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Abstract

We apply the scale relativity framework, in which the formation of a
planetary system is described in terms of a macroscopic Schrödinger equa-
tion, to the study of the three planets orbiting the pulsar PSR 1257+12.
We describe in terms of wave packets the clouds from which the planets are
formed, finally lying at their center of gravity. This leads us to predict that
the semimajor axes of the planet orbits should be quantized as n2 + n/2
(where n = 5, 7, 8 in this system, plus another possible planet at n = 2).
We find prime integrals of the motion equation for the 3:2 near-resonant
subsystem of two of the planets. This allows us to show that it has re-
mained stable and that its evolution, since about one billion years, has not
affected the structures present at the end of its formation. Our theoretical
predictions can therefore be compared with its present state. We find that
the observed ratios of planet semimajor axes differ from their theoretically
expected values by only 4 × 10−4 and 6 × 10−5, and that this remarkable
agreement can be shown to be statistically highly significant.
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13.5.3. Planetary system around the pulsar PSR

1257+12

0.1 Precision structuring of PSR 1257+12 planetary system

The first extrasolar planetary system ever discovered has been the system of three
planets found by Wolszczan around the pulsar PSR B1257+12 [16, 17]. Even
though this star is not solar-like, this system deserves a special study [10, 11, 12],
because (i) the pulse timing measurements allow a very precise determination of
the orbital elements of the planets and (ii) their small masses (four Earth mass for
two of them and the Moon mass for the third one) allow both the celestial mechan-
ics models of evolution and the scale relativity model of formation to become also
very precise. This system therefore stands out as a kind of ideal gravitational lab-
oratory for studying the formation and evolution of planetary systems and putting
models to the test.

The planets probably result from an accretion disk formed around the very
compact star after the supernova explosion. Even though this is a secondary
process, there is general agreement that the formation process should be similar
to the standard picture [3].

We can therefore expect the purely gravitational formation process, described
in the scale relativity approach by a macroscopic gravitational Schrödinger equa-
tion, to be still valid in this case. Moreover, the smallness of the planet masses
implies very few perturbations between the subdisks from which the three planets
have been formed and a negligible effect of self-gravitation, so that the theoretical
predictions (based on conservation laws, in particular of the center of gravity of
each subdisk) are expected to become very precise. The compacity of the star also
suggests that planets be self-organized in terms of a smaller scale than the inner
solar system (i.e., of a multiple of w0 = 144 km/s).

On the one hand, the precision of pulse timing measurements has allowed to
use the PSR B1257+12 system as a highly accurate probe of planetary dynamics.
Indeed, it was soon pointed out that the near 3:2 resonance between the orbits of
the two main planets should lead to precisely predictable and observable mutual
gravitational perturbations [14, 8, 15, 9]. These non-Keplerian gravitational effects
have been soon detected [17], and they have now been observed with high precision,
yielding an irrefutable confirmation of the existence of planets around the pulsar
and allowing a determination of the true masses and of the orbital inclinations of
the planets [6].

On the other hand, the observed distances of the planets to the pulsar can be
shown [10, 11] to be in very good agreement with the scale relativity theoretical
expectations. To the first approximation, we expect the semimajor axes to show
peaks of probability scaling as n2, where n is integer. But, when perturbations
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to the simple one-object Kepler potential model are small and the trajectories
are nearly circular (which is the case here, the present excentricities of the three
planets being eA = 0, eB = 0.0186±0.0002 and eC = 0.0252±0.0002 [6]), one may
use the center of gravity conservation law to refine the theoretical expectation and
state that, after the formation process the planets should lie at a distance given
by the center of mass of the planetesimal wave packet, which scales as n2 + n/2,
i.e. n2(1 + 2/n) [4, 1]. This means a “correction” of 6 to 10 % with respect to the
simple n2 law for the pulsar planets.

25 2624 66 67 98 9997

10 20 30 40 50 60 70 80 90 1000 110

Period  (days)

days days days

1 2 3 4 5 6 7 8

A B C

Figure 1: Comparison between the observed periods of the three planets observed around
the pulsar PSR B1257+12 and the scale relativity expectation (1994 data). The agree-
ment between the observed periods and the predicted ones is so precise that we have
made three zooms by a factor of 10 in order to show the differences (less than 3 hours
for periods of several months).

Already with the 1994 values of the orbital elements obtained by Wolszczan
[17] from four years of observation, the agreement was excellent [10, 11]. The three
observed planets A, B and C are indeed found to correspond to ranks n = 5, 7
and 8 with a high relative precision. With the n2 law the agreement is already at
the level of 1 % and 0.3 %. One finds:

(PB/PC)
1/3 = 0.878 to be compared with 7/8 = 0.875,

(PA/PC)
1/3 = 0.636 to be compared with 5/8 = 0.625.

