
The Complete Blender pages

Python Scripting
These pages describe the integration between Blender and the Python programming language. They are not intended to teach
the Python language. Programmers familiar with C/C++/Java or other high-level and/or object-oriented languages should be
able to pick up the language fairly quickly with the help of a reference and examples. Further information on Python can be
found at www.python.org.

Basic Python
Python scripts can be edited in the internal text editor (accessed by Shift-F11), or edited externally and imported into the text
editor.

Currently scripts can be executed in two ways, scripts can be executed directly by pressing Alt-P in the Text window, and can
also be attached to DataBlocks to be executed automatically when certain events occur, see the ScriptLink section.

Modules
Documentation on the Blender/Python API's is split up into sections, each section has a general description of the module, as
well as a description of the functions in the module, and the objects the module uses.

Available subsections
Blender The main Blender module

Types The Blender types module

NMesh The low-level mesh access module

Draw The window interface module

BGL The Blender OpenGL module

Object The object access module

Lamp The lamp access module

Camera The camera access module

Material The material access module

World The world access module

IPO The IPO access module

ScriptLinks
ScriptLinks Event driven scripting

http://www.python.org/

Blender - Main API Module
The Blender module contains all the other modules that are part of the Blender/Python API, as well as some general functions
and variables.

Functions
Method: Blender.Get(request)

This is the general data access function, request is a string identifying the data which should be returned. Currently the
Get function accepts the following requests,

'curframe' - Return the current animation frame❍

'curtime' - Return the current animation time❍

'filename' - Return the name of the last file read or written❍

'version' - Return the running Blender version number❍

The curtime requests returns a floating point value, which incorperates motion blur and field calculations, the curframe
requests simply returns the integer value of the current frame.

Method: Blender.Redraw()
This function forces an immediate redraw of all 3D windows in the current screen. It can be used to force display of
updated information (for example when an IPO curve for an Object has been changed).

Variables
Boolean: Blender.bylink

Used to test if the script was executed by a scriptlink - see the ScriptLink section for more information.
Object: Blender.link

If the script was called by a scriptlink this variable contains the object that the script was linked to. This variable only
exists when scripts have been called by scriptlinks - see the ScriptLink section for more information.

String: Blender.event
If the script was called by a scriptlink this variable contains the name of the event that the script was called by. This
variable only exists when scripts have been called by scriptlinks - see the ScriptLink section for more information.

Types - Blender declared types
This module holds the type objects for all of the Blender declared objects. These types can be compared with the types
returned by the type(object) function.

Variables
BezTripleType●

BlockType●

BufferType●

ButtonType●

IpoCurveType●

MatrixType●

NMColType●

NMFaceType●

NMVertType●

NMeshType●

VectorType●

NMesh - low level mesh access
The vertex editing functionality is planned for access in two ways, low and high level. Low level access is intended for
programmers familiar with mesh editing and the data structures involved (and links between them) and who intend to write
intensive modules to work with Blender. High level access is for people who do not want to spend the time to handle the basic
data structures themselves, or only need a quick effect. Low level editing is completely independent of Blender, while high level
editing uses and builds on Blender's features.

The NMesh module represents the first step towards providing vertex level access from Python.

Functions
Method: NMesh.GetRaw([name])

If name is specified Blender will try to return an NMesh derived from the Blender mesh with the same name, if a mesh
with that name does not exist GetRaw returns None.

If name is not specified then a new empty NMesh object will be returned, otherwise will attempt to return an NMesh
derived from the Blender mesh with the same name, if a mesh with that name does not exist GetRaw returns None.

When the NMesh is created Blender will set the NMesh name, has_col and has_uvco based on the mesh read.
Method: NMesh.PutRaw(nmesh, [name, renormal])

If name is not given (or None) PutRaw will create a new Blender object and mesh, set the mesh data to match the
nmesh, and return the created object.

If the name is given PutRaw will attempt to replace the Blender mesh of that name with the nmesh, and will return None
(regardless of success or failure). If a mesh with the name is in Blender, but has no users the effects are as if the name
was not given (ie. an object will be created and returned.)

The renormal flag determines whether vertex normals are recalculated. It is generally only interesting to not recalculate
the vertex normals if they have been specifically modified to achieve an effect.

