
Publication V

Yu Xiao, Wei Li, Matti Siekkinen, Petri Savolainen, Antti Ylä-Jääski, Pan
Hui. Power Management for Mobile Devices Using Complex Event
Processing. Aalto University publication series SCIENCE+TECHNOLOGY
Aalto-ST 26/2011, 1-27, 2011.

c© 2011 Yu Xiao, Wei Li, Matti Siekkinen, Petri Savolainen, Antti Ylä-Jääski and
Pan Hui.
Reprinted with permission.

111

Publication V

Yu Xiao, Wei Li, Matti Siekkinen, Petri Savolainen, Antti Ylä-Jääski, Pan
Hui. Power Management for Mobile Devices Using Complex Event
Processing. Aalto University publication series SCIENCE+TECHNOLOGY
Aalto-ST 26/2011, 1-27, 2011.

c© 2011 Yu Xiao, Wei Li, Matti Siekkinen, Petri Savolainen, Antti Ylä-Jääski and
Pan Hui.
Reprinted with permission.

111

Abstract

Energy consumption of wireless data transmission, a significant part of the over-

all energy consumption on a mobile device, is context-dependent - it depends on

several internal and external contexts, such as application workload and wireless

signal strength. In this paper, we propose an event-driven framework that can be

used for efficient power management on mobile devices. The framework adapts

the behavior of a device component or an application to the changes in contexts,

defined as events, according to developer-specified event-condition-action (ECA)

rules that describe the power management mechanism. In contrast to previous

work, our framework supports complex event processing in addition to simple

event processing. By correlating events, complex event processing helps to dis-

cover complex events that are relevant to power consumption. Using our frame-

work developers can implement and configure power management applications

by editing event specifications and ECA rules through XML-based interfaces. We

evaluate this framework with two applications in which the data transmission is

adapted to traffic patterns and wireless link quality. These applications can save

roughly 12% more energy compared to normal operation.

1 Introduction

Energy consumption caused by wireless data transmission has become a

significant component of overall energy consumption on mobile devices,

due to the increasing popularity of mobile Internet services. Solutions

that can improve the energy efficiency in data transmission are therefore

very much needed for improving the battery life of mobile devices. In this

paper, we focus on power management software for wireless data trans-

mission on a single device. This software controls the behavior of device

components and applications in order to reduce transmission cost.

The effectiveness of power management for wireless data transmission

depends on how well it can adapt the behavior to the workload of trans-

mission and the situation in which the transmission happens. A key chal-

lenge is the detection of situational variation since the situations include

many factors such as the state of the mobile device, the environment of

the wireless network to which the mobile is connected to, and the patterns

of the traffic generated by mobile applications.

1

Context has been widely used for describing the state of an entity, such

as a person, a device, an application and a network. For example, signal-

to-noise ratio (SNR) is a measure of wireless link quality, and the distribu-

tion of packet intervals reflects the burstiness in traffic. If the changes in

contexts are defined as events, complex event processing [13] techniques

can be applied and the situational variation can be modeled as complex

events. This enables designing power management software as a number

of event-driven adaptations.

Even though the event-driven approach has been adopted in a few power

management systems, such as wake-on-wireless [16] and process cruise

control [20], these systems were mainly designed with specific scenarios

in mind. In addition, these systems only supported simple event process-

ing [11]. However, previous work shows, that the adaptations for wireless

data transmission have to handle more than one event at a time and re-

quire more complex processing of the events. For example, the self-tuning

power management system, STPM [2], switches the operating mode of the

Wi-Fi network interface (WNI) between the Continuously Active Mode

(CAM) and Power Saving Mode (PSM), while taking into account applica-

tion hints about traffic patterns, tolerable delay and the trade-off between

transition cost and energy savings at the same time. To implement such

adaptations following an event-driven approach, complex event process-

ing is needed because it can process a collection of events and generate

more meaningful ones based on the patterns shown in the event occur-

rences.

In this paper we propose an event-driven framework that can be used

for implementing power management on mobile devices. Our framework

uses event-condition-action (ECA) rules to describe the power manage-

ment mechanism that explains which actions to invoke upon the occur-

rence of an event under certain conditions. As our framework supports

complex event processing, the events declared in the ECA rules can also

be ones derived from other events and ones generated by correlating other

events. The rules of the complex event processing are defined in event

specifications and can be parsed into different combinations of logical

functions like filtering, pattern matching and derivation. Developers only

need to define their event specifications and the ECA rules that describe

the event-driven power management mechanism using structural XML,

and the framework will handle the rule-based processing, including event

generation, event processing, and adaptation scheduling.

2

We have implemented this framework in C++ on Maemo, a Linux-based

mobile platform. We have also demonstrated our framework with two

power management applications, in which complex event processing and

simple event processing are applied respectively. The first application

focuses on the adaptations of PSM settings to traffic patterns. We pre-

dict the no-data intervals based on the self-similar burstiness of network

traffic. Our proposal differs from previous work [2, 4] in not requiring

revisions to applications, as it can learn the traffic pattern online based

on traffic statistics. The second application focuses on the adaptations of

network transmission to SNR in Wi-Fi. Our experimental results show

that the first application saves 11.78% of energy in Internet radio stream-

ing and the second one saves 12.86% in TCP file downloading in a mobile

scenario.

In summary, our contributions include:

1) Proposing an event-driven framework for power management on mo-

bile devices. To the best of our knowledge, it is the first one that uses

complex event processing for power management.

2) Providing user-friendly interfaces for implementing and configuring

power management applications and hiding the low-level implementation

from application developers.

3) Demonstrating the usage and effectiveness of the framework with two

power management applications, one of which is original in itself.

Our framework enables implementing and deploying many power man-

agement solutions simultaneously. Therefore, it can be used for integrat-

ing existing power management applications, which has potential of gain-

ing more energy savings through the coordination between applications.

For example, coordinating the power management of wireless network in-

terface [2] with application-level traffic adaptations [12] has potential of

reducing more transmission cost while maintaining the application per-

formance.

The rest of the paper is organized as follows. Section 2 introduces two

power management applications which are used as examples for describ-

ing and evaluating our framework. Section 3 gives an overview of our

event-driven framework. Section 4 describes the implementation of the

framework itself and the example applications that use the framework.