With the n2 + n/2 law, it becomes (see Fig. 1):

(PB/PC)
1/3 = 0.8783 to be compared with (52.5/68)1/2 = 0.8787,

(PA/PC)
1/3 = 0.6366 to be compared with (27.5/68)1/2 = 0.6359.

A factor of about 10 has been gained with this conservative law. The relative
agreement between observation and theoretical expectation has become respec-
tively 4× 10−4 and 1.1× 10−3 for the B/C and A/C ratios.

Today the comparison between the data and the theoretical predictions can
be considered again, since the determination of the orbital elements of the three
planets has been greatly improved thanks to the increase to 13 years of the observ-
ing time and to the account of gravitational mutual effects [6]. This improvement
of the data and of their fitting model has led to a change by 5 σ of some of the
derived orbital elements. This could have degraded the agreement with the scale
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relativity model. On the contrary, it has yielded a new improvement by a factor
of about 20 on the A/C ratio. One now finds, for PA = (25.262 ± 0.003) days,
PB = (66.5419± 0.0001) days and PC = (98.2114± 0.0002) days [6]:

(PB/PC)
1/3 = 0.8783 to be compared with (52.5/68)1/2 = 0.8787,

(PA/PC)
1/3 = 0.63597 to be compared with (27.5/68)1/2 = 0.63593.

The relative agreement is now at the level of respectively 4×10−4 and 6×10−5

for the B/C and A/C ratios. The probability to find such a close agreement,
accounting for all other possible fractional ratios with n up to 10, can be estimated
to be less than 10−4 [11]. Moreover, using the standard pulsar massM = (1.4±0.1)
M⊙ in the relation

Pn =
2πGM

w3
(n2 + n/2)3/2, (1)

one obtains for the coupling constant of this system w = (2.96 ± 0.07) × 144
km/s, which is consistent with an expected integer multiple of the inner solar
system constant w0 by a factor of 3 and with the value of the Keplerian velocity
w⊙ = 435 km/s at the Sun radius.

The precision of these results suggests to attempt improving the model, both
concerning the formation as the evolution of the system. Indeed, the presently
observed orbital elements result from the formation era followed by about one
billion years of evolution, while the theoretical expectations correspond to the
end of the formation. The comparison between the observational and theoretical
orbital elements should therefore take the system evolution into account.

0.2 Heliumoid model of the PSR1257+12 planetary system

formation

Let us address the problem of the formation of two planets from two subdisks in the
scale relativity approach. The question to be solved is whether the self-gravitation
and the mutual interaction of the subdisks leads to non negligible corrections to
the previous one-body model.

Consider a star surrounded by a disk of planetesimals which can itself be sepa-
rated in two parts, (B) and (C). The central star is of mass M and the individual
planetesimals are assumed to have equal mass µ. The total Hamiltonian reads

Ĥ =
∑

B,C

(

−
~̃
2

2µ
∆−

Mµ

r
−
∑

B

µ2

r12
−
∑

C

µ2

r12
−
∑

BC

µ2

r12

)

, (2)

where ~̃ = 2µD, with D = GM/2w0.
The three last terms are respectively the self potentials of the B and C rings

and the potential of interaction between B and C, r12 being the interdistance
between two planetesimals. Assume that the total number of planetesimals in B
and C is respectively NB and NC . The masses of the B and C rings, and therefore
of the planets B and C which will finally be formed from these rings, are

mB = NB µ, mC = NC µ. (3)

The two first terms of the Hamiltonian then become

∑

B,C

(

−
~̃
2

2µ
∆−

Mµ

r

)

= −
~̃
2

2µ2
(mB∆B +mC∆C)−

MmB

rB
−
MmC

rC
(4)
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The distribution of planetesimals in the rings B and C are given by solutions of
the gravitational Schrödinger equation

Ĥψ = Eψ, (5)

where Ĥ is given by Eq. (2). In the first approximation, since mB/M ≪ 1 and
mC/M ≪ 1 (the ratios are ≈ 10−5 for planets B and C of the PSR1257+12 system
and ≈ 10−7 for planet A), the potential is strongly dominated by the central body,
and ψB and ψC are solutions of the equation

2D2∆ψ +

(

E

µ
+
M

r

)

ψ = 0. (6)

In the second approximation, we can now use these solutions to derive the prob-
ability number density of planetesimals in the disks, ρB = |ψB|

2 and ρC = |ψC |
2.

