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1. Introduction

We consider the formal hermitian matrix integral:

Z =

∫

HN

dM e−N trV (M) (1.1)

where M is a N × N hermitian matrix, dM is the product of Lebesgue measures of all

real components of M . V (x) is a polynomial of degree d+ 1 ≥ 2 called the potential. Z is

called the partition function.

Our goal is to compute the large-N limit, as well as the full 1/N 2 expansion, of

the following formal expectation values (〈 〉 is the average computed with the probability

measure 1
Z e−N trV (M) dM):

W k(x1, . . . , xk) := Nk−2

〈

tr
1

x1 −M
tr

1

x2 −M
. . . tr

1

xk −M

〉

c

(1.2)

Wk(x1, . . . , xk) := lim
N→∞

W k(x1, . . . , xk) (1.3)

where the subscript c means connected part or cumulant.

When Z is considered as a formal generating function, it is well known [15] that the cor-

relation function W k(x1, . . . , xk) has a 1/N 2 expansion, also called topological expansion,

noted:

W k(x1, . . . , xk) :=
∞
∑

h=0

N−2hW
(h)
k (x1, . . . , xk) . (1.4)

Let us emphasize that in general Z is not a convergent integral, the partition function

as well as the W k’s are to be understood as formal series in the coefficients of the potential,

see [15] for details.

In that formal sense, the expectation value of a product of k traces is the combina-

toric generating function for enumerating discrete surfaces with k holes, and the variables

x1, . . . , xk are fugacities for the lengths of the k boundaries [27, 13, 9, 28]. It is well

known [15] that the power of N associated to each discrete surface is its Euler charac-

teristic χ. For a genus h connected surface with k holes, we have χ = 2 − k − 2h. This

is why the quantity (1.2) has a large-N limit. The large-N limit (1.3) Wk(x1, . . . , xk) =

W
(0)
k (x1, . . . , xk) is therefore the generating function of genus zero discrete surfaces with

k boundaries, and each W
(h)
k (x1, . . . , xk) is the generating function of genus h discrete

surfaces with k boundaries.

The problem of computing the W k’s has been addressed many times, for various ap-

plications to physics and mathematics. Indeed, the correlation functions of eigenvalues

(and thus of traces of powers) of a random matrix have a universal behavior which (this is

what universality means) is observed in many physical phenomena, ranging from solid state

physics (quantum chaos, mesoscopic conductors, see [35, 29] ) to high energy physics (nu-

clear physics [35], Quantum chromodynamics [38], string theory [16]), and in mathematics

(distribution of Riemann zeta’s zeroes [7]).

– 2 –
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In the 90’s, randommatrices were extensively studied in the context of quantum gravity

(see [15]), which is nothing but statistical physics on random discretized surfaces, i.e. the

combinatorial problem of enumerating discrete surfaces of given topology, as described

above.

Quantum gravity is also deeply related to conformal field theory (CFT), when one

takes a “double scaling limit” where very large discrete surfaces are dominant, in other

words, CFT is the limit of continuous surfaces. Depending on the limit chosen, and on the

coefficients of the potential V (x), one may reach different double scaling limits, which are

in relationships with the (p, q = 2) minimal models in CFT. All the critical exponents of

such surfaces are given by KPZ’s formula [31].

It is thus expected, that in appropriate double scaling limits, expectation values of the

form (1.2), can be computed from a quantum field theory, namely Liouville’s theory.

Here, without taking any double scaling limit,we will find a quantum-field-theory-like

Feynman expansion for the W k(x1, . . . , xk).

The Wk’s have been computed in the literature by various methods. A formula of

Dyson [18] gives the W k’s for finite N in terms of orthogonal polynomials, but is not very

convenient for large-N limit calculations, and is not convenient for the formal model. The

method of loop equations [15, 37, 2, 4, 23, 20] gives recursion relations between the W k’s,

which simplify in the large-N limit. The loop equations have been known for a while,

and give a very effective algorithm for computing explicitly the Wk’s (see [2, 3, 4]). The

method developed by [2, 3] for computing the Wk’s, consists in computing W1 and then

obtain theWk’s by taking iterated derivatives with respect to the potentials (loop insertion

method). This method has two drawbacks: first in order to find Wk+1, one should know

Wk for all potentials (in particular one must take infinite degree potentials); second, before

computing Wk, one has to compute W1,W2, . . . ,Wk−1, i.e. it has not been found how to

integrate the recursion formulae of [3].

Here we consider new loop equations, which allow to find recursion relations between

the Wk’s, without taking any derivatives with respect to the potential (we may work with

fixed potential). Moreover, the recursion relations for the W
(h)
k ’s obtained in this paper

can be integrated: the kth-loop function to order N−2h is a k-legs, h-loops Feynman graph

of a φ3 theory living on an hyperelliptical curve.

Outline:

- in section 2 we introduce the notations.

- in section 3 we introduce some basic tools of algebraic geometry.

- in section 4 we write and solve the loop equations to large-N leading order, i.e. we

compute the Wk’s.

- in section 5 we write and solve the loop equations recursively to each order in 1/N 2,

i.e. we compute the W
(h)
k ’s.

- in section 6 we do explicitly the computation in the one-cut case.

- in section 7 we conclude by presenting perspectives of applications to other matrix

models (2 matrix model).

– 3 –
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2. Definitions and notations

From now on, we assume that V ′(x) is monic of degree d ≥ 1.

2.1 Loop functions

For k ≥ 1, we define (the subscript c means connected part or cumulant):

W k(x1, . . . , xk) := Nk−2

〈

tr
1

x1 −M
tr

1

x2 −M
. . . tr

1

xk −M

〉

c

(2.1)

Uk(x1;x2, . . . , xk) := Nk−2

〈

tr
V ′1(x1)− V ′1(M)

x1 −M
tr

1

x2 −M
. . . tr

1

xk −M

〉

c

(2.2)

and their large-N limits:

Wk(x1, . . . , xk) := W
(0)
k (x1, . . . , xk) := lim

N→∞
W k(x1, . . . , xk) (2.3)

Uk(x1;x2, . . . , xk) := U
(0)
k (x1;x2, . . . , xk) := lim

N→∞
Uk(x1;x2, . . . , xk) (2.4)

as well as their formal 1/N 2 expansions (k ≥ 1, h ≥ 0):

W k(x1, . . . , xk) :=
∞
∑

h=0

N−2hW
(h)
k (x1, . . . , xk) (2.5)

Uk(x1;x2, . . . , xk) :=
∞
∑

h=0

N−2h U
(h)
k (x1;x2, . . . , xk) (2.6)

Notice U
(0)
1 is a monic polynomials of degree d− 1, and as soon as k + h ≥ 2, U

(h)
k is

a polynomial of degree at most d− 2 in x1. We have:

U
(h)
k (x1;x2, . . . , xk) = Pol

x1→∞
V ′1(x1)W

(h)
k (x1, . . . , xk) (2.7)

where Pol means polynomial part.

The functions W k are called loop-functions, because they are generating functions for

discrete surfaces with k boundaries, i.e. k loops.

2.2 Filling fractions

If the integral (1.1) were to be considered as a convergent integral, the 1/N 2 expansion

would exist only in the so-called one-cut case (see [8, 14]). Here (1.1) is considered as a

formal power series, by its expansion in the vicinity of a minimum of the potential trV (M).

The potential V (x) has in general d = deg V ′ extrema, and thus, the potential TrV (M)

can have extrema indexed by the number of eigenvalues of M lying in the vicinity of each

extrema of V (x). The formal perturbative expansion around such local extrema cannot

change the number of eigenvalues near each extrema. The fractions of eigenvalues near each

extrema of V are called filling fractions, and are thus moduli characterizing the vacuum

near which the perturbative formal expansion is computed. The filling fractions play an

important role in recent applications of random matrix models to string theory [16].

