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Communication: Consistent picture of lateral subdiffusion in lipid bilayers:
Molecular dynamics simulation and exact results
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This communication presents a molecular dynamics simulation study of a bilayer consisting of 128
dioleoyl-sn-glycero-3-phosphocholine molecules, which focusses on the center-of-mass diffusion
of the lipid molecules parallel to the membrane plane. The analysis of the simulation results is
performed within the framework of the generalized Langevin equation and leads to a consistent
picture of subdiffusion. The mean square displacement of the lipid molecules evolves as ∝ tα , with
α between 0.5 and 0.6, and the fractional diffusion coefficient is close to the experimental value
for a similar system obtained by fluorescence correlation spectroscopy. We show that the long-time
tails of the lateral velocity autocorrelation function and the associated memory function agree
well with exact results which have been recently derived by asymptotic analysis [G. Kneller, J.
Chem. Phys. 134, 224106 (2011)]. In this context, we define characteristic time scales for these two
quantities. © 2011 American Institute of Physics. [doi:10.1063/1.3651800]

Over the last decades, a considerable amount of ex-
perimental data has been collected which gives evidence of
anomalous diffusion processes in a large variety of systems.
The common observation is that the mean square displace-
ment (MSD) of a freely diffusing particle deviates from the
linear form predicted by Einstein.1 Defining W(t) ≡ 〈{x(t)
− x(0)}2〉, where x is the position of the tagged particle
and 〈. . . 〉 denotes an ensemble average, one observes instead
MSDs of the more general form2

W (t) t→∞∼ 2Dαtα, 0 < α < 2. (1)

The regimes 0 < α < 1 and 1 < α < 2 are referred
to as subdiffusion and superdiffusion, respectively, and the
fractional diffusion constant Dα has the physical dimension
length2/timeα . Due to the development of fluorescence-based
observation methods, such as fluorescence correlation spec-
troscopy (FCS) and single particle tracking (SPT) methods,
anomalous diffusion processes have also been observed in
biological systems, in particular, in membranes and in the
cell.3–9 Concerning the lateral diffusion of molecules in lipid
bilayers, the observation of anomalous diffusion is, to some
extent, still under debate. Computer simulations and NMR
experiments on the nano- to microsecond time scale sug-
gest that lateral subdiffusion in membranes is a transient
phenomenon,10 or that it does not exist at all,11 although
FCS experiments on the millisecond time scale clearly see
this phenomenon.4 The idea of this communication is to shed
some light on this question by analyzing a 90 ns molecular
dynamics (MD) simulation of a lipid model bilayer in the
framework of the generalized Langevin equation (GLE).12

For this purpose, we performed a 160 ns simulation of a
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system consisting of 128 (8 × 8 × 2) dioleoyl-sn-glycero-
3-phosphocholine (DOPC) molecules hydrated by 3840 wa-
ter molecules, using the GROMACS 3.3.1 package.13 The sys-
tem is shown in Fig. 1. The electrostatic interactions were
evaluated using the particle-mesh Ewald summation.14 For
the real box, three-dimensional periodic boundary conditions
with the usual minimum image convention and a cutoff of
12 Å were used. To allow for a time step of 2 fs, we ap-
plied the SHAKE algorithm15 to constrain the lengths of all
OH and CH bonds to their respective equilibrium values.
The system was equilibrated for 70 ns and the remaining 90
ns of the MD trajectory were used for further analysis. The
MD simulation was carried out at constant pressure (1 atm)
and at a temperature of 310 K (37 ◦C), which is above the
main phase transition temperature (−20 ◦C) for the DOPC
bilayer.16 Temperature and pressure of the system were con-
trolled by the Berendsen method,17 setting the correspond-
ing relaxation times both to 0.5 ps. Here, the temperatures
of the solute and the solvent were controlled independently
and the applied pressure was controlled anisotropically, keep-
ing the trace of the pressure tensor at 1 atm.

As a first analysis of the simulation, we computed the
MSD for the lateral center-of-mass (CM) motion of the DOPC
molecules. The MSDs of the individual molecules were esti-
mated through the time average

Wj (n) ≈ 1

Nt − n

Nt−n−1∑
k=0

(xj (k + n) − xj (k))2, (2)

and the results were averaged over all (physically equivalent)
DOPC molecules

W (n) = 1

Nmol

Nmol∑
j=1

Wj (n). (3)
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FIG. 1. Simulated system consisting of a bilayer of 2 × 64 DOPC lipid
molecules and 3840 water molecules (light-grey).

