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Abstract: We generalize the classical definition of zeta-regularization of an infinite
product. The extension enjoys the same properties as the classical definition, and yields
new infinite products. With this generalization we compute the product over all prime
numbers answering a question of Ch. Soulé. The result is 4π2. This gives a new analytic
proof, companion to Euler’s classical proof, that the set of prime numbers is infinite.

1. Introduction

Christophe Soulé did ask several years ago (and the question is proposed in [SABK,
p.101]) to give a meaning and find a value for the zeta-regularized product over all
prime numbers, similar to the classical zeta-regularized product

∞! = 1.2.3. . . . = √
2π.

Regularization of infinite products arises in geometry [RS], arithmetic geometry
[SABK], theoretical physics [EORBZ], and, more recently, in analytic number theory
[De]. One of the main applications is the computation of regularized determinants of
infinite dimensional operators, as pseudo-differential operators on manifolds.

In a previous article [MG-PM1] we carry a computation “à la Euler” in order to show
that

∏

p

p = 4π2.

The computation in [MG-PM1] that we reproduce below is not rigorous. Its aesthetics
“à la Euler” leaves no doubt about the correction of the end result. The aim of the present
article is to make rigorous this computation. For this purpose, we generalize the classi-
cal definition of zeta-regularization of infinite products. The new definition extends the
classical one and preserves its main properties.
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Given an increasing sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . one defines the regularized
(or zeta-regularized) infinite product as

+∞∏

n=1

λn = exp(−ζ ′
λ(0)),

where ζλ is the zeta function associated to the sequence (λn),

ζλ(s) =
+∞∑

n=1

λ−s
n

(see [SABK], Chap. V, Definition 5, p. 97). Implicitly this assumes that the zeta function
converges in a half plane and has an analytic extension up to 0. This definition can be
extended to arbitrary sequences of complex numbers for which the procedure makes
sense. Observe that the definition applies to a finite product, and gives the expected
result.

In [MG-PM1] we took a “liberal” view on this definition, just assuming that we
have some way of computing or making sense of ζ ′

λ(0). This was necessary since, as
observed in [SABK], the zeta function associated to the sequence of primes does not
extend meromorphically to a neighborhood of 0 since the imaginary axes is a line of
singularities. This fact was first proved by E. Landau and A. Walfisz [LW]. For this
reason the regularization of this infinite product was believed to be impossible (see for
example the introduction of [Il]).

The computation in [MG-PM1] runs as follows: Recall that (this is used for example
in the definition of the Artin-Hasse exponential, see for example [Ko], Chap. IV)

exp(X) =
+∞∏

n=1

(1 − Xn)−
µ(n)

n ,

where µ is Moebius function. This can be proved taking logarithmic derivatives and
using The Moëbius inversion formula.

From this we get

ep−s =
+∞∏

n=1

(1 − p−ns)−
µ(n)

n .

We consider now the zeta function associated to the sequence of primes

P(s) =
∑

p

1

ps
.

So it follows that

eP(s) =
∏

p

ep−s

=
∏

p

+∞∏

n=1

(1 − p−ns)−
µ(n)

n
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=
+∞∏

n=1

∏

p

(1 − p−ns)−
µ(n)

n

=
+∞∏

n=1

ζ(ns)
µ(n)

n ,

where we have used in the last equality Euler’s product for the Riemann zeta function
(and following Euler’s tradition we don’t need to justify the product exchange, but it can
be done here). This formula

eP(s) =
+∞∏

n=1

ζ(ns)
µ(n)

n

can be found in [LW] and in [Da] (in this last reference there is a typo in the formula: n
in the denominator of the exponent is missing).

Now, taking the logarithmic derivative we get

P ′(s) =
+∞∑

n=1

µ(n)

n

nζ ′(ns)

ζ(ns)
=

+∞∑

n=1

µ(n)
ζ ′(ns)

ζ(ns)
,

thus

P ′(0) =
(

+∞∑

n=1

µ(n)

)
ζ ′(0)

ζ(0)
.

Of course the infinite sum does not converge, but we recall that

+∞∑

n=1

µ(n)

ns
= 1

ζ(s)
,

thus

P ′(0) = 1

ζ(0)

ζ ′(0)

ζ(0)
= −2 log(2π).