– 4 –
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The filling fractions are denoted:

ε1, ε2, . . . , εs ,

s
∑

j=1

εj = 1 . (2.8)

It is well known [2, 15] (and we recover it below) that the function W1(x) is solution

of an algebraic equation, it has s cuts [a2j−1, a2j ], j = 1, . . . , s, which correspond to the

location of eigenvalues in the large-N limit. The condition that the filling fractions are

given can be written:

∀j = 1, . . . , s ,
1

2iπ

∮

[a2j−1,a2j ]
W1(x) dx = εj (2.9)

where the contour surrounds the segment [a2j−1, a2j ] in the trigonometric direction.

Let us for a moment, use the method of [3, 2] for finding the filling fraction conditions

for other loop functions.

If V (x) =
∑

k tkx
k, from [3] we introduce the loop insertion operator1:

∂

∂V (x)
:= −

∞
∑

k=1

1

xk+1
∂

∂tk
(2.10)

we then have [2]:

Wk+1(x1, . . . , xk, xk+1) =
∂

∂V (xk+1)
Wk(x1, . . . , xk) (2.11)

and thus, since the filling fractions are given parameters independent of V and N , we must

have for all k ≥ 1, h ≥ 0, h+ k > 1:

∀j = 1, . . . , s ,

∮

[a2j−1 ,a2j ]
W
(h)
k (x1, x2, . . . , xk) dx1 = 0 . (2.12)

From the same argument, since we assume that there is no eigenvalue elsewhere in the

complex plane, we can write, for any m in the complex plane, away from the cuts:

∮

m
W1(x1) dx1 = 0 (2.13)

(where the contour integral is a small circle around m) and thus:

∮

m
W
(h)
k (x1, x2, . . . , xk) dx1 = 0 . (2.14)

1The loop insertion operator
∑∞

k=1
1

xk+1
∂

∂tk
is a formal notation which makes sense order by order in

the 1/x expansion, and eq (2.12) is perfectly rigorously proven.

– 5 –
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3. The one-loop function and algebraic geometry

3.1 The one-loop function

It is well known [36, 12, 15, 2] (and it is re-derived below) that the one loop function is

algebraic:

W1(x) =
1

2

(

V ′(x)−M(x)
√

σ(x)
)

(3.1)

U1(x) =
1

4

(

V ′2(x)−M 2(x)σ(x)
)

(3.2)

where M and σ are monic polynomials (remember V ′(x) is monic), determined by:

W1(x) ∼
x→∞

1

x
(3.3)

and by (2.9), which can be rewritten as follows: let a1, . . . , a2s be the zeroes of σ:

σ(x) =

2s
∏

i=1

(x− ai) (3.4)

we must have:

∀ j ∈ [1, s− 1],

∫ a2j

a2j−1

M(x)
√

σ(x) dx = 2iπεj (3.5)

For a given s ∈ [1, d], the equations (3.3) and (3.5) give a finite number of solutions for M

and σ. Let us assume that we have chosen one of them.

3.2 More notations

For convenience we introduce m1, . . . ,md−s the zeroes of M :

M(x) =
d−s
∏

i=1

(x−mi) (3.6)

We also define for k ≥ 1, h ≥ 0, and h+ k > 1:

F
(h)
k (x1, . . . , xk) :=

(

2kW
(h)
k (x1, . . . , xk) +

2δk,2δh,0
(x1 − x2)2

) k
∏

i=1

√

σ(xi) (3.7)

and:

Fk(x1, . . . , xk) := F
(0)
k (x1, . . . , xk) . (3.8)

It is well known that the Fk’s and F
(h)
k ’s are rational functions of all their arguments

(see [3, 2, 4]).

Another useful notation is in terms of multi-linear differential forms:

Gk(x1, . . . , xk) :=Wk(x1, . . . , xk) dx1 . . . dxk (3.9)

and for higher orders:

G
(h)
k (x1, . . . , xk) :=W

(h)
k (x1, . . . , xk) dx1 . . . dxk . (3.10)

– 6 –
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It is well known that they are all multi-linear differentials defined on an hyperelliptical

surface. All of them, except G1 and G2, have poles only at the branch-points (i.e. the

zeroes of σ), and have vanishing contour integrals around the cuts.

All this is re-derived below.

3.3 Hyperelliptical surfaces

We need to introduce some basic notions of algebraic geometry [25, 26].

Equation (3.1) defines an hyperelliptical surface of genus s−1. Let y = V ′(x)−2W1(x),

we have:

y2 =M2(x)σ(x) . (3.11)

That equation defines a Riemann surface with two sheets (corresponding to the two deter-

minations of the square root). In other word, for each x, there are two values of y(x).

Let us define the physical sheet as the sheet where:

x−s
√

σ(x) ∼
x→∞

+1 (3.12)

and the second sheet as the one where:

x−s
√

σ(x) ∼
x→∞

−1 . (3.13)

If x is a point in the physical sheet, let us note x the point corresponding to the same x in

the second sheet. By definition, we have:

√

σ(x) = −
√

σ(x) , M(x) =M(x) , y(x) = −y(x) , dx = dx . (3.14)

The branch points ai are the points where the two sheets meet, they are such that:

∀i = 1, . . . , 2s , ai = ai . (3.15)

Near a branch point ai, the surface is better parameterized by the local coordinate:

τi(x) :=
√
x− ai = −τi(x) (3.16)

i.e.

x = ai + τ2i , dx = 2τidτi . (3.17)

In particular, the differential dx has a (simple) zero at x = ai.

Holomorphic differentials: Let L(x) be any polynomial of degree ≤ s − 2. Since
√

σ(x) has a simple zero at x = ai, the differential L(x) dx√
σ(x)

has no singularity on the

whole surface (neither near the branch points, nor at ∞), it is thus called a holomorphic

differential. One has the following classical theorem: there exist a unique set of s − 1

polynomials of degree s− 2, which we note Lj(x), such that:

∀ l, j ∈ [1, s− 1]2 ,

∮

[a2l−1,a2l]

Lj(x)
√

σ(x)
dx = 2iπ δl,j . (3.18)

– 7 –
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The differentials
Lj(x)√
σ(x)

dx are called the normalized holomorphic differentials. Notice that

the Lj ’s form a basis of degree ≤ s − 2 polynomials. For any polynomial P (x) such that

degP ≤ s− 2, we have:

P (x) =

s−1
∑

j=1

(

1

2iπ

∮

[a2j−1 ,a2j ]

P (x′)
√

σ(x′)
dx′

)

Lj(x) (3.19)

Notice that on the sth cut, we have:

∀ j ∈ [1, s− 1],

∮

[a2s−1,a2s]

Lj(x)
√

σ(x)
dx = −2iπ (3.20)

We define:

Ls(x) := 0 (3.21)

so that (3.19) holds also with the sum on j running from 1 to s.

Normalized differential of the third kind: For any x′ on the curve, there exists a

unique meromorphic differential, noted dS(x, x′), which has only two simple poles in x,

located at x = x′ and x = x′, and such that:



























dS(x, x′) ∼
x→x′

dx

x− x′
+ finite

dS(x, x′) ∼
x→x′

− dx

x− x′
+ finite

∀j = 1, . . . , s− 1 ,

∮

[a2j−1,a2j ]
dS(x, x′) = 0

(3.22)

Notice that dS(x, x′) is a meromorphic differential in the variable x, and a multi-valued

function of the variable x′.

It is easy to check that we have the following expression:

dS(x, x′) =

√

σ(x′)
√

σ(x)





1

x− x′
−

s−1
∑

j=1

Cj(x
′)Lj(x)



 dx (3.23)

where

Cj(x
′) :=

1

2iπ

∮

[a2j−1,a2j ]

dx
√

σ(x)

1

x− x′
(3.24)

In this formula, it is assumed that x′ lies outside the contours [a2j−1, a2j ]. One has to be

careful when x′ approaches some branch point aj. When x′ lies inside the contour around

[a2j−1, a2j ], then one has:

Cl(x
′) +

δl,j
√

σ(x′)
=

1

2iπ

∮

[a2l−1 ,a2l]

dx
√

σ(x)

1

x− x′
(3.25)

which is analytical in x′ when x′ approaches a2j−1 or a2j .