The self potential of ring B can now be written as a sum of the planetesimal inter-
action gravitational energy over all couples of planetesimals in this ring, namely,

−
∑

i,j

µ2

r12
= −

∑

i

NB µ
2

∫

B

|ψB|
2

r12
dVB = −m2

B IBB . (7)

This sum has therefore been reduced to the integral

IBB =

∫

B

|ψB1|
2|ψB2|

2

r12
dV1dV2. (8)

Similar calculations can be made for the self-potential of C and for the BC inter-
action term. Namely, we define the integrals

ICC =

∫

C

|ψC1|
2|ψC2|

2

r12
dV1dV2, (9)

IBC =

∫

BC

|ψB1|
2|ψC2|

2

r12
dV1dV2. (10)

Then the Hamiltonian now takes the form

Ĥ = −
~̃
2

2µ2
(mB∆B+mC∆C)−

MmB

rB
−
MmC

rC
−m2

B IBB−m2
C ICC−mBmC IBC .

(11)
The three last terms therefore also give the correction to the total energy of the
system due to self-gravitation and to interactions of the two rings, which reads

Etot = −
1

2
w2

0

(

mB

n2
B

+
mC

n2
C

+
2m2

B

M
IBB +

2m2
C

M
ICC +

2mBmC

M
IBC

)

, (12)

where nB and nC are the main quantum numbers of the B and C wave functions
(namely, nB = 7 and nC = 8 for the PSR 1257+12 system), and where the I
integrals are now dimensionless (namely, the lengths are expressed in gravitational
“Bohr” units, rBohr = GM/w2

0).
To be complete, one adds the third planet A to the description, whose mass is

yet ≈ 200 times smaller than that of planets B and C, so that the self-potential
correction to its energy is negligible, while the interactions given by the integrals
IAB and IAC may be relevant.

5



Finally the relative correction on the energy of the three planets is found to be

∆EA

EA
= 2n2

A

(

n2
B

n2
A + n2

B

mB

M
IAB +

n2
C

n2
A + n2

C

mC

M
IAC

)

, (13)

∆EB

EB
= 2n2

B

(

mB

M
IBB +

n2
C

n2
B + n2

C

mC

M
IBC

)

, (14)

∆EC

EC
= 2n2

C

(

mC

M
ICC +

n2
B

n2
B + n2

C

mB

M
IBC

)

, (15)

where we have attributed the interaction contribution to each planet according to
its energy, and where the self-gravity and of planet A and its effects on planets B
and C have been neglected.

The integrals IBB, ICC and IBC are exactly those which are encountered in
the helium and heliumoide quantum problem (see, e.g. [7]). Their numerical
calculation for nA = 5, nB = 7 and nC = 8, which are the values of the principal
“graviquantum” number of the three planets of the PSR1257+12 system, and
l = n− 1 (quasi circularity), yields:

I77 = 0.0173582, I88 = 0.0134383, I78 = 0.0221588, I57 = 0.0377702, I58 = 0.0307991.

Since the dimensionless energies are En = −1/2n2, the perturbation can be
expressed in terms of a correction on the expected main quantum numbers, δn/n =
−(1/2)∆E/E. Using the measured values of the planet masses, mA = 0.020 ±
0.002, mB = 4.3± 0.2 and mC = 3.9± 0.2 Earth mass [6] and the standard pulsar
mass of 1.4 M⊙, one finds very small corrections,

δnA = −0.000052, δnB = −0.000090, δnC = −0.000102.

However, in the absence of a precise knowledge of the mass of the pulsar, only
ratios of quantum numbers (or equivalently, of periods, semimajor axes, or energy)
can be compared. The above corrections can then be expressed in another way. We
fix as reference nC = 8, then the expected values of the two other planets become:
(nA)pred = 5.000012, while the observed value is (nA)obs = 5.00029± 0.00020, and
(nB)pred = 7.000000, while the observed value is (nA)obs = 6.996987± 0.000008.

As expected at the beginning of this study from the smallness of the planet
masses, the corrections are negligible for this system, since they remain smaller
than the observational errors despite the precision of the data. However, a new
possible improvement of the determination of the orbital elements in the future
may render them meaningful. Moreover, all this calculation is also relevant for
multiple systems with larger planetary masses, in particular Jupiter-like planets,
in which case the corrections are no longer negligible.

