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Mass and size effects on the memory function of tracer particles
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Using autoregressive modeling of discrete signals, we investigate the influence of mass and size on
the memory function of a tracer particle immersed in a Lennard-Jones liquid. We find that the
memory function of the tracer particle scales with the inverse reduced mass of the simulated system.
Increasing the particle’s mass leads rapidly to a slow exponential decay of the velocity
autocorrelation function, whereas the memory function changes just its amplitude. This effect is the
more pronounced the smaller and the heavier the tracer particle i2008 American Institute of
Physics. [DOI: 10.1063/1.1562620

Diffusion of particles in liquids is one of the most fun- An important question from a practical and theoretical
damental transport processes studied in physical chemistoint of view is to know how the nonexponential behavior of
and biology. For many chemical reactions in liquids diffu- the VACF of a diffusing particle is related to its size and
sion is the rate-limiting step. All measurable quantities rel-mass, in other words, at which point a simplified Langevin
evant to diffusion of a tracer particle in a liquid can be ex-description of the tracer particle becomes appropriate. To an-
pressed in terms of itthormalized velocity autocorrelation swer this question, we use the information available from

function molecular dynamic$MD) simulations of liquids. The com-
(0(0)p(1)) putati_on of memory_functions from MD simulatior_ls ha_s been
()= gt (1)  described recently in Ref. 5, and we refer to this article for
(v5(0)) technical details and references. MD simulations yield trajec-

Hereu(t) is one Cartesian component of the velocity of thetories of time dependent observables on a discrete time axis,

tracer particle and...) denotes a thermal average. As Zwan-{=nAt, whereAt is the simulation time step or a multiple of
zig has showr,one can derive a formal equation of motion it. The starting point to compute memory functions is thus a

for y(t), discrete version of Eq2),
dy ‘ n+1)—(n "
E:_fodTg(t_T)w(T)- (2 w:_go Atf(n-kﬁﬂ(k) (5)

The kernelé(t) is the memory function an(®) is called the
memory function equation. The memory function can for-
mally be expressed in terms of microscopic variabfes,

In very much the same way as the Laplace-transformed
memory function equation is used for the development of
analytical models ofi(t), the ztransform of the discrete

(vexpi[1-"P]Lt)D) memory function equatior{5) can be used for numerical
§H= (v ' 3 studies. In particular, it can be solved for théransformed
memory function,

where L is the Liouville operator of the system arRlis a

projector whose action on an arbitrary function in phase 1 z
spacej, is defined through E-(D)= 1z m+ 1-2z|, (6)
Pi=v % (4) whereZ.(z) is defined as
1%
In the past, various models for the velocity autocorrelation — _ (ar) )= i (AR) n )
function (VACF) have been developed on the basis of the —> (z = ¢ (mz

memory function equatiof2). In the simplest case one sets

&(t)=17y46(t) which leads to an exponential form for the The above equation is, of course, only usefulif (z) and
VACF, #(t)=exp(— ). This result is well-known from the the inversez-transform of= . (z) can be computed. As it has
Langevin theory of diffusiorf:* An overview over more in- been shown in Ref. 5, this can be achieved by describing the
volved models fog(t) leading to the nonexponential VACFs underlying time series(n) as an autoregressiid\R) sto-

of liquids can be found in Ref. 2. chastic process of ordét,
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P

P
o(1)= 2 aff’u(t=nAt)+ep(t). ®) ()=~ alP'zPk

. (11
=31

Multiplying (8) with v(t—nAt) and performing a thermal |n the following p(z) is assumed to have distinct zeros
average yields a set of linear equations for the predictor cowhich fulfill the stability criterion|z,|<1. The latter is guar-
efficients,ay’ (n=1,...P). The resulting linear equations, anteed by the Burg algorithm. The memory function in
which read 37_;a'Py(lk—n|At)=(kAt) (k=1,..P),  the time domain is now obtained by insertif@ into (6)
are known as the Yule—Walker equatidrihey require the and computingg(n) from (7) by polynomial division’ The
knowledge ofy(t), which can be computed from the MD |atter step is motivated by the definitioi) of =A% (z).
trajectory. The square amplitude of the white noiseep(t)  Within the AR model the zeros gi(z), i.e., the poles of

is given byop=1-37_,a{” y(nAt). In our studies we use (AR)(7) also determine the VACF on the positive time
the Burg algorithn? -8 which takes the time seriegkAt) as

axis. Inversez-transformation of9) yields
input and estimateg(t) as well as(rﬁ, implicitly. Within the