We conclude that

∏

p

p = e−P ′(0) = (2π)2 = 4π2.

After this “explanation” à la Euler, we developed in [MG-PM2] a generalization of
classical regularization of infinite products that makes rigorous the previous computa-
tion. We present this theory.
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2. Super-Regularization of Infinite Products

2.1. Definition. Consider a sequence λ = (λn)n≥1 of complex numbers and define, as
before, its associated zeta function

ζλ(s) =
+∞∑

n=1

λ−s
n .

We assume that ζλ is absolutely convergent in the half plane Re s > s0.
Note that we have to make a choice of the branch of each λ−s

n . The end result will not
depend on the choice made for a finite number of these terms, but the analytic extension
properties and the result may depend on infinitely many choices. Obviously when (λn)

is a positive real sequence, which is the case on most of the applications (in particular
when we consider the spectrum of an hermitian operator) we make the unique choice
for which λ−s

n is real for s > 0. For a directed sequence (λn) as considered in [Il], it is
also natural to take a compatible branch for all the λn . Nevertheless we do not make any
particular assumption on the choice of branches.

We consider now an extension of ζλ to two complex variables into a double Dirichlet
series:

ζλ(s, t) =
+∞∑

n,m=1

cn,mλ−s
n µ−t

m .

We assume that this series is absolutely convergent in U0 = {Re s > s0} × {Re t > t0},
and defines in this domain U0 ⊂ C2 a meromorphic function. We also assume that t0 < 0
and that

ζλ(s, 0) = ζλ(s).

Now the function

(s, t) �→ ∂ζλ

∂s
(s, t)

is meromorphic in U0. We assume that there exists t1 ≥ t0 such that for each t ∈ C with
Re t > t1 the meromorphic function of one complex variable

s �→ ∂ζλ

∂s
(s, t)

that is meromorphic in Re s > s0, does extend meromorphically to a half plane {Re s >

s1}, s1 < 0, that is a neighborhood of s = 0. We denote by

s �→ exts
∂ζλ

∂s
(s, t)

this extension.

Remarks. 1. Rothstein’s theorem (see [Siu]) shows that the function of two complex
variables

(s, t) �→ exts
∂ζλ

∂s
(s, t)
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s0
t0

t1

t

s
0

singularities

Fig. 1.

is meromorphic, but we won’t need this fact.
2. In the definition of [SABK] of the classical regularized product, it is assumed that

the zeta function extends meromorphically to the whole complex plane. Not so much is
necessary since only the derivative at 0 matters, thus it is natural to request a meromor-
phic extension to 0. But this simple assumption would not prove to be a good definition.
We may have isolated singularities of the extension with non-trivial monodromy. We
don’t know if actually there are Dirichlet series where this can happen. It is unlikely that
this happens for Dirichlet series of arithmetic origin. These in general are meromorphic
on half planes. Clearly, just assuming meromorphic extension to a half plane containing
0 avoids the monodromy problem and gives a good definition. It is this approach that
we generalize.

Now we assume that the function

t �→ exts
∂ζλ

∂s
(0, t)

defined in the half plane Re t > t1 has a meromorphic extension to a neighborhood of
{t = 0} not identically infinite. Denote this extension by

t �→ extt

(
lim
s→0

exts
∂ζλ

∂s
(s, t)

)
.

We assume, for the scope of this article, that this extension has no pole at t = 0, but one
can figure out a reasonable extension also in that situation.

This procedure that circumvents the eventual singularities in {s = 0} is illustrated by
Fig. 1. If it can be carried over, we define:

Definition 1 (Super-regularized product). The super-regularized product of the
sequence λ = (λn)n≥1 is by definition, provided that the limits and meromorphic
extensions exist,

∏

n

λn = exp

(
− lim

t→0

(
extt

(
lim
s→0

exts
∂ζλ

∂s
(s, t)

)))
.