The results of our experimental study are presented in Section 5. Related

work is reviewed in Section 6, and our work is concluded in Section 7.

3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

CD
F

Logarithm of packet interval(s) to base 10

Figure 1. Cumulative distribution of packet interval in an Internet radio stream.

2 Motivating Scenarios

On amobile device, hardware components, such as wireless network inter-

faces, are the actual power consumers. The rate of power consumption is

determined by the physical characteristics of the hardware, whereas the

total amount of energy consumption also depends on the workload gener-

ated by software. In this section, we present two motivating scenarios in

which the power management applications aim at energy savings through

workload-aware hardware control and workload scheduling, respectively.

2.1 Traffic-aware WNI Control

Alice is listening to an internet radio channel on her mobile phone through

Wi-Fi. A traffic sniffer is running on the phone capturing packet infor-

mation such as packet arrival time and packet size. At the same time,

power management software is analyzing the statistics of packet informa-

tion based on which it classifies the radio stream as self-similar bursty

traffic, and starts to predict the occurrences of bursts. Whenever a burst is

predicted to end, the power management software informs the WNI to go

to sleep.

In this scenario, power management software learns the traffic patterns

online and adapts the WNI operating mode to the discovered traffic pat-

terns. Our proposal improves PSM Adaptive, a variant of PSM that is

widely used on commercial devices, by taking traffic patterns into account.

Differently from the PSM defined in the IEEE standard [1], PSM Adap-

tive adopts a timeout mechanism which forces the WNI to wait for a fixed

period of time first, instead of going to sleep immediately when the WNI

becomes idle. The length of this waiting time, called the PSM timeout, is

usually fixed to 100ms or 200ms.

4

The motivation of our proposal comes from the fact that PSM Adaptive

is inefficient for many applications, since the fixed PSM timeout used on

commercial devices is longer than most packet intervals in Internet traf-

fic. For example, as shown in Figure 1, 95.3% of packet intervals included

in an Internet radio stream are smaller than 100ms. During 75.5% of

the aggregate packet intervals the active WNI is in IDLE mode, which

wastes energy. Hence, apart from shaping the traffic patterns, we argue

that it is necessary to make changes to PSM Adaptive in order to adapt

the operating mode of the WNI to the patterns of the traffic in a more

energy-efficient manner.

We predict the traffic intervals during runtime and adjust the PSM

timeout dynamically with the traffic intervals, taking the constraints of

performance and energy overhead into account. We predict the traffic in-

tervals based on the self-similar burstiness of Internet traffic [7], without

revisions to mobile applications or access points. According to the defini-

tion of “train burstiness” in [9], “a burst can be defined as a train of pack-

ets with a packet interval less than a threshold”. We call this threshold

the packet interval threshold. As the intervals between two bursts must

be bigger than the packet interval threshold, predicting the beginning of

a big no-data interval can then be transformed into predicting the ending

of a burst.

We use a threshold of burst size, called burst size threshold, to predict

the ending of a burst. The burst size is equal to the total size of all the

packets included in the burst. A variable that holds the size of the current

burst is updated every time a new packet arrives. When the current burst

size variable reaches the burst size threshold, the packet that has just

arrived is considered as the last packet of the burst. In other words, a

new burst interval is estimated to have begun.

We apply the moving average algorithm for calculating the burst size

threshold. Given the sizes of the previous N bursts, the burst size thresh-

old is set to the mean of these burst sizes. To gain high prediction accu-

racy, we use standard deviation of burst size to evaluate the self-similarity

of burst size. Only when the standard deviation of the previous M burst

sizes is smaller than a threshold, called standard deviation threshold, do

we start to run the prediction. The implementation of this application

using our framework will be detailed in Section 4.

5

2.2 SNR-based Transmission Adaptations

Alice is downloading a file from a TCP server to her mobile phone through

Wi-Fi. As she is moving with the phone, the wireless link quality is not

stable. A network monitor running on the phone is monitoring the wireless

link quality in terms of SNR. Based on the history, the network monitor

predicts the change in the wireless link quality that is going to happen in

the next time slot. When the wireless link quality becomes unacceptable, the

phone pauses the file transmission, until the wireless link quality becomes

sufficiently good again.

In this scenario, the power management software adapts the network

transmission to the wireless link quality for saving energy. We measure

the wireless link quality using SNR, as it has been previously proved to

be a good indicator of the wireless link quality [15]. Energy efficiency of

network transmission in Wi-Fi increases when network throughput gets

higher [6, 21], and the network throughput is at its best when the link

quality is good. Hence, it is more energy-efficient to conduct data trans-

mission when the link quality is good.

We adopt a threshold-based method for adaptation scheduling based on

the prediction of SNR. Previous work has proposed several SNR predic-

tion algorithms based on statistical models like Autoregressive integrated

moving average (ARIMA) [19] andMarkov chains [14]. Most of these mod-

els require complex offline model training. In this work, we show that

with our simple online prediction algorithm it is still possible to gain en-

ergy savings that are comparable to those obtained with more complex

methods.

Our simple online prediction algorithm works as follows. We monitor

SNR at a fixed frequency, so that a time series can be divided into time

slots with a fixed length. The length of the time slot is chosen so that the

measured SNR value does not change more than once during one time

slot. For example, according to our SNR measurement sampled at 10Hz,

in the scenarios where the phones move with the mobile users at walking

speed, the measured SNR does not change more than once in one second.

Hence, it would be accurate enough to sample SNR at 1Hz in those sce-

narios. Let the monitored SNR at time x be m(x) and the predicted SNR

at time (x+1) be p(x+1). Our prediction algorithm can be simply defined

as p(x+1)=m(x).

6

Traffic-aware WNI control SNR-based

transmission

adaptations

Context packet interval, packet interval thresh-

old, packet size, burst size, burst size

monitored SNR,

predicted SNR,

threshold, standard deviation of burst

size, standard deviation threshold

SNR threshold

Action adjust the PSM timeout pause/resume

transmission

Table 1. Contexts and actions included in motivating scenarios.