Problems and Exercises

Exercise 1 Apply the above heliumoid model of planetary system formation to
the known multiple planetary systems with large planetary masses (several Jupiter
masses), in order to estimate the self-gravity and interaction corrections to be
applied to the values of the expected probability peaks.
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0.3 Evolution of a 3:2 near resonant two-planet system

0.3.1 Three-body perturbation theory

The general three-body perturbation equations (see Brouwer & Clemence [2])
in the Lagrange-Laplace theory have been applied by Malhotra [9] to the PSR
1257+12 planetary system. The gravitational interactions of low mass planets
such as the PSR 1257+12 planets, which are ≈ 105 times smaller than the pul-
sar mass, can be analysed in terms of osculating ellipses, i.e., of orbits that are
instantaneously elliptical, but whose orbital parameters are time dependent. For
a 3:2 near commensurability between two planets (1) and (2), identified respec-
tively with planet B and C of the PSR 1257+12 planetary system, and assuming
coplanar orbits, Malhotra found that the principal perturbation components in
the interaction Hamiltonian are given by

H′ = −
Gm1m2

a2

{

[P(ψ, α) − α cosψ] +
1

2
A1(α)(e

2
1 + e22)−A2(α)e1e2 cos(ω1 − ω2)

+C1(α)e1 cos(φ − ω1) + C2(α)e2 cos(φ− ω2)

}

, (16)

where the planet masses are m1 ≪ M∗ and m2 ≪ M∗ (M∗ being the central star
mass), a1 and a2 are the osculating orbital semimajor axes, e1 and e2 the osculating
eccentricities, n1 = 2π/P1 and n2 = 2π/P2 the mean orbital frequencies, and ω1

and ω2 the longitudes of periastron, and where (keeping Malhotra’s notations)

α = a1/a2,

ψ = λ1 − λ2,

φ = 3λ2 − 2λ1,

P(ψ, α) = (1− 2α cosψ + α2)−1/2,

A1(α) = +
1

4
α b

(1)
3/2(α) = +2.50,

A2(α) = −
1

4
α b

(2)
3/2(α) = −2.19,

C1(α) = −
1

2

(

6 + α
d

dα

)

b
(3)
1/2(α) = −2.13,

C2(α) = +
1

2

(

5 + α
d

dα

)

b
(2)
1/2(α) = +2.59. (17)

The λj are the mean longitudes. The b(α) are Laplace coefficients. The numerical
values of the Aj and Cj coefficients are those which corresponds to the value
α = a01/a02 = 0.771416(2) observed for the B and C planet ratio in the PSR
1257+12 system [6].

Three types of significant perturbations are apparent in this Hamiltonian:
(1) those related to conjonctions of the planets, described by the term [P(ψ, α)−
α cosψ],
(2) secular effects responsible for the slow precession of the absides, described by
the terms with coefficients A1 and A2, and
(3) the effects of the 3:2 near-commensurability of the mean motions, described
by the remaining terms.
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Malhotra wrote the first time derivative of the orbital elements as:

ȧ1
a1

= +2
m2

M∗

n1α

[

∂

∂ψ
P(ψ, α) + α sinψ + 2C1(α)e1 sin(φ− ω1) + 2C2(α)e2 sin(φ − ω2)

]

(18)
ȧ2
a2

= −2
m1

M∗

n2α

[

∂

∂ψ
P(ψ, α) + α sinψ + 3C1(α)e1 sin(φ− ω1) + 3C2(α)e2 sin(φ − ω2)

]

.

(19)
Then, using the variables

hj = ej sinωj , kj = ej cosωj , (20)

for the two planets j = 1, 2 = B,C, the variations of the eccentricities and peri-
centers read

ḣ1 = A11k1 +A12k2 +B1 cosφ,

ḣ2 = A21k1 +A22k2 +B2 cosφ,

k̇1 = −A11h1 − A12h2 −B1 sinφ,

k̇2 = −A21h1 − A22h2 −B2 sinφ. (21)

Setting

µ1 =
m1

M∗

, µ2 =
m2

M∗

, (22)

the coefficients of the matrix Aij and the vector coefficients Bj read [9]

A11 = µ2 n1αA1(α), A12 = µ2 n1αA2(α),

A21 = µ1 n2A2(α), A22 = µ1 n2A1(α),

B1 = µ2 n1αC1(α), B2 = µ1 n2C2(α). (23)

0.3.2 Analytic solution

A partial analytical solution for this system of equations had been found by Rasio
et al. [15] in a simplified case. They have treated the inner planet as a massless
“test particle” perturbed by the outer planet, which was assumed to move on an
unperturbed Keplerian orbit. To this approximation and neglecting the conjunc-
tions (close encounters), they found that the system can be integrated in terms of
a period-eccentricity relation that reads, for small eccentricities,

n1 = n∗(1 + 3 e21), (24)

where n∗ is the value of the frequency for which e1 = 0. However, this result
holds only when m2 ≫ m1, a condition which does not apply to the PSR 1257+12
system for which m1 ≈ m2. In order to find a general analytical solution for
the Malhotra system of equations, let us define a function that characterizes the
conjunction effects on the semimajor axes variation,

