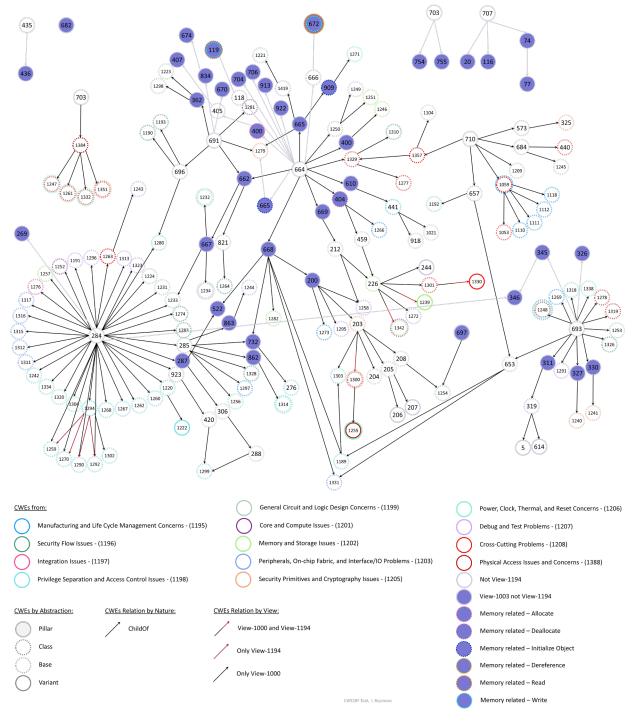


Fig. 24. HW CWE complete graph with memory-related weaknesses highlighted

956 **7. Software Assurance Trends Categories**

- 957 In addition to the views previously presented, there is a Software Development view (CWE-
- 958 <u>699</u>). Figure 25 shows the View-699 CWEs that overlap with the complete HW CWEs graph
- 959 (from Fig. 1).

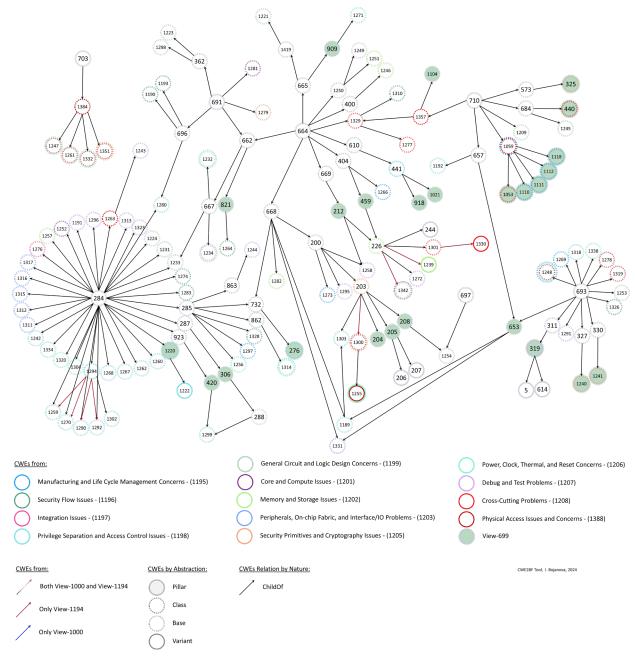
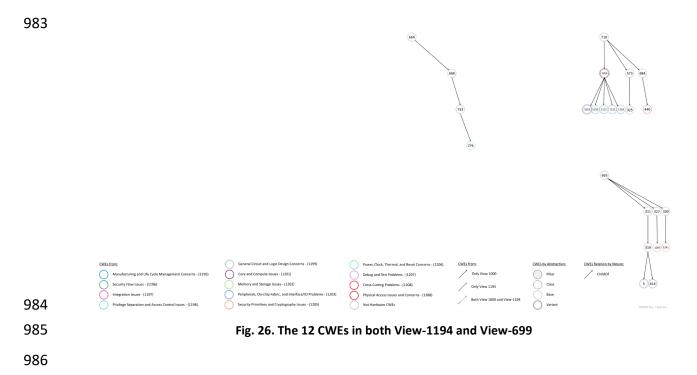



Fig. 25. View-699 CWEs that overlap with View-1194 highlighted

- 962 Only 12 CWEs are both in View-1194 and View-699. Organized by the View-699 categories, they 963 are:
- 964 CWE View-699> CWE Category: Permission Issues (CWE-275)
- 965 CWE-276: Incorrect Default Permissions
- 966 CWE View-699> CWE Category: Cryptographic Issues (CWE-310)
- 967 CWE-325: Missing Cryptographic Step
- 968 CWE View-699> CWE Category: Behavioral Problems (CWE-438)
- 969 CWE-440: Expected Behavior Violation
- 970 CWE View-699> CWE Category: Documentation Issues (CWE-1125)
- 971 CWE-1053: Missing Documentation for Design
- 972 CWE-1110: Incomplete Design Documentation
- 973 CWE-1111: Incomplete I/O Documentation
- 974 CWE-1112: Incomplete Documentation of Program Execution
- 975 CWE-1118: Insufficient Documentation of Error Handling Techniques
- 976 CWE View-699> CWE Category: Authorization Errors (CWE-1212)
- 977 CWE-1220: Insufficient Granularity of Access Control
- 978 CWE View-699> CWE Category: Information Management Errors (CWE-199)
- 979 CWE-319: Cleartext Transmission of Sensitive Information
- 980 CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation
- 981 CWE-1241: Use of Predictable Algorithm in Random Number Generator
- 982 Figure 26 provides a separate view of these 12 CWEs.

987 8. Conclusion

- 988 Historically held notions that hardware is invulnerable have been shown to be incorrect. This
- 989 work has presented 98 hardware security failure scenarios that demonstrate **what** an attacker
- 990 can do, **where** can they do it, and **how** can they do it. Each scenario describes a type of
- 991 vulnerability that can be instantiated in many different ways on distinct hardware platforms.
- 992 Almost all of these scenarios represent significant security concerns.
- 993 However, there are few known HW vulnerabilities. As of February 22, 2024, there were only
- 131 HW CVEs. This can be partially explained by HW developers finding and removing HW
- 995 vulnerabilities during the design process, meaning that they are never added to the CVE. At the
- same time, the number of HW CVEs may be artificially low because HW developers are reticent
- to acknowledge vulnerabilities in shipped products due to the inability to resolve or mitigate
- 998 them. It is also possible that the restricted programming languages used for HW design limit the
- 999 possibility of introducing vulnerabilities relative to more general software programming
- 1000 languages. Another factor could be that HW security has only recently received significantly
- 1001 heightened attention from the security community.
- 1002 Hardware is a new focal point in the unending conflict between computer security hackers and
- 1003 defenders. Vulnerabilities can have serious consequences because of the large deployed base
- 1004 of chips and the inability to fix vulnerabilities on those chips. There are many ways in which HW
- 1005 can fail from a security perspective, and there is ample justification for securing HW
- 1006 infrastructure. HW is the foundation of computing and must be trustworthy.