2.3 Why is Complex Event Processing Needed?

The contexts and actions involved in the two motivating scenarios are

listed in Table 1. We propose to implement such context-aware adap-

tations following an event-driven approach, because the adaptations de-

scribed in the scenarios are invoked only when a certain change in context

occurs.

Although event-driven approach has been used in other power manage-

ment systems [16, 20], our proposal differs from previous ones by sup-

porting complex event processing. We argue that complex event process-

ing is more suitable than simple event processing for power management,

especially in wireless data transmission scenarios, due to the following

reasons.

First, simple event processing generates events only based on the con-

text that can be directly measured. It cannot generate events based on

changes in predictions. In contrast, complex event processing can create

events based on statistics and prediction of contexts. Some contexts such

as predicted SNR can not be directly measured but rather need to be cal-

culated based on statistics or prediction.

Second, simple event processing cannot generate events based on event

patterns, whereas pattern matching is needed by many power manage-

ment applications. For example, in the example application presented in

Section 2.1, the ending of a burst is predicted based on the self-similarity

of burst sizes in previous samples.

Third, complex event processing can bring extra benefits for power man-

agement at OS and middleware levels, compared with simple event pro-

cessing which is usually accompanied by complex policy management. It

7

Event Generator
(Monitoring, prediction)

Event Processing Agent
(Instance partitioning, filtering,
derivation, and pattern matching)

Scheduler
(Rule engine, action engine)

Atomic events

Contexts

Derived events

OS

Context
Storage

Contexts

Rule
Base

Action instruction

Monitoring Daemons

Action instruction

Application

ECA rules

Event
Specifications

Adaptors

Adaptors

Figure 2. Architecture of our event-driven framework.

is because complex event processing can provide more meaningful infor-

mation about the situations, which in turn makes it easier for application

developers to define policies and to detect the potential conflicts between

policies.

3 System Architecture

3.1 Overview

We propose an event-driven framework for power management of wireless

data transmission on mobile devices. The architecture of our framework

is shown in Figure 2. The power management mechanisms compose of

event-driven adaptations that are defined using ECA rules. The lifecy-

cle of events consists of three stages: event generation, event processing,

and event consumption. Accordingly, there are three components in our

framework, namely, event generator, event processing agent, and sched-

uler.

An event generator only produces atomic events based on the context

information from monitoring daemon and context storage. Atomic events

are processed into derived events by an event processing agent following

event specifications. When the scheduler receives events from the event

8

processing agent, it matches the events to the ones defined in the ECA

rules, and validates the conditions required for scheduling the actions us-

ing the available context information. Whenever an event matches a rule

and all the conditions are satisfied, corresponding actions are scheduled.

The ECA rules and event specifications are stored in the rule base.

Event processing states, historical events, external environment states

and other global states are saved in a container called context storage.

The content in the context storage gets updated when the relevant con-

texts change.

3.2 Event generator

The event generator is the software component that generates events

based on the changes in contexts. The context information is collected

from either the monitoring daemons or context storage. The relationship

between context, state and event is described in the definitions of atomic

state and atomic event below.

Definition 1: An atomic state is a tuple: S = (c, op, val) , where c is

the capability value, op is one of the binary operators defined in a set:

{<,>,≥,≤,=, �=}, and val is the reference value of the capability.

Definition 2: An atomic event e indicates the change in a state from S0

to S1. It can be represented as e: S0 → S1.

As shown in Definition 1, each context variable that can be monitored is

modeled as capability, and the corresponding context providers are mod-

eled as sensors. A sensor can be a hardware or software component with

sensing capabilities. By comparing the capability values, an event can

be created if there is a change in the values. In practice, events are only

generated when there is at least one component subscribing to the event

in question. In our system, there can be more than one event generator.

An event generator can generate more than one type of event based on

event specification. All the events generated by any event generator are

imported into the same event processing agent for further processing.

Event instances are objects used for exchanging event information dur-

ing runtime. An event instance includes the meta-data of the event such

as event type identifier and occurrence timestamp, and a set of event-

specific attributes. An attribute can be defined as a tuple including a

unique attribute identifier and the indicator of attribute data type. Take

a type of event which indicates the arrival of new packet as an example, its

9

identifier is NEW_PACKET. In addition to the meta-data of the event, an

event instance of this type includes packet interval with previous packet,

packet size, connection identifier, and transmission direction.

3.3 Event Processing Agent

Our event processing agent supports both simple event processing and

complex event processing. In simple event processing, the event instances

are directly forwarded to the scheduler. In complex event processing, the

following functions will be applied, depending on event specifications.

Instance partitioning: The event instances with the same event type can

be handled in different ways, depending on the values of certain event at-

tributes, the time when the event occurs, and/or the state of the device

and its environment. Accordingly, we partition the event instances and

apply different processing functions to each partition afterwards. For ex-

ample, the event instances with type of NEW_PACKET can be partitioned

according to the connection identifier, one of its event attributes.

Filtering: We use filters to select the event instances that show certain

features in their attributes or in meta-data properties associated to them.

Different processing functions are performed on those events that match

the filter than on those that do not. Similarly with instance partitioning,

this function does not generate any new event or change the information

included in the event instances.

Derivation: Derivation aims at generating new events by processing the

input event instances based on different rules. These rules describe how

the attributes of the new generated events are calculated from the at-

tributes of the input event instances and/or the global state of the system.

Pattern matching: As defined in [13], “an event pattern is a template

specifying one or more combinations of events.” Pattern matching in the

event processing agent is responsible for detecting whether the given set

of event instances satisfies a particular pattern. In power management

applications, the threshold pattern and trend pattern are often used.

3.4 Rule Specification

We use structural XML to represent the ECA rules of adaptations. There

are four types of XML elements in a rule,<on>,<if>,<do> and<elsedo>.

The <on> states the only type of the event to be handled by this rule.

The <if> describes the conditions as a complex state, which is basically a

10

combination of atomic states formed with logical operators AND, OR, and

NOT. The <do> elements in a rule define the actions to be invoked if the

conditions are satisfied, while the <elsedo> elements define the ones to

be invoked if the conditions are not satisfied.

Definition 3: We define an action as a tuple: (id, type, name, paramlist),

where id is the identifier of a hardware component or a software compo-

nent that will handle the operation, type denotes the type of the operation,

name is the identifier of the operation, and paramlist is a set of parame-

ters used for the operation.

