
Philippe Flajolet and the Register function

Helmut Prodinger

Stellenbosch

December 15, 2011

Philippe Flajolet, J.-C. Raoult, and J. Vuillemin. The number of
registers required to evaluate arithmetic expressions. Theoretical
Computer Science, 9:99-125, 1979.
journal version; there is an earlier 1977 version

Philippe Flajolet, J.-C. Raoult, and J. Vuillemin. The number of
registers required to evaluate arithmetic expressions. Theoretical
Computer Science, 9:99-125, 1979.
journal version; there is an earlier 1977 version

Introductory remarks:
The master of the Mellin transform did not use it here!
He often told the story that he learnt it from Rainer Kemp, who
used Knuth’s “Gamma-function method”. (A special case of the
method.)
Here, everything is based on an elementary result about the
summatory function of the sum-of-digits function, due to Delange.

Introductory remarks:
The master of the Mellin transform did not use it here!
He often told the story that he learnt it from Rainer Kemp, who
used Knuth’s “Gamma-function method”. (A special case of the
method.)
Here, everything is based on an elementary result about the
summatory function of the sum-of-digits function, due to Delange.

reg(�) = 0, and if tree t has subtrees t1 and t2, then{
max{reg(t1), reg(t2)} if reg(t1) 6= reg(t2),

1 + reg(t1) otherwise

0

0 0 0 0 0 0

0 1 1 1

0 0 0 0 0 0

1 2

0 1 1 1

0 0 0 0 0 0

2

1 2

0 1 1 1

0 0 0 0 0 0

Flajolet liked symbolic equations!
Let Rp denote the family of trees with register function = p, then

Rp =

Rp−1 Rp−1

+ 2

Rp

∑
j<p

Rj

+ 2∑
j<p

Rj Rp

In terms of generating functions:

Rp(z) = zR2
p−1(z) + 2zRp(z)

∑
j<p

Rj(z)

Flajolet liked symbolic equations!
Let Rp denote the family of trees with register function = p, then

Rp =

Rp−1 Rp−1

+ 2

Rp

∑
j<p

Rj

+ 2∑
j<p

Rj Rp

In terms of generating functions:

Rp(z) = zR2
p−1(z) + 2zRp(z)

∑
j<p

Rj(z)

Flajolet liked symbolic equations!
Let Rp denote the family of trees with register function = p, then

Rp =

Rp−1 Rp−1

+ 2

Rp

∑
j<p

Rj

+ 2∑
j<p

Rj Rp

In terms of generating functions:

Rp(z) = zR2
p−1(z) + 2zRp(z)

∑
j<p

Rj(z)

Amazingly, this can be solved explicitly.
After some manipulations, a recursion pops up that is reminiscent
of Chebyshev polynomials.

First, a trigonometric substitution was used, but eventually the one
that De Bruijn, Knuth, and Rice also used:

z =
u

(1 + u)2

Then

Rp(z) =
1− u2

u

u2p

1− u2p+1

First, a trigonometric substitution was used, but eventually the one
that De Bruijn, Knuth, and Rice also used:

z =
u

(1 + u)2

Then

Rp(z) =
1− u2

u

u2p

1− u2p+1

Reading off coefficients, the average number of registers requires
to evaluate∑

k≥1
v2(k)

[(
2n

n + 1− k

)
− 2

(
2n

n − k

)
+

(
2n

n − 1− k

)]

with v2(k) being the number of trailing zeroes in the binary
representation of k.

The average number of registers to evaluate a binary tree with n
nodes is asymptotically given by

log4 n + D(log4 n) + o(1)

with
D(x) =

∑
k∈Z

dke2πikx

and

d0 =
1

2
− γ

2 log 2
− 1

log 2
+ log2 π,

dk =
1

log 2
ζ(χk)Γ(χk

2)(χk − 1),

with χk = 2πik
log 2 . Perhaps Flajolet’s first periodic oscillation?

a) The early Flajolet. (aka F-Raoult-Vuillemin)
Double summation: ∑

j≤k
v2(j) = k − S2(k)

S2(k) is the number of ones in the binary expansion of k .
It is known: ∑

m<n

S2(m) =
n log2 n

2
+ nF (log2 n).

This was shown by Delange and apparently mentioned to Flajolet
directly.
The periodic function F (t) is fully explicit in terms of Fourier
coefficients.

A negative side effect of this is that the second difference of
binomial coefficients became a fourth difference. No problem:
approximations are available (Hermite polynomials).∑

k≥1

[
k log2 k

2
+ kF (log2 k)

]
H4

(k√
n

)
e−k

2/n

∑
k≥1

[
k log2 k

2
+ kF (log2 k)

]
H4

(k√
n

)
e−k

2/n

This is doable (Riemann sums, controlling the error) but a bit dry.
But: completely elementary!

The mergesort recurrence

f (n) = f (bn2c) + f (dn2e) + bn2c

is solved by

f (n) =
∑
m<n

S2(m).

Since Flajolet developed a calculus how to solve such recursions
(Golin’s talk), he got as a bonus a quick derivation of Delange’s
result.

Remark. To solve explicitly for Rp is somewhat crucial. Duchon et
al. suggested a generalisation where no explicit formula is available,
and Drmota and myself could only identify the leading log4 n term!
Delange’s paper was extended and generalized into many different
directions by many people.

Remark. To solve explicitly for Rp is somewhat crucial. Duchon et
al. suggested a generalisation where no explicit formula is available,
and Drmota and myself could only identify the leading log4 n term!
Delange’s paper was extended and generalized into many different
directions by many people.

b)
After Flajolet learnt about the Mellin transform, he attacked a sum
like ∑

k≥1
v2(k)H2(kt)e−k

2t2

(t = 1/
√

n) directly.
This goes well, since v2(2k + 1) = 0 and v2(2k) = 1 + v2(k) and∑

k≥1

v2(k)

ks
=

ζ(s)

2s − 1
.