The nmesh.has_uvco and nmesh.has_col flags are used to determine whether or not the mesh should be created with
vertex colors and/or UV coordinates.

Method: NMesh.Vert([x, y, z])
Returns a new NMVert object, created from the given x,y,and z coordinates. If any of the coordinates are not passed
they default to 0.0.

Method: NMesh.Face()
Returns a new NMFace object.

Method: NMesh.Col([r,g,b,a])
Return a new NMCol object created from the given r,g,b, and a color components. If any of the components are not
passed they default to 255.

Objects
NMesh NMeshType

name - name of the mesh this object was derived from●

verts - list of NMVert objects●

faces - list of NMFace objects●

mats - list of material names●

has_col - flag for whether mesh has mesh colors●

has_uvco - flag for whether mesh has UV coordinates●

The name field of the NMesh object allows scripts to determine what mesh the object
originally came from when it is otherwise unknown, for example when the mesh has
been obtained from an Objects .data field.

In order to keep mesh sizes low mesh colors and UV coordinates are only stored when
needed; if a mesh has colors or UV coordinates when it is accessed by the GetRaw
function it will have the has_col and has_uvco flags set accordingly. Similarly, before a
mesh is put back into Blender with the PutRaw functions the has_col and has_uvco
flags must be set properly.

The mats field contains a list of the names of the materials which are attached to the
mesh indices. Note that this is not the same as the materials which are attached to
objects. The PutRaw function will remake the material list, so this field can be used to
switch the materials linked by the mesh.

The verts field should contain a list of all the vertices which are to be in the mesh. If a
vertice is listed in a face, but not present in the verts list, it will not be present in the
face.

NMFace NMFaceType

v - list of NMVert objects●

col - list of NMCol objects●

mat - material index number for face●

smooth - flag indicating whether face is smooth●

The v field is a list of NMVert objects, and not a list of vertice indices. If the face is to
be part of an NMesh each of the objects should be in the NMesh.verts list. The vertices
determine the face in clockwise ordering. Face's should have 2,3, or 4 vertices to be
stored in a mesh, face's with 2 vertices form an edge, while faces with 3 or 4 vertices
form a face (a triangle or quad).

The col field is a list of NMCols, this list always has a length of 4, with the NMCol
matching up to the NMVert in the v list with the same index. Extra objects in the list
(ie. if the face has less than 4 vertices) are ignored.

The mat field contains the material index for the face, if the face is part of an NMesh
this value is used with the NMesh.mats list to determine the material for the face.

NMVert NMVertType

index - Vertice index●

co - Coordinate vector●

uvco - UV coordinate vector●

no - Normal vector●

If the vertice is from an NMesh that has been read with the GetRaw function the index
field will be set to contain the index of the vertice within the array. This field is ignored
by the PutRaw function, and exists only to allow simplification of some calculations
relating to face->vertex resolution.

The co, uvco, and no fields returns a special object of VectorType, this object is used to
interact efficiently with Blender data structures, and can generally be used as if it is a
list of floating point values, except its length cannot be changed.

The uvco field contains the vertex UV coordinates for the mesh, these are the
coordinates that are used by the Sticky mapping option. This field is a 3 member
vector, but the last (Z) member is unused.

The no field can be used to alter the vertex normals of a mesh, to change the way some
calculations are made (for example rendering). A flag must be passed to the PutRaw
function in order to prevent the normals from being recalculated if they have been
modified for this purpose. Note that the vertex normals will still be recalculated if the
user enters editmode or performs other operations on the mesh, regardless of the flag
passed to the PutRaw function.

NMCol NMColType

r - Red color component●

g - Green color component●

b - Blue color component●

a - Alpha color component●

Draw - The window interface module
The Draw module provides the basic function that lets Blender/Python scripts build interfaces that work inside Blender. The
Draw module is broken into two parts, one part handles the functions and variables needed to give a script control of a window,
and the second part allows scripts to use the Blender internal user interface toolkit (buttons, sliders, menus, etc.).

Blender/Python interfaces scripts (GUI scripts for short) essentially work by providing Blender with a set of callbacks to allow
passage of events and drawing, and then the script takes control of the text window it was run from.

To iniatiate the interface the script must call the Draw.Register function to specify what script functions will be used to control
the interface. Generally a draw and event function are passed, though either one can be left out.