Here Nmol denotes the number of lipid molecules, Nt is the
number of time steps in the MD trajectory, and x(n) ≡ x(n�t),
with �t being the sampling time step. The results for two dif-
ferent lag time scales (1 ns and 30 ns) are shown in Figs. 2 and
3, respectively, where dots correspond to the simulated MSDs
and solid lines to the fits of expression (1). The fit parame-
ters are α = 0.52, Dα = 0.107 nm2/nsα for the fit in Fig. 2
and α = 0.61, Dα = 0.101 nm2/nsα for the fit in Fig. 3. We
have also performed an analysis for an intermediate lag time
scale of 5 ns (not shown here), which lead to α = 0.56, Dα

= 0.110 nm2/nsα . The insets of Figs. 2 and 3 show the spread
of the MSDs for the individual molecules. The rapid increase
of the latter with the lag time spots the problem of statistical
reliability, if the lag time becomes comparable with the length
of the simulation trajectory. The form of the spread gives
also a hint to appropriate stochastic models describing the
observed subdiffusion, such as (ergodic) fractional Brownian
motion (fBM) and the (non-ergodic) continuous time random
walk.18 Here, one has to make the assumption that the average
over all molecules corresponds to a true ensemble average.
The observed Gaussian shape of the distribution functions
shown in Figs. 2 and 3 supports that the lateral subdiffusion
of the DOPC molecules can be described by fBM. In recent
experimental studies, both models have been used to describe
experimental data for trajectories of diffusing molecules.7–9

We note finally that the fractional diffusion constant found
for the lateral diffusion of lipid molecules in the giant vesi-
cles studied in Ref. 4 is Dα = 0.088 ± 0.007 nm2/nsα for
α = 0.74 ± 0.08. Although the lipid bilayer considered in
this study consisted of different lipid molecules (dilauroyl-sn-
glycero-3-phosphocholine or DLPC), the measured diffusion
coefficient shows that the results for Dα obtained in our sim-
ulation study of DOPC are of the right order of magnitude.

In the following, we further analyze the lateral center-of-
mass dynamics of the DOPC molecules in the framework of
the GLE.12 The velocity autocorrelation function (VACF) of a
tagged molecule, c(t) ≡ 〈v(0) · v(t)〉, fulfills then the integro-

FIG. 2. Simulated molecule-averaged MSD for the lateral CM diffusion of
the DOPC molecules (dots) and fit of model (1) (solid line). The fitted frac-
tional diffusion coefficient is Dα = 0.107 nm2/nsα for α = 0.52. The inset
shows the distribution of δW(t) = Wj(t) − W(t) for t = 0.1 ns, t = 0.5 ns,
and t = 1 ns (with increasing width). In the main figure the corresponding
average MSD values are indicated by triangles.

differential equation

∂tc(t) = −
∫ t

0
dt ′ κ(t − t ′)c(t ′), (4)

where κ(t) is the corresponding memory kernel. Formally,
the latter can be derived from the microscopic Hamiltonian
dynamics of the system under consideration (tagged particle
plus the environment). Using that the MSD and the VACF are
related through19

W (t) = 2
∫ t

0
dτ (t − τ )c(τ ), (5)

one can derive characteristic long-time tails for the VACF and
its memory function,20

c(t) t→∞∼ Dαα(α − 1)tα−2, (6)

κ(t) t→∞∼
〈v2〉
Dα

sin(πα)

πα
t−α, (7)

FIG. 3. As Fig. 2, but for a maximum time lag of 30 ns. Here, the fitted
fractional diffusion coefficient is Dα = 0.101 nm2/nsα for α = 0.61 and the
inset shows the spread of the molecular MSDs at t = 5 ns, t = 15 ns, and
t = 30 ns.
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FIG. 4. Normalized simulated VACF for the lateral CM motion of the DOPC
molecules. The inset shows the superposition of the simulated VACF (dots)
with the long-time tail (6) (solid line). Here it is taken into account that c(0)
= 1, and the characteristic time scale defined according to Eq. (11) is τVACF
= 0.35 ps.

which are to be considered as necessary conditions for anoma-
lous diffusion. Expressions (6) and (7) are also sufficient con-
ditions in case of super- and subdiffusion, respectively. For
subdiffusion, the theory predicts thus a negative long-time
tail for the VACF and a positive long-time tail for the mem-
ory function. Negative values of the VACF for large time lags
indicate a persistent tendency of the diffusing molecules to
invert their direction of motion and thus a tendency to stay lo-
calized. In agreement with this interpretation, Eq. (4) shows
that the inversion of the direction of motion is favored by posi-
tive values of the memory function. In this context, it is worth-
while noting that the VACF for fBM, which can be defined for
a coarse-grained velocity, decays asymptotically also as tα − 2,
with c(t) < 0.9

To investigate the existence of a long-time tail in the
VACF, we estimated the contributions of the individual
molecules again through time averages

cj (n) ≈ 1

Nt − n

Nt−n−1∑
k=0

vj (k) · vj (k + n) (8)

and calculated the VACF as an average over the individual
contributions,

c(n) = 1

Nmol

Nmol∑
j=1

cj (n). (9)