– 8 –
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For i = 1, . . . , s, we define:

dS2i−1(x, x
′) := dS2i(x, x

′) := dS(x, x′)− Li(x)
√

σ(x)
dx

=

√

σ(x′)
√

σ(x)





1

x− x′
− Li(x)
√

σ(x′)
−

s−1
∑

j=1

Cj(x
′)Lj(x)



 dx (3.26)

which is a one-form in x, with poles at x = x′ and x = x′, and which is analytical in x′

when x′ is close to a2i−1 or a2i.

Bergmann kernel :

For any x′ on the curve, there exists a unique bilinear differential, noted B(x, x′), called

the Bergmann kernel, which has only one double pole in x, located at x = x′ (in particular

no pole at x = x′), with no residue, and such that:















B(x, x′) ∼
x→x′

dx dx′

(x− x′)2
+ finite

∀j = 1, . . . , s− 1 ,

∮

x∈[a2j−1,a2j ]
B(x, x′) = 0

(3.27)

It is easy to check that B(x, x′) = B(x′, x) and:

B(x, x′) =
1

2
√

σ(x)
dx dx′

∂

∂x′





√

σ(x) +
√

σ(x′)

x− x′
−

s−1
∑

j=1

Cj(x
′)Lj(x)

√

σ(x′)





=
1

2
dx′

∂

∂x′

(

dx

x− x′
+ dS(x, x′)

)

(3.28)

It can be written:

B(x, x′) =
dxdx′

2(x− x′)2
+

Q(x, x′)dxdx′

4(x− x′)2
√

σ(x)
√

σ(x′)
(3.29)

where Q(x, x′) is a symmetric polynomial in x and x′, of degree at most s, such that

Q(x, x) = 2σ(x) and ∂x′Q(x, x′)|x′=x = σ′(x):

Q(x, x′) = 2σ(x) + (x′ − x)σ′(x) +
4

3

(x′ − x)2

2
S(x) +O(x′ − x)3 (3.30)

where S(x) is called projective connection at x. We can write:

Q(x, x′) = 2σ(x) + (x′ − x)σ′(x) + (x− x′)2A(x, x′) (3.31)

where A(x, x′) is a polynomial in both variables. We have:

B(x, x′)

dxdx′
=

1

2(x− x′)2
+

σ(x)

2(x− x′)2
√

σ(x)
√

σ(x′)
+

+
σ′(x)

4(x′ − x)
√

σ(x)
√

σ(x′)
+

A(x, x′)

4
√

σ(x)
√

σ(x′)
. (3.32)
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4. Loop equations

Now, we will introduce a method for computing the W
(h)
k ’s. It is based on the so-called

loop equations or Schwinger-Dyson equations, i.e. invariance of the integral (1.1) under

local infinitesimal change of variable.

4.1 Useful notations

Let K = {2, . . . , k}. For any j ≤ k − 1 we denote:

Kj := {I ⊂ K /#I = j} (4.1)

and for any subset I ∈ Kj we define:

I = {i1, i2, . . . , ij} −→ xI := xi1 , xi2 , . . . , xij (4.2)

as well as:
√

σ(xI) :=

j
∏

l=1

√

σ(xil) (4.3)

and

dxI :=

j
∏

l=1

dxil . (4.4)

4.2 Loop equations

The invariance of the matrix integral (1.1) under the change of variable M → M + ηδM

(see [36, 34, 12, 15, 22, 23] for detailed derivations):

δM =
1

x1 −M

k
∏

j=2

tr
1

xj −M
(4.5)

implies, to first order in η:

k = 1 : W 1(x1)
2 +

1

N2
W 2(x1, x1) = V ′(x1)W 1(x1)− U 1(x1)

k ≥ 2 : 2W 1(x1)W k(x1, . . . , xk) +
1

N2
W k+1(x1, x1, x2, . . . , xk) +

+

k−2
∑

j=1

∑

I∈Kj

W j+1(x1, xI)W k−j(x1, xK−I) +

+
k
∑

j=2

∂

∂xj

W k−1(x2, . . . , xj , . . . , xk)−W k−1(x2, . . . , x1, . . . , xk)

xj − x1
=

= V ′(x1)W k(x1, . . . , xk)− Uk(x1;x2, . . . , xk) (4.6)

i.e., to leading order in 1/N 2 we have:

k = 1 : W1(x1)
2 = V ′(x1)W1(x1)− U1(x1)
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k ≥ 2 : 2W1(x1)Wk(x1, . . . , xk) +

+

k−2
∑

j=1

∑

I∈Kj

Wj+1(x1, xI)Wk−j(x1, xK−I) +

+
k
∑

j=2

∂

∂xj

Wk−1(x2, . . . , xj , . . . , xk)−Wk−1(x2, . . . , x1, . . . , xk)

xj − x1
=

= V ′(x1)Wk(x1, . . . , xk)− Uk(x1;x2, . . . , xk) . (4.7)

Notice that it implies (3.1) for k = 1.

Now assume k ≥ 2, and using (3.1), we rewrite:

M(x1)
√

σ(x1)Wk(x1, . . . , xk) =

=

k−2
∑

j=1

∑

I∈Kj

Wj+1(x1, xI)Wk−j(x1, xK−I) +

+
k
∑

j=2

∂

∂xj

Wk−1(x2, . . . , xj , . . . , xk)−Wk−1(x2, . . . , x1, . . . , xk)

xj − x1
+

+Uk(x1;x2, . . . , xk) . (4.8)

4.3 Case k = 2

For k = 2, (4.8) reads:

M(x1)
√

σ(x1)W2(x1, x2) =
∂

∂x2

(

W1(x2)−W1(x1)

x2 − x1

)

+ U2(x1;x2)

= −1

2

∂

∂x2

(

M(x2)
√

σ(x2)−M(x1)
√

σ(x1)

x2 − x1

)

+

+
1

2

∂

∂x2

(

V ′(x2)− V ′(x1)

x2 − x1

)

+ U2(x1;x2)

= −1

2

∂

∂x2

(

M(x1)

√

σ(x2)−
√

σ(x1)

x2 − x1

)

−

−1

2

∂

∂x2

(

√

σ(x2)
M(x2)−M(x1)

x2 − x1

)

+

+
1

2

∂

∂x2

(

V ′(x2)− V ′(x1)

x2 − x1

)

+ U2(x1;x2)

(4.9)

which can be written:

√

σ(x1)W2(x1, x2) = −
1

2

∂

∂x2

(

√

σ(x2)−
√

σ(x1)

x2 − x1

)

+
R2(x1;x2)

M(x1)
(4.10)

where R2(x1;x2) is a polynomial in x1 of degree at most d− 2. From (2.14), we know that

the l.h.s. has no pole at the zeroes of M , thus

R2(x1;x2) =M(x1)P2(x1;x2) (4.11)
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where P2(x1;x2) is a polynomial in x1, of degree s− 2. We have:

√

σ(x1)W2(x1, x2) = −
1

2

∂

∂x2

(

√

σ(x2)−
√

σ(x1)

x2 − x1

)

+ P2(x1;x2) . (4.12)

In terms of the function F2 introduced in (3.8) we have:

F2(x1, x2)

4
√

σ(x1)
√

σ(x2)
=

1

2
√

σ(x1)

∂

∂x2

√

σ(x2)

(x1 − x2)
+
P2(x1;x2)
√

σ(x1)
(4.13)

which proves that F2 is a rational function of x1, and by symmetry, it is also a rational

function of x2.

Then using (2.12) as well as (3.19) and (3.24), we find P2:

F2(x1, x2)

4
√

σ(x1)
√

σ(x2)
=

1

2

∂

∂x2

√

σ(x2)
√

σ(x1)

(

1

(x1 − x2)
−
∑

l

Cl(x2)Ll(x1)

)

(4.14)

then using (3.23):

F2(x1, x2)

4
√

σ(x1)
√

σ(x2)
=

1

2

∂

∂x2

dS(x1, x2)

dx1
=
B(x1, x2)

dx1dx2
− 1

2

1

(x1 − x2)2
(4.15)

where we recognize B the Bergmann kernel introduced in (3.27). Finally, we have the

two-loop function in the form:

W2(x1, x2) =
B(x1, x2)

dx1dx2
− 1

(x1 − x2)2
= −B(x1, x2)

dx1dx2
(4.16)

or, using (3.29)

F2(x1, x2) =
Q(x1, x2)

(x1 − x2)2
. (4.17)

The result (4.16) or (4.13) is well known and can be found in many places in the litera-

ture [19]. We have just presented one derivation for completeness. Now, let us move to

higher loop functions.