We define three types of operations, set, subscribe, and unsubscribe. ‘Set’

is used for setting hardware/software parameters, while the others are

used for subscribing or unsubscribing events, with the event type stated

in the identifier of the operation.

Event specifications can be written using the same XML schema. Event

processing rules includes two types of ‘set’ operations, one for event gen-

eration and the other for context update. The processing of the event

specifications in the event processing agent follows the same procedure as

the processing of adaptation rules in the scheduler. This procedure will

be explained in Section 4.3.

4 Implementation

We implemented the framework in C++ on Maemo 5, a Linux-based OS.

In this section, we will describe the implementation of each component.

Among them, event generators work closely with the context monitoring

utilities which are platform-specific. Depending on the context informa-

tion needed, event generation can be implemented as several event gen-

erators each of which handles a set of context information. In contrast,

the event processing agent and the scheduler are context-independent. In

addition to the framework itself, we also implemented the two power man-

agement applications introduced in Section 2 using the framework. The

events used in these applications are summarized in Table 2. We will give

examples of the related event generation and complex event processing in

this section.

11

Event type Event description

NEW_PACKET A new packet arrives.

NEW_BURST This packet is the first one in a new burst.

END_BURST This packet is predicted to be the last packet

of current burst.

WRONG_END This packet does not belong to a new burst.

However, the current burst has been pre-

dicted to end.

WRONG_END_AGAIN This packet does not belong to a new burst,

and an event instance with a type called

WRONG_END for this burst has been sent

earlier.

MISS_END This packet belongs to a new burst. However,

the end of previous burst was not detected be-

forehand.

START_PREDICTION The standard deviation of burst sizes is small

enough for prediction.

STOP_PREDICTION The standard deviation of burst sizes be-

comes so big that it is difficult to predict the

burst arrivals.

FIRST_CONNECTION One connection is established and it is the

only one at the moment.

NO_CONNECTION The last connection on the mobile device dis-

connects.

LOW_TO_HIGH_SNR The predicted SNR is becoming bigger than

the SNR threshold in the next time slot.

HIGH_TO_LOW_SNR The predicted SNR is becoming smaller than

the SNR threshold in the next time slot.

Table 2. Description of events used in our example applications.

12

4.1 Event Generator

We implemented two event generators, the traffic monitor and the net-

work monitor. The traffic monitor provides the atomic events, which indi-

cate the arrivals of data packets or the changes in TCP/UDP connections.

The network monitor generates events for the changes in the network en-

vironment such as the changes in SNR. As an event can be something that

has happened in physical reality or something that we predict will hap-

pen in the near future, the event generators can provide events indicating

the changes in the monitored context like SNR as well as the changes

predicted to happen in near future, such as the predicted traffic intervals.

The subscription of atomic events and the related context information is

managed by the event generators in question.

Traffic monitor

The traffic monitor generates events based on real-time packet informa-

tion. We implemented packet sniffing in a kernel module using Netfilter
1. Netfilter is a set of hooks in the Linux kernel. For each hook, there is a

callback function to be invoked whenever a packet traverses the hook in

the network stack. We utilized two existing Netfilter hooks, hook_local_in

and hook_local_out, which handle outgoing and incoming traffic, respec-

tively. We customized their callback functions so that the packet infor-

mation can be sent to the user space. In addition, we added a list to the

kernel module for managing the identifiers of the ongoing connections.

The identifier is the combination of the IP and port of the source and the

destination, or simply just the local port in the case of a TCP connection.

We utilized the handshake messages to detect the change in connection

state. For example, when an ACK responding to SYN is detected and

the connection identifier is not included in the list, a new connection is

considered to be established.

The traffic monitor running in the user space opens a Netfilter socket

for the incoming messages from the kernel module. For each message, the

first byte states the message type, such as “connection opened”, “connec-

tion disconnected”, or “packet arrived”. The traffic monitor also maintains

a list for managing the information on existing connections. An event in-

stance with a type called FIRST_CONNECTION will be generated, if the

connection count changes from 0 to 1. Conversely, one with a type called

1http://www.netfilter.org

13

NO_CONNECTION will be generated if the count changes from 1 to 0.

For the message about a new packet, the traffic monitor generates an

event instance with a type called NEW_PACKET and copies the packet

information into the event attribute fields.

The traffic monitor can also generate atomic events using filtering on a

single packet attribute. For example, it generates event instances with a

type called NEW_BURST based on the packet interval with the previous

packet that belongs to the same connection and has the same transmis-

sion direction. A packet that is the first packet of a new burst satisfies the

conditions of two event types, NEW_PACKET and NEW_BURST. If both

event types have been subscribed, one event instance will be generated

for each type. Otherwise, only the one that has been subscribed will be

generated.

Network monitor

The network monitor was implemented in a different way than the traf-

fic monitor. The network monitor does not passively listen for messages

coming from other components. Instead, it periodically pulls information

directly through OS APIs. For example, it gets the signal strength and

noise level every 1 second through ioctl functions.

The network monitor generates events that indicate changes in the pre-

dicted SNR. For example, LOW_TO_HIGH_SNR for the change from a

value lower than the threshold to one higher than that. We use only the

predicted SNR here, because the predicted SNR for the current time slot

implies the current state of network transmission. For example, when

the SNR in the current time slot was earlier predicted to be lower than

the threshold, even if the actual measured SNR went over the threshold,

the network transmission would have been paused in accordance with our

adaptation rules.

4.2 Event Processing Agent

Event generators and the event processing agent share an event queue.

Event generators only push event instances into the queue, while the

event processing agent can get them out of the queue and also push back

derived events for further processing. Our event processing agent per-

forms both simple event processing and complex event processing. In this

section, we will focus on the implementation of complex event processing,

14

State
Accumulation:

N =10

Theshold Pattern
Matching:

Stdev(burst size) ≤
stdevThreshold

Instance
Selection:

EventType ==
END_BURST

a1

e1: the last instance with
type of END_BURST

e2: current Instance with
type of END_BURST

Trend pattern matching:
e1.burstCount <
e2.burstCount

Derivation:
EventType =

WRONG_END

Instance
Selection:

EventType ==
NEW_BURST

a2

e1: the latest Instance with type
of NEW_BURST

e2: the latest Instance with type
of END_BURST

Threshold pattern matching:
e1.burstCount ≥
e2.burstCount+1

Derivation:
EventType=MISSED_END

matched Derivation:
EventType =

START_PREDICTION

matched

Derivation:
EventType =

STOP_PREDICTIONNot matched

Threshold pattern matching:
Packet count == 0?