We write in short
∏

n

λn = exp

(
− lim

t→0

∂ζλ

∂s
(0, t)

)
.
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Zeta-regularization being a procedure cherished by physicists, the terminology “super-
regularization” seems appropriate. The idea of avoiding singularities by “going through
the complex” is not new in Theoretical Physics, nor in Pure Mathematics, but the proce-
dure of increasing the complex dimension appears to be new in the theory of regulariza-
tion of infinite products and resummation of divergent series. Nevertheless some classical
procedures as Abel’s summation can be viewed as going from complex dimension 0 to
complex dimension 1 (one can consult [Bo] and [Ha] for classical procedures, and [Ra]
for modern extensions). The introduction of supplementary variables has proved to be
useful in other classical problems in Number Theory (see [Re] for several examples
described by a specialist of several complex variables, in particular the discussion of
Eisenstein’s trick in Sect. I.3.4).

Several justifications of this definition are in order. First, we prove that the end result
is independent of the two complex variable extension and the whole procedure.

Proposition 2. Let (s, t) �→ ζ̂λ(s, t) be another two complex variable extension of s �→
ζλ(s) satisfying the same properties as (s, t) �→ ζλ(s, t), so that the procedure described
above to compute the super-regularized product can be carried over. Then

lim
t→0

∂ζ̂λ

∂s
(0, t) = lim

t→0

∂ζλ

∂s
(0, t),

thus the super-regularization is independent of the choice of the complex extension.
In particular, the super-regularization coincides with the classical zeta-regularization

when this last one is well defined.

Proof. We assume that ζ̂ (s, t) is absolutely convergent in the domain Û0 = {Re s >

ŝ0} × {Re t > t̂0}, with t̂0 < 0, and that in the half plane {Re t > t̂1} the meromorphic
function

s �→ ∂ζ̂λ

∂s
(s, t)

extends meromorphically to a half plane {Re s > s1}, s1 < 0, neighborhood of {s = 0}.
Now, since t0 < 0 and t̂0 < 0, the difference ζ̂λ−ζλ is meromorphic in V0 = {Re s >

max(s0, ŝ0)} × {Re t > max(t0, t̂0)} and vanishes in {Re s > max(s0, ŝ0)} × {t = 0},
thus there exists a meromorphic function g defined in V0 such that

ζ̂λ(s, t) − ζλ(s, t) = t g(s, t).

Taking partial derivatives,

∂ζ̂λ

∂s
(s, t) − ∂ζλ

∂s
(s, t) = t

∂g

∂s
(s, t).

Using this equation, we have that for Re t > max(t̂1, t1),

s �→ ∂g

∂s
(s, t)

extends meromorphically to a neighborhood of s = 0, and

exts
∂ζ̂λ

∂s
(s, t) − exts

∂ζλ

∂s
(s, t) = t exts

∂g

∂s
(s, t).
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Again using this equation and the properties of ζ̂λ and ζλ we get that

t �→ exts
∂g

∂s
(0, t),

which is well defined for Re t > max(t̂1, t1), has a meromorphic extension to t = 0, and

extt

(
lim
s→0

exts
∂ζ̂λ

∂s
(s, t)

)
− extt

(
lim
s→0

exts
∂ζλ

∂s
(s, t)

)
= t. extt

(
lim
s→0

exts
∂g

∂s
(s, t)

)
,

and making t → 0 in this equation we get the result.
The super-regularization does extend the classical regularization because we can

always consider the trivial extension

ζλ(s, t) = ζλ(s).


�

2.2. Properties. The main properties of the classical regularization are preserved.

Proposition 3. If λ = (λn) is a finite sequence, then the super-regularization of the prod-
uct coincides with the classical finite product. More generally, if λ = (λn) is an infinite
sequence for which the infinite product can be regularized then the super-regularization
of the product coincides with the classical regularized product.

Proposition 4. The super-regularized product is finitely associative. That is, if we
partition the sequence λ into N parts

λ = λ(1) ∪ λ(2) ∪ . . . ∪ λ(N )

with λ( j) = (λ
( j)
n )n≥1, and we assume that the super-regularized product exists for each

sequence λ( j), then the super-regularized product exists for the sequence λ, and we have
the formula (where we assume all infinite products to be super-regularized products)

+∞∏

n=1

λn =
(

+∞∏

n=1

λ(1)
n

)
.

(
+∞∏

n=1

λ(2)
n

)
. . .

(
+∞∏

n=1

λ(N )
n

)
.

Proof. Just observe that

ζλ =
N∑

j=1

ζλ( j) .


