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Introductory remarks:
The master of the Mellin transform did not use it here!
He often told the story that he learnt it from Rainer Kemp, who
used Knuth’s “Gamma-function method”. (A special case of the
method.)
Here, everything is based on an elementary result about the
summatory function of the sum-of-digits function, due to Delange.
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reg(�) = 0, and if tree t has subtrees t1 and t2, then{
max{reg(t1), reg(t2)} if reg(t1) 6= reg(t2),

1 + reg(t1) otherwise
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Flajolet liked symbolic equations!
Let Rp denote the family of trees with register function = p, then

Rp =

Rp−1 Rp−1

+ 2

Rp

∑
j<p

Rj

+ 2∑
j<p

Rj Rp

In terms of generating functions:

Rp(z) = zR2
p−1(z) + 2zRp(z)

∑
j<p

Rj(z)
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Amazingly, this can be solved explicitly.
After some manipulations, a recursion pops up that is reminiscent
of Chebyshev polynomials.



First, a trigonometric substitution was used, but eventually the one
that De Bruijn, Knuth, and Rice also used:

z =
u

(1 + u)2

Then

Rp(z) =
1− u2

u

u2p

1− u2p+1
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Reading off coefficients, the average number of registers requires
to evaluate∑

k≥1
v2(k)

[(
2n

n + 1− k

)
− 2

(
2n

n − k

)
+

(
2n

n − 1− k

)]

with v2(k) being the number of trailing zeroes in the binary
representation of k.



The average number of registers to evaluate a binary tree with n
nodes is asymptotically given by

log4 n + D(log4 n) + o(1)

with
D(x) =

∑
k∈Z

dke2πikx

and

d0 =
1

2
− γ

2 log 2
− 1

log 2
+ log2 π,

dk =
1

log 2
ζ(χk)Γ(χk

2 )(χk − 1),

with χk = 2πik
log 2 . Perhaps Flajolet’s first periodic oscillation?



a) The early Flajolet. (aka F-Raoult-Vuillemin)
Double summation: ∑

j≤k
v2(j) = k − S2(k)

S2(k) is the number of ones in the binary expansion of k .
It is known: ∑

m<n

S2(m) =
n log2 n

2
+ nF (log2 n).

This was shown by Delange and apparently mentioned to Flajolet
directly.
The periodic function F (t) is fully explicit in terms of Fourier
coefficients.



A negative side effect of this is that the second difference of
binomial coefficients became a fourth difference. No problem:
approximations are available (Hermite polynomials).∑

k≥1

[
k log2 k

2
+ kF (log2 k)

]
H4

( k√
n

)
e−k

2/n



∑
k≥1

[
k log2 k

2
+ kF (log2 k)

]
H4

( k√
n

)
e−k

2/n

This is doable (Riemann sums, controlling the error) but a bit dry.
But: completely elementary!



The mergesort recurrence

f (n) = f (bn2c) + f (dn2e) + bn2c

is solved by

f (n) =
∑
m<n

S2(m).

Since Flajolet developed a calculus how to solve such recursions
(Golin’s talk), he got as a bonus a quick derivation of Delange’s
result.



Remark. To solve explicitly for Rp is somewhat crucial. Duchon et
al. suggested a generalisation where no explicit formula is available,
and Drmota and myself could only identify the leading log4 n term!
Delange’s paper was extended and generalized into many different
directions by many people.
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b)
After Flajolet learnt about the Mellin transform, he attacked a sum
like ∑

k≥1
v2(k)H2(kt)e−k

2t2

(t = 1/
√

n ) directly.
This goes well, since v2(2k + 1) = 0 and v2(2k) = 1 + v2(k) and∑

k≥1

v2(k)

ks
=

ζ(s)

2s − 1
.

This appears already in his thèse d’etat.



c) After Flajolet became familiar with singularity analysis of
generating functions, thanks to A. Odlyzko, he would consider

E (z) =
∑
p≥1

pRp(z) =
∑
p≥1

p
1− u2

u

u2p

1− u2p+1

and study it around the singularity u = 1 with . . .
The Mellin transform!
But now on the level of the generating function itself, not the
coefficients.
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I studied last week his paper with Bruce Richmond, and he uses
the strategy “Mellin, followed by singularity analysis” also in the
context of b-digital search trees.



∑
p≥1

p
u2p

1− u2p+1

or u = e−t (u ∼ 1↔ t ∼ 0)

∑
p≥1

p
e−t2

p

1− e−t2p+1

∑
p≥1, λ≥0

pe−t2
p(1+2λ) =

∑
n≥1

v2(n)e−tn

This is a harmonic sum!



A local expansion around t ∼ 0 is thus found. It translates:

z ∼ 1

4
− 1

16
t2 + . . .

or √
1− 4z ∼ 2t



K = −1 + log2 π +
1

2
+

γ

log 2

r =
√

1− 4z

E (z) = 2r log2 r + 2(K + 1)r + 4
∑
k 6=0

ck r1−χk + . . .

ck =
1

log 2
ζ(χk)Γ(χk).

This can be translated into an asymptotic expansion of the
coefficients.
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With very little extra effort this can be used to treat unary-binary
trees:
(paper by Flajolet/Prodinger)
Unary node: register function does not increase.
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B̂ = + c2·

B̂ B̂B̂

c1·c0 ·� +



( )∗

→

( )∗

→



yB(yz)

marks internal nodes and leaves.

y → c0y

1− c1z

z → c2z

1− c1z



Options for size:
Count both, leaves and internal nodes
Count only internal nodes
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Not much changes in the result:

log4 n + D(log4 n − constant)− constant



A NOTE ON GRAY CODE AND ODD-EVEN MERGE
P. FLAJOLET AND LYLE RAMSHAW
“Note” has 17 pages!
Gray code: Pattern last digit: 0110 0110 0110 . . .
penultimate: 00111100 00111100 00111100 . . .
and so on.
Formula:

ak(n) =

⌊
n

2k+2
+

3

4

⌋
−
⌊

n

2k+2
+

1

4

⌋
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Delange type approach works, since⌊
n

2k+2
+

3

4

⌋
=

∫ n+1

n

⌊
t

2k+2
+

3

4

⌋
dt



The quantity of interest (Sedgewick, odd-even merge):

1 + (n + 1)
∑
i≥1

β(i)

( 2n
n+i+2

)
− 3
( 2n
n+i+1

)
+ 3
( 2n
n+i

)
−
( 2n
n+i−1

)(2n
n

) ,

with β(i) being the number of ones in the GRAY code
representation of i .
All 3 approches (elementary, Mellin, Mellin+singularity analysis)
are available in this instance as well.
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In a paper with coauthors Grabner, Kirschenhofer, Prodinger,
Tichy, he used the Mellin-Perron technique to deal with digital
sums.
More exotic things could also be handled with this approach:
Stein’s suggestion to interpret a binary expansion as a ternary
expansion, representations of integers of sums of 3 squares, etc.