Γc =
∂

∂ψ
P(ψ, α) + α sinψ, (25)

and a function that depends on eccentricities, namely,

Γ = C1(α)e1 sin(φ − ω1) + C2(α)e2 sin(φ− ω2). (26)

8



In terms of these quantities, the semimajor axes equations now read

ȧ1 = +2µ2 n1a1α(Γc − 2Γ),

ȧ2 = −2µ1 n2a2(Γc − 3Γ). (27)

Therefore the two equations can be combined into a relation which no longer
depends on the eccentricities,

ȧ1
4µ2n1a1α

+
ȧ2

6µ1n2a2
=

1

6
Γc. (28)

We can now use Kepler’s third law for the osculating orbits to write

n1a1α = (GM∗)
1/2a

1/2
1 a−1

2 , n2a2 = (GM∗)
1/2a

−1/2
2 , (29)

so that the above relation becomes:

M
1/2
∗

(

1

2m2
a
−1/2
1 ȧ1 +

1

3m1
a
−1/2
2 ȧ2

)

=
Γc

3a2
. (30)

0.3.3 Prime integrals of the equations of motion

Under the approximation where the conjunction term is neglected, it leads to a
prime integral of the motion,

3m1 a
1/2
1 + 2m2 a

1/2
2 = Qa , (31)

where Qa = 3m1a
1/2
01 + 2m2a

1/2
02 = cst. This analytical result shows that the

main oscillations of the two planet orbits are strongly coupled and are always in
opposition. This effect agrees with the numerical integration of Wolszczan [17,
Fig. 2]. If we now take the conjunction term (label c) into account, we can neglect
the variation of a2 in the right-hand side of Eq. (30), and we obtain the integral

3µ1a
1/2
1 + 2µ2a

1/2
2

(

1−
1

2
µ1

2π

P2

∫

Γc(t)dt

)

= Qa. (32)

For the system PSR1257+12, we have µ1 ≈ 10−5 in the correction term, 2π/P2 =
23.37 yr−1, while the integral of Γc shows two components of amplitudes 0.05 and
0.25 yrs, so that the correction to the fluctuations of semimajor axes (which are
themselves very small, of the order of 3× 10−4) remains smaller than 4× 10−5 in
proportion. Therefore the prime integral of the motion given by Eq. (31) is valid
to a very good approximation.

Let us now consider the eccentricity equations. From the relations e21 = h21+k
2
1

and e22 = h22 + k22 , we derive

e1ė1 = h1ḣ1 + k1k̇1, e2ė2 = h2ḣ2 + k2k̇2. (33)

From Eqs. (21) we obtain the expressions

e1ė1 = A12(h1k2 − k1h2) +B1(h1 cosφ− k1 sinφ),

e2ė2 = A21(h2k1 − k2h1) +B2(h2 cosφ− k2 sinφ). (34)

From the very definition of hj and kj , we find

h1k2 − h2k1 = e1e2 sin(ω1 − ω2), (35)
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so that the derivative of the eccentricities finally read

ė1 = A12 e2 sin(ω1 − ω2) +B1 sin(ω1 − φ),

ė2 = −A21 e1 sin(ω1 − ω2) +B2 sin(ω2 − φ). (36)

We recognize in these expressions two contributions of respectively free and forced
oscillations (see [9, 5]). For the PSR 1257+12 system, the free oscillations corre-
spond to long-term motion (periods ∼ 6200 yrs and ∼ 92000 yrs [9, 5]), while the
forced oscillation are on a shorter time scale (period 2π/(3n2 − 2n1) = 5.586 yrs)
and of smaller amplitude.

Let us consider only the long term motion characterized by the free oscillations.
For them, the derivatives of the eccentricities read

ė1 = A12 e2 sin(ω1 − ω2), ė2 = −A21 e1 sin(ω1 − ω2), (37)

and we therefore find the relation

A21 e1ė1 +A12 e2ė2 = 0. (38)

It can be integrated in terms of a new conservative quantity (valid for long-term
motion),

A21 e
2
1 +A12 e

2
2 = cst. (39)

With A12 = µ2 n1αA2, A21 = µ1 n2A2, it yields a prime integral of long-term
motion

µ1n2 e
2
1 + µ2n1α e

2
2 = cst. (40)

For the PSR 1257+12 planetary system, the relative variation of the semimajor
axes is ≈ 2×10−4, while the eccentricities vary by ≈ ±50% on the long term. With
α = a1/a2 and (n2/n1)

2 = (a1/a2)
3 from Kepler’s third law, the semimajor axes

can therefore be considered as constant to the first approximation, as also shown
by numerical integration [5], so that this conservative quantity can be written

m1 a
1/2
1 e21 +m2 a

1/2
2 e22 = cst, or equivalently

Qe = e21 +
m2

m1
α−1/2 e22 = cst. (41)

This result once again shows that the motion of planets B and C are tightly
coupled and that their eccentricities oscillate on the long term in exact opposition
(see Fig. 1c of Ref. [5]).