Derivation:
EventType=NEW_BURST

matched

Input Filter:
Downlink only

Instance Partitioning:
ConnectionID

a0

Instance Selection:
EventType ==NEW_PACKET

Event Interval Initiator: NEW_BURST
Event Interval Context Initiator Policy:

Refresh

Threshold Patten Matching:
Sum(packetSize)≥burstSizeThreshold

Derivaton:
EventType=END_BURST

matched

Not matched

e3: the last instance with
type of WRONG_END

Trend pattern matching:
e3.burstCount <
e2.burstCount

Derivation:
EventType =

WRONG_END_AGAIN

Not matched matched

Not matched

Instance
Partitioning:
EventType

a0, a1 or a2

Figure 3. Complex event processing in traffic-aware WNI control.

using traffic-aware WNI control as an example. As shown in Figure 3, the

complex event processing in the example uses filtering, instance parti-

tioning, derivation and pattern matching. Filtering is implemented in the

same way as done by the traffic monitor for generating event instances

with a type called NEW_BURST. The implementation of the other three

is explained below.

Instance partitioning: The example uses two types of instance partition-

ing. One is called segmentation-oriented partitioning, which classifies the

event instances based on a certain event attribute. As shown in Figure 3,

the event instances accepted by the input filter are first partitioned based

on the connection identifier. It means that the event instances related to

different connections will be processed independently. After the thresh-

old pattern matching stage, the event instances that do not match will

be further partitioned into three sets based on the event type. Accord-

ingly, there are three branches, marked as a0, a1 and a2, for the following

processing for each partition.

In branch a0, temporal-oriented partitioning is applied to the event in-

stances with a type called NEW_PACKET. We implement it with a time

window. Only the instances with their occurrence timestamps covered by

the time window will be included. The time window is usually defined us-

ing the beginning and ending points in time. However, in this case, these

points in time are uncertain, because the time window is initialized or

15

closed only when a certain event occurs. Hence, we define the time win-

dow using the events that initiate or terminate the time window, and call

them initiator and terminator, respectively. If a time window already ex-

ists when an initiator occurs, there are different ways to handle the new

initiator. The initiator can be either ignored or interpreted as a signal to

create a new time window. The new time window can then replace the

old one, or co-exist with the old one, depending on the usage scenarios. In

our example, a new event instance with a type called NEW_BURST will

refresh the time window. It means that the related burst statistics will be

updated. For example, the size of current burst will be reset to 0.

Pattern matching: Our example uses threshold pattern matching and

trend pattern matching. A threshold pattern can be described by a binary

operator and a threshold value. The binary operator is used for comparing

the threshold to the input. If the comparison returns TRUE, the input

is considered to match the pattern. Trend pattern matching is used to

detect whether an event attribute is showing an increasing, a decreasing

or a stable trend over time.

Unlike in filtering, the input used in pattern matching is not limited

to mere event attributes and event meta-data. For example, in the se-

quence starting from a2, the standard deviation of the last 10 burst sizes

is used as input when doing threshold pattern matching. The pattern

matching algorithms can also be replaced with other pattern matching al-

gorithms during runtime, which makes the pattern matching mechanism

even more flexible if compared to the filtering mechanism.

Derivation: In Figure 3, there are 7 types of derived events that may

be generated. The attributes of derived events come from input events or

context storage.

4.3 Scheduler

When the scheduler loads the ECA rules, it must first check for any po-

tential conflict in the actions defined in different rules. Given two event

instances, e1 and e2, with different event types. If e1 and e2 can occur si-

multaneously and it is possible for the conditions defined in both rules to

be satisfied, we must check whether their corresponding actions conflict

with each other. For example, when the actions try to modify the same pa-

rameters of the same hardware component, conflict occurs. If no conflict

is reported, the scheduler checks from event specifications which atomic

16

events are needed for generating the events defined in the rules. It then

subscribes for the events from the event generators which can provide

them.

The scheduler parses the ECA rules according to their XML schema,

and executes the functions when the notification of an event occurrence

arrives. This procedure includes two steps. First, the condition expression

is parsed into a tree structure. The leaf nodes are capability values and

their reference values. The non-leaf nodes are binary operators if their

children are leaf nodes, or logical operators if their children are non-leaf

nodes. Second, when the event defined in the rules occurs, we use tree-

traversal algorithm to implement the evaluation of the conditions. The

capability values defined in leaf nodes are obtained from the context stor-

age.

5 Evaluation

We evaluated the gained energy savings, the energy consumption over-

head caused by power management itself, and the impact of running

power management on the system performance.

5.1 Experimental Setup

We ran the test on a Nokia N900. The device was connected to a public

802.11 b/g access point, whose beacon interval was 100ms. It means the

mobile device woke up every 100ms to check for incoming data, whenever

it was in SLEEP mode. Throughout the experiments we collected power

consumption and traffic traces.

Power consumption traces: We used a Monsoon power monitor 2 to mea-

sure the power consumption during runtime. The sampling frequency of

the power monitor was set to 1MHz. The power monitor itself combines

the functionalities of a DC power supply and a power meter. We replaced

the battery of the N900 with an electrical circuit, through which the N900

was powered by the DC power supply of the power monitor.

Traffic traces: We ran Wireshark 3 directly on the N900, and on the TCP

server if the N900 was connected to it, to capture the packet information.

In the test cases where the network data rates needed to be specified,

2http://www.msoon.com/LabEquipment/PowerMonitor/
3http://www.wireshark.org

17

IDLE PI SLEEP PS RECEIVE PR

668.88mW 32.25mW 980.68mW

Table 3. Power consumption of N900 when WNI is in different operating modes. During
measurement, only the basic components of the device were in use. The screen
backlight, Bluetooth and WCDMA were turned off.