�
Proposition 5. Let a ∈ C∗. We assume that the super-regularized product of the sequence
λ is well defined. Then the super-regularized product of the sequence λa = (λa

n)n≥0 exists
and we have

+∞∏

n=1

λa
n =

(
+∞∏

n=1

λn

)a

.
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Proof. We have

ζλa (s) = ζλ(as).


�
The next property is more involved. It relies on the analytic property that we can give

a meaning to ζλ(0). We do strengthen the assumptions requesting not only that

s �→ ∂ζλ

∂s
(s, t),

extends meromorphically to a half plane {Re s > s1} with s1 < 0, but also that

s �→ ζλ(s, t),

has this property. Then we assume that for s = 0, we also have a meromorphic extension
of

t �→ ζ(0, t),

to t = 0 and that t = 0 is not a pole. In practice the analytic extension of ζ and not just
∂ζ/∂s always happens and it almost follows from the first assumption. One has to be
careful when only using the first assumption because of the possible different branches
of the extension of ζ obtained by integration due to the fact that

s �→ ∂ζλ

∂s
(s, t)

may have poles which introduce a monodromy around them for the primitive. One can
overcome these difficulties by assuming that the branch of the extension chosen depends
continuously on the parameter t . More precisely, at t ∈ C, Re t > t1, we consider the
meromorphic extension

ζλ(s, t) =
∫

γt

∂ζλ

∂s
(s, t) ds,

where we integrate over a path γt ⊂ C×{t} from a base point (t, s̃0), where Re s̃0 > s0,
and we assume that the path γt depends continuously on t and avoids the poles of the
meromorphic extension of

s �→ ∂ζλ

∂s
(s, t)

(note that the integral does not really depend on γt but only on the homotopy class of
paths out of the poles). The existence of such a continuous choice of paths is problematic
when we have poles that escape to infinity in finite time. We assume in what follows that
we have such a well behaved extension.
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Theorem 6. Let a ∈ C∗. If the super-regularized product of the sequence λ = (λn)n≥1
exists with the stronger assumption mentioned before, then the super-regularized product
of the sequence aλ = (aλn)n≥0 exists and we have

+∞∏

n=1

(aλn) = aζλ(0)

(
+∞∏

n=1

λn

)
,

where ζλ(0) has to be interpreted as

lim
t→0

lim
s→0

Re t>t1

ζλ(s, t),

which is well defined by successive analytic extensions and does not depend on the two
complex variable extension.

Note that indeed the right-hand side depends on the choice of the branch of the power
of a. But also the left-hand side depends on the choice of the branches of the (aλn)−s

in order to compute the zeta function. The claim of the theorem is that there is such a
choice of aζλ(0), compatible with the implicit choices in order to compute the left-hand
side, so that the formula holds.

Lemma 7. Denoting by (s, t) �→ ζλ(s, t) the extension defined, we have that the limit

lim
t→0

ζλ(0, t)

is independent of the two complex variable extension (s, t) �→ ζλ(s, t) chosen.

Proof. For another two complex variable extension (s, t) �→ ζ̂ (s, t), we have as before,
once the meromorphic extensions are performed,

ζ̂λ(0, t) − ζλ(0, t) = tg(0, t),

thus

lim
t→0

ζ̂λ(0, t) = lim
t→0

ζλ(0, t)

as claimed. 
�
Proof of Theorem 6. We prove first that the super-regularization of the infinite product
of the sequence aλ exists. We can define the two variable complex extension of the zeta
function associated to the sequence aλ as

ζaλ(s, t) = a−sζλ(s, t).

Then in the region {Re s > s0} × {Re t > t1} we have

∂ζaλ

∂s
(s, t) = ∂ζλ

∂s
(s, t) − (log a)a−sζλ(s, t).

We have that for Re t > t1 fixed,

s �→ ∂ζaλ

∂s
(s, t)
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extends meromorphically to s = 0, and

∂ζaλ

∂s
(0, t) = ∂ζλ

∂s
(0, t) − (log a)ζλ(0, t).