0.3.4 Expression for the eccentricity function Γ

Let us come back to the full motion, including the free and forced osciilations of
the eccentricities. From equations (36), we derive expressions for sin(ω1 − φ) and
sin(ω2−φ), which we may now insert in the expression for the quantity Γ (Eq. 26).
This quantity describes the eccentricity-dependent contribution to the variation
of the semimajor axes. We find

Γ =
C1

B1
e1ė1 +

C2

B2
e2ė2 +

(

C2A21

B2
−
C1A12

B1

)

e1e2 sin(ω1 − ω2). (42)

When replacing the various coefficients by their expressions, one finds that
C2A21/B2 = C1A12/B1 = A2, so that the last term vanishes and Γ is finally given
by

Γ =
e1ė1
µ2n1α

+
e2ė2
µ1n2

. (43)
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To the approximation (very good in this context) where n1, n2 and α are constant,
this function can now be easily integrated as

SΓ =

∫

Γ(t)dt =
1

2µ2n1α
(e21 +Ke22), (44)

where we have set
K =

m2

m1
α−1/2 =

µ2

µ1
α−1/2, (45)

i.e., K = (m2/m1)
√

a2/a1. With the presently measured values of the masses
of planets B and C, mB = (4.3 ± 0.2) M⊕ and mC = (3.9 ± 0.2) M⊕ [6], this
parameter takes, for the PSR 1257+12 system, a value close to 1, namely,

KPSR = 1.03± 0.10. (46)

We recognize in the term e21+Ke
2
2 the hereabove long-term motion prime integral

(Eq. 41).

0.3.5 Relation between semimajor axes and eccentricities

These results allow us to finally integrate analytically the semimajor axes equa-
tions in function of the eccentricities and to provide an exact expression for the
incomplete Rasio et al. [15] formula. Let us first neglect the conjunction contri-
bution. The equation for the semimajor axis of planet (1) writes

ȧ1
a1

= −4µ2n1αΓ(t). (47)

Using the expression obtained for Γ, it writes

ȧ1
a1

= −4(e1ė1 +Ke2ė2). (48)

This equation is easily integrated as

ln
a1
a1∗

= −2(e21 +Ke22), (49)

which may be approximated for small values of the eccentricities by

a1
a1∗

= 1− 2(e21 +Ke22), (50)

where a1∗ is the (virtual) value of the semimajor axis for which e1 = e2 = 0. This
relation applies to the PSR1257+12 system, in which the eccentricities of planets
B and C run between about 0.01 and 0.03. We may also express this result in
terms of variations of the semimajor axis and eccentricities with respect to some
initial conditions, a10, e10 and e20,

a1 = a10{1− 2[(e21 − e210) +K(e22 − e220)]}. (51)

This result allows to recover and to generalize the Rasio et al. [15] formula,
a1 = a1∗[1− 2e21], in which e2 was assumed to be constant (the term K(e22 − e220)
vanishes in this case). However, it also shows that the correct result cannot be
obtained as a mere “test particle” limit m1/m2 → 0, since this increases the factor
K instead of decreasing it.

11



Let us finally derive the expression for the variation of the semimajor axis of
the outer planet. Its equation reads

ȧ2
a2

= 6µ1n2 Γ(t) =
6

K
(e1ė1 +Ke2ė2). (52)

It is integrated, for small eccentricities, as

a2
a2∗

= 1 +
3

K
(e21 +Ke22), (53)

i.e., respectively to initial conditions,

a2 = a20

{

1 +
3

K
[(e21 − e210) +K(e22 − e220)]

}

. (54)

We therefore find that the variation of the semimajor axes of the two planets
(except for the small amplitude conjunction effects) depend only on the expression
e21 + Ke22 which we have found to be a prime integral of the long-term motion.
This allows us to conclude (within the approximations used in these analytical
calculations) that there is no long-term variation of the semimajor axes of planets
B and C. This result fully agrees with the Gozdziewski et al. [5] numerical
integrations of their long-term motion, which also derived their stability.