AR model the(unilatera) z-transformed discrete VACF has
the simple form

1 S
Yn)=5— 3§Cdzz“\lf§\'*><z>=j21 Bz (12)

P
Z . . . .
P (AR (2) = 2 ’sz—z- 2> |zj|, (9) for n=0. The mte(gAE:;mon contour is any closed path contain-
=1 j ing all poles of ™ (2z).

where the coefficientg; are given by Applying the method described above, we have com-

puted the memory function of a tracer particle immersed in
1 —zr’lcr,% liquid argon at a temperature of 90.0 K. The interactions
Bi=—® P oIP (z—7 8’ (10
ap’ Hy_q1y4(zi= 2z =1(zj—27 )

between the fluid particles are described by a Lennard-Jones
potential and those between the tracer particle and the fluid
andz; are the zeros of the characteristic polynomial by distance-shifted version of the same potential
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FIG. 1. Memory functions of the tracer particle for mass rafiém=1 (a), M/m=10 (b), M/m=100 (c), andM/m= 1000 (d), respectively, and different

functions, (t).

particle sizes. The diameter of the tracer particlé4s2*®c-+ § with o-=0.295 99 nm. The insets show the corresponding normalized velocity autocorrelation
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o112 o6 TABLE Il. Scaling factorsé) (0)/£,(0) for different mass ratios1/m and
USS: 2 del | —| —|— , (13) different sizes of the tracer particle.
i.jes Fij Fij
12 6 °
o [oa nm
Urs= >, 4e( S| - 5 ) (14) M “
jes rrj— rrj— m m 0 0.1 0.5 0.9
Here “S’ stands for “solvent” and “T” for “tracer particle.” 10 9.95 9.97 9.96 9.80 9.91
The interaction potential is determined by the Lennard-Jones 100 95.34 95.25 96.00 95.83 94.41
1000 671.81 788.94 686.10 686.46 679.15

parameters and o (with e=0.878 64 a.m.x nn?/ps, o
=0.29599 nm). The additional parameteallows to change
the size of the tracer particle. Defining the particle size by the
minimum of the Lennard-Jones potential, we have

increasing size, the VACF exhibits stronger oscillations. For
a given size the scaling behavior of the memory function is
. . . . neverthel maintained.
A system of 2048 particles in total has been simulated in thee ertheless na a 'ed o .
; . . . . . The most interesting qualitative result for the VACF is
microcanonicaNV E ensemble with a simulation time step .
that they approach rapidly an overdamped featureless expo-

of 20 fs. In order to obtain good statistics for the VACF of . : o .

the tracer particle. long traiectories of up o 45 ns were Crepentlal behavior with increasing mass, whereas the memory
-r partice, fong traje P . function changes just its amplitude. The form of the memory

ated. This point is important if very heavy tracer particles ar

considered. For the subsequent analvsis we fitted an AR r‘if)gnction is, in fact, irrelevant if the characteristic time scales
' q inatys| P'%t the memory function and the VACF can be clearly sepa-
cess of ordeP=80 to each velocity trajectory of the tracer

. . ) rated. This is exactly the assumption in the Langevin ap-
particle, usingAt=20 fs as sampling interval. L o
: . proximation, where the memory function is replaced by a
Figures 1a)-1(d) show the memory functions of the . S )
. . Dirac delta distribution. The tendency to an exponential
tracer particle for mass ratidd/m=1, 10, 100, and 1000, . .
. : VACF is the more pronounced the smaller and heavier the
respectively, wheren=39.95 a.m.u. is the mass of an argon

. . . tracer particle is. In contrast, increasing its size and reducing
atom andM is the mass of the tracer particle. The insets. o ,
) its mass enhances the vibrational component in the VACFs.
show the corresponding VACFs computed from the AR

. . . "To validate the VACFs obtained from the AR model we com-
model. All memory functions are given for the same time

interval of 2 ps. This value is motivated by the AR model for puted corresponding estimates directly from the MD trajec-

»(t), whose systematic part is defined in the time intervaltories and we found excellent agreement in all cases, con-
[t—PALt]. Since P=80 and At=20fs, we havePAt firming the results found in Ref. 5. In the statistically

— 1.6 ps. Althougl&(t) is defined on the whole positive time relevant time intervals the differences can be considered as

. ) zero. The behavior of the VACF can be qualitatively under-
axis, values fot>PAt are to be considered as an extrapo- L e .
. ., stood as follows: Differentiating the memory function equa-
lation. We found that these extrapolated values tend rapldl¥ )
e T ; . ion (2) one obtain$
to zero with increasing time. The most obvious result is that
the mass of the tracer particle influences essentially the am-
plitude of its memory function, but the form of the latter is
left almost unchanged. Only a slightly slower decay can be , )
observed when passing from/m=1 to 10. In contrast, the I ON€ assumes tha(t) obeys itself an equation of typ@),

size of the tracer particle influences strongly its form. WithWith K(t) as kernel. If nowK(t) = 5(t), i.e., if K(t) decays
much faster tharg(t), one obtains an exponential form for

the memory functiong(t) = £(0)exp(=At), and ¢ (t) is the
solution of the equation of motion for a damped harmonic

d=do+6 with dy=2. (15)