Once the script has been registered the draw callback will be executed (with no arguments) every time the window needs to be
redrawn. Drawing uses the functions in the Blender.BGL module to allow scripts to have full control over the drawing process.
Before drawing is initiated Blender sets up the OpenGL window clipping and stores its own state on the attribute stack, to
prevent scripts from interfering with other parts of the Blender interface.

When the draw function is called the window matrix will be set up to be the window width/height, so the coordinate to pixel
mapping is 1-1. Because Blender manages its windows internally, drawing should only take place inside the draw function, if
an event must trigger drawing of some kind the event function should send a redraw event (see Draw.Redraw)

The script event function is called when the Blender window recieves input events, and the script window has input focus (the
mouse is in the window). The function is called with two arguments, the event and an extra value modifier, see the Events
section below for more information.

Scripts can unregister themselves and return control to the Text editor by calling the Draw.Exit function. In the event that the
script fails to provide a method to exit, the key combination Ctrl-Alt-Shift-Q will force a script to exit.

Events
The Draw module contains all the event constants which can be passed to a registered Python event callback. The following
table lists the events that are currently passed, and the meaning of the extra value argument which is passed with the event.

Event name(s) Value meaning

____KEY
(AKEY,F2KEY, etc.) The value is 0 or 1, 0 means a key-release, 1 means a key-press.

PAD___
(PAD1, PADENTER, etc.) The value is 0 or 1, 0 means a key-release, 1 means a key-press.

MOUSEX, MOUSEY The value is the window coordinates of the mouse X/Y position

LEFTMOUSE, MIDDLEMOUSE, RIGHTMOUSE The value is 0 or 1, 0 means a button-release, 1 means a button-press.

The list of all events is quite long, and most are fairly obvious (AKEY, BKEY, CKEY, ...) so they have been shortened to
____KEY and PAD___, to find the exact name of an event you can print the contents of the Draw module (or guess),
print dir(Blender.Draw).

Functions
Method: Draw() Forces an immediate redraw of the active Python window, this function will return after the window has been
redrawn.

Method: Exit() Unregisters Python from controlling the windowing interface and returns the window control to the text editor.

Method: Redraw([after]) Adds a redraw event to the window event queue. If the after flag is not passed (or False) the window
will recieve the redraw event as soon as program control returns to Blender (ie. after the running function completes.) If the
after flag is True the window will recieve the event after all other input events have been processed. This allows a window to
continuously redraw, while still recieving user input, and allowing the rest of the Blender program to recieve input.

Redraw events are buffered internally, so that regardless of how many redraw events are on the queue, the window is only
redrawn once per queue-flush.

Method: Register(draw, [event, button]) The Register function is the basis of the Python window interface. The function is
used to pass three callbacks which to handle window events. The first function is the draw function, it should be a function

taking no arguments, and it is used to redraw the window when necessary.

The second function is the event function, used to handle all of the input events. It should be a function taking two arguments,
the first is the event number, and the second is the value modifier. See the Events section above for more information on what
events are passed.

The third function is the button event function, which handles the events which are generated by the various button types.

Any of the functions can be passed as a None, and the Blender will take a default action for events which are not handled by a
callback. At least one function must be passed for the Register function to have any effect.

Method: Text(string) Draws the string using the default bitmap font at the current GL raster position (use the glRasterPos
functions to change the current raster position).

Button Functions
Method: Button(label, event, x, y, width, height, [tooltip])

Creates a new push Button. The button will be draw at the specified x and y coordinates with the specified width and
height, and the label will be drawn on top. If a tooltip is specified it will be displayed when the user mouses over the
button, assuming they have tooltips enabled.

When the button is pressed it will pass the event number specified by event to the Python's button event callback,
assuming one was specified to the Draw.Register function.

Method: Create(value)
Returns a new Button object containing the specified value, the type of the Button (int, float, or string) will be determined
by the type of the value.

Method: Menu(options, event, x, y, width, height, default, [tooltip]
Creates a new push Button. The button will be draw at the specified x and y coordinates with the specified width and
height. If a tooltip is specified it will be displayed when the user mouses over the button, assuming they have tooltips
enabled.

The menu options are encoded in the options argument. Options are seperated by the '|' (Pipe) character, and each
option consists of a name followed by a format code. Valid format codes are,

%t - The option should be used as the title for the menu❍

%xN - The option should set the integer N in the button value❍

The default argument determines what value will initally be present in the Button object, and which menu option will
initially be selected.