SNR monitoring Traffic sniffing Event handling

11.27mW 8.11mW 0.75mW

Table 4. Total overhead caused by power management. The overhead of SNR monitoring
was measured when the SNR was collected every 1 second. The overhead of
traffic sniffing was measured when Internet radio streaming was running.

we used Trickle4, a bandwidth throttling software, to limit the data rate

on the TCP servers.

5.2 Baseline Power Consumption

We first measured the power consumption of the N900 when the embed-

ded WNI was in different operating modes. The results are listed in Ta-

ble 3. After that, we measured the energy consumption overhead caused

by our power management system, which includes the overhead of SNR

monitoring, traffic sniffing, and event handling. As shown in Table 4, the

overhead caused by the event handling, which includes all the operations

except the event generation and the actions invoked by the scheduler, was

about 1% of PS . SNR monitoring and traffic sniffing were only used when

there was network transmission going on. Compared with PR or PI , the

energy consumption overhead of SNR monitoring and traffic sniffing was

less than 2%.

5.3 Internet Radio Streaming and File Download

We used the embedded media player on the N900 to connect to an Internet

radio station, called The Voice 5. The real-time radio stream was delivered

to the mobile through HTTP/TCP. Our power management system was

running on the mobile device, independently of the media player.

We loaded the rules below during the initialization of our power manage-

ment software. In practice, these rules were written as structural XML

following the rule specifications. The events defined in these rules were

4http://monkey.org/ marius/pages/?page=trickle
5http://83.145.249.98:80/

18

processed automatically, as shown in Figure 3.

Rule 1: When START_PREDICTION occurs, start predicting the ending

of each burst.

Rule 2: When STOP_PREDICTION occurs, stop predicting the burst

endings.

Rule 3: When END_BURST occurs, set the PSM timeout to 0ms.

Rule 4: When NEW_BURST occurs and if the prediction of burst end-

ings is enabled, set the PSM timeout to 10ms.

Rule 5: When WRONG_END occurs, double the burst size threshold.

In addition, WRONG_END_AGAIN and MISS_NEW are only used for

analyzing prediction accuracy. When they occur, the relevant statistics

are updated.

We measured the power consumption of listening to Internet radio in

two scenarios where our power management application turned either on

or off. When the power management application was turned off, the PSM

was enabled with the PSM timeout set to 100ms. When the power man-

agement was running, we first initialized the burst size threshold to 4000

Bytes. This threshold was updated with the unweighted mean of the pre-

vious 5 burst sizes. The exception was that when an event with a type

called WRONG_END occurred, which means the actual burst size is big-

ger than the threshold, the burst size threshold would be doubled. The

standard deviation threshold was set to 5000 Bytes during initialization.

It was updated with the simple moving average over the previous 10 burst

sizes. We set the packet interval threshold to 10ms. Choosing this partic-

ular setting was based on the observations we had made of the Internet

traffic. Figure 1 shows that 61.6% of the packet intervals in our measure-

ments were smaller than 10ms and would thus be included inside bursts.

We repeated the experiments five times. Each run lasted for 4 minutes.

The results, as listed in Table 5, show that the average power consump-

tion of the device was 11.9% less with the power management system

turned on.

Next we downloaded a 3400KB file using wget6 from a Linux server to

the N900. The file was saved to /dev/null in order to avoid the writes to

persistent memory affecting the measurement results. The traffic was

6http://www.gnu.org/s/wget/

19

Without adaptations 947.680mW

With adaptations 835.168mW

Difference -11.9%

Table 5. The power consumption of listening to Internet radio with and without adapta-
tions.

Prediction results Internet

radio

File download

Burst ending was correctly predicted 29.74% 82.33%

Burst was predicted to end but did not 22.17% 7.31%

Burst ended, but the ending was not pre-

dicted beforehand

48.09% 10.27%

Table 6. Accuracy of burst prediction for Internet radio streaming and TCP file down-
load.

shaped into 4KB bursts on the server using Trickle. However, the shape

and the duration of the bursts were not constant, because the traffic

passed through both wired and wireless networks after leaving the traffic

shaper called Trickle. The average data rate during the file transmission

was 15.97 KBps. With the adaptations turned on, the energy consumed

during the file download decreased by 13.6% from 87.37J to 76.94J, at

the cost of a 2% increase in download time. The decrease in energy con-

sumption during the file download was a little higher than in the case of

Internet radio. One reason for the difference is that the traffic prediction

accuracy was much higher in the file download case, as shown in Table 6.

We calculated the accuracy of our traffic predictions based on the event

counts. Two types of prediction errors were identified in the experiments.

In the first case an event instance with a type called END_BURST was

generated before the burst had actually ended. However, even in this

case the remaining packets in the burst might still arrive on time, if they

arrived during the 6ms it took the WNI to switch to SLEEP mode. If a

packet was received by the WNI during this transition period, our traffic

monitor generated an event instance with a type called WRONG_END.

We then used the number of this type of event instances for calculating

the frequency of this first type of prediction errors.

If packets arrive after the WNI has already fallen asleep, the packets

will be buffered in the access point until the WNI wakes up. The average

additional delay for these packets would be 50ms if connected to an access

point with a beacon interval of 100ms. The average network through-

20

0 5 10 15 20 25 30 35 40
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SNR (dB)

C
D

F
(S

N
R

)
Figure 4. Cumulative distribution of SNR.

put in our Internet radio experiment was 22.17KBps, which is fairly close

to the encoding rate of the Internet radio stream. The first big burst of

data that arrived after the connection was established was measured to

be about 250KB in size. From this information we could calculate that a

delay less than 10 seconds was unlikely to have effect on playback qual-

ity, which was confirmed by the fact that no break during playback was

empirically observed during our measurements.

The other prediction error happened, when the burst finished, but the

power management system had failed to predict the ending of the burst

and no adaptation could be invoked during the no-data interval. This kind

of errors have a negative effect on energy savings, but they do not cause

any additional delay.

5.4 SNR-based Transmission Adaptations

We tested the file download from a remote server to the mobile device on

the move. We moved the mobile device along a straight line away from

the access point and then took the device back at a stable walking speed.