1007

1008 References

1010

1009 The references are organized into general references and CWE references.

1011 General References

- 1012 [1] Bellay, Forte, Taylor (2021) *Hardware Vulnerability Description, Sharing and Reporting:* 1013 *Challenges and Opportunities*, Available at <u>https://dforte.ece.ufl.edu/wp-</u>
- 1014content/uploads/sites/65/2021/05/GOMACTech_conf.pdf1015[2]McConnell (2004) Code Complete: A Practical Handbook of Software Construction,
- 1015[2]Mcconnen (2004) code complete: A Practical Plandbook of Software construction,1016Second Edition, Available at1017https://people.engr.tamu.edu/slupoli/notes/ProgrammingStudio/supplements/Code%21018OComplete%202nd.pdf
- 1019 [3] Bojanova, Irena, et al. 'Bug, fault, error, or weakness: Demystifying software security 1020 vulnerabilities.' IT Professional 25.01 (2023): 7-12. Available at
- 1021 https://ieeexplore.ieee.org/document/10077830
- 1022 [4] MITRE (2024) *CWE/CAPEC Board*, Available at
- 1023 https://cwe.mitre.org/community/board.html
- 1024 [5] HW CWE SIG (2024) Hardware CWE Special Interest Group Mission and Initial
- 1025 Guidance, Available at <u>https://cwe.mitre.org/documents/HW_CWE_SIG.pdf</u>
- 1026 [6] MITRE (2024) *CVE*. Available at <u>http://cve.mitre.org</u>
- 1027 [7] NIST (2024) *National Vulnerability Database*. Available at <u>https://nvd.nist.gov</u>
- 1028 [8] MITRE (2024) *New to CWE*. Available at <u>https://cwe.mitre.org/about/new_to_cwe.html</u>
- 1029 [9] MITRE (2024) *CWE Common Weakness Enumeration*. Available at
- 1030 <u>https://cwe.mitre.org/index.html</u>

1031

- 1032 CWE References
- 1033 [CWE-203] Preliminary List Of Vulnerability Examples for Researchers (PLOVER) Project
 1034 Team (2006) CWE-203: Observable Discrepancy. (The MITRE Corporation).
 1035 Submission date 2006-07-19. Available at
 1036 https://cwe.mitre.org/data/definitions/203.html
- 1037 [CWE-226]PLOVER Project Team (2006) CWE-226: Sensitive Information in Resource Not1038Removed Before Reuse. (The MITRE Corporation). Submission date 2006-07-19.1039Available at https://cwe.mitre.org/data/definitions/226.html
- 1040 [CWE-276]PLOVER Project Team (2006) CWE-276: Incorrect Default Permissions. (The1041MITRE Corporation). Submission date 2006-07-19. Available at1042https://cwe.mitre.org/data/definitions/276.html
- 1043[CWE-319]PLOVER Project Team (2006) CWE-319: Cleartext Transmission of Sensitive1044Information. (The MITRE Corporation). Submission date 2006-07-19. Available at1045https://cwe.mitre.org/data/definitions/319.html
- 1046[CWE-325]PLOVER Project Team (2006) CWE-325: Missing Cryptographic Step. (The MITRE1047Corporation). Submission date 2006-07-19. Available at1048https://cwe.mitre.org/data/definitions/325.html

1049 1050 1051	[CWE-440]	PLOVER Project Team (2006) CWE-440: Expected Behavior Violation. (The MITRE Corporation). Submission date 2006-07-19. Available at https://cwe.mitre.org/data/definitions/440.html	
1052 1053 1054	[CWE-441]	PLOVER Project Team (2006) CWE-441: Unintended Proxy or Intermediary ('Confused Deputy'). (The MITRE Corporation). Submission date 2006-07-19. Available at <u>https://cwe.mitre.org/data/definitions/441.html</u>	
1055 1056 1057	[CWE-1053]	CWE Content Team (2019) CWE-1053: Missing Documentation for Design. (The MITRE Corporation). Submission date 2019-01-03. Available at https://cwe.mitre.org/data/definitions/1053.html	
1058 1059 1060	[CWE-1059]	CWE Content Team (2019) CWE-1059: Insufficient Technical Documentation. (The MITRE Corporation). Submission date 2019-01-03. Available at <u>https://cwe.mitre.org/data/definitions/1059.html</u>	
1061 1062 1063 1064	[CWE-1189]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC). (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1189.html</u>	
1065 1066 1067	[CWE-1190]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1190: DMA Device Enabled Too Early in Boot Phase. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1190.html</u>	
1068 1069 1070 1071	[CWE-1191]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1191: On-Chip Debug and Test Interface With Improper Access Control. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1191.html</u>	
1072 1073 1074 1075	[CWE-1192]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1192: Improper Identifier for IP Block used in System-On-Chip (SOC). (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1192.html</u>	
1076 1077 1078 1079	[CWE-1193]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1193: Power-On of Untrusted Execution Core Before Enabling Fabric Access Control. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1193.html</u>	
1080 1081 1082	[CWE-1209]	Sherman B (2020) CWE-1209: Failure to Disable Reserved Bits. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1209.html	
1083 1084 1085	[CWE-1220]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1220: Insufficient Granularity of Access Control. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1220.html</u>	

NIST IR 8517 ipd (Initial Public Draft) Hardware Security Failure Scenarios June 2024 Potential Weaknesses in Hardware Design Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1221: Incorrect 1086 [CWE-1221] 1087 Register Defaults or Module Parameters. (The MITRE Corporation). Submission 1088 date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1221.html 1089 [CWE-1222] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1222: 1090 Insufficient Granularity of Address Regions Protected by Register Locks. (The 1091 MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1222.html 1092 1093 [CWE-1223] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1223: Race 1094 Condition for Write-Once Attributes. (The MITRE Corporation). Submission date 1095 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1223.html 1096 [CWE-1224] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1224: Improper Restriction of Write-Once Bit Fields. (The MITRE Corporation). Submission date 1097 1098 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1224.html 1099 [CWE-1231] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1231: Improper 1100 Prevention of Lock Bit Modification. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1231.html 1101 1102 [CWE-1232] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1232: Improper 1103 Lock Behavior After Power State Transition. (The MITRE Corporation). 1104 Submission date 2020-02-24. Available at 1105 https://cwe.mitre.org/data/definitions/1232.html 1106 [CWE-1233] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1233: Security-1107 Sensitive Hardware Controls with Missing Lock Bit Protection. (The MITRE Corporation). Submission date 2020-02-24. Available at 1108 1109 https://cwe.mitre.org/data/definitions/1233.html 1110 [CWE-1234] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1234: Hardware 1111 Internal or Debug Modes Allow Override of Locks. (The MITRE Corporation). 1112 Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1234.html 1113 Fern N (2020) CWE-1239: Improper Zeroization of Hardware Register. (The 1114 [CWE-1239] 1115 MITRE Corporation). Submission date 2020-02-24. Available at 1116 https://cwe.mitre.org/data/definitions/1239.html 1117 [CWE-1240] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1240: Use of a 1118 Cryptographic Primitive with a Risky Implementation. (The MITRE Corporation). 1119 Submission date 2020-02-24. Available at 1120 https://cwe.mitre.org/data/definitions/1240.html 1121 [CWE-1241] Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1241: Use of 1122 Predictable Algorithm in Random Number Generator. (The MITRE Corporation). 1123 Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1241.html 1124

