Open Watcom C/C++

User’s Guide

Version 1.8

Uien Watcom

Notice of Copyright

Copyright O 2002-2008 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

Preface

Open Watcom C is an implementation of | SO/ANSI 9899:1990 Programming Language C. The standard
was developed by the ANSI X3J11 Technical Committee on the C Programming Language. In addition to
the full C language standard, the compiler supports numerous extensions for the Intel 80x86-based personal
computer environment. The compiler is also partially compliant with the ISO/IEC 9899:1999
Programming Language C standard.

Open Watcom C++ is an implementation of the Draft Proposed International Standard for Information
Systems Programming Language C++ (ANSI X3J16, 1ISO WG21). In addition to the full C++ language
standard, the compiler supports numerous extensions for the Intel 80x86-based personal computer
environment.

Open Watcom iswell known for its language processors having developed, over the last decade, compilers
and interpreters for the APL, BASIC, COBOL, FORTRAN and Pascal programming languages. From the
start, Open Watcom has been committed to developing portable software products. These products have
been implemented on a variety of processor architecturesincluding the IBM 370, the Intel 8086 family, the
Motorola 6809 and 68000, the MOS 6502, and the Digital PDP11 and VAX. In most cases, the tools
necessary for porting to these environments had to be created first. Invariably, a code generator had to be
written. Assemblers, linkers and debuggers had to be created when none were available or when existing
ones were inadequate.

Over the years, much research has gone into devel oping the "ultimate" code generator for the Intel 8086
family. We have continually looked for new ways to improve the quality of the emitted code, never being
quite satisfied with the results. Several major revisions, including some entirely new approaches to code
generation, have ensued over the years. Our latest version employs state of the art techniques to produce
very high quality code for the 8086 family. We introduced the C compiler in 1987, satisfied that we had a
C software development system that would be of major benefit to those developing applicationsin C for the
IBM PC and compatibles.

The Open Watcom C/C++ User’s Guide describes how to use Open Watcom C/C++ on Intel 80x86-based
personal computers with DOS, Windows, Windows NT, or OS/2.

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCI| text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on avariety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for avariety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result istype-set quality copy
containing integrated text and graphics.

The Plum Hall Validation Suite for C/C++ has been invaluable in verifying the conformance of the Open
Watcom C/C++ compilersto the ISO C Language Standard and the Draft Proposed C++ Language
Standard.

Many users have provided valuable feedback on earlier versions of the Open Watcom C/C++ compilers and
related tools. Their comments were greatly appreciated. If you find problems in the documentation or have
some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual
DOS/4G and DOS16M are trademarks of Tenberry Software, Inc.
High Cisatrademark of MetawWare, Inc.

IBM Developer’s Toolkit, Presentation Manager, and OS/2 are trademarks of International Business
Machines Corp. IBM isaregistered trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. WindowsNT isa
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.
ONX isaregistered trademark of QNX Software Systems Ltd.

UNIX isaregistered trademark of The Open Group.

WATCOM is atrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

Open WatCom C/CH+ USEI"SGUIRoouiiiiriiieiiieiiesie ettt bbb sttt e e e s snesbenaas

1 ADBOUE TRISIMABNUEL ...ttt ettt e st e e e s et e s st e e s s baesssaeessabeessbeessssnessraeessbenssans

2 Open Watcom C/C++ Compiler Options

2.1 Compiler Options - Summarized AlphabetiCallyocooveininiirr e
2.2 Compiler Options - Summarized BY Cale€gOrYccccvvivriererereriereeseeseeseseeesesessessessesnens

2.2.1 Target Specific
2.2.2 Debugging/Profiling .
2.2.3 Preprocessor
2.2.4 Diagnostics
2.2.5 Source/Output Control
2.2.6 Code Generation
2.2.7 80x86 Floating Point

2.2.8 Segments/Modules

2.2.9 80X86 RUN-TIME CONVENLIONSveeeiierieieeeeeseeeeeeee e eeeee e st e s s eeeereraeessraeesaeseeesnes

2.2.10 Optimizations
2.2.11 C++ Exception Hand

Lo R

2.2.12 Double-Byte/Unicode CharaCterscccceverereeieeieereeieeesesesrese e sresseseesnennas

2.2.13 Compatibility with M
2.2.14 Compatibility with O

ICrosoft Visual CH+ ..o
Ider Versions of the 80x86 Compilerscccocveeeenenne

2.3 Compiler Options - FUll DESCHPLIONcocoiiiiriiisiesie e e

2.3.1 Target Specific
2.3.2 Debugging/Profiling .
2.3.3 Preprocessor
2.3.4 Diagnosticscc......
2.3.5 Source/Output Control
2.3.6 Code Generation
2.3.7 80x86 Floating Point

2.3.8 Segments/Modules

2.3.9 80x86 RUN-TIME CONVENLIONSoeiiiiiieieeie sttt ettt st

2.3.10 Optimizations
2.3.11 C++ Exception Hand

L o RSP

2.3.12 Double-Byte/Unicode CharaClersSc.ccoierrerieeneneneeeseee s

2.3.13 Compeatibility with M
2.3.14 Compatibility with O

3 The Open Watcom C/C++ Compilers ...
3.1 Open Watcom C/C++ Comman

icrosoft Visual CH++ ..oecveeciececccsc e
Ider Versions of the 80x86 Compilersccooevverereenne

