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Mass and size effects on the memory function of tracer particles
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Using autoregressive modeling of discrete signals, we investigate the influence of mass and size on
the memory function of a tracer particle immersed in a Lennard-Jones liquid. We find that the
memory function of the tracer particle scales with the inverse reduced mass of the simulated system.
Increasing the particle’s mass leads rapidly to a slow exponential decay of the velocity
autocorrelation function, whereas the memory function changes just its amplitude. This effect is the
more pronounced the smaller and the heavier the tracer particle is. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1562620#
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Diffusion of particles in liquids is one of the most fun
damental transport processes studied in physical chem
and biology. For many chemical reactions in liquids diff
sion is the rate-limiting step. All measurable quantities r
evant to diffusion of a tracer particle in a liquid can be e
pressed in terms of its~normalized! velocity autocorrelation
function

c~ t ![
^v~0!v~ t !&

^v2~0!&
. ~1!

Herev(t) is one Cartesian component of the velocity of t
tracer particle and̂...& denotes a thermal average. As Zwa
zig has shown,1 one can derive a formal equation of motio
for c(t),

dc

dt
52E

0

t

dtj~ t2t!c~t!. ~2!

The kernelj(t) is the memory function and~2! is called the
memory function equation. The memory function can f
mally be expressed in terms of microscopic variables,1,2

j~ t !5
^v̇ exp~ i @12P#Lt !v̇&

^v2&
, ~3!

whereL is the Liouville operator of the system andP is a
projector whose action on an arbitrary function in pha
space,f, is defined through

Pf5v
^vf&

^v2&
. ~4!

In the past, various models for the velocity autocorrelat
function ~VACF! have been developed on the basis of
memory function equation~2!. In the simplest case one se
j(t)5gd(t) which leads to an exponential form for th
VACF, c(t)5exp(2gt). This result is well-known from the
Langevin theory of diffusion.3,4 An overview over more in-
volved models forj(t) leading to the nonexponential VACF
of liquids can be found in Ref. 2.
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An important question from a practical and theoretic
point of view is to know how the nonexponential behavior
the VACF of a diffusing particle is related to its size an
mass, in other words, at which point a simplified Langev
description of the tracer particle becomes appropriate. To
swer this question, we use the information available fro
molecular dynamics~MD! simulations of liquids. The com-
putation of memory functions from MD simulations has be
described recently in Ref. 5, and we refer to this article
technical details and references. MD simulations yield traj
tories of time dependent observables on a discrete time a
t5nDt, whereDt is the simulation time step or a multiple o
it. The starting point to compute memory functions is thu
discrete version of Eq.~2!,

c~n11!2c~n!

Dt
52 (

k50

n

Dtj~n2k!c~k!. ~5!

In very much the same way as the Laplace-transform
memory function equation is used for the development
analytical models ofc(t), the z-transform of the discrete
memory function equation~5! can be used for numerica
studies. In particular, it can be solved for thez-transformed
memory function,

J.~z!5
1

Dt2 S z

C.~z!
112zD , ~6!

whereJ.(z) is defined as

J.
~AR!~z![ (

n50

`

j~AR!~n!z2n. ~7!

The above equation is, of course, only useful ifC.(z) and
the inversez-transform ofJ.(z) can be computed. As it ha
been shown in Ref. 5, this can be achieved by describing
underlying time seriesv(n) as an autoregressive~AR! sto-
chastic process of orderP,
3 © 2003 American Institute of Physics
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v~ t !5 (
n51

P

an
~P!v~ t2nDt !1eP~ t !. ~8!

Multiplying ~8! with v(t2nDt) and performing a therma
average yields a set of linear equations for the predictor
efficients,an

(P) (n51,...,P). The resulting linear equations
which read Sn51

P an
(P)c(uk2nuDt)5c(kDt) (k51,...,P),

are known as the Yule–Walker equations.6 They require the
knowledge ofc(t), which can be computed from the MD
trajectory. The square amplitudesP

2 of the white noiseeP(t)
is given bysP

2 512Sn51
P an

(P)c(nDt). In our studies we use
the Burg algorithm,6–8 which takes the time seriesv(kDt) as
input and estimatesc(t) as well assP

2 implicitly. Within the
AR model the~unilateral! z-transformed discrete VACF ha
the simple form5

C.
~AR!~z!5(

j 51

P

b j

z

z2zj
, uzu.uzj u, ~9!

where the coefficientsb j are given by

b j5
1

aP
~P!

2zj
P21sP

2

Pk51,kÞ j
P ~zj2zk!P l 51

P ~zj2zl
21!

, ~10!
andzj are the zeros of the characteristic polynomial
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p~z!5zP2 (
k51

P

ak
~P!zP2k. ~11!

In the following p(z) is assumed to haveP distinct zeros
which fulfill the stability criterionuzku,1. The latter is guar-
anteed by the Burg algorithm. The memory function
the time domain is now obtained by inserting~9! into ~6!
and computingj(n) from ~7! by polynomial division.9 The
latter step is motivated by the definition~7! of J.