The sampling frequency of SNR was 1Hz. As shown in Figure 4, the SNR

was uniformly distributed with a mean of 17 and a standard deviation of

9. We set the SNR threshold to 15 for generating event instances with

type of LOW_TO_HIGH_SNR and HIGH_TO_LOW_SNR.

We evaluated the quality of our SNR prediction algorithm by comparing

the predicted values with the measured ones. As evaluation metrics we

used the mean squared error (MSE), which is the sum of the squares of

prediction errors. The MSE of our predictions turned out to be 34.87,

which is relatively good compared with [19]. A file with size of 39.3MBwas

downloaded from a TCP server to the mobile device. The data rate was

21

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

6

Time (s)

T
h

ro
u

g
h

p
u

t
(b

its
/s

) Without adaptation

With adaption

Figure 5. Comparison of network throughput with/without adaptations.

limited to 512KBps on server side. We adopted the following adaptation

rules.

Rule 1: LOW_TO_HIGH_SNR andHIGH_TO_LOW_SNR events are sub-

scribed when FIRST_CONNECTION occurs, and unsubscribed when

NO_CONNECTION occurs.

Rule 2: Upon the occurrence of HIGH_TO_LOW_SNR, in case of TCP

connection, the transmission will be paused by setting the TCP re-

ceive window size to 0.

Rule 3: Upon the occurrence of LOW_TO_HIGH_SNR, in case of TCP

connection, the transmission will continue by resuming the TCP re-

ceive window size to its default value.

As shown in Figure 5, the download duration measured from the arrival

of the first packet to the arrival of last packet is 161.97 seconds without

adaptations, and 229.15 seconds with adaptations. Without adaptations,

the TCP connection is disconnected due to the low SNR for 29.80 seconds

between the 108th and 138th seconds. With adaptations, the download

was paused by adaptations for 122.04 seconds. The WNI was put into

SLEEP mode instead of letting it work inefficiently in RECEIVE mode.

Hence, our adaptations reduced the time spent in RECEIVE or IDLE

mode by 20 % from 132.18 seconds to 107.12 seconds.

As it proved unfeasible to conduct the physical power measurement of a

moving device with the hardware we had at our disposal, we had to resort

to calculating the energy consumption based on the traffic traces with the

22

Without

adaptations

With adap-

tations

Data processing on WNI (J) 29.95 30.11

Wasted in IDLE mode during burst in-

tervals (J)

23.49 16.09

Wasted in IDLE mode inside bursts (J) 34.27 34.33

Total energy (J) 87.71 80.53

Table 7. Energy-efficiency analysis of SNR-based transmission adaptations.

power models shown in (1)-(3).

T1 =
�

i≤0.1

(i) + #(bursts | i > 0.1)× Ttimeout, (1)

T2 = T −
�

(i)− S/R, (2)

Energy = (PR − PS)× S/R+ (PI − PS)× (T1 + T2), (3)

where T is the total duration of file transmission, T1 is the sum of burst

intervals and T2 is the sum of the packet intervals which are smaller than

the packet interval threshold. In addition, i is the burst interval in sec-

onds, Ttimeout is the PSM timeout, S is the total traffic size, and R is the

maximum throughput of the WNI. PR, PS and PI are the power consump-

tion with WNI in RECEIVE, SLEEP and IDLE mode, respectively.

Our models are derived from the ones presented in [21] and [6]. We

assume that the WNI is in RECEIVE mode during transmission and in

IDLE mode during the interval if the interval is shorter than the PSM

timeout. For the intervals longer than the PSM timeout, WNI stays in

IDLE mode until the timer expires and then switches into SLEEP mode.

The intervals include two parts, burst intervals, and the packet inter-

vals inside bursts. The first might become bigger than the PSM timeout,

whereas the latter is always smaller than the packet interval threshold.

In our measurement, we set the PSM timeout to 100ms and packet inter-

val threshold to 10ms. Hence, WNI only stays in IDLE mode during the

intervals inside bursts, whereas it might go into SLEEP mode if the burst

intervals are bigger than 100ms. We calculated the total duration of WNI

processing as the total traffic size divided by the maximum throughput

of the WNI. According to our measurement, the maximum throughput is

1.328Mbps. The values listed in Table 3 are used for our calculation. On

average, it costs 93.68 Joules to download the file without adaptations,

whereas it costs only 81.64 Joules with adaptations. With the adapta-

23

tions, 12.85% less energy was consumed. To explain the energy savings

achieved by our adaptation, we choose two samples. One is from the result

without adaptations, and the other one from the result with adaptations.

As shown in Table 7, the major savings come from the reduction in the en-

ergy wasted during burst intervals, because the random traffic like ARP

(Address Resolution Protocol) packets is reduced when adaptations are

applied.

6 Related Work

Many application-specific solutions have been proposed for improving the

utilization of power management based on hardware resource manage-

ment. For example, traffic shaping for streaming applications [5] and

web prefetching have been proposed for reducing the transition overhead

caused by the usage of PSM and increasing the duration spent in the

low-power modes. However, since these solutions make adaptations to

the changes in contexts individually, it is not clear how these application-

specific solutions could work compatibly with each other, and collabora-

tively with the default power management software installed on the de-

vices. Hence, in this paper, we look at the system from a holistic per-

spective and propose a framework that enables the management of these

mechanisms through predefined rules. The crucial aspect is that we in-

clude the applications and the context in which the device operates in the

overall picture because knowledge about them allows us to exploit specific

power management mechanisms more efficiently.

Our work provides a platform for application developers to implement

their power management applications on. There are several systems that

also consider the system-level aspect.

Koala [17] is a platform that allows policy-based control over power-

performance trade-offs, but it only focuses on Dynamic Voltage and Fre-

quency Scaling (DVFS) for the CPU. Dynamo [12] comes closer to our so-

lution by considering a cross-layer framework. It optimizes the energy

consumption through dynamic adaptations for the CPU (through DVS),

the display, and the wireless network interfaces. However, this solution

is designed only for video streaming. STPM [2] provides a solution closely

resembling our first example application (see Section 2.1), whereas STPM

requires revisions to mobile applications and does not provide mecha-

24

nisms for integrating it with complementary solutions.