1125 1126 1127 1128	[CWE-1242]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1242: Inclusion of Undocumented Features or Chicken Bits. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1242.html</u>	
1129 1130 1131 1132	[CWE-1243]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1243: Sensitive Non-Volatile Information Not Protected During Debug. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1243.html</u>	
1133 1134 1135 1136	[CWE-1244]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1244.html</u>	
1137 1138 1139 1140	[CWE-1245]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1245: Improper Finite State Machines (FSMs) in Hardware Logic. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1245.html</u>	
1141 1142 1143 1144	[CWE-1246]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1246: Improper Write Handling in Limited-write Non-Volatile Memories. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1246.html</u>	
1145 1146 1147 1148	[CWE-1247]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1247: Improper Protection Against Voltage and Clock Glitches. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1247.html</u>	
1149 1150 1151 1152	[CWE-1248]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1248.html</u>	
1153 1154 1155 1156	[CWE-1250]	CWE Content Team (2020) CWE-1250: Improper Preservation of Consistency Between Independent Representations of Shared State. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1250.html</u>	
1157 1158 1159	[CWE-1251]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1251: Mirrored Regions with Different Values. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1251.html</u>	
1160 1161 1162 1163	[CWE-1252]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1252: CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1252.html	

1164 1165 1166	[CWE-1253]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1253: Incorrect Selection of Fuse Values. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1253.html</u>	
1167 1168 1169	[CWE-1254]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1254: Incorrect Comparison Logic Granularity. (The MITRE Corporation). Submission date 2020- 02-24. Available at <u>https://cwe.mitre.org/data/definitions/1254.html</u>	
1170 1171 1172	[CWE-1255]	CWE Content Team (2020) CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks. (The MITRE Corporation). Submission date 2020-08-20. Available at https://cwe.mitre.org/data/definitions/1255.html	
1173 1174 1175	[CWE-1256]	Fern N (2020) CWE-1256: Improper Restriction of Software Interfaces to Hardware Features. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1256.html</u>	
1176 1177 1178 1179	[CWE-1257]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1257: Improper Access Control Applied to Mirrored or Aliased Memory Regions. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1257.html</u>	
1180 1181 1182 1183	[CWE-1258]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug Information. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1258.html</u>	
1184 1185 1186	[CWE-1259]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1259: Improper Restriction of Security Token Assignment. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1259.html</u>	
1187 1188 1189 1190	[CWE-1260]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1260.html</u>	
1191 1192 1193	[CWE-1261]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1261: Improper Handling of Single Event Upsets. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1261.html</u>	
1194 1195 1196	[CWE-1262]	Fern N (2020) CWE-1262: Improper Access Control for Register Interface. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1262.html	
1197 1198 1199	[CWE-1263]	CWE Content Team (2020) CWE-1263: Improper Physical Access Control. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1263.html	
1200 1201 1202	[CWE-1264]	Fern N (2020) CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data Channels. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1264.html	

1203 1204 1205	[CWE-1266]	Wortman PA (2020) CWE-1266: Improper Scrubbing of Sensitive Data from Decommissioned Device. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1266.html</u>	
1206 1207 1208	[CWE-1267]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1267: Policy Uses Obsolete Encoding. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1267.html</u>	
1209 1210 1211 1212	[CWE-1268]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1268: Policy Privileges are not Assigned Consistently Between Control and Data Agents. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1268.html</u>	
1213 1214 1215	[CWE-1269]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1269: Product Released in Non-Release Configuration. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1269.html</u>	
1216 1217 1218	[CWE-1270]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1270: Generation of Incorrect Security Tokens. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1270.html</u>	
1219 1220 1221	[CWE-1271]	Fern N (2020) CWE-1271: Uninitialized Value on Reset for Registers Holding Security Settings. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1271.html	
1222 1223 1224 1225	[CWE-1272]	Manna PK, Khattri H, Kanuparthi A (2020) CWE-1272: Sensitive Information Uncleared Before Debug/Power State Transition. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1272.html</u>	
1226 1227 1228	[CWE-1273]	Manna PK, Khattri H, Kanuparthi A (2020) CWE-1273: Device Unlock Credential Sharing. (The MITRE Corporation). Submission date 2020-02-24. Available at	
1229		https://cwe.mitre.org/data/definitions/1273.html	
1230 1231 1232	[CWE-1274]	https://cwe.mitre.org/data/definitions/1273.html Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1274.html	
1231	[CWE-1274] [CWE-1276]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code. (The MITRE Corporation). Submission date 2020-02-24. Available at	
1231 1232 1233 1234		Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1274.html</u> Fern N (2020) CWE-1276: Hardware Child Block Incorrectly Connected to Parent System. (The MITRE Corporation). Submission date 2020-02-24. Available at	

1241 1242		Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1278.html
1243 1244 1245 1246	[CWE-1279]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1279.html</u>
1247 1248 1249 1250	[CWE-1280]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1280: Access Control Check Implemented After Asset is Accessed. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1280.html</u>
1251 1252 1253	[CWE-1281]	Fern N (2020) CWE-1281: Sequence of Processor Instructions Leads to Unexpected Behavior. (The MITRE Corporation). Submission date 2020-02-24. Available at https://cwe.mitre.org/data/definitions/1281.html
1254 1255 1256	[CWE-1282]	Fern N (2020) CWE-1282: Assumed-Immutable Data is Stored in Writable Memory. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1282.html</u>
1257 1258 1259 1260	[CWE-1283]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1283: Mutable Attestation or Measurement Reporting Data. (The MITRE Corporation). Submission date 2020-02-24. Available at <u>https://cwe.mitre.org/data/definitions/1283.html</u>
1261 1262 1263	[CWE-1290]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1290: Incorrect Decoding of Security Identifiers . (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1290.html</u>
1264 1265 1266	[CWE-1291]	Manna PK, Khattri H, Kanuparthi A (2020) CWE-1291: Public Key Re-Use for Signing both Debug and Production Code. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1291.html</u>
1267 1268 1269	[CWE-1292]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1292: Incorrect Conversion of Security Identifiers. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1292.html</u>
1270 1271 1272	[CWE-1294]	CWE Content Team (2020) CWE-1294: Insecure Security Identifier Mechanism. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1294.html</u>
1273 1274 1275	[CWE-1295]	Manna PK, Khattri H, Kanuparthi A (2020) CWE-1295: Debug Messages Revealing Unnecessary Information. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1295.html</u>
1276 1277 1278	[CWE-1296]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1296: Incorrect Chaining or Granularity of Debug Components. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1296.html</u>