Remark: we can write

F2(x, x1) = 2
σ(x)

(x− x1)2
− σ′(x)

x− x1
+A(x, x1) (4.18)

where A(x, x1) is a polynomial in both variables. It implies:

W2(x, x) = −
σ′′(x)

8σ(x)
+

σ′(x)2

16σ(x)2
+
A(x, x)

4σ(x)
(4.19)

which is a rational function of x, with double poles at the branch-points.
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4.4 k = 3

Starting from (4.8) for k = 3, i.e.

M(x1)
√

σ(x1)W3(x1, x2, x3) = 2W2(x1, x2)W2(x1, x3) +

+
∂

∂x2

W2(x2, x3)−W2(x1, x3)

x2 − x1
+

+
∂

∂x3

W2(x2, x3)−W2(x1, x2)

x3 − x1
+

+U3(x1;x2, x3) (4.20)

and using the results for k = 2, we get:

F3(x1, x2, x3)
√

σ(x2)
√

σ(x3)
=

F2(x1, x2)F2(x1, x3)

σ(x1)M(x1)
√

σ(x2)
√

σ(x3)
+

+
8

M(x1)

∂

∂x2

W2(x2, x3)

x2 − x1
+

8

M(x1)

∂

∂x3

W2(x2, x3)

x3 − x1
+

+
8U3(x1;x2, x3)

M(x1)
(4.21)

i.e. F3(x1, x2, x3) is a rational function of x1, and by symmetry, it is a rational function of

all its arguments. Expression (4.20) clearly shows that F3 has no pole when x1 = x2 or

x1 = x3. Moreover, from (2.14), we know that it has no pole at the zeroes of M . Thus

the only possible poles of F3 are at the branch points and at ∞. Notice that only the first

term in the r.h.s. of (4.21) has poles at the branch points.

Before continuing, let us study the case k > 3.

4.5 k larger or equal to 3

Now assume k > 3. We start from (4.8):

√

σ(x1)Wk(x1, xK) =

k−2
∑

j=1

∑

I∈Kj

Wj+1(x1, xI)Wk−j(x1, xK−I)

M(x1)
+

+
k
∑

i=2

∂

∂xi

Wk−1(xK)−Wk−1(x1, xK−{i})

(xi − x1)M(x1)
+

+
Uk(x1;xK)

M(x1)
(4.22)

and we consider separately the terms corresponding to j = 1 and j = k − 2 in the r.h.s.,

and we write
∑

I∈K1
=
∑k

i=2, we get:

√

σ(x1)Wk(x1, xK) =

k−3
∑

j=2

∑

I∈Kj

Wj+1(x1, xI)Wk−j(x1, xK−I)

M(x1)
+

+2
k
∑

i=2

(

W2(x1, xi) +
1

2(x1−xi)2

)

Wk−1(x1, xK−{i})

M(x1)
+

+
k
∑

i=2

∂

∂xi

Wk−1(xK)

(xi − x1)M(x1)
+
Uk(x1;xK)

M(x1)
. (4.23)
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This clearly proves, by induction on k, that for all k ≥ 3, Fk(x1, xK) is a rational function

of x1 (and by symmetry, of all its arguments), with poles only at the branch points and at

∞. We have just re-derived it in a way different from [3, 2].

Now, assume k≥3. Consider the euclidean division of the polynomial Uk(x1;x2, . . . , xk)

by M(x1):

Uk(x1;xK) =
2−k

√

σ(xK)
Pk(x1;xK)M(x1) +Qk(x1;xK) (4.24)

where degPk = s− 2 and degQk < d− s.

Thus, we have found that for any k ≥ 3, we have:

Fk(x1, xK)− Pk(x1;xK)
√

σ(xK)
=

1

2

k−2
∑

j=1

∑

I∈Kj

Fj+1(x1, xI)Fk−j(x1, xK−I)

σ(x1)M(x1)
√

σ(xK)
+Rk(x1;xK) (4.25)

where Rk(x1;xK) is a rational fraction of x1 with no poles at the branch points neither at

∞ (it has poles at the zeroes of M and at the xi’s).

4.6 Cauchy formula

Cauchy formula gives:

Fk(x1, xK)− Pk(x1;xK)
√

σ(xK)
= Resx→x1

dx

x− x1

Fk(x, xK)− Pk(x;xK)
√

σ(xK)
(4.26)

where the integrand has poles only at the branch points. Therefore we may deform the

integration contour used to compute the residue, into residues at the branch points only:

Fk(x1, xK)− Pk(x1;xK) =
2s
∑

l=1

Resx→al

dx

x1 − x
(Fk(x, xK)− Pk(x;xK)) (4.27)

using (4.25) we get the recursion formula for the Fk’s, for all k ≥ 3:

Fk(x1, xK)− Pk(x1;xK) =
1

2

2s
∑

l=1

Resx→al

k−2
∑

j=1

∑

I∈Kj

Fj+1(x, xI)Fk−j(x, xK−I)

σ(x)M(x)(x1 − x)
dx (4.28)

Pk(x1, xK) which is a polynomial in x1 of degree at most s − 2, is computed with for-

mula (3.19).

Starting from (2.12), i.e.:
∮

[a2l−1,a2l]

Fk(x1, xK)
√

σ(x1)
dx1 = 0 (4.29)

we have:

−
∮

[a2l−1,a2l]

Pk(x1;xK)dx1
√

σ(x1)
=

=

2s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2l−1 ,a2l]

dx1
√

σ(x1)
Resx→ai

Fj+1(x, xI)Fk−j(x, xK−I)

2(x1 − x)M(x)σ(x)
dx

=
1

2iπ

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2l−1 ,a2l]

dx1
√

σ(x1)

∮

[a2i−1,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2(x1 − x)M(x)σ(x)
dx . (4.30)
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Notice that for i = l, the contour of integration of x1 encloses the contour of x. We may

exchange the position of the two contours, by picking a residue at x1 = x, thus:

−
∮

[a2l−1,a2l]

Pk(x1;xK)dx1
√

σ(x1)
=

=
1

2iπ

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2i−1,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)σ(x)
dx

∮

[a2l−1,a2l]

dx1

(x1 − x)
√

σ(x1)
+

+
k−2
∑

j=1

∑

I∈Kj

∮

[a2l−1,a2l]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)
√

σ(x) σ(x)
dx . (4.31)

Using the function Cl(x) introduced in (3.24), we have:

−
∮

[a2l−1,a2l]

Pk(x1;xK)dx1
√

σ(x1)
=

=

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2i−1 ,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)σ(x)
dx

(

Cl(x) +
δi,l

√

σ(x)

)

(4.32)

and thus we have computed Pk:

−Pk(x1;xK) =
1

2iπ

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2i−1 ,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)σ(x)
dx×

×
(

Li(x1)
√

σ(x)
+

s−1
∑

l=1

Cl(x)Ll(x1)

)

. (4.33)

4.7 The recursion relation

That gives the recursion relation for the Fk’s:

Fk(x1;xK) =
1

2iπ

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2i−1 ,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)σ(x)
dx×

×
(

1

x1 − x
− Li(x1)
√

σ(x)
−

s−1
∑

l=1

Cl(x)Ll(x1)

)

(4.34)

where it is important to remember that the term inside the bracket is analytical when

x approaches a2i−1 or a2i. This allows to write the contour integrals as the sum of two

residues around a2i−1 and a2i.

It is interesting and more intrinsic to rewrite (4.34) in terms of multi-linear differentials

Gk on the hyperelliptical curve.

First, notice that a contour around ai in the hyperelliptical curve (τi(x) =
√
x− ai

around 0) is twice the contour in the complex plane (x around ai), i.e. we will have an

extra factor 2 in the denominator.
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Then, notice that G2 and F2 differ by a term, which is an even function of the local

parameter τi(x), i.e. which does not contribute to residues near the branch-points (this can

be checked separately for k = 3 and k > 3).