0.4 Application to the PSR 1257+12 system evolution

0.4.1 Semimajor axes, analytic solutions

The evolution of the semimajor axis of the orbit of planet A of the PSR 1251+12
system is mainly determined by the conjunction effects by planets B and C. An
analytic expression can be obtained for this evolution [13]: the corresponding

period evolution, which is given from Kepler’s third law by a
3/2
A , is plotted in

Fig. 2.
The evolution of the semimajor axis of planet B ( i.e., planet 1 in the previous

two-planet analysis) can be analytically integrated under the form:

aB(t) = aB0

{

1− 4µC
2π

PC0
α

(

SΓ(t)−
1

2
SΓc(t)

)}

, (55)

where

SΓc(t) =

∫

Γc(t)dt =
P(ψ(t))− P(ψ0)− α(cosψ(t)− cosψ0)

nB0 − nC0
, (56)

P(ψ) =
(

1 + α2 − 2α cosψ
)−1/2

, (57)

ψ(t) = (nB0 − nC0)t+ ψ0, (58)

and

SΓ(t) =

∫

Γ(t)dt =
1

2µCnB0α
[(eB(t)

2 − e2B0) +K(eC(t)
2 − e2C0)]. (59)

The corresponding period evolution, which is given from Kepler’s third law by a
3/2
B ,

is plotted in Fig. 3. It compares satisfactorily with the perturbation of orbital

12
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Figure 2: Evolution over 10 years of the period PA of planet A in the PSR 1257+12
planetary system, plotted from its analytic expression. The fluctuations are mainly due
to the conjunction effects by planets B and C. Except for this small oscillation, the
period is stable on the long term (he motion of planet A is decoupled from the dynamics
of planets B and C in the long-term scale [5]).
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Figure 3: Evolution over 10 years of the period PB of planet B in the PSR 1257+12
planetary system, plotted from its analytic expression (see text). The fluctuations are
due to the mutual effects between planets B and C. Except for this small oscillation, the
period is stable on the long term.

period derived from numerical integration of equations of motion by Wolszczan
[17, Fig. 2].

Finally, the evolution of the semimajor axis of planet C ( i.e., planet 2 in the
previous two-planet analysis) can be analytically integrated under the form:

aC(t) = aC0

{

1 + 6µB
2π

PC0

(

SΓ(t)−
1

3
SΓc(t)

)}

. (60)
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Figure 4: Evolution over 10 years of the period PC of planet C in the PSR 1257+12
planetary system, plotted from its analytic expression (see text). The fluctuations are
due to the mutual effects between planets B and C. Except for this small oscillation, the
period is stable on the long term.

The corresponding period evolution, which is given from Kepler’s third law by

a
3/2
C , is plotted in Fig. 4. It also compares satisfactorily with the perturbation

of orbital period derived from numerical integration of equations of motion by
Wolszczan [17, Fig. 2]. The coupling of the two B and C orbits, which leads to
motion in opposition of the two planets, is clear on Figs. 3 and 4.

0.5 Consequences for the formation model

0.5.1 Periods.

We can now compare to the expectation of the wave packet formation model
(n2+n/2), not only the mean semimajor axis ratio of planetsB and C as previously
done, but the full variation with time of this ratio. It can be expressed in terms of
the ratio of effective quantum numbers nB and nC (which is expected to be equal
to 7/8). The time evolution of the ratio (nB/nC)/(7/8) is shown in Fig. 5.

An important point to notice is that this ratio, apart from very small fluctu-
ations of about 3 × 10−4, is stable on long time scales. This definitively justifies
the validity of the comparison of today’s periods with those expected from the
formation model, despite the evolution of the system over billion years. Moreover,
we can see in this figure that, when taking into account the mutual effects between
planets B and C, the minimal difference between the value expected at the end
of the formation era and the observed value has been decreased again by a factor
of ∼ 2, from 4.3 × 10−4 to about 2.5 × 10−4 (while it is 0.6 × 10−4 for the A/C
ratio).

This high precision suggests to push further the model and to attempt to obtain
a theoretical estimate of the width of the probability peaks. In the framework of
the macroscopic quantum-type scale relativity approach, this width is given by
a generalized Heisenberg relation ∆E∆t ≈ 2mD, with D = GM/2w. In this
relation, the time fluctuation ∆t may be estimated from the characteristic revival
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Figure 5: Evolution over 10 years of the ratio [nB(t)/nC(t)]/[7/8] for the two planets B
and C in the PSR 1257+12 planetary system. The minimal deviation from the expected
value 1 reaches 2.5× 10−4.

time of localized wave packets. These wave packets are characterized by a revival
time trev = 2nP/3 where P ∝ n3 is the classical period and a superrevival time
tsr = 3n trev/4 [1]. Inserting this last value in the macroscopic Heisenberg relation,
one obtains ∆E/E = 1/(πn3), i.e. ∆n/n = 1/(2πn3). For n = 8 this relation
gives ∆n/n ≈ 3 × 10−4. Though this is a very preliminary estimate (one should
take the self-gravitation of the wave packet into account), the fact that it is of the
same order of size as the observed difference seems very encouraging.