1279 1280 1281 1282	[CWE-1297]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1297: Unprotected Confidential Information on Device is Accessible by OSAT Vendors. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1297.html</u>	
1283 1284 1285	[CWE-1298]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1298: Hardware Logic Contains Race Conditions. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1298.html</u>	
1286 1287 1288 1289	[CWE-1299]	Kanuparthi A, Khattri H, Manna PK, Mangipudi NKV (2020) CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1299.html</u>	
1290 1291 1292	[CWE-1300]	Fern N (2020) CWE-1300: Improper Protection of Physical Side Channels. (The MITRE Corporation). Submission date 2020-08-20. Available at https://cwe.mitre.org/data/definitions/1300.html	
1293 1294 1295	[CWE-1301]	Fern N (2020) CWE-1301: Insufficient or Incomplete Data Removal within Hardware Component. (The MITRE Corporation). Submission date 2020-08-20. Available at https://cwe.mitre.org/data/definitions/1301.html	
1296 1297 1298 1299	[CWE-1302]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1302: Missing Source Identifier in Entity Transactions on a System-On-Chip (SOC). (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1302.html</u>	
1300 1301 1302	[CWE-1303]	Fern N (2020) CWE-1303: Non-Transparent Sharing of Microarchitectural Resources. (The MITRE Corporation). Submission date 2020-08-20. Available at https://cwe.mitre.org/data/definitions/1303.html	
1303 1304 1305 1306	[CWE-1304]	Accellera Systems Initiative (2020) CWE-1304: Improperly Preserved Integrity of Hardware Configuration State During a Power Save/Restore Operation. (The MITRE Corporation). Submission date 2020-08-20. Available at <u>https://cwe.mitre.org/data/definitions/1304.html</u>	
1307 1308 1309	[CWE-1310]	Mangipudi NKV (2020) CWE-1310: Missing Ability to Patch ROM Code. (The MITRE Corporation). Submission date 2020-12-10. Available at https://cwe.mitre.org/data/definitions/1310.html	
1310 1311 1312	[CWE-1311]	Kanuparthi A, Khattri H, Manna P (2020) CWE-1311: Improper Translation of Security Attributes by Fabric Bridge. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1311.html</u>	
1313 1314 1315 1316	[CWE-1312]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1312: Missing Protection for Mirrored Regions in On-Chip Fabric Firewall. (The MITRE Corporation). Submission date 2020-12-10. Available at https://cwe.mitre.org/data/definitions/1312.html	

1317 1318 1319	[CWE-1313]	Sherman B (2020) CWE-1313: Hardware Allows Activation of Test or Debug Logic at Runtime. (The MITRE Corporation). Submission date 2020-12-10. Available at https://cwe.mitre.org/data/definitions/1313.html	
1320 1321 1322	[CWE-1314]	Khattri H, Manna PK, Kanuparthi AA (2020) CWE-1314: Missing Write Protection for Parametric Data Values. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1314.html</u>	
1323 1324 1325	[CWE-1315]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1315: Improper Setting of Bus Controlling Capability in Fabric End-point. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1315.html</u>	
1326 1327 1328 1329	[CWE-1316]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1316: Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and Unprotected Ranges. (The MITRE Corporation). Submission date 2020-12-10. Available at https://cwe.mitre.org/data/definitions/1316.html	
1330 1331 1332	[CWE-1317]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1317: Improper Access Control in Fabric Bridge. (The MITRE Corporation). Submission date 2020-12-10. Available at https://cwe.mitre.org/data/definitions/1317.html	
1333 1334 1335 1336	[CWE-1318]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1318.html</u>	
1337 1338 1339	[CWE-1319]	Leger S, Narasipur R (2020) CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI). (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1319.html</u>	
1340 1341 1342 1343	[CWE-1320]	Khattri H, Kanuparthi A, Manna PK (2020) CWE-1320: Improper Protection for Outbound Error Messages and Alert Signals. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1320.html</u>	
1344 1345 1346	[CWE-1323]	Khattri H, Manna PK, Kanuparthi AA (2020) CWE-1323: Improper Management of Sensitive Trace Data. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1323.html</u>	
1347 1348 1349	[CWE-1326]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1326: Missing Immutable Root of Trust in Hardware. (The MITRE Corporation). Submission date 2020-12-10. Available at https://cwe.mitre.org/data/definitions/1326.html	
1350 1351 1352	[CWE-1328]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1328: Security Version Number Mutable to Older Versions. (The MITRE Corporation). Submission date 2020-12- 10. Available at <u>https://cwe.mitre.org/data/definitions/1328.html</u>	
1353 1354 1355	[CWE-1329]	CWE Content Team (2020) CWE-1329: Reliance on Component That is Not Updateable. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1329.html</u>	

1356 1357 1358	[CWE-1330]	Khattri H, Kanuparthi A, Manna PK (2020) CWE-1330: Remanent Data Readable after Memory Erase. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1330.html</u>
1359 1360 1361 1362	[CWE-1331]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC). (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1331.html</u>
1363 1364 1365	[CWE-1332]	Woudenberg J (2020) CWE-1332: Improper Handling of Faults that Lead to Instruction Skips. (The MITRE Corporation). Submission date 2020-12-10. Available at https://cwe.mitre.org/data/definitions/1332.html
1366 1367 1368	[CWE-1334]	Pangburn J (2020) CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy. (The MITRE Corporation). Submission date 2020-12-10. Available at <u>https://cwe.mitre.org/data/definitions/1334.html</u>
1369 1370 1371	[CWE-1338]	Kanuparthi A, Khattri H, Manna PK (2020) CWE-1338: Improper Protections Against Hardware Overheating. (The MITRE Corporation). Submission date 2020- 12-10. Available at <u>https://cwe.mitre.org/data/definitions/1338.html</u>
1372 1373 1374 1375	[CWE-1342]	Nordstrom A, Althoff A (2021) CWE-1342: Information Exposure through Microarchitectural State after Transient Execution. (The MITRE Corporation). Submission date 2021-10-28. Available at <u>https://cwe.mitre.org/data/definitions/1342.html</u>
1376 1377 1378	[CWE-1351]	Wortman PA (2021) CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold Environments. (The MITRE Corporation). Submission date 2021-07-20. Available at <u>https://cwe.mitre.org/data/definitions/1351.html</u>
1379 1380 1381	[CWE-1357]	CWE Content Team (2022) CWE-1357: Reliance on Insufficiently Trustworthy Component. (The MITRE Corporation). Submission date 2022-04-28. Available at https://cwe.mitre.org/data/definitions/1357.html
1382 1383 1384	[CWE-1384]	CWE Content Team (2022) CWE-1384: Improper Handling of Physical or Environmental Conditions. (The MITRE Corporation). Submission date 2022-04- 28. Available at <u>https://cwe.mitre.org/data/definitions/1384.html</u>
1385 1386 1387	[CWE-1420]	Constable SD (2024) CWE-1420: Exposure of Sensitive Information during Transient Execution. (The MITRE Corporation). Submission date 2024-02-29. Available at <u>https://cwe.mitre.org/data/definitions/1420.html</u>
1388 1389 1390 1391	[CWE-1421]	Constable SD (2024) CWE-1421: Exposure of Sensitive Information in Shared Microarchitectural Structures during Transient Execution. (The MITRE Corporation). Submission date 2024-02-29. Available at <u>https://cwe.mitre.org/data/definitions/1421.html</u>
1392 1393	[CWE-1422]	Constable SD (2024) CWE-1422: Exposure of Sensitive Information caused by Incorrect Data Forwarding during Transient Execution. (The MITRE Corporation).