When the menu item is changed the button value is set to the value specified in the selected menu option and the button
will pass the event number specified by event to the Python's button event callback, assuming one was specified to the
Draw.Register function.

For example, if the menu options argument is "Color %t| Red %x1| Green %x2| Blue %x3", and the default is 2, then the
menu will initally display "Green", and when the user selects the menu it will display 3 items ("Red", "Green", and "Blue")
and the title "Color". Selecting the "Red", "Green", or "Blue" options will cause the button value to change to 1,2, or 3
respectively, and the event will be passed to the button event callback.

Method: Number(label, event, x, y, width, height, initial, min, max, [tooltip])
Creates a new number Button. The button will be draw at the specified x and y coordinates with the specified width and
height, and the label will be drawn to the left of the input field. If a tooltip is specified it will be displayed when the user
mouses over the button, assuming they have tooltips enabled.

The type of number button is determined by the type of the initial argument, if it is an int the number button will hold
integers, if it is a float the number button will hold floating point values. The value of the Button return will range between
min and max, with the initial argument determining which value is set by default.

When the button is pressed it will pass the event number specified by event to the Python's button event callback,
assuming one was specified to the Draw.Register function.

Method: Scrollbar(event, x, y, width, height, initial, min, max, [update, tooltip])
Creates a new scrollbar Button. The scrollbar will be draw at the specified x and y coordinates with the specified width
and height. If a tooltip is specified it will be displayed when the user mouses over the button, assuming they have tooltips
enabled.

The type of scrollbar is determined by the type of the initial argument, if it is an int the scrollbar will hold integers, if it is a

float the scrollbar will hold floating point values. The value of the Button return will range between min and max, with the
initial argument determining which value is set by default.

When the scrollbar is repositioned it will pass the event number specified by event to the Python's button event callback,
assuming one was specified to the Draw.Register function. If the update argument is not passed (or True) then the
events will be passed for every motion of the scrollbar, otherwise if the update argument is False the events will only be
sent after the user releases the scrollbar.

Method: Slider(label, event, x, y, width, height, initial, min, max, [update, tooltip])
Creates a new slider Button. The button will be draw at the specified x and y coordinates with the specified width and
height, and the label will be drawn to the left of the input fields. If a tooltip is specified it will be displayed when the user
mouses over the button, assuming they have tooltips enabled.

The type of slider button is determined by the type of the initial argument, if it is an int the slider button will hold integers,
if it is a float the slider button will hold floating point values. The value of the Button return will range between min and
max, with the initial argument determining which value is set by default.

When the slider is repositioned it will pass the event number specified by event to the Python's button event callback,
assuming one was specified to the Draw.Register function. If the update argument is not passed (or True) then the
events will be passed for every motion of the slider, otherwise if the update argument is False the events will only be sent
after the user releases the slider.

Method: String(label, event, x, y, width, height, initial, length, [tooltip])
Creates a new string Button. The button will be draw at the specified x and y coordinates with the specified width and
height, and the label will be drawn to the left of the string input field. If a tooltip is specified it will be displayed when the
user mouses over the button, assuming they have tooltips enabled.

The value of the Button returned will be a string, reflecting the current state of the toggle. The initial argument will
determine which value is initially present in the button. The length field specifies the maximum length string that is
allowed to be entered in the button.

After the string has been edited it will pass the event number specified by event to the Python's button event callback,
assuming one was specified to the Draw.Register function.

Method: Toggle(label, event, x, y, width, height, default, [tooltip])
Creates a new toggle Button. The button will be draw at the specified x and y coordinates with the specified width and
height, and the label will be drawn on top. If a tooltip is specified it will be displayed when the user mouses over the
button, assuming they have tooltips enabled.

The value of the Button returned will be 0 or 1, reflecting the current state of the toggle. The default will determine which
value is initially set.

When the button is pressed it will pass the event number specified by event to the Python's button event callback,
assuming one was specified to the Draw.Register function.

Objects
Button ButtonType

val - The current value of the button●

Depending on the method with which the button was created the val field will have
several different types, possible types are Int, Float, and String.