This appears already in his thèse d’etat.

c) After Flajolet became familiar with singularity analysis of
generating functions, thanks to A. Odlyzko, he would consider

E (z) =
∑
p≥1

pRp(z) =
∑
p≥1

p
1− u2

u

u2p

1− u2p+1

and study it around the singularity u = 1 with . . .
The Mellin transform!
But now on the level of the generating function itself, not the
coefficients.

c) After Flajolet became familiar with singularity analysis of
generating functions, thanks to A. Odlyzko, he would consider

E (z) =
∑
p≥1

pRp(z) =
∑
p≥1

p
1− u2

u

u2p

1− u2p+1

and study it around the singularity u = 1 with . . .
The Mellin transform!
But now on the level of the generating function itself, not the
coefficients.

c) After Flajolet became familiar with singularity analysis of
generating functions, thanks to A. Odlyzko, he would consider

E (z) =
∑
p≥1

pRp(z) =
∑
p≥1

p
1− u2

u

u2p

1− u2p+1

and study it around the singularity u = 1 with . . .
The Mellin transform!
But now on the level of the generating function itself, not the
coefficients.

I studied last week his paper with Bruce Richmond, and he uses
the strategy “Mellin, followed by singularity analysis” also in the
context of b-digital search trees.

∑
p≥1

p
u2p

1− u2p+1

or u = e−t (u ∼ 1↔ t ∼ 0)

∑
p≥1

p
e−t2

p

1− e−t2p+1

∑
p≥1, λ≥0

pe−t2
p(1+2λ) =

∑
n≥1

v2(n)e−tn

This is a harmonic sum!

A local expansion around t ∼ 0 is thus found. It translates:

z ∼ 1

4
− 1

16
t2 + . . .

or √
1− 4z ∼ 2t

K = −1 + log2 π +
1

2
+

γ

log 2

r =
√

1− 4z

E (z) = 2r log2 r + 2(K + 1)r + 4
∑
k 6=0

ck r1−χk + . . .

ck =
1

log 2
ζ(χk)Γ(χk).

This can be translated into an asymptotic expansion of the
coefficients.

K = −1 + log2 π +
1

2
+

γ

log 2

r =
√

1− 4z

E (z) = 2r log2 r + 2(K + 1)r + 4
∑
k 6=0

ck r1−χk + . . .

ck =
1

log 2
ζ(χk)Γ(χk).

This can be translated into an asymptotic expansion of the
coefficients.

With very little extra effort this can be used to treat unary-binary
trees:
(paper by Flajolet/Prodinger)
Unary node: register function does not increase.

With very little extra effort this can be used to treat unary-binary
trees:
(paper by Flajolet/Prodinger)
Unary node: register function does not increase.

B̂ = + c2·

B̂ B̂B̂

c1·c0 ·� +

()∗

→

()∗

→

yB(yz)

marks internal nodes and leaves.

y → c0y

1− c1z

z → c2z

1− c1z

Options for size:
Count both, leaves and internal nodes
Count only internal nodes

Options for size:
Count both, leaves and internal nodes
Count only internal nodes

Options for size:
Count both, leaves and internal nodes
Count only internal nodes

Not much changes in the result:

log4 n + D(log4 n − constant)− constant

A NOTE ON GRAY CODE AND ODD-EVEN MERGE
P. FLAJOLET AND LYLE RAMSHAW
“Note” has 17 pages!
Gray code: Pattern last digit: 0110 0110 0110 . . .
penultimate: 00111100 00111100 00111100 . . .
and so on.
Formula:

ak(n) =

⌊
n

2k+2
+

3

4

⌋
−
⌊

n

2k+2
+

1

4

⌋

A NOTE ON GRAY CODE AND ODD-EVEN MERGE
P. FLAJOLET AND LYLE RAMSHAW
“Note” has 17 pages!
Gray code: Pattern last digit: 0110 0110 0110 . . .
penultimate: 00111100 00111100 00111100 . . .
and so on.
Formula:

ak(n) =

⌊
n

2k+2
+

3

4

⌋
−
⌊

n

2k+2
+

1

4

⌋

Delange type approach works, since⌊
n

2k+2
+

3

4

⌋
=

∫ n+1

n

⌊
t

2k+2
+

3

4

⌋
dt

The quantity of interest (Sedgewick, odd-even merge):

1 + (n + 1)
∑
i≥1

β(i)

(2n
n+i+2

)
− 3
(2n
n+i+1

)
+ 3
(2n
n+i

)
−
(2n
n+i−1

)(2n
n

) ,

with β(i) being the number of ones in the GRAY code
representation of i .
All 3 approches (elementary, Mellin, Mellin+singularity analysis)
are available in this instance as well.

The quantity of interest (Sedgewick, odd-even merge):

1 + (n + 1)
∑
i≥1

β(i)

(2n
n+i+2

)
− 3
(2n
n+i+1

)
+ 3
(2n
n+i

)
−
(2n
n+i−1

)(2n
n

) ,

with β(i) being the number of ones in the GRAY code
representation of i .
All 3 approches (elementary, Mellin, Mellin+singularity analysis)
are available in this instance as well.

In a paper with coauthors Grabner, Kirschenhofer, Prodinger,
Tichy, he used the Mellin-Perron technique to deal with digital
sums.
More exotic things could also be handled with this approach:
Stein’s suggestion to interpret a binary expansion as a ternary
expansion, representations of integers of sums of 3 squares, etc.