- 1394Submission date 2024-02-29. Available at1395https://cwe.mitre.org/data/definitions/1422.html
- 1396 [CWE-1423] Constable SD (2024) CWE-1423: Exposure of Sensitive Information caused by
 1397 Shared Microarchitectural Predictor State that Influences Transient Execution.
 1398 (The MITRE Corporation). Submission date 2024-02-29. Available at
- 1399 https://cwe.mitre.org/data/definitions/1423.html

1400 Appendix A. List of Symbols, Abbreviations, and Acronyms

- 1402 Central Processing Unit
- 1403 **DoS**
- 1404 Denial of Service
- 1405 **FSM**
- 1406 Finite-State Machine
- 1407 IP
- 1408 Intellectual Property
- 1409 JTAG
- 1410 Joint Test Action Group
- 1411 MMU
- 1412 Memory Management Unit
- 1413 мри
- 1414 Memory Protection Unit
- 1415 **NoC**
- 1416 Network-on-Chip
- 1417 NVM
- 1418 Non-Volatile Memory
- 1419 **os**
- 1420 Operating System
- 1421 отр
- 1422 One-Time Programmable Memory
- 1423 ROM
- 1424 Read-Only Memory
- 1425 SEU
- 1426 Single-Event Upset
- 1427 **SoC**
- 1428 System-on-a-Chip
- 1429 тар
- 1430 Test Access Port
- 1431 VM
- 1432 Volatile Memory
- 1433

1434 Appendix B. Analysis of the Complete Hardware Weakness Graph

- 1435 Figure 1 in Sec. 3.2 shows the complete HW CWE graph. The root nodes are the seven HW
- applicable pillars under the Research Concepts view. Table 1 provides statistics on the types ofCWEs in the graph.
- 1438

Table 1. Statistics on the complete HW CWE graph

	Non-HW CWEs	HW CWEs	All CWEs
All	50	108	158
Pillar	7	0	7
Class	25	6	31
Base	13	98	111
Variant	5	4	9
Compound	0	0	0

1439

- 1440 To construct an HW CWE graph, create a directed graph for all CWEs using the relationships
- 1441 provided by the Research Concepts view (<u>CWE-1000</u>). Remove all nodes that are unreachable
- 1442 from any of the seven HW applicable pillars as well as all nodes without at least one HW CWE as
- a descendant, unless they themselves are HW CWEs. Add in any edges from the Hardware
- 1444 Design view (<u>CWE-1194</u>) that are not already in the graph.

1445 **B.1. Hardware Design Category Overlay**

1446 In Fig. 1, nodes with more than one outline belong to more than one HW design category.

1447 There are four CWEs that belong to three categories: CWE-1248 to CWE-1195, CWE-1206, and

- 1448 CWE-1388 and CWEs-1421, 1422, and 1423 to CWE-1198, CWE-1201, and CWE-1202. There are
- 1449 12 CWEs that belong to two categories: CWE-1247, CWE-1255, and CWE-1332 to CWE-1206
- 1450 and CWE-1388; CWE-1300 and CWE-1351 to CWE-1205 and CWE-1388; CWE-1059 to CWE-
- 1451 1195 and CWE-1208; CWE-1232 to CWE-1199 and CWE-1206; CWE-1234 to CWE-1199 and
- 1452 CWE-1207; CWE-1261 to CWE-1199 and CWE-1388; CWE-1314 to CWE-1198 and CWE-1206;
- 1453 CWE-1342 and CWE-1420 to CWE-1201 and CWE-1202; and CWE-1351 to CWE-1205 and CWE-
- 1454 1388.

Table 2. Mapping of HW CWEs to HW Categories

CWE\Category	CWE- 1195	CWE- 1198	CWE- 1199	CWE- 1201	CWE- 1202	CWE- 1205	CWE- 1206	CWE- 1207	CWE- 1208	CWE- 1388
CWE-1248	\checkmark						\checkmark			\checkmark
CWE-1247							\checkmark			\checkmark
CWE-1255							\checkmark			\checkmark
CWE-1332							\checkmark			\checkmark
CWE-1300						\checkmark				\checkmark
CWE-1351						\checkmark				\checkmark
CWE-1059	\checkmark								\checkmark	
CWE-1232			\checkmark				\checkmark			
CWE-1234			\checkmark					\checkmark		
CWE-1261			\checkmark							\checkmark
CWE-1314		\checkmark					\checkmark			
CWE-1342				\checkmark	\checkmark					
CWE-1420				\checkmark	\checkmark					
C WE-1421		\checkmark		\checkmark	\checkmark					
C WE-1422		\checkmark		\checkmark	\checkmark					
C WE-1423		\checkmark		\checkmark	\checkmark					

1456 B.2. Comparison of View-1000 and View-1194 Relationships

There are seven relationships that belong to both View-1000 and View-1194 depicted on the
digraph with gradient black-to-red edges (arrows): CWE-226→CWE-1342, CWE-226→CWE-

1459 1239, CWE-1301 \rightarrow CWE-CWE-1330, CWE-203 \rightarrow CWE-CWE-1300, CWE-1420 \rightarrow CWE-1421, CWE-1420

1460 1422, and CWE-1423. Four other relationships belong only to view 1194 and are depicted with

1461 red edges (arrows): CWE-1294 \rightarrow CWE-1259, CWE-1294 \rightarrow 1270, CWE-1294 \rightarrow CWE-1290, and

- 1462 CWE-1294→CWE-1292. The rest of the relations only belongto View-1000 and are depicted in
- 1463 black.