BGL - Blender OpenGL module
In order to allow scripts to draw sophisticated interfaces within Blender the BGL module has been included. It is essentially a
flat wrapper around the entire OpenGL library, which allows programmers to use standard OpenGL tutorials and references for
programming Blender/Python interface scripts.

The BGL module contains all the defines and functions for OpenGL with one exceptions. No extensions are supported, and no
platform specific functions are supported. All function names remain the same as with the C OpenGL implementation, although
in some cases this makes less sense, for example the ___f, ____i, ____s function variants are meaningless to Python.

The only exception to this rule is for functions that take pointer arguments. Since Python has no direct pointer access the BGL
module includes a special type (Buffer) which essentially provides a wrapper around a pointer/malloc. Any OpenGL functions
which take a pointer should be passed a Buffer object instead.

The BGL module is a flat wrapper, it performs no extra error checking or handling. This means that it is possible to cause
crashes when using the module, namely when an OpenGL function is passed a Buffer object which is of the incorrect size.

Because Blender uses one OpenGL context, and the entire interface is drawn with OpenGL, it is important that scripts cannot
misadvertently alter some critical state value. To effectively "sandbox" the scripts, during drawing Blender sets up the window
to be drawn, and also pushes all OpenGL stack attributes onto the attribute stack. When the draw function returns the
attributes are popped. It is important that BGL calls are only made during the draw function.

Functions
Method: Buffer(type, dimensions, [template])

This functions creates a new Buffer object to be passed to OpenGL functions expecting a pointer. The type argument
should be one of GL_BYTE, GL_SHORT, GL_INT or GL_FLOAT indicating what type of data the buffer is to store.

The dimensions argument should be a single integer if a one dimensional list is to be created, or a list of dimensions if a
multi-dimensional list is desired. For example, passing in [100, 100] would create a two dimensional square buffer (with a
total of 100*100=10,000 elements). Passing in [16, 16, 26] would create a three dimensional buffer, twice as deep as it is
wide or high (with a total of 16*16*32=8192 elements).

The template argument can be used to pass in a multidimensional list which will be used to initialize the values in the
buffer, the template should have the same dimensions as the Buffer to be created. If no template is passed all values are
initialized to zero.

Object
Buffer BufferType

list - Returns the contents of the Buffer as a multi-dimensional list●

The Buffer object can be indexed, assigned, sliced, etc. just like Python
multi-dimensional list (list of lists) with the exception that its size cannot be changed.

Object - Object object access
The Object access module.

Functions
Method: Get([name])

If name is specified returns the Object object with the same name (or None if a match is not found).

If name is not specified returns a list of all the Object objects in the current scene.
Method: GetSelected()

Returns a list of all selected objects in the current scene. The active object is the first object in the list.
Method: Update(name)

Updates the object with the specified name during user-transformation. This is an expiremental function for combating
lag, mainly with regard to IKA being recalculated properly.

Objects
Object BlockType

name - name of the blender object this object references●

block_type - "Object"●

properties - list of extra data properties●

parent - link to the this Objects' parent●

track - link to the Object this object is tracking●

ipo - link to the Ipo for the Object●

data - link to the data for the Object●

math - the object matrix●

loc - the location coordinate vector●

dloc - the delta location coordinate vector●

rot - the rotation vector (angles are in radians)●

drot - the delta rotation vector (angles are in radians)●

size - the size vector●

dsize - the delta size vector●

LocX - X location coordinate●

LocY - Y location coordinate●

LocZ - Z location coordinate●

dLocX - X delta location coordinate●

dLocY - Y delta location coordinate●

dLocZ - Z delta location coordinate●

RotX - X rotation angle (in radians)●

RotY - Y rotation angle (in radians)●

RotZ - Z rotation angle (in radians)●

dRotX - X delta rotation angle (in radians)●

dRotY - Y delta rotation angle (in radians)●

dRotZ - Z delta rotation angle (in radians)●

SizeX - X size●

SizeY - Y size●

SizeZ - Z size●

dSizeX - X delta size●

dSizeY - Y delta size●

dSizeZ - Z delta size●

EffX - X effector coordinate●

EffY - Y effector coordinate●

EffZ - Z effector coordinate●

Layer - object layer (as a bitmask)●

The name, block_type, and properties fields are common to all BlockType objects.