. t :
bt E0) g+ deTK(t—T)tﬂ(T) (16)

TABLE |. Relaxation constanty for different mass ratiod/m and differ-
ent sizes of the tracer particle. The particle diametet=al,+ 8, with dg
=2Y6¢=0.3324 nm. For each mass ratio the first line contairebtained
from y=At-E®R(1), and the second line containsobtained by fitting
(1) ~exp(=n).

oscillator, s+ \ i+ £(0)y=02%! Note that £0) defines
the frequency of the oscillator andthe damping. Since all
memory functions in our example decay on similar time
scales, it is essentiall§(0) that determines the form af(t).

If &O0) is large, ¢(t) exhibits the vibrations related to the

K rattling motion in the “cage” of nearest neighbors. If, in
M nm contrast,&(0) is small, one obtains a purely exponential be-
m 0 0.1 0.5 0.9 havior. The approach to the exponential regime can be char-
1 - 3323 10,1861 21,0653 34.4472 actepzed by comparing the frlctlgn coeff|C|_ent of the tracer
6.2288 8.1878 17.1468 28.6416 partlcle, which is defined a$/=f0dt§(t), with the corre-
10 0.9314 1.2468 2.5204 49094  sponding value obtained from a fit of an exponential to the
0.9110 1.2131 2.7848 53593  VACF, y(t)~exp(—t). Within the AR model,y can be cal-
100 0.1061 0.1483 0.3196 0.5721
culated as
0.1024 0.1351 0.2975 0.5423
1000 0.0132 0.0203 0.0442 0.0792 *
0.0131 0.0182 0.0422 0.0739 y= EO Até(n)=AtE_(1). (17)
n=
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TABLE Ill. Values of the memory function at=0 compared to the nega- ing the reIationg(O): _ 1/’(0) Forthis test we used a direct
tive curvature of the VACF— ¢(0). Thelatter has been obtained by nu- estimation of‘//(n) from the MD trajectory and computed its
merical differentiation. . . . .
negative curvature a@t=0 by numerical differentiation, us-
5 ing the central difference scheme. Table Ill shows the results
m for different masses and sizes of the tracer particle. Again,

nm
M except forM/m= 1000 and the smallest size=d,, remark-
m 0 01 05 09 able agreement is achieved in all cases.
1 53.2532 74.8534 210.4775 467.7310 This Communication has revealed that the exponential
53.2721 74.7491 210.2601 467.7315  pehavior of the VACF of a diffusing tracer particle is essen-
10 5.3438 7:5191 21.4838 47.2131 tially attained by a change in amplitude of the memory func-
5.2980 7.5034 21.2139 47.1845 : ) . J
100 0.5591 0.7797 21962 49542  tion, and not by a change in form towards a Dirac distribu-
0.5283 0.7779 2.1960 49534 tion, as postulated in the Langevin model. The memory
1000 0.0675 0.1091 0.3066 0.6887  function is essentially scaled by the inverse reduced mass of
0.0587 0.1080 0.3105 0.6897  the tracer particle. This illustrates nicely a conjecture of Es-

parol and Z(nga'? who demonstrated that the average
square momentum scales with the reduced mass if the num-
ber of solvent particles is finite. The latter is an important
Table | shows the comparison for different masses and sizgsoint in computer simulations. With increasing mass of the
of the tracer particle. The results show that the exponential fitracer particle, the amplitude of the memory function be-
is the better the smaller and the heavier the tracer particle igomes rapidly small, such that its form does not matter for
Since &0) is the essential parameter determining they(t), which becomes an exponential. The study has also
form of ¢(t), it is worthwhile to examine its scaling behav- shown that the size of a diffusing tracer particle does influ-
ior in more detail. As Espan and Zdiiga have showd?the  ence the amplitude and the form of the memory function.
average square momentum of a tracer particle which is imwith increasing size the cage effect is enhanced and leads to
mersed in a solvent containingfimite number of particles, stronger oscillations ins(t). The paper has confirmed that
N, is given by (p?)=kgTu, where u=(M-Nm)/(Nm  the AR model is a reliable basis for computing correlation
+ M) is the reduced mass of the system solute/solvent. Writfunctions, and moreover a versatile tool to compute quanti-
ing v=p/M andv=F/M, one obtains fron{3) ties such as the memory function, which cannot be computed
(F?) directly from molecular dynamics computer simulations.
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