A middleware for power management presented in [3] was designed

based on the assumption that the real-time power state of each hardware

component is available. They tried to describe the system using several

system states, each corresponding to a unique power state. However, it is

unclear how such middleware can be implemented beyond a simple exam-

ple and how applications make decisions on which state to choose to reach

optimal power consumption. The solution described in [8] is also closely

related to our approach but only focuses on well-defined enterprise appli-

cation scenarios of accessing web services and synchronizing them with a

database.

If we try to extend the above systems for the integration of different

power management policies on a single device, a challenge comes from

the increase in the complexity of policy management. In this paper we

use complex event processing, which leads to simple policy management.

Some systems take a different approach to the power management prob-

lems. For example, Turducken[18] combines different capacity devices

(laptop, PDA, and sensor) into a single mobile system, and prolongs the

battery life of the entire system by intelligent workload scheduling among

devices. SleepWell [10] focuses on reducing the energy consumption of mo-

bile clients by reducing contention between different access points. The

event-driven approach we propose can be extended for the collaborative

power management between devices in future, while in this paper we fo-

cus solely on a single device system.

7 Conclusion

In this paper, we proposed an event-driven framework for rule-based power

management for wireless data transmission on mobile devices. It sup-

ports both simple event processing and complex event processing, which

eases the implementation of power management. We evaluated the frame-

work with two power management applications, traffic-aware WNI con-

trol and SNR-based transmission adaptations. The results show on aver-

age 12% of energy savings in these cases.

25

Bibliography

[1] IEEE Standard for Information Technology - Telecommunications and In-
formation Exchange Between Systems - Local and Metropolitan Area Net-
works - Specific Requirements - Part 11: Wireless LANMedium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-2007
(Revision of IEEE Std 802.11-1999), pages C1 –1184, June 2007.

[2] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning wireless network
power management. Wirel. Netw., 11:451–469, July 2005.

[3] H. S. Ashwini, A. Thawani, and Y. N. Srikant. Middleware for efficient
power management in mobile devices. In Proceedings of the 3rd Inter-
national Conference on Mobile Technology, Applications & Systems, Mobil-
ity’06. ACM, 2006.

[4] D. Bertozzi, L. Benini, and B. Ricco. Power aware network interface man-
agement for streaming multimedia. In Proceedings of 2002 IEEE Wireless
Communications and Networking Conference, volume 2 of WCNC’02, pages
926–930, 2002.

[5] F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap: Exploiting high
bandwidth wireless interfaces to save energy for mobile devices. In Proceed-
ings of the 8th International Conference on Mobile Systems, Applications,
and Services, MobiSys’10, pages 107–122, New York, NY, USA, 2010. ACM.

[6] R. Friedman, A. Kogan, and K. Yevgeny. On power and throughput trade-
offs of wifi and bluetooth in smartphones. In Proceedings of the 30th Confer-
ence on Computer Communications, INFOCOM ’11, Shanghai, China, 2011.

[7] M. Grossglauser and J.-C. Bolot. On the relevance of long-range dependence
in network traffic. IEEE/ACM Trans. Netw., 7:629–640, October 1999.

[8] A. B. Lago and I. Larizgoitia. An application-aware approach to efficient
power management in mobile devices. In Proceedings of the 4th Interna-
tional ICST Conference on Communication System Software and Middle-
ware, COMSWARE’09, pages 11:1–11:10. ACM, 2009.

[9] K.-c. Lan and J. Heidemann. A measurement study of correlations of inter-
net flow characteristics. Comput. Netw., 50:46–62, January 2006.

[10] J. Manweiler and R. Roy Choudhury. Avoiding the rush hours: Wifi en-
ergy management via traffic isolation. In Proceedings of the 9th Inter-
national Conference on Mobile Systems, Applications, and Services, Mo-
biSys’11, pages 253–266, New York, NY, USA, 2011. ACM.

[11] B. Michelson. Event-driven architecture overview. Patricia Seybold Group,
Feb, 2006.

[12] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian. Dynamo:
A cross-layer framework for end-to-end qos and energy optimization in mo-
bile handheld devices. IEEE Journal on Selected Areas in Communications,
25(4):722 –737, may 2007.

[13] Opher Etzion and Peter Niblett. Event Processing in Action. Manning
Publications Co., 2011.

26

[14] Osman, Gani and Hasan, Sarwar and Chowdhury Mofizur Rahman. Predic-
tion of state of wireless network using markov and hidden markov model.
Networks, 4(10):976–984, 2009.

[15] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande, C. Grunewald,
K. Jain, and V. N. Padmanabhan. Bartendr: a practical approach to energy-
aware cellular data scheduling. In Proceedings of the 16th Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom’10,
pages 85–96. ACM, 2010.

[16] E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless: An event driven
energy saving strategy for battery operated devices. In Proceedings of the
8th Annual International Conference onMobile Computing and Networking,
MobiCom’02, pages 160–171. ACM, 2002.

[17] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser. Koala: A platform
for os-level power management. In Proceedings of the 4th ACM European
Conference on Computer Systems, EuroSys’09, pages 289–302. ACM, 2009.

[18] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turducken: Hier-
archical power management for mobile devices. In Proceedings of the 3rd
International Conference onMobile Systems, Applications, and Services, Mo-
biSys’05, pages 261–274. ACM, 2005.

[19] R. Sri Kalyanaraman, Y. Xiao, and A. Ylä-Jääski. Network prediction for
energy-aware transmission in mobile applicatioins. Journal on Advances in
Telecommunications, 3:72–82, November 2010.

[20] A. Weissel and F. Bellosa. Process cruise control: event-driven clock scaling
for dynamic power management. In Proceedings of 2002 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems,
CASES’02, pages 238–246, New York, NY, USA, 2002. ACM.

[21] Y. Xiao, P. Savolainen, A. Karppanen, M. Siekkinen, and A. Ylä-Jääski.
Practical power modeling of data transmission over 802.11g for wireless
applications. In Proceedings of the 1st International Conference on Energy-
Efficient Computing and Networking, e-Energy ’10, pages 75–84, New York,
NY, USA, 2010. ACM.

27