The loc, dloc, rot, drot, size, and dsize fields all return a Vector object, which is used to
interact efficiently with Blender data structures. It can generally be used as if it were a
list of floating point values, but its length cannot be changed.

For the parent, track, ipo, and data fields if the object does not have one the data, or
the data is not accessible to python, the field returns None.

Lamp - Lamp object access
The Lamp access module.

Functions
Method: Get([name])

If name is specified returns the Lamp object with the same name (or None if a match is not found).

If name is not specified returns a list of all the Lamp objects in the current scene.

Objects
Lamp BlockType

name - name of the lamp this object references●

block_type - "Lamp"●

properties - list of extra data properties●

ipo - link to the Ipo for the lamp●

R - red light component●

G - green light component●

B - blue light component●

Energ - lamp energy value●

Dist - lamp distance value●

SpoSi - lamp spot size●

SpoBl - lamp spot blend●

HaInt - lamp halo intensity●

Quad1 - lamp quad1 value●

Quad2 - lamp quad2 value●

The name, block_type, and properties fields are common to all BlockType objects.

If the lamp does not have an Ipo the Lamp.ipo field returns None.

Camera - Camera object access
The Camera access module.

Functions
Method: Get([name])

If name is specified returns the Camera object with the same name (or None if a match is not found).

If name is not specified returns a list of all the Camera objects in the current scene.

Objects
Camera BlockType

name - name of the camera this object references●

block_type - "Camera"●

properties - list of extra data properties●

ipo - link to the Ipo for the camera●

Lens - lens value for the camera●

ClSta - clip start value●

ClEnd - clip end value●

The name, block_type, and properties fields are common to all BlockType objects.

If the camera does not have an Ipo the Camera.ipo field returns None.

Material - Material object access
The Material access module.

Functions
Method: Get([name])

If name is specified returns the Material object with the same name (or None if a match is not found).

If name is not specified returns a list of all the Material objects in the current scene.

Objects
Material BlockType

name - name of the material this object references●

block_type - "Material"●

properties - list of extra data properties●

ipo - link to the Ipo for the material●

R - red material color component●

G - green material color component●

B - blue material color component●

SpecR - red material specular component●

SpecG - green material specular component●

SpecB - blue material specular component●

MirR - red material mirror component●

MirG - green material mirror component●

MirB - blue material mirror component●

Ref - material reflectivity●

Alpha - material transparency●

Emit - material emittance value●

Amb - material ambient value●

Spec - material specular value●

SpTra - material specular transparency●

HaSize - material halo size●

Mode - material mode settings●

Hard - material hardness●

The name, block_type, and properties fields are common to all BlockType objects.

If the material does not have an Ipo the Material.ipo field returns None.

World - World object access
The World access module.

Functions
Method: Get([name])

If name is specified returns the World object with the same name (or None if a match is not found).

If name is not specified returns a list of all the World objects in the current scene.
Method: GetActive()

Returns the active world (or None if there isn't one)

Objects
World BlockType

name - name of the world this object references●

block_type - "World"●

properties - list of extra data properties●

ipo - link to the Ipo for the world●

HorR - the red horizon color component●

HorG - the green horizon color component●

HorB - the blue horizon color component●

ZenR - the red zenith color component●

ZenG - the green zenith color component●

ZenB - the blue zenith color component●

Expos - the world exposure value●

MisSta - the mist start value●

MisDi - the mist distance value●

MisHi - the mist height value●

StarDi - the star distance value●

StarSi - the star size value●

The name, block_type, and properties fields are common to all BlockType objects.

If the world does not have an Ipo the World.ipo field returns None.

Ipo - Ipo object access
The Ipo access module.

Functions
Method: Get([name])

If name is specified returns the Ipo object with the same name (or None if a match is not found).

If name is not specified returns a list of all the Ipo objects in the current scene.
Method: BezTriple()

Returns a new BezTriple object
Method: Eval(curve, [time])

Returns the value of the curve at the given time. If the time is not passed the current time is used.
Method: Recalc(ipo)

Recalculates the values of the curves in the given ipo, and updates all objects in the scene which reference the ipo with
the new values.

Objects
Ipo BlockType

name - name of the Ipo this object references●

block_type - "Ipo"●

properties - list of extra data properties●

curves - list of IpoCurve objects making up this Ipo block●

The name, block_type, and properties fields are common to all BlockType objects.