Thus we get the recursion relation for the Gk’s:

Gk(x1;xK) =
2s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

Resai∈Σ
Gj+1(x, xI)Gk−j(x, xK−I)

2y(x)dx
dSi(x1, x)

(4.35)

where now the residues are computed on the hyperelliptical surface (i.e. extra factor 2 in

the denominator), and dSi(x, x
′) is the abelian differential of the third kind introduced

in (3.26).

That recursion relation allows to compute Wk in a tree-like recursion from residues of

lower loop-functions.

4.8 Solution of the recursion relation as cubic-Feynman trees

Equation (4.35) is conveniently represented with diagrams “à la Feynman”.

Let us represent the k-loop correlation function Gk(x1, . . . , xk) as a black disk with k

legs:

x1

x
2

x
k

:= Gk(x1, . . . , xk) (4.36)

and introduce the following Feynman rules:

Arrowed propagator: x1 x2 := dSi(x1, x2)

Vertex: x := 1/(2 y(x) dx)

Non-arrowed propagator x1 x2 :=
x1 x

2 = G2(x1, x2)

=2-loop correlator:

Then (4.35) can be represented as follows

j+1

k−j

k

Σ
j=1

k−2

∋
Σ
I K j

x

I

K−I

= xx
1 1

x

x

2

k
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Whose solution is clearly that the k-loop correlator Gk is the sum over all plane binary

trees with 1 root and k− 1 leaves, with a skeleton made of oriented arrows (oriented from

root toward leaves), and whose k − 1 leaves are non-arrowed propagators finishing at the

xj ’s with 2 ≤ j ≤ k.

Notice that two trees which differ only by the ordering of branches at a vertex give the

same contribution to Gk, so that instead of summing over plane trees, one can sum over

non-plane trees, with a factor 2k−2.

Let Tk be the set of plane rooted binary trees with k − 1 labeled leaves (x2, . . . , xk).

and let T k be the set of non-plane rooted binary trees with k−1 labeled leaves (x2, . . . , xk).

We have:

Nk+2 := CardTk+2 = k + 1!Ck =
2k!

k!
= 2k (2k − 1)!! (4.37)

where Ck is the Catalan number which enumerates plane trees. And:

Nk+2 := Card T k+2 = 2−kCard Tk+2 = 2−k
2k!

k!
= (2k − 1)!! . (4.38)

For any given tree T ∈ Tk, with root x1, leaves xj (j = 2, . . . , k), and with k−2 vertices

noted x′v (v = 1, . . . , k − 2), so that its inner edges are of the form v1 → v2 and its outer

edges are of the form v → j, we define the weight of T as:

W(T ) :=

k−2
∏

vertex v=1

2s
∑

iv=1

Resx′v→aiv

1

2y(x′v)dx
′
v

×

×
∏

inner edges v→w

dSiv(x
′
v, x
′
w)

∏

outer edges v→j

G2(x
′
v, xj) . (4.39)

Thus we have:

Gk(x1, . . . , xk) = 2k−2
∑

T∈T k

W(T ) =
∑

T∈Tk

W(T )

(4.40)

G3 is thus given by N 3 = 1 tree, G4 is the sum of N 4 = 3 diagrams, G5 is the sum of

N5 = 15 diagrams, . . .

4.9 Example: 3-point function

As an example, let us carry out explicitly the computation for the 3-point function.

Diagrammatically, we have:

x
1

x
2

x
3

x
1

x
2

x
3

= 2
x
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Eq. (4.28) can be written for k = 3:

F3(x1, x2, x3) =

2s
∑

i=1

Res
ai

dx
F2(x, x2)F2(x, x3)

M(x)σ(x)σ′(x)

σ′(x)

(x− x1)
+ P3(x1, x2, x3) (4.41)

where P3 is a polynomial in x1. Using (4.18), notice that F2(ai, x) = σ′(ai)
x−ai

+ A(ai, x) is

finite, and that:
σ′(x)

x− x1
= 2

σ(x)

(x− x1)2
− F2(x, x1) +A(x, x1) (4.42)

i.e.

F3(x1, x2, x3) = 2
2s
∑

i=1

Res
ai

dx
F2(x, x2)F2(x, x3)

M(x)(x− x1)2σ′(x)

−
2s
∑

i=1

Res
ai

dx
F2(x, x1)F2(x, x2)F2(x, x3)

M(x)σ(x)σ′(x)

+
2s
∑

i=1

Res
ai

dx
A(x, x1)F2(x, x2)F2(x, x3)

M(x)σ(x)σ′(x)
+R3(x1, x2, x3) (4.43)

The first line has no residue at the branch-points (indeed, using (4.18), notice that F2(ai, x)

is finite), and the last line is a polynomial in x1 (indeed A(x, x1) is), therefore:

F3(x1, x2, x3) = −
2s
∑

i=1

Res
ai

dx
F2(x, x1)F2(x, x2)F2(x, x3)

M(x)σ(x)σ′(x)
+ R̃3(x1, x2, x3)

= −
2s
∑

i=1

F2(ai, x1)F2(ai, x2)F2(ai, x3)

M(ai)σ′(ai)2
+ R̃3(x1, x2, x3) (4.44)

where R̃3(x1, x2, x3) is a polynomial in x1, of degree at most s−2. Condition (2.12) implies

that R̃3(x1, x2, x3) = 0, thus:

F3(x1, x2, x3) = −
2s
∑

i=1

F2(ai, x1)F2(ai, x2)F2(ai, x3)

M(ai)σ′(ai)2

(4.45)

This is a generalization of what was found in [3, 2, 4] for the one-cut case s = 1. As we

shall see just below, this agrees with what was found by [33, 11, 6].

Let us redo this computation in a more intrinsic way. Start from (4.35) for k = 3:

G3(x1, x2, x3) = 2
2s
∑

i=1

Resai

G2(x, x2)G2(x, x3)

2y(x)dx
dSi(x1, x) . (4.46)

Notice that both dSi(x1, x) and y(x) have a simple zero at x = ai thus,

dSi(x1, x)

y(x)
=

dxdSi(x1, x)

dy(x)
+O(

√
x− ai)
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=
B(x1, x) +B(x1, x)

dy(x)
+O(

√
x− ai)

= 2
G2(x1, x)

dy(x)
+O(

√
x− ai) . (4.47)

This implies:

G3(x1, x2, x3) = 2

2s
∑

i=1

Res
ai

G2(x, x2)G2(x, x3)G2(x, x1)

dx dy

(4.48)

This agrees with [33, 11, 6] (our dy is half the dy of [6]). One can also write:

W3(x1, x2, x3) = 2

2s
∑

i=1

Res
ai

W2(x, x2)W2(x, x3)W2(x, x1)
dx2

dy
. (4.49)

4.10 Example: 4 point function

Diagrammatically, we have:

x
2

x
4

x
3

x
1

x
1

x
2

x
3

x
4

x
1

x
2

x
3

x
4

+ x4 x
1

x
2

x
4

x
3

+ x4= 4
x

Explicit computation of (4.34) for k = 4 gives:

F4(x1, x2, x3, x4) = −
2s
∑

i6=j=1

F2(x3, aj)F2(x4, aj)

M(aj)σ′(aj)2
F2(ai, aj)

F2(x2, ai)F2(x1, ai)

M(ai)σ′(ai)2
−

−
2s
∑

i6=j=1

F2(x3, aj)F2(x2, aj)

M(aj)σ′(aj)2
F2(ai, aj)

F2(x4, ai)F2(x1, ai)

M(ai)σ′(ai)2
−

−
2s
∑

i6=j=1

F2(x2, aj)F2(x4, aj)

M(aj)σ′(aj)2
F2(ai, aj)

F2(x3, ai)F2(x1, ai)

M(ai)σ′(ai)2
−

−
2s
∑

i=1

(F2(x3, ai)F2(x4, ai)F2(ai, x2)F2(ai, x1))
′

M(ai)2σ′(ai)3
+

+3

2s
∑

i=1

F2(x3, ai)F2(x4, ai)F2(ai, x2)F2(ai, x1)