Now we have a meromorphic extension of this last equation to a neighborhood of t = 0.
This proves the existence of the super-regularized product associated to the sequence
aλ. Moreover,

lim
t→0

∂ζaλ

∂s
(0, t) = lim

t→0

∂ζλ

∂s
(0, t) − (log a) lim

t→0
ζλ(0, t),

which gives the formula stated. 
�

3. Application

Theorem 8. The super-regularized product over all prime numbers is 4π2,

1 × 2 × 3 × 5 × 7 × 11 × 13 × · · · =
∏

p

p = 4π2.

Remark. Many reasons indicate that 1 should be considered also as a prime number.
But this, obviously, does not matter here.

Proof. Consider the zeta function associated to the sequence of prime numbers

P(s) =
∑

p

p−s .

We have seen in the introduction that

P(s) =
+∞∑

n=1

µ(n)

n
log ζ(ns),

where ζ is Riemann zeta function. We define the extension to two complex variables

P(s, t) =
+∞∑

n=1

µ(n)

n1+t
log ζ(ns).

We have

P(s, 0) = P(s),

and P(s, t) is a Dirichlet series of s and t (expand the logarithm). For {Re s > 0},
(log ζ(ns))n≥1 decays geometrically to 0. Thus P(s, t) is a meromorphic in {Re s >

0} × C. Now we can compute

∂P
∂s

(s, t) =
+∞∑

n=1

µ(n)

nt

ζ ′(ns)

ζ(ns)
,
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Fig. 2.

which for Re t > t1 = 1 fixed has a meromorphic extension to a neighborhood of s = 0.
We compute the value at s = 0,

∂P
∂s

(0, t) =
(

+∞∑

n=1

µ(n)

nt

)
ζ ′(0)

ζ(0)

= 1

ζ(t)
log(2π).

Now we have a meromorphic extension to t = 0, which gives the result

lim
t→0

∂P
∂s

(0, t) = 1

ζ(0)
log(2π) = −2 log(2π).

So
∏

p

p = 4π2.


�
Corollary 9. The set of prime numbers is infinite.

Proof. If the set was finite then the super-regularized product would be the usual product
by Proposition 3. But 2 × 3 × 5 × 7 > 4π2 because π < 4, as we show inscribing a
circle inside a square. We can also proceed using the slightly less elementary argument
that π2 is not an integer. 
�

Therefore the following picture gives a geometric proof that the set of prime numbers
is infinite.

Remark. 1. It is interesting to note the relation between the non-integer value of π2

and the infinitude of prime numbers. An unexpected relation between two main topics
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of “The Elements” of Euclid. The first known proof of the infinitude of prime num-
bers is given by Euclid in Book IX, Prop. 20 of his “Elements” ([Euc], Vol. 2, p. 412).
In book XII the “method of exhaustion” discovered by Eudoxus is presented ([Euc],
Vol.3, p. 365). Historically this is the first algorithm that provides arbitrarily accurate
approximations of the number π .

2. The first analytic proof of the existence of infinitely many prime numbers was
given by L. Euler by finding Euler’s prime factorization of the Riemann zeta function
([Eul], Chap. XV, p. 271), and showing that the series

1

1
+

1

2
+

1

3
+ · · · =

∑

p

1

p
= ∞.

is infinite ([Eul], Chap. XV, Example 1, p. 277) where this formula appears. Note that
Euler’s formula also contains p = 1 as a prime number. We don’t know of any other
analytic proof other than Euler’s and the one given above.

It is also interesting to observe that in the “Introductio in Analysin Infinitorum”
([Eul]) we can find this basic result about prime numbers together with many formulas
involving π , and the value of π to many decimal places (that apparently was due to De
Lagny). The notation π was consolidated after the publication of the “Introductio” (but
apparently was first used by W. Jones in 1706). Euler’s approach is equivalent to the fact
that the Riemann zeta function has a pole at s = 1. Observe the noteworthy difference
with our approach where only the value at s = 0 matters. Euler’s idea was exploited by
P.G.L. Dirichlet in order to prove his theorem on the infinitude of primes in arithmetic
progressions.

For other non-analytic proofs of the infinitude of primes see the first “proof from the
book” in [AZ].

3. One may ask if the formula

∞! = √
2π

does prove the infinitude of positive integers (!?). We leave to the reader this metaphysical
question.

4. We observe that the value 4π2 obtained for the super-regularized product over all
prime numbers coincides with the regularized determinant of the Laplacian on the circle.
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