1464 The following parent-child relations are only present in View-1000, but both of their nodes

1465 pertain to View-1194 as well: CWE-1220→CWE-1222; CWE-1263→CWE-1243; CWE-

1466 1294 \rightarrow CWE-1302; CWE-1384 \rightarrow CWEs-1247, 1261, 1332, and 1351; CWE-226 \rightarrow CWEs-1272 and

- 1467 1301; CWE-203→CWE-1303; CWE-1300→CWE-1255; CWE-1357→CWEs-1329; CWE-
- 1468 1329→1277 and 1310; and CWE-1059→CWEs-1053, 1110, 1111, 1112, and 1118.
- 1469 CWE-208 is only used in View-1194 as a intermediary, but both its parent and child pertain to
- 1470 View-1194: CWE-20 \rightarrow CWE-208 \rightarrow CWE-1254.

1471 Appendix C. Weakness Hierarchy — Improper Access Control

- 1472 The CWEs for this pillar are listed in a strict hierarchical tree structure to allow for easy perusal
- 1473 of all relevant CWEs. Some CWEs are duplicated because they appear under multiple classes
- 1474 within the same pillar. The full graph view in Fig. 1 shows the complex relationships between
- 1475 many of the HW CWEs.
- Each CWE is labelled with its abstraction type Pillar: P, Class: C, Base: B, or Variant: V. Those
 marked with * are HW CWEs.

1478 <u>CWE-284 P Improper Access Control</u>

- 1479 Figure 27 shows the relationship of CWEs to each other and various attributes of the CWEs
- 1480 (e.g., hardware category and CWE abstraction).

	284
	1191 1220 1224 1231 1242 1252 1257 1260 1262 1263 1267 1268 1274 1275 1283 1254 1256 1304 1311 1312 1313 1315 1316 1317 1320 1323 1334 1265 1273 1233
	CWEs from: General Circuit and Logic Design Concerns - (1199) Power, Clock, Thermal, and Reset Concerns - (1206) Manufacturing and Life Cycle Management Concerns - (1195) Core and Compute Issues - (1201) Debug and Test Problems - (1207) Security Flow Issues - (1196) Memory and Storage Issues - (1202) Cross-Cutting Problems - (1208) Integration Issues - (1197) Peripherals, On-chip Fabric, and Interface/IO Problems - (1205) Physical Access Issues and Concerns - (1388) PrivIlege Separation and Access Control Issues - (1198) Security Primitives and Cryptography Issues - (1205) Not Hardware CWEs
1481	CWEs from: CWEs by Abstraction: CWEs Relation by Nature: CWE28F Rod, I. Beginnow Only View-1000 Pillar Child Of Only View-1194 Class Base Variant Variant
1482	Fig. 27. HW CWE Category Graph: Improper Access Control
1483	CWE-1191 B On-Chip Debug and Test Interface With Improper Access Control *
1484	 CWE-1220 B Insufficient Granularity of Access Control *
1485 1486	 CWE-1222 V Insufficient Granularity of Address Regions Protected by Register Locks *
1487	CWE-1224 B Improper Restriction of Write-Once Bit Fields *
1488	CWE-1231 B Improper Prevention of Lock Bit Modification *
1489	CWE-1233 B Security-Sensitive Hardware Controls with Missing Lock Bit Protection *
1490	 CWE-1242 B Inclusion of Undocumented Features or Chicken Bits *

1491 1492	•	CWE-1252 B CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations *
1493	•	CWE-1257 B Improper Access Control Applied to Mirrored or Aliased Memory Regions *
1494	•	CWE-1259 B Improper Restriction of Security Token Assignment *
1495	•	CWE-1260 B Improper Handling of Overlap Between Protected Memory Ranges *
1496	•	CWE-1262 B Improper Access Control for Register Interface *
1497	•	CWE-1263 C Improper Physical Access Control *
1498		 CWE-1243 B Sensitive Non-Volatile Information Not Protected During Debug *
1499	•	CWE-1267 B Policy Uses Obsolete Encoding *
1500 1501	•	CWE-1268 B Policy Privileges are not Assigned Consistently Between Control and Data Agents *
1502	•	CWE-1270 B Generation of Incorrect Security Tokens *
1503	•	CWE-1274 B Improper Access Control for Volatile Memory Containing Boot Code *
1504	•	CWE-1276 B Hardware Child Block Incorrectly Connected to Parent System *
1505	•	CWE-1280 B Access Control Check Implemented After Asset is Accessed *
1506	•	CWE-1283 B Mutable Attestation or Measurement Reporting Data *
1507	•	CWE-1290 B Incorrect Decoding of Security Identifiers *
1508	•	CWE-1292 B Incorrect Conversion of Security Identifiers *
1509	•	CWE-1294 C Insecure Security Identifier Mechanism *
1510		 CWE-1302 B Missing Security Identifier *
1511	•	CWE-1296 B Incorrect Chaining or Granularity of Debug Components *
1512 1513	•	CWE-1304 B Improperly Preserved Integrity of Hardware Configuration State During a Power Save/Restore Operation *
1514	•	CWE-1311 B Improper Translation of Security Attributes by Fabric Bridge *
1515	•	CWE-1312 B Missing Protection for Mirrored Regions in On-Chip Fabric Firewall *
1516	•	CWE-1313 B Hardware Allows Activation of Test or Debug Logic at Runtime *
1517	•	CWE-1315 B Improper Setting of Bus Controlling Capability in Fabric End-point *
1518 1519	•	CWE-1316 B Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and Unprotected Ranges *
1520	•	CWE-1317 B Improper Access Control in Fabric Bridge *
1521	٠	CWE-1320 B Improper Protection for Outbound Error Messages and Alert Signals st
1522	•	CWE-1323 B Improper Management of Sensitive Trace Data *

1523	CWE-1334 B Unauthorized Error Injection Can Degrade Hardware Redundancy *
1524	CWE-285 C Improper Authorization
1525	\circ CWE-1256 B Improper Restriction of Software Interfaces to Hardware Features *
1526 1527	 CWE-1297 B Unprotected Confidential Information on Device is Accessible by OSAT Vendors *
1528	 CWE-1328 B Security Version Number Mutable to Older Versions *
1529	 CWE-732 C Incorrect Permission Assignment for Critical Resource
1530	 CWE-276 B Incorrect Default Permissions *
1531	 CWE-862 C Missing Authorization
1532	 CWE-1314 B Missing Write Protection for Parametric Data Values *
1533	 CWE-863 C Incorrect Authorization
1534 1535	 CWE-1244 B Internal Asset Exposed to Unsafe Debug Access Level or State *
1536	CWE-287 C Improper Authentication
1537	 CWE-306 B Missing Authentication for Critical Function
1538	 CWE-288 B Authentication Bypass Using an Alternate Path or Channel
1539 1540	 CWE-1299 B Missing Protection Mechanism for Alternate Hardware Interface *
1541	CWE-923 C Improper Restriction of Communication Channel to Intended Endpoints
1542	 CWE-420 B Unprotected Alternate Channel
1543 1544	 CWE-1299 B Missing Protection Mechanism for Alternate Hardware Interface *