0.5.2 Eccentricities

Concerning eccentricities, the precession and near-resonance effects between plan-
ets B and C imply an important relative variation of nearly a factor 3. One
finds, both in the numerical integration [5] and in the analytic solution [13], that
the two planet eccentricities vary in opposition in the range 0.0125 to 0.0285 on
a period of about 6200 years (plus a smaller component of period about 92000
years). It would therefore have no meaning to attempt obtaining a theoretical ex-
pectation of the individual eccentricities from the formation model. However, we
have seen that the two eccentricities combine in terms of a conservative quantity
(Eq. 41), Qe = e2B +Ke2C . With the observationnal values eB = 0.0186± 0.0002,
eC = 0.0252± 0.0002, mB = (4.3± 0.2)M⊕ and mC = (3.9± 0.2)M⊕ [6] leading
to K = 1.03± 0.10, one finds Qe(obs) = 0.00100± 0.00002(e)± 0.00004(K).

Since this quantity is an invariant prime integral of the long term evolution of
the system, it must have been fixed at the end of the formation era. One may
therefore consider the possibility of deriving it as one among the possible quantized
values in the macroscopic quantum-type model. In this aim, let us carry the model
farther.

The planetesimal wave packets, being not only quantum-like wave packets but
also gravitational structures, are expected to concentrate to form protoplanets,
then the planets by final accretion. But during this concentration phase, the
conditions under which the geodesic equation (i.e., the fundamental equation of
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dynamics) may be integrated under the form of a Schrödinger equation still apply.
This results in the appearance of a scale factor f on the gravitational coupling
constant, and therefore also on the main quantum numbers. This is another man-
ifestation of the combination of the scale invariance of gravitation with a macro-
quantum Schrödinger description, which differs profoundly from the behavior of
the microscopic atomic quantum regime whose scales are fixed by the constancy of
the Planck constant ~. But the quantization of the solutions at each stage and the
conservation of energy finally implies that the scale factor be integer (this process
is quite similar to that yielding hierarchically embedded levels of organization in
planetary systems, as verified in our Solar System, see [10] and Secs. 13.3.6 and
13.4 of [13]).

Applied to the PSR 1257+12 planet formation, the initial ranks nB = 7 and
nC = 8 are successively transformed into nB = 7f and nC = 8f with f increasing
during the wave packet concentration. The coupling constant w⊙ becomes cor-
respondingly fw⊙, then allowing the planet distances GMn2/w2 to remain the
same. The width of the orbitals, on the contrary, being given by σn ∼ n3/2 [7],
relatively decreases as σ/a ∼ f−1/2, as expected for such a concentration process.

Let us apply this process to the eccentricity quantization. We have seen that it
is given by the amplitude of the Runge-Lenz vector [7], and is therefore expected to
be quantized as ekn = k/n, with k = 0 to n−1. The first quantized value is e = 0.
It yields a satisfying first approximation for the B and C planet eccentricities,
< e >≈ 0.02. To a better level of precision, the first excited value is obtained
for k = 1, i.e., eB = 1/7f and eC = 1/8f , with f integer. For f = 6, which
corresponds to the beginning of the spatial separation of the orbitals, one obtains
Qe = (1/42)2+K(1/48)2 = 0.001014 (K = 1.03 fixed), in fair agreement with the
observed value 0.001000±0.000018 (the agreement being preserved for all possible
values of K = 0.93 to 1.13). Reversely, this result can be put to the test in the
future since, if correct, it provides a value of K:

K = −
e2B − (1/42)2

e2C − (1/48)2
= 1.099± 0.065, (61)

from which an estimate of the mass ratio can be obtained,

mC

mB
= 0.965± 0.058, (62)

more precise than the presently known value mC/mB = 0.91±0.10 [6]. A possible
future improvement of the observational values of the eccentricities would still
improve this estimate.

Problems and Exercises

Open Problem 1 Use the above model of formation and evolution to predict
the distances and periods, in terms of probability density peaks, of other possible
planets in the PSR1257+12 planetary system.

Hints : The n2 + n/2 law yields in particular more probable short periods at
0.322 days (n = 1), 1.958 days (n = 2) and 5.96 days (n = 3). Wolszczan et
al. [18] have obtained timing data for about 30 successive days. An analysis of
the residuals of these data after substraction of the effects of the three known
planets (the dispersion of these residual being still larger than the error bars) has
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yielded a marginal detection (at a significance level of 2.7 σ) of a planet with a
period P = 2.2 days and a mass 0.035 M⊕, which is compatible with the n = 2
expectation [12]. The absence of planet for n = 6 may be well understood from the
numerical integrations and simulations of Gozdziewski et al. [5], which show this
particular zone to be unstable (although there is an extended stable zone between
planets A and B).
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