(AR)(z).
Within the AR model the zeros ofp(z), i.e., the poles of
C.

(AR)(z), also determine the VACF on the positive tim
axis. Inversez-transformation of~9! yields

c~n!5
1

2p i R
C
dz zn21C.

~AR!~z!5(
j 51

P

b j zj
n ~12!

for n>0. The integration contour is any closed path conta
ing all poles ofC.

(AR)(z).
Applying the method described above, we have co

puted the memory function of a tracer particle immersed
liquid argon at a temperature of 90.0 K. The interactio
between the fluid particles are described by a Lennard-Jo
potential and those between the tracer particle and the fl

by distance-shifted version of the same potential

ation

FIG. 1. Memory functions of the tracer particle for mass ratioM /m51 ~a!, M /m510 ~b!, M /m5100 ~c!, andM /m51000 ~d!, respectively, and different
particle sizes. The diameter of the tracer particle isd521/6s1d with s50.295 99 nm. The insets show the corresponding normalized velocity autocorrel
functions,c(t).
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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USS5 (
i , j PS

4eS F s

r i j
G12

2F s

r i j
G6D , ~13!

UTS5(
j PS

4eS F s

r T j2dG12

2F s

r T j2dG6D . ~14!

Here ‘‘S’’ stands for ‘‘solvent’’ and ‘‘T’’ for ‘‘tracer particle.’’
The interaction potential is determined by the Lennard-Jo
parameterse and s ~with e50.878 64 a.m.u.3nm2/ps2, s
50.295 99 nm). The additional parameterd allows to change
the size of the tracer particle. Defining the particle size by
minimum of the Lennard-Jones potential, we have

d5d01d with d0521/6s. ~15!

A system of 2048 particles in total has been simulated in
microcanonicalNV E ensemble with a simulation time ste
of 20 fs. In order to obtain good statistics for the VACF
the tracer particle, long trajectories of up to 45 ns were c
ated. This point is important if very heavy tracer particles
considered. For the subsequent analysis we fitted an AR
cess of orderP580 to each velocity trajectory of the trace
particle, usingDt520 fs as sampling interval.

Figures 1~a!–1~d! show the memory functions of th
tracer particle for mass ratiosM /m51, 10, 100, and 1000
respectively, wherem539.95 a.m.u. is the mass of an arg
atom andM is the mass of the tracer particle. The inse
show the corresponding VACFs computed from the A
model. All memory functions are given for the same tim
interval of 2 ps. This value is motivated by the AR model f
v(t), whose systematic part is defined in the time inter
@ t2PDt,t#. Since P580 and Dt520 fs, we havePDt
51.6 ps. Althoughj(t) is defined on the whole positive tim
axis, values fort.PDt are to be considered as an extrap
lation. We found that these extrapolated values tend rap
to zero with increasing time. The most obvious result is t
the mass of the tracer particle influences essentially the
plitude of its memory function, but the form of the latter
left almost unchanged. Only a slightly slower decay can
observed when passing fromM /m51 to 10. In contrast, the
size of the tracer particle influences strongly its form. W

TABLE I. Relaxation constantsg for different mass ratiosM /m and differ-
ent sizes of the tracer particle. The particle diameter isd5d01d, with d0

521/6s50.3324 nm. For each mass ratio the first line containsg obtained
from g5Dt•J.

(AR)(1), and the second line containsg obtained by fitting
c(t)'exp(2gt).

M

m

d

nm

0 0.1 0.5 0.9

1 7.3323 10.1861 21.2653 34.4472
6.2288 8.1878 17.1468 28.6416

10 0.9314 1.2468 2.5204 4.9094
0.9110 1.2131 2.7848 5.3593

100 0.1061 0.1483 0.3196 0.5721
0.1024 0.1351 0.2975 0.5423

1000 0.0132 0.0203 0.0442 0.0792
0.0131 0.0182 0.0422 0.0739
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increasing size, the VACF exhibits stronger oscillations. F
a given size the scaling behavior of the memory function
nevertheless maintained.

The most interesting qualitative result for the VACF
that they approach rapidly an overdamped featureless e
nential behavior with increasing mass, whereas the mem
function changes just its amplitude. The form of the memo
function is, in fact, irrelevant if the characteristic time sca
of the memory function and the VACF can be clearly sep
rated. This is exactly the assumption in the Langevin
proximation, where the memory function is replaced by
Dirac delta distribution. The tendency to an exponen
VACF is the more pronounced the smaller and heavier
tracer particle is. In contrast, increasing its size and reduc
its mass enhances the vibrational component in the VAC
To validate the VACFs obtained from the AR model we co
puted corresponding estimates directly from the MD traj
tories and we found excellent agreement in all cases, c
firming the results found in Ref. 5. In the statistical
relevant time intervals the differences can be considered
zero. The behavior of the VACF can be qualitatively und
stood as follows: Differentiating the memory function equ
tion ~2! one obtains2

c̈1j~0!c1E
0

t

dtK~ t2t!ċ~t! ~16!