M(ai)2σ′(ai)3
×

×
(

M ′(ai)

M(ai)
− A(ai, ai)

σ′(ai)
+

5σ′′(ai)

6σ′(ai)

)

. (4.50)
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5. Higher genus

5.1 General case

Now, we don’t drop the 1/N 2 term in (4.6), and we expand to order h:

2
h
∑

m=0

W
(h−m)
1 (x1)W

(m)
k (x1, . . . , xk)+

+W
(h−1)
k+1 (x1, x1, x2, . . . , xk)+

+

h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

W
(m)
j+1 (x1, xI)W

(h−m)
k−j (x1, xK−I)+

+

k
∑

j=2

∂

∂xj

W
(h)
k−1(x2, . . . , xj, . . . , xk)−W

(h)
k−1(x2, . . . , x1, . . . , xk)

xj − x1
=

= V ′(x1)W
(h)
k (x1, . . . , xk)− U

(h)
k (x1;x2, . . . , xk) (5.1)

thus:

M(x1)
√

σ(x1)W
(h)
k (x1, xK) =

= 2

h−1
∑

m=0

W
(h−m)
1 (x1)W

(m)
k (x1, xK) +W

(h−1)
k+1 (x1, x1, xK) +

+

h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

W
(m)
j+1 (x1, xI)W

(h−m)
k−j (x1, xK−I) +

+

k
∑

j=2

∂

∂xj

W
(h)
k−1(xK)−W

(h)
k−1(x1, xK−{j})

xj − x1
+ U

(h)
k (x1;xK) . (5.2)

In particular for k = 1, (5.2) reads:

M(x1)
√

σ(x1)W
(h)
1 (x1) =

h−1
∑

m=1

W
(h−m)
1 (x1)W

(m)
1 (x1) +W

(h−1)
2 (x1, x1) + U

(h)
1 (x1) (5.3)

It is easy to prove, by double recursion on k and h, that

F
(h)
k (x1, . . . , xk) = 2kW

(h)
k (x1, . . . , xk)

k
∏

i=1

√

σ(xi) (5.4)

is a rational function. Introduce the euclidean division of the polynomial U
(h)
k (x1;xK) by

M(x1):

U
(h)
k (x1;xK) =

2−k
√

σ(xK)
P
(h)
k (x1;xK)M(x1) +Q

(h)
k (x1;xK) (5.5)

where degP
(h)
k = s− 2 and degQ

(h)
k < d− s. (5.2) becomes:

√

σ(x1)W
(h)
k (x1, xK)− 2−k

√

σ(xK)
P
(h)
k (x1;xK) =
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= 2

h−1
∑

m=0

W
(h−m)
1 (x1)W

(m)
k (x1, xK)

M(x1)
+
W
(h−1)
k+1 (x1, x1, xK)

M(x1)
+

+

h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

W
(m)
j+1 (x1, xI)W

(h−m)
k−j (x1, xK−I)

M(x1)
+

+

k
∑

j=2

∂

∂xj

W
(h)
k−1(xK)−W

(h)
k−1(x1, xK−{j})

(xj − x1)M(x1)
+Q

(h)
k (x1;xK) (5.6)

where the l.h.s. is a rational function of x1 with poles only at the branch points, therefore:

√

σ(x1)W
(h)
k (x1, xK)− 2−k

√

σ(xK)
P
(h)
k (x1;xK) =

= Resx→x1

dx

x− x1

(

√

σ(x)W
(h)
k (x, xK)− P

(h)
k (x;xK)

)

=

2s
∑

i=1

Resx→ai

dx

x1 − x

(

√

σ(x)W
(h)
k (x, xK)− P

(h)
k (x;xK)

)

=

2s
∑

i=1

Resx→ai

dx

x1 − x

(

2

h−1
∑

m=0

W
(h−m)
1 (x)W

(m)
k (x, xK)

M(x)
+
W
(h−1)
k+1 (x, x, xK)

M(x)

)

+

+

2s
∑

i=1

Resx→ai

dx

x1 − x





h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

W
(m)
j+1 (x, xI)W

(h−m)
k−j (x, xK−I)

M(x)



+ (5.7)

+

2s
∑

i=1

Resx→ai

dx

x1 − x





k
∑

j=2

∂

∂xj

W
(h)
k−1(xK)−W

(h)
k−1(x, xK−{j})

(xj − x)M(x)
+
Q
(h)
k (x;xK)

M(x)



 .

Two terms in the last line have no pole at x1 = ai, and the other term in the last line

combines with other lines so as to transform W2 in F2. Thus we get:

F
(h)
k (x1, xK) =

1

2

2s
∑

i=1

Resx→ai

dx

x1 − x

h
∑

m=0

k−1
∑

j=0

(1− δm,0δj,0 − δm,hδj,k−1)×

×
∑

I∈Kj

F
(m)
j+1 (x, xI)F

(h−m)
k−j (x, xK−I)

M(x)σ(x)
+

+
1

2

2s
∑

i=1

Resx→ai

dx

x1 − x

F
(h−1)
k+1 (x, x, xK)

M(x)σ(x)
+

+P
(h)
k (x1;xK) (5.8)

where P
(h)
k (x1;xK) is obtained from (3.19) in a way very similar to what we have done to
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leading order. Finally we find:

G
(h)
k (x1, xK) =

2s
∑

i=1

Resx→ai dSi(x1, x)
G
(h−1)
k+1 (x, x, xK)

y(x)dx

+2

2s
∑

i=1

Resx→ai

h−1
∑

m=0

dSi(x1, x)
G
(h−m)
1 (x)G

(m)
k (x, xK)

y(x)dx

+
2s
∑

i=1

Resx→ai

h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

dSi(x1, x)×

×
G
(m)
j+1(x, xI)G

(h−m)
k−j (x, xK−I)

y(x)dx
(5.9)

where one should notice that the first line correspond to j = 0 and j = k− 1 in the second

line.

Let us represent the order N−2h k-loop correlation function G
(h)
k (x1, . . . , xk) as a black

disk with k legs and h holes:

x1

x
2

x
k

h

:= G
(h)
k (x1, . . . , xk) (5.10)

Using the Feynman rules introduced above, (5.9) can be represented as:

x1
x1

x2

x
k

xK−I

x I x 2

x k

x1=

g+1

+

h

g+1−h

Σ
h=1

g

g

xx

which means that G
(h)
k is obtained by summing over all Feynman graphs with k external

legs and h loops.

The set T (h)k of all possible graphs with k external legs, and with h loops, can be

described as follows: First, draw all rooted skeleton trees (i.e. trees whose vertices have

valence 1,2 or 3), containing k + 2h − 2 edges. Draw arrows on the edges, oriented from

root toward leaves (see figure 1). Then draw, in all possible ways, k − 1 external legs, and

h inner edges, with the constraint that all the vertices of the whole graph have valence 3,

and so that an inner edge can be drawn only between a vertex and one of its descendents
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Figure 1: The 3 skeleton trees contributing to T (2)
2 , i.e. with k + 2h− 2 = 4 edges.

2 4 4

4

4 4

4 4

44

4

4

4

Figure 2: All the possible ways of drawing k − 1 = 1 external leg and h = 2 inner edges, so that

the graphs are trivalent, and that inner edges never connect different branches. Notice that all but

one graph have symmetry factor 4, and one has 2.

(inner edges can never connect different branches of the tree), see figure 2 for the example

k = 2, h = 2. Then, each such graph has a symmetry factor.

We have (see appendix A):

N
(h)
k := CardT (h)k = sh (k − 1)! 4k−1

( 3(h−1)
2 + k − 1

k − 1

)

(5.11)

where sh = N
(h)
1 is the number of one-leg graphs in a usual φ3 field theory. The generating

function s(x) =
∑∞

h=1 shx
h−1 is computed in appendix A in terms of Airy function. We

have:

s1 = 1 , s2 = 5 , s3 = 60 , . . . (5.12)

In particular for genus h = 1:

N
(1)
k := CardT (1)k = 4k−1 (k − 1)! . (5.13)

Similarly to (4.40):

G
(h)
k (x1, . . . , xk) =

∑

T∈T
(h)

k

W(T )

(5.14)
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where the weight W was defined in (4.39). The residues must be computed in the inverse

order of arrows, i.e. starting from the leaves of the arrowed skeleton tree, up to the root

(since all vertices are covered by the arrowed skeleton tree, this is always possible, and

defines a unique way of computing the weight of a given graph).