1545	Appendix D. Weakness Hierarchy — Improper Adherence to Coding Standards	
1546 1547 1548 1549	The CWEs for this pillar are listed in a strict hierarchical tree structure to allow for easy perusal of all relevant CWEs. Some CWEs are duplicated because they appear under multiple classes within the same pillar. The full graph view in Fig. 1 shows the complex relationships between many of the HW CWEs.	
1550 1551	Each CWE is labelled with its abstraction type — Pillar: P, Class: C, Base: B, or Variant: V. Those marked with * are HW CWEs.	
1552	CWE-710 P Improper Adherence to Coding Standards	
1553	CWE-1059 C Insufficient Technical Documentation *	
1554	 CWE-1053 B Missing Documentation for Design * 	
1555	CWE-1209 B Failure to Disable Reserved Bits *	
1556	CWE-1357 C Reliance on Insufficiently Trustworthy Component *	
1557	 CWE-1329 B Reliance on Component That is Not Updateable * 	
1558	 CWE-1277 B Firmware Not Updateable * 	
1559	 CWE-1310 B Missing Ability to Patch ROM Code * 	
1560	CWE-573 C Improper Following of Specification by Caller	
1561	 CWE-325 B Missing Cryptographic Step * 	
1562	CWE-657 C Violation of Secure Design Principles	
1563 1564	 CWE-1192 B System-on-Chip (SoC) Using Components without Unique, Immutable Identifiers * 	
1565	 CWE-653 B Improper Isolation or Compartmentalization 	
1566 1567	 CWE-1189 B Improper Isolation of Shared Resources on System-on-a-Chip (SoC) * 	
1568 1569	 CWE-1303 B Non-Transparent Sharing of Microarchitectural Resources * 	
1570 1571	 CWE-1331 B Improper Isolation of Shared Resources in Network On Chip (NoC) * 	
1572	CWE-684 C Incorrect Provision of Specified Functionality	
1573	 CWE-1245 B Improper Finite State Machines (FSMs) in Hardware Logic * 	
1574	 CWE-440 B Expected Behavior Violation * 	

1575 Appendix E. Weakness Hierarchy — Improper Check or Handling of Exceptional Conditions

- 1576 The CWEs for this pillar are listed in a strict hierarchical tree structure to allow for easy perusal
- 1577 of all relevant CWEs. Some CWEs are duplicated because they appear under multiple classes
- 1578 within the same pillar. The full graph view in Fig. 1 shows the complex relationships between
- 1579 many of the HW CWEs.
- Each CWE is labelled with its abstraction type Pillar: P, Class: C, Base: B, or Variant: V. Those
 marked with * are HW CWEs.
- 1582 <u>CWE-703 P Improper Check or Handling of Exceptional Conditions</u>
- CWE-1384 C Improper Handling of Physical or Environmental Conditions *
- 1584 O CWE-1247 B Improper Protection Against Voltage and Clock Glitches *
- 1585 O CWE-1261 B Improper Handling of Single Event Upsets *
- 1586 CWE-1332 B Improper Handling of Faults that Lead to Instruction Skips *
- 1587 O CWE-1351 B Improper Handling of Hardware Behavior in Exceptionally Cold
 1588 Environments *

1589	Appendix F. Weakness Hierarchy — Improper Control of a Resource Through its Lifetime		
1590 1591 1592 1593	The CWEs for this pillar are listed in a strict hierarchical tree structure to allow for easy perusal of all relevant CWEs. Some CWEs are duplicated because they appear under multiple classes within the same pillar. The full graph view in Fig. 1 shows the complex relationships between many of the HW CWEs.		
1594 1595	Each CWE is labelled with its abstraction type — Pillar: P, Class: C, Base: B, or Variant: V. Those marked with * are HW CWEs.		
1596	CWE-664 P Improper Control of a Resource Through its Lifetime		
1597 1598	 CWE-1250 B Improper Preservation of Consistency Between Independent Representations of Shared State * 		
1599	 CWE-1251 B Mirrored Regions with Different Values * 		
1600	CWE-1329 B Reliance on Component That is Not Updateable *		
1601	 CWE-1277 B Firmware Not Updateable * 		
1602	 CWE-1310 B Missing Ability to Patch ROM Code * 		
1603	CWE-400 C Uncontrolled Resource Consumption		
1604	 CWE-1246 B Improper Write Handling in Limited-write Non-Volatile Memories * 		
1605	CWE-404 C Improper Resource Shutdown or Release		
1606 1607	 CWE-1266 B Improper Scrubbing of Sensitive Data from Decommissioned Device * 		
1608	 CWE-459 B Incomplete Cleanup 		
1609 1610	 CWE-226 B Sensitive Information in Resource Not Removed Before Reuse * 		
1611	 CWE-1239 V Improper Zeroization of Hardware Register * 		
1612 1613	 CWE-1272 B Sensitive Information Uncleared Before Debug/Power State Transition * 		
1614 1615	 CWE-1301 B Insufficient or Incomplete Data Removal within Hardware Component * 		
1616 1617	 CWE-1330 V Remanent Data Readable after Memory Erase * 		
1618 1619	 CWE-1342 B Information Exposure through Microarchitectural State after Transient Execution * 		
1620	CWE-610 C Externally Controlled Reference to a Resource in Another Sphere		
1621	\circ CWE-441 C Unintended Proxy or Intermediary ('Confused Deputy') *		
1622	CWE-662 C Improper Synchronization		

1623	0	CWE-667 C Improper Locking
1624		 CWE-1232 B Improper Lock Behavior After Power State Transition *
1625 1626		 CWE-1233 B Security-Sensitive Hardware Controls with Missing Lock Bit Protection *
1627 1628		 CWE-1234 B Hardware Internal or Debug Modes Allow Override of Locks *
1629	0	CWE-821 B Incorrect Synchronization
1630 1631		 CWE-1264 B Hardware Logic with Insecure De-Synchronization between Control and Data Channels *
1632	• CWE-	665 C Improper Initialization
1633 1634	0	CWE-1279 B Cryptographic Operations are run Before Supporting Units are Ready *
1635	0	CWE-1419 C Incorrect Initialization of Resource
1636		 CWE-1221 B Incorrect Register Defaults or Module Parameters *
1637	0	CWE-909 C Missing Initialization of Resource
1638 1639		 CWE-1271 B Uninitialized Value on Reset for Registers Holding Security Settings *
1640	• CWE-	668 C Exposure of Resource to Wrong Sphere
1641 1642	0	CWE-1189 B Improper Isolation of Shared Resources on System-on-a-Chip (SoC) *
1643		 CWE-1303 B Non-Transparent Sharing of Microarchitectural Resources *
1644	0	CWE-1282 B Assumed-Immutable Data is Stored in Writable Memory *
1645	0	CWE-1331 B Improper Isolation of Shared Resources in Network On Chip (NoC) *
1646	0	CWE-200 C Exposure of Sensitive Information to an Unauthorized Actor
1647 1648		 CWE-1258 B Exposure of Sensitive System Information Due to Uncleared Debug Information *
1649		 CWE-1273 B Device Unlock Credential Sharing *
1650		 CWE-1295 B Debug Messages Revealing Unnecessary Information *
1651		 CWE-203 B Observable Discrepancy *
1652		 CWE-1300 B Improper Protection of Physical Side Channels *
1653 1654		 CWE-1255 V Comparison Logic is Vulnerable to Power Side-Channel Attacks *
1655 1656		 CWE-1303 B Non-Transparent Sharing of Microarchitectural Resources *