IpoCurve IpoCurveType

name - name of this ipo curve●

type - the type of interpolation for this curve●

extend - the type of extension for this curve●

points - list of BezTriple's comprising this curve●

In order to be able to easily and quickly edit ipo curves, there needs to be a mechanism
to allow Blender to be able to recalculate curve specific data, without the data being
recalculated during every script operation.

To handle this, the points field returns a list of the BezTriples that make up the curve.
This list can be edited without any intervention by Blender. To update the curve, the
list must be reassigned to the points field.

One unfortunate side effect of this is that single points cannot simply be edited, editing
IpoCurve.points[0] in place will not update the curve.

The type field returns one of the following values,

'Constant' - Curve remains constant between points●

'Linear' - Curve uses linear interpolation of points●

'Bezier' - Curve uses bezier interpolation of points●

The extend field returns one of the following values,

'Constant' - Curve remains constant after endpoints●

'Extrapolate' - Curve is extrapolated after endpoints●

'Cyclic' - Curve repeats cyclically●

'CyclicX' - Curve repeats cyclically-extrapolated●

BezTriple BezTripleType

h1 - the first (leftmost) handle coordinate vector●

pt - the point coordinate vector●

h2 - the second (rightmost) handle coordinate vector●

f1 - flag for h1 selection (True==selected)●

f2 - flag for pt selection (True==selected)●

f3 - flag for h2 selection (True==selected)●

h1t - the first (leftmost) handle type●

h2t - the second (rightmost) handle type●

The h1, pt, and h2 fields all return a Vector object, which is used to interact efficiently
with Blender data structures. It can generally be used as if it were a list of floating point
values, but its length cannot be changed.

The h1t and h2t fields determine the handle types, they return and can be set to the
following values,

'Free' - Handle is free (unconstrained)●

'Auto' - Handle is automatically calculated●

'Vect' - Handle points towards adjoining point on curve●

'Align' - Handle is aligned with the other handle●

ScriptLinks - Linking scripts to Blender

Python scripts can be attached to DataBlocks through the ScriptButtons window, and assigned events upon which they should
be called.

The ScriptButtons are accessed via a button on the ButtonsWindow header. This window has no shortcut and can only be
reached by the icon. When the ScriptButtons have been selected the headerbuttons change to display the datablocks which
can currently be given ScriptLinks.

ScriptLinks can be added for the following DataBlocks
Objects - Available when an Object is active●

Cameras - Available when the active Object is a Camera●

Lamps - Available when the active Object is a Lamp●

Materials - Available when the active Object has a Material●

Worlds - Available when the current scene contains a World●

When you are able to add a ScriptLink an icon appears on the header, similar to the IPO Window. Selecting one of the icons
brings up the ScriptLink buttons group on the left of the ScriptButtons window.

DataBlocks can have an arbitrary number of ScriptLinks attached to them - additional links can be added and deleted with the
New and Del buttons, similar to Material Indexes (see manual page 274). Scripts are executed in order, beginning with the
script linked at index 1.

When you have at least 1 scriptlink the Event type and link buttons are displayed. The link button should be filled in with the
name of the Text object to be executed. The Event type controls at what point the script will be executed,

FrameChanged - This event is executed everytime the user changes frames, and during rendering and animation
playback. To provide more user interaction this script is also executed continuously during editing for Objects.

●

Thats all? - Only for now! In the future we will provide more events as integration progresses.●

Scripts that are executed because of events being triggered recieve additional input through objects in the Blender module.

The Blender.bylink object is set to True to indicate that the script has been called through a ScriptLink (as opposed to the
user pressing Alt-P in the Text window).

The Blender.link object is set to contain the DataBlock which referenced the script, this may be a Material, Lamp, Object, etc.

The Blender.event object is set to the name of the event which triggered the ScriptLink execution. This allows one script to be
used to process different event types.

Scene ScriptLinks
The ScriptLink buttons for Scenes are always available in the right of the ScriptButtons window, and function exactly in the
manner described above. Events available for scene ScriptLinks are,

FrameChanged - This event is executed everytime the user changes frames, and during rendering and animation
playback.

●

OnLoad - This event is executed whenever the scene is loaded, ie. when the file is initially loaded, or when the user
switches to the current scene.

●

Thats all? - See "Thats all?" above!●