5.2 Example: one-loop function, genus one

Let us carry out explicitly the case k = 1, h = 1, and recover the result of [1, 20, 21, 19, 10]:

In that case, (5.1) reads:

√

σ(x1)W
(1)
1 (x1) =

W2(x1, x1) + U
(1)
1 (x1)

M(x1)
(5.15)

The r.h.s. is clearly a rational function of x1, and from (2.14), we know that the l.h.s.

has poles only at the branch-points , and at ∞. Introduce the euclidean division of the

polynomial U
(h)
1 (x1) by M(x1):

U
(1)
1 (x1) = P

(1)
1 (x1)M(x1) +Q

(1)
1 (x1) (5.16)

where degP
(1)
1 = s− 2 and degQ

(1)
1 < d− s.

We may thus write:

√

σ(x1)W
(1)
1 (x1)− P

(1)
1 (x1) = Resx→x1

dx

x− x1
(
√

σ(x)W
(1)
k (x)− P

(1)
1 (x))

=

2s
∑

i=1

Resx→ai

dx

x1 − x
(
√

σ(x)W
(1)
k (x)− P

(1)
1 (x))

=

2s
∑

i=1

Resx→ai

dx

x1 − x

W2(x, x) +Q
(1)
1 (x)

M(x)

=
2s
∑

i=1

Resx→ai

dx

x1 − x

W2(x, x)

M(x)
. (5.17)

It clearly gives:

G
(1)
1 (x1) =

2s
∑

i=1

Resx→ai

G2(x, x)

y(x)dx
dSi(x1, x) . (5.18)

Diagrammatically we have:

=

One can check that this result is identical to the function W
(1)
1 (x) computed in [1, 19, 10].
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5.3 Other examples

Similarly we have:

x1
x1x2

x2
x1 x2

= + 22

x1

x2

x3

x1

x3

x2
x1

x2
x2

x3
x3

x1

x1
x1

x1
x1

x2

x2

x2

x2

x2

x3

x3

x3

x3

x3

= 4 + +

++ 4 +

+ 4 + 4

4 4

44

and at genus 2 we have:

x1
x1

x1
x1

= + +2 2

and so on. . .

6. Example, One-cut case s = 1, i.e. genus zero curve

We write:

σ(x) = (x− a)(x− b) . (6.1)
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It is convenient to map the genus zero hyperelliptical surface into the complex plane with

the rational map:

x(λ) =
a+ b

2
+ γ(λ+ λ−1) (6.2)

γ =
b− a

4
. (6.3)

The x-physical sheet is sent to the exterior of the unit disc in the λ-plane, and the x-second

sheet is sent to the interior of the unit disc in the λ-plane. We have:

√

σ(x(λ)) = γ(λ− λ−1) . (6.4)

With this parameterization, all correlation functions are rational functions of the λ’s.

6.1 Recursion relations

All Pk’s are identically vanishing. We have the formula:

F2(x1, x2) = 2
√

σ(x2)
∂

∂x2

√

σ(x2)

(x1 − x2)
=

2x1x2 − (a+ b)(x1 + x2) + 2ab

(x1 − x2)2

Fk(x1, . . . , xk) = −1

2
Res
ai





k−2
∑

j=1

∑

I∈Kj

Fj+1(x, xI)Fk−j(x, xK−I)

(x− x1)M(x)σ(x)



 dx for k ≥ 3

(6.5)

and for k + h > 1, (5.9) gives:

F
(h)
k (x1, xK) = 2

2s
∑

i=1

Resx→ai

h−1
∑

m=0

F
(h−m)
1 (x)F

(m)
k (x, xK)

(x1 − x)M(x)σ(x)
dx+

+

2s
∑

i=1

Resx→ai

h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

F
(m)
j+1 (x, xI)F

(h−m)
k−j (x, xK−I)

(x1 − x)M(x)σ(x)
dx+

+

2s
∑

i=1

Resx→ai

F
(h−1)
k+1 (x, x, xK)

(x1 − x)M(x)σ(x)
dx .

(6.6)

6.2 2 point function

The 2-point function can be written as:

W2(x1, x2) = −
∂

∂x1

∂

∂x2
ln (λ1 − λ−12 ) =

∂

∂x1

∂

∂x2
ln

(

λ1 − λ2
x1 − x2

)

(6.7)

where

x1 = γ(λ1 + λ−11 ) , x2 = γ(λ2 + λ−12 ) (6.8)
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or:

W2(x1, x2) = − 1

4
√

σ(x1)
√

σ(x2)



1−
(

√

σ(x1)−
√

σ(x2)

x1 − x2

)2




= − 1

2(x1 − x2)2
+

2x1x2 − (a+ b)(x1 + x2) + 2ab

4(x1 − x2)2
√

σ(x1)
√

σ(x2)
. (6.9)

In particular we have:

F2(a, x) =
(a− b)

(x− a)
, F2(b, x) =

(b− a)

(x− b)
(6.10)

The polynomial A(x1, x2) introduced in (3.31) vanishes identically, and we have:

W2(x, x) =
(b− a)2

16σ(x)2
. (6.11)

All this is well known, see for instance [3].

6.3 Other correlation functions

We just give some examples of applications of the general theory described above:

F3(x1, x2, x3) = −Res
a,b

(

F2(x, x2)F2(x, x3)

(x− x1)M(x)σ(x)

)

dx

= − F2(a, x2)F2(a, x3)

(a− x1)M(a)(a − b)
− F2(b, x2)F2(b, x3)

(b− x1)M(b)(b − a)

=
b− a

(a− x1)(a− x2)(a− x3)M(a)
− b− a

(b− x1)(b− x2)(b− x3)M(b)
(6.12)

i.e.

W3(x1, x2, x3) = (b− a)

1
(a−x1)(a−x2)(a−x3)M(a) − 1

(b−x1)(b−x2)(b−x3)M(b)

8
√

σ(x1)
√

σ(x2)
√

σ(x3)
(6.13)

which is the usual of [3].

√

σ(x1)W
(1)(x1) = Resa,bW2(x, x)

dx

2(x1 − x)M(x)

=
(b− a)2

32
Resa,b

dx

(x1 − x)M(x)σ(x)2

=
(b− a)2

32
Resa

dx

(x− a)2
1

(x1 − x)M(x)(x − b)2
+

+
(b− a)2

32
Resb

dx

(x− b)2
1

(x1 − x)M(x)(x− a)2

=
(b− a)2

32

(

1

(x1 − x)M(x)(x− b)2

)′∣
∣

∣

∣

x=a

+

+
(b− a)2

32

(

1

(x1 − x)M(x)(x− a)2

)′∣
∣

∣

∣

x=b

(6.14)
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=
(b− a)2

32

(

1

M(a)

−2x1 − b+ 3a

(a− b)3(x1 − a)2
− M ′(a)

M(a)2
1

(a− b)2(x1 − a)

)

+

+
(b− a)2

32

(

1

M(b)

−2x1 − a+ 3b

(b− a)3(x1 − b)2
− M ′(b)

M(b)2
1

(b− a)2(x1 − b)

)

which again agrees with [4] and other results in the literature.

7. Conclusions and prospects

In this article, we have found a φ3 Feynman graph formulation for computing all correla-

tions functions to all powers of N in the one-hermitian matrix model. First, it would be

interesting to find out to which field theory it corresponds. One is tempted to compare

with Liouville’s theory (which is not cubic) or to a fermionic theory.