1657	CWE-208 B Observable Timing Discrepancy
1658	 CWE-1254 B Incorrect Comparison Logic Granularity *
1659	 CWE-732 C Incorrect Permission Assignment for Critical Resource
1660	 CWE-276 B Incorrect Default Permissions *
1661	CWE-669 C Incorrect Resource Transfer Between Spheres
1662 1663	 CWE-212 B Improper Removal of Sensitive Information Before Storage or Transfer
1664 1665	 CWE-1258 B Exposure of Sensitive System Information Due to Uncleared Debug Information *
1666 1667	 CWE-226 B Sensitive Information in Resource Not Removed Before Reuse *
1668	 CWE-1239 V Improper Zeroization of Hardware Register *
1669 1670	 CWE-1272 B Sensitive Information Uncleared Before Debug/Power State Transition *
1671 1672	 CWE-1301 B Insufficient or Incomplete Data Removal within Hardware Component *
1673 1674	 CWE-1330 V Remanent Data Readable after Memory Erase *
1675 1676	 CWE-1342 B Information Exposure through Microarchitectural State after Transient Execution *

1677 Appendix G. Weakness Hierarchy — Incorrect Comparison

- 1678 The CWEs for this pillar are listed in a strict hierarchical tree structure to allow for easy perusal
- 1679 of all relevant CWEs. Some CWEs are duplicated because they appear under multiple classes
- 1680 within the same pillar. The full graph view in Fig. 1 shows the complex relationships between
- 1681 many of the HW CWEs.
- 1682 Each CWE is labelled with its abstraction type Pillar: P, Class: C, Base: B, or Variant: V. Those
 1683 marked with * are HW CWEs.
- 1684 <u>CWE-697 P Incorrect Comparison</u>
- CWE-1254 B Incorrect Comparison Logic Granularity *

1686	Appendix H. Weakness Hierarchy — Insufficient Control Flow Management
1687 1688 1689 1690	The CWEs for this pillar are listed in a strict hierarchical tree structure to allow for easy perusal of all relevant CWEs. Some CWEs are duplicated because they appear under multiple classes within the same pillar. The full graph view in Fig. 1 shows the complex relationships between many of the HW CWEs.
1691 1692	Each CWE is labelled with its abstraction type — Pillar: P, Class: C, Base: B, or Variant: V. Those marked with * are HW CWEs.
1693	CWE-691 P Insufficient Control Flow Management
1694	CWE-1279 B Cryptographic Operations are run Before Supporting Units are Ready *
1695	CWE-1281 B Sequence of Processor Instructions Leads to Unexpected Behavior *
1696 1697	• CWE-362 C Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
1698	 CWE-1223 B Race Condition for Write-Once Attributes *
1699	 CWE-1298 B Hardware Logic Contains Race Conditions *
1700	CWE-662 C Improper Synchronization
1701	 CWE-667 C Improper Locking
1702	 CWE-1232 B Improper Lock Behavior After Power State Transition *
1703 1704	 CWE-1233 B Security-Sensitive Hardware Controls with Missing Lock Bit Protection *
1705 1706	 CWE-1234 B Hardware Internal or Debug Modes Allow Override of Locks *
1707	 CWE-821 B Incorrect Synchronization
1708 1709	 CWE-1264 B Hardware Logic with Insecure De-Synchronization between Control and Data Channels *
1710	CWE-696 C Incorrect Behavior Order
1711	 CWE-1190 B DMA Device Enabled Too Early in Boot Phase *
1712 1713	 CWE-1193 B Power-On of Untrusted Execution Core Before Enabling Fabric Access Control *
1714	 CWE-1280 B Access Control Check Implemented After Asset is Accessed *
1715	

1716 Appendix I. Weakness Hierarchy — Protection Mechanism Failure 1717 The CWEs for this pillar are listed in a strict hierarchical tree structure to allow for easy perusal 1718 of all relevant CWEs. Some CWEs are duplicated because they appear under multiple classes 1719 within the same pillar. The full graph view in Fig. 1 shows the complex relationships between 1720 many of the HW CWEs. 1721 Each CWE is labelled with its abstraction type — Pillar: P, Class: C, Base: B, or Variant: V. Those marked with * are HW CWEs. 1722 1723 CWE-693 P Protection Mechanism Failure 1724 CWE-1248 B Semiconductor Defects in Hardware Logic with Security-Sensitive Implications * 1725 CWE-1253 B Incorrect Selection of Fuse Values * 1726 1727 CWE-1269 B Product Released in Non-Release Configuration * • CWE-1278 B Missing Protection Against Hardware Reverse Engineering Using Integrated 1728 Circuit (IC) Imaging Techniques * 1729 CWE-1291 B Public Key Re-Use for Signing both Debug and Production Code * 1730 1731 CWE-1318 B Missing Support for Security Features in On-chip Fabrics or Buses * CWE-1319 B Improper Protection against Electromagnetic Fault Injection (EM-FI) * 1732 CWE-1326 B Missing Immutable Root of Trust in Hardware * 1733 1734 CWE-1338 B Improper Protections Against Hardware Overheating * 1735 CWE-311 C Missing Encryption of Sensitive Data CWE-319 B Cleartext Transmission of Sensitive Information * 1736 1737 CWE-327 C Use of a Broken or Risky Cryptographic Algorithm CWE-1240 B Use of a Cryptographic Primitive with a Risky Implementation * 1738 1739 • CWE-330 C Use of Insufficiently Random Values 1740 CWE-1241 B Use of Predictable Algorithm in Random Number Generator * 1741 CWE-653 B Improper Isolation or Compartmentalization • CWE-1189 B Improper Isolation of Shared Resources on System-on-a-Chip (SoC) 1742 0 1743 1744 CWE-1303 B Non-Transparent Sharing of Microarchitectural Resources * 1745 CWE-1331 B Improper Isolation of Shared Resources in Network On Chip (NoC) * 1746