if one assumes thatj(t) obeys itself an equation of type~2!,
with K(t) as kernel. If nowK(t)5ld(t), i.e., if K(t) decays
much faster thanj(t), one obtains an exponential form fo
the memory function,j(t)5j(0)exp(2lt), andc(t) is the
solution of the equation of motion for a damped harmo
oscillator, c̈1lċ1j(0)c50.2,10,11 Note that j~0! defines
the frequency of the oscillator andl the damping. Since al
memory functions in our example decay on similar tim
scales, it is essentiallyj~0! that determines the form ofc(t).
If j~0! is large,c(t) exhibits the vibrations related to th
rattling motion in the ‘‘cage’’ of nearest neighbors. If, i
contrast,j~0! is small, one obtains a purely exponential b
havior. The approach to the exponential regime can be c
acterized by comparing the friction coefficient of the trac
particle, which is defined asg5*0

`dtj(t), with the corre-
sponding value obtained from a fit of an exponential to
VACF, c(t)'exp(2gt). Within the AR model,g can be cal-
culated as

g5 (
n50

`

Dtj~n!5DtJ.~1!. ~17!

TABLE II. Scaling factorsjM(0)/jm(0) for different mass ratiosM /m and
different sizes of the tracer particle.

M

m

m

m

d

nm

0 0.1 0.5 0.9

10 9.95 9.97 9.96 9.80 9.91
100 95.34 95.25 96.00 95.83 94.41

1000 671.81 788.94 686.10 686.46 679.15
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Table I shows the comparison for different masses and s
of the tracer particle. The results show that the exponentia
is the better the smaller and the heavier the tracer particl

Since j~0! is the essential parameter determining t
form of c(t), it is worthwhile to examine its scaling behav
ior in more detail. As Espan˜ol and Zuñiga have shown,12 the
average square momentum of a tracer particle which is
mersed in a solvent containing afinite number of particles,
N, is given by ^p2&5kBTm, where m5(M•Nm)/(Nm
1M ) is the reduced mass of the system solute/solvent. W
ing v5p/M and v̇5F/M , one obtains from~3!

j~0!5
^F2&
mkBT

. ~18!

Since the average squared force on the tracer particle
not depend on its mass, it follows thatj~0! should scale with
1/m. With the exception ofM /m51000 andd5d0 the scal-
ing behavior~Table II! follows the theoretical prediction an
shows in particular that the appearance of the reduced m
instead ofM in ~18! is essential if the mass of the trac
particle represents a substantial fraction of the solvent m
We attribute the exception to an insufficient thermalization
the tracer particle which is not only very massive, but a
exposes only a very small surface to its neighbors. In
extreme case the thermalization process is extremely s
and probably not even achieved after several million ti
steps. Equation~18! also shows that the cage effect, i.e., t
oscillations in the VACF, is enhanced with increasing size
the tracer particle. In this case the mean square force on
tracer particle is increasing since more solvent molecules
teract with it.

We tested the validity of the initial valuej~0! by exploit-

TABLE III. Values of the memory function att50 compared to the nega

tive curvature of the VACF,2c̈(0). The latter has been obtained by nu
merical differentiation.

M

m

d

nm

0 0.1 0.5 0.9

1 53.2532 74.8534 210.4775 467.7310
53.2721 74.7491 210.2601 467.7315

10 5.3438 7.5191 21.4838 47.2131
5.2980 7.5034 21.2139 47.1845

100 0.5591 0.7797 2.1962 4.9542
0.5283 0.7779 2.1960 4.9534

1000 0.0675 0.1091 0.3066 0.6887
0.0587 0.1080 0.3105 0.6897
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ing the relationj(0)52c̈(0). Forthis test we used a direc
estimation ofc(n) from the MD trajectory and computed it
negative curvature att50 by numerical differentiation, us
ing the central difference scheme. Table III shows the res
for different masses and sizes of the tracer particle. Ag
except forM /m51000 and the smallest sized5d0 , remark-
able agreement is achieved in all cases.

This Communication has revealed that the exponen
behavior of the VACF of a diffusing tracer particle is esse
tially attained by a change in amplitude of the memory fun
tion, and not by a change in form towards a Dirac distrib
tion, as postulated in the Langevin model. The mem
function is essentially scaled by the inverse reduced mas
the tracer particle. This illustrates nicely a conjecture of E
pañol and Zuñiga12 who demonstrated that the avera
square momentum scales with the reduced mass if the n
ber of solvent particles is finite. The latter is an importa
point in computer simulations. With increasing mass of t
tracer particle, the amplitude of the memory function b
comes rapidly small, such that its form does not matter
c(t), which becomes an exponential. The study has a
shown that the size of a diffusing tracer particle does infl
ence the amplitude and the form of the memory functio
With increasing size the cage effect is enhanced and lead
stronger oscillations inc(t). The paper has confirmed tha
the AR model is a reliable basis for computing correlati
functions, and moreover a versatile tool to compute qua
ties such as the memory function, which cannot be compu
directly from molecular dynamics computer simulations.
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