We claim that this approach is more efficient for actual calculations, than the method

existing previously in the literature [2, 4]. Indeed, in [2, 4], one has to construct the cor-

relation functions recursively, by expanding them on basis functions which are themselves

constructed recursively by taking derivatives with respect to the potential. For instance,

one does not get any simplification in the method of [2, 4] by assuming an even potential,

or by assuming a quadratic potential. The method presented here, works for fixed potential

(for instance quadratic), and does not need to construct any basis of functions.

Another important point for the method presented here, is that it is expressed in terms

of geometrical fundamental objects on the spectral curve. This is another evidence of the

deep link between tau functions and complex geometry.

There are other expressions in the literature involving Residues of geometrical objects

(for instance [39, 33, 5, 6, 17, 19, 32, 30]), namely, only the Bergmann kernel and not the

abelian differential. However, we claim that it should be simpler to compute the residue of

a function with a simple pole (the abelian differential), than the residue of a function with

a double pole (Bergmann kernel).

Moreover, the whole procedure described here, can be applied with very small adap-

tations to other matrix models, in particular the 2-matrix model, and to non-hermitian

matrix models (in particular β = 1, 2, 4 models), this work is in progress and will be avail-

able shortly [24]. In the 2-matrix model with potentials of degree d1 + 1 and d2 + 1, the

computation of correlation functions of the first matrix only involves d2 vertices (i.e. cubic,

quartic, . . . , d2 + 2–legs–vertex), instead of only one cubic vertex equal to 1/2y(x) for the

1-matrix model. This will be further explained in [24].

The observable we have not computed in this article is the free energy:

G0 := −
1

N2
lnZ :=

∞
∑

h=0

N−2hG
(h)
0 . (7.1)

The free energy does not appear in the loop equations. It satisfies:

∂G
(h)
0

∂V (x1)
= −W (h)

1 (x1) (7.2)
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therefore, in order to compute the free energy, one has to integrate with respect to the

potential, i.e. one can no longer keep the potential constant. One would reasonably make

the following conjecture for h ≥ 2:

G
(h)
0 →

∑

T∈T
(h)
0

W(T ) (7.3)

for example for h = 2

= +

unfortunately, these Feynman graph don’t make sense (the abelian differential diverges

at coinciding points). The conjecture is that the G
(h)
0 are related to traces of powers of

the laplacian on the spectral curve. For instance it is known that G
(1)
0 is related to the

determinant of the laplacian [19, 10].

Acknowledgments

The author wants to thank the EU network EC IHP network (HPRN-CT-1999-000161), as

well as the CRM in Montreal where a large part of this research was conducted. The author

wants to thank M. Bertola, P. Di Francesco, E. Guitter, J. Harnad, I. Kostov, P. Wiegman,

and A. Zabrodin for helpfull and stimulating discussions.

A. Cardinal of T (h)
k

The cardinal of Tk and of T (h)k can be computed by setting W = 1 in (4.40) and in (5.14),

and then using the recursion relations (4.35) and (5.9).

One thus gets for k ≥ 3:

N2 = 1 , Nk =

k−2
∑

j=1

,

(

k − 1

j

)

Nj+1Nk−j (A.1)

writing:

r0 := 0 , r1 := 1 , rk :=
Nk+1

k!
(A.2)

(A.1) becomes for k ≥ 2:

rk =

k
∑

j=0

rj rk−j (A.3)

We introduce the generating function:

R(x) :=
∞
∑

k=0

rk x
k (A.4)
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and thus (A.3) becomes:

R(x)− x = R2(x) (A.5)

whose solution is:

R(x) =
1−

√
1− 4x

2
= −1

2

∞
∑

k=1

( 1
2

k

)

(−4x)k (A.6)

which implies:

rk = −(−4)k
2

( 1
2

k

)

= (−1)k+1 22k−1
1
2

(

−12
)

. . .
(

3
2 − k

)

k!
= 2k−1

(2k − 3)!!

k!
=

2k − 2!

k!k − 1!
(A.7)

and thus, we obtain (4.37)

Nk = 2k−2 (2k − 5)!! =
2k − 4!

k − 2!
. (A.8)

For higher genus, we have for k ≥ 1 and h ≥ 1:

N
(0)
1 := 0 , N

(h)
k = N

(h−1)
k+1 +

k−1
∑

j=0

h
∑

m=0

(

k − 1

j

)

N
(m)
j+1 N

(h−m)
k−j (A.9)

writing:

r
(0)
0 := 0 , r

(h)
k :=

N
(h)
k+1

k!
(A.10)

(A.9) becomes for k ≥ 0, h ≥ 1:

r
(h)
k = (k + 1)r

(h−1)
k+1 +

k
∑

j=0

h
∑

m=0

r
(m)
j r

(h−m)
k−j . (A.11)

We introduce the generating function:

Rh(x) :=
∞
∑

k=0

r
(h)
k xk (A.12)

and thus (A.11) becomes for h ≥ 0:

R0(x) = R(x) , Rh(x) = R′h−1(x) +

h
∑

m=0

Rm(x)Rh−m(x) (A.13)

which can also be written for h ≥ 1:

(1− 2R(x))Rh(x) = R′h−1(x) +

h−1
∑

m=1

Rm(x)Rh−m(x) (A.14)

using (A.6), it is easy to see, by induction on h that for h ≥ 1 one has:

Rh(x) = sh (1− 4x)−
3h−1

2 (A.15)
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where the coefficients sh obey for h ≥ 1:

s1 = 1 , sh = 2(3h− 4)sh−1 +
h−1
∑

m=1

smsh−m (A.16)

or, if we define s0 := −1/2, it can be written for any h ≥ 1:

0 = 2(3h − 4)sh−1 +

h
∑

m=0

smsh−m (A.17)

we introduce the generating function:

S(x) :=

∞
∑

h=0

sh x
h (A.18)

it obeys:

0 = S2(x)− 1

4
+ 6x2S′(x)− 2xS(x) . (A.19)

If one writes

ξ =
x−2/3

4
(A.20)

and

S(x) = −x 1
3h(ξ) (A.21)

one has:

ξ = h2(ξ) + h′(ξ) (A.22)

whose solution is;

h(ξ) =
Ai′(ξ)

Ai(ξ)
=

∫

t dt e−
t3

3
+tξ

∫

dt e−
t3

3
+tξ

=
√

ξ

∫

t dt eξ
3/2(− t3

3
+t)

∫

dt eξ
3/2(− t3

3
+t)

=
x−1/3

2

∫

t dt e
1
8x
(− t3

3
+t)

∫

dt e
1
8x
(− t3

3
+t)

(A.23)

and thus:

S(x) = −1

2

∫

t dt e
1
8x
(− t3

3
+t)

∫

dt e
1
8x
(− t3

3
+t)

= −1

2



1 +

∫

t dt e
1
8x
(−t2− t3

3
)

∫

dt e
1
8x
(−t2− t3

3
)



 (A.24)

or

S(x) = −1

2
−
√
x

∫

t dt e−
t2

2 e−
√

xt3

3

∫

dt e−
t2

2 e−
√

xt3

3

(A.25)

S(x) = −1

2
+

∑∞
h=0

xh+1

32h+1 (2h+1)!

∫

dt t2(3h+2) e−t
2/2

∑∞
h=0

xh

32h (2h)!

∫

dt t2(3h) e−t2/2
(A.26)

S(x) = −1

2
+

∑∞
h=0

xh+1 (6h+3)!!
32h+1 (2h+1)!

1 +
∑∞

h=1
xh (6h−1)!!
32h (2h)!

= −1

2
+ x

∑∞
h=0

xh (6h+4)!
32h+1 23h+2 (2h+1)! (3h+2)!

∑∞
h=0

xh (6h)!
32h 23h (2h)! (3h)!

. (A.27)
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In the end we have:

N
(h)
k := CardT (h)k = sh (k − 1)! 4k−1

( 3(h−1)
2 + k − 1

k − 1

)

(A.28)

The whole function is thus:

R(x, z) :=
∑

k

∑

h

N
(h)
k xkzh =

∑

h

Rh(x)z
h

= −z
∫

dt te−
z2

3
t3 e

t
4
(1−4x)

∫

dt e−
z2

3
t3 e

t
4
(1−4x)

(A.29)
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