The results are shown in Fig. 4, where the VACF has been nor-
malized such that c(0) = 1. The inset shows that the computed
VACF (dots) is in good agreement with the long-time tail (6)
(solid line) if t > 1 ps. In this comparison, the normalization
of the VACF has been taken into account. The asymptotic
regime of the VACF is defined with respect to a correspond-
ing typical time scale, τVACF. For normal diffusion, this time
scale can be obtained via τVACF = ∫ ∞

0 dt c(t)/c(0). To gener-
alize this estimation for arbitrary α we use that the fractional
diffusion constant can be written as20

Dα = 1

	(1 + α)

∫ ∞

0
dt 0∂

α−1
t c(t), (10)

FIG. 5. Memory function associated with the VACF shown in Fig. 4. The
inset shows the superposition of the calculated memory function (dots) with
the corresponding long-time tail (7) (solid line). The characteristic time scale
defined according to Eq. (14) is τmem = 2.4 fs.

where 	(.) is the Gamma function21 and 0∂
α−1
t c(t)

= d/dt
∫ t

0 dt ′ 	(α)−1(t − t ′)α−1c(t ′) is the fractional Rieman-
Liouville derivative22 of order 1 − α of c(t). Noting that c(0)
= 〈v2〉, we define

τVACF =
(

Dα

〈v2〉
)1/(2−α)

. (11)

Using α = 0.61, Dα = 0.101 nm2/nsα , and a thermal mean
square velocity of 〈v2〉 = kBT /M = 6.55 × 10−3 nm2/ps2 at
T = 310 K, yields τVACF = 0.35 ps. Here kB is the Boltzmann
constant, T is the absolute temperature in Kelvin, and M is
the mass of a single DOPC molecule. What exactly means t

� τVACF can be seen from Fig. 4, which shows that the
asymptotic regime starts at t ≈ 1 ps, corresponding to t ≈
3 τVACF. On account of relation Eq. (5), this time scale also
defines the onset of the asymptotic regime of the MSD. Since
τVACF is much smaller than the time scale on which the MSD
varies notably, expression (1) can be in practice fitted for the
whole time scale, 0 ≤ t < ∞. This has been tacitly assumed
in the fits of the MSDs described earlier.

To compute the memory function, we started from the
discretized form of Eq. (4),

c(n + 1) − c(n)

�t
= −

n∑
k=0

�t wkc(n − k)κ(k), (12)

where w0 = wn = 1/2 and wk = 1 for k = 1, . . . , n − 1
(Simpson integration scheme). Equation (12) can be consid-
ered as a linear of system of equations for κ(0), κ(1), κ(2),
etc., which can be solved recursively. The result is shown in
Fig. 5, where the inset shows the long-time tail (dots) together
with the analytical form (7) (solid line). Although the mem-
ory function decays very rapidly to almost zero compared to
its initial value, it is exactly the remaining positive long-time
tail which makes the diffusion process subdiffusive. We note
that the agreement between the long-time tail of the memory
function and the theoretical prediction is less good as for the
VACF. A reason might be that the memory function is not well
resolved for short times and that errors in the VACF are accu-
mulated through the recursive calculation of κ(n). The typical
time scale for the memory function can be defined along the
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same lines as for the VACF, using that20

ηα = 〈v2〉
Dα

=
∫ ∞

0
dt 0∂

1−α
t κ(t). (13)

Introducing the frequency � ≡ √
κ(0), we define

τmem =
( ηα

�2

)1/α

. (14)

Using the same parameters as for the calculation of τVACF

and that �2 = 163.25 ps−2, we obtain τmem = 2.7 fs. This
value confirms the very rapid decay of κ(t) seen in Fig. 5
and one sees that the asymptotic regime starts approximately
at t ≈ 10 ps, which corresponds to t ≈ 4000 τmem. Although
the characteristic time scale of the memory function is much
shorter than the one of the VACF, its asymptotic regime starts
even later.

To resume the results, we have shown that the lateral dif-
fusion of the lipid molecules in the simulated DOPC bilayer
displays a clear signature of subdiffusion, with fractional dif-
fusion constants that are compatible with experimental results
obtained by FCS. The asymptotic forms of the VACF and the
corresponding memory function agree in particular with cor-
responding theoretical expressions predicted for this type of
anomalous diffusion. It is worthwhile noting that the long-
time tail ∝ tα − 2 of the lateral VACF might have an expla-
nation in terms of a hydrodynamic backflow of the surround-
ing molecules. This argument has been put forward long time
ago to explain the long-time tails in the VACFs of simple
liquids.19 In this context, we refer to recent work by Falk
et al.23 who observed collective flow patterns in the lateral
motions of molecules in a lipid bilayer.
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