Lo I T 01 017

3.2 Open Watcom C/C++ DLL-based COMPILENScooeiirirerereeieee e

3.3 Environment Variables
3.4 Open Watcom C/C++ Comman
3.5 Benchmarking Hints
3.6 Compiler Diagnostics
3.7 Open Watcom C/C++ #include

d Line EXaMPIES ...ceoeeiiieireeierie e

FIlE@ ProCeSSING ...cccooevireciereeereeeneee e

3.8 Open WatCom C/C+ PrEPIOCESSONcciveuerieirieerieresteseeseseeseseesesessesssessesessessssensssessesenes
3.9 Open Watcom C/C++ Predefined MaCroSccccveeveeeeeerere et
3.10 Open Watcom C/C++ Extended KEYWOIdScccceveverereeieeireeiesesese e se e e seesnens
I TS o o] 1 = SRS
3.11.1 Segment Constant Based Pointers and ObjectSccccveeveviccececcicceece e,
3.11.2 Segment Object Based POINEESScooieieirerereeere e

3.11.3 Void Based Pointers

© © o1 U

10
10

11
12
13
13
13
14
14
15
15
15
15
15
22
25
27
31
38
42
46
51
55
59
61
62
62

63
63
64
64
65
67
69
70
73
74
79
86
87
88
88

Table of Contents

3.11.4 Self Based POINLENScccoucueiriirieiisieieeseses ettt 89

312 The __ deCISPec KEYWOITcco ittt et s 0

3.13 The Open Watcom Code GENEFALONcceerieririeirieerieesieesiese s 94

4 PrecOMPIlEd HEAENS ..ot e e e bbbt 97
4.1 Using Precompiled HEAOENScoviiiriiiieere et 97

4.2 When to Precompile Header FilEScviiiiiereceeeceere st 97

4.3 Creating and Using Precompiled HEAEr'Scc.cveeeieirirecese et 97

4.4 The"/fh[q]" (Precompiled Header) Optionccccoeeeeiieceniene e 98

4.5 Consistency Rules for Precompiled HEaders ... 98

5 The Open Watcom C/CH+ LiDraries ... 101
5.1 Open Watcom C/C++ Library DIreCtory StrUCIUIEccooveereeririenenieneseseeiesesee e 101

5.2 Open Watcom C/C++ C LIDIraries ..o 102

5.3 Open Watcom C/C++ Class LIibDrariescoccvereneneneseeeie e 104

5.4 Open Watcom C/C++ Math LiDrariescccveevvienese e 105

5.5 Open Watcom C/C++ 80x87 Math Librariesccoceoveieverereieeiecieeesiese e seesesen s 106

5.6 Open Watcom C/C++ Alternate Math Librariesccccvcvvvvievesiseseseesecieeeeieceseseenens 107

5.7 The NO87 Environment Variable ... 107

5.8 The Open Watcom C/C++ Run-time Initialization ROULINEScccocerveeineninenenenenns 108

L6-DIT TOPICS .eveeetereete ettt ettt b e e b e e b e e b e s e bt s e bt s e Rt s E e st b et E et e b e e e b e e b e se e b e e e eb e e b bbb b nenr e 111
6 16-Dit MEMOIY MOUELS ...ttt ettt bbbt 113
L2001 11 o [FTox £ o o P 113

6.2 16-Dit COUEMOUELS ...t 113

6.3 16-Dit DAAMOUEISoveeeireriereerre e 113

6.4 Summary of 16-bit Memory MOEIScccoueicieececc e s 114

6.5 TiNYy MemOry MOEccoooeeieceeee e n e s 114

6.6 Mixed 16-bit Memory MOGEl ..o s 114

6.7 Linking Applications for the Various 16-bit Memory ModelS ..., 115

6.8 Creating a Tiny Memory Model APPliCaLIONcoceeereirieirieereereesiees s 115

6.9 MEIMONY LAYOULoeeireieieiteiese ettt st renrenne 116

7 16-bit Assembly Language CONSIAEraliONSccvreeerieirieirieireeseese e ssenes 119
T L INEFOTUCTION .ttt 119
FAVAIRT: ic= 2= o= g1 (o) o [SRRSO 119

T2 L TYPECNEI™ ..ot 119
T.2.2TYPESNOMT INE" ...ttt sb e e 120
T.2.3TYPEIONG INE" e et s sb e 120

T 24 TYPEINE" ottt b e bbbttt 120

T.2.5 TYPEFIOBL" ...ttt bbb e 120

726 TYPE"AOUDIE" ..ottt et st 121

T.3MEMONY LAYOULoviriieieitetese ettt nn st enenrennennea 122

7.4 Calling Conventions for Non-80X87 APPlICALIONSccceererereririeerieesie e 123

7.4.1 Passing Arguments Using Register-Based Calling Conventionscccceeeee. 123

7.4.2 Sizes of Predefined TYPES ...ooviiciveie et 124

7.4.3 Size of ENUMErELEd TYPES ..oocvieeciecieiie sttt see et e et sre st s 125

7.4.4 Effect of Function Prototypes on ArgUMENtScceceeereereeierieniesenese e 125

7.4.5 Interfacing to Assembly Language FUNCLIONSoceiereneieinicnencneee e 126

7.4.6 Functions with Variable Number of Argumentsccocoieiinencieiececeeeee 129

Vi

Table of Contents

7.4.7 Returning Values from FUNCLIONSccooiiiiriinincn e 129

7.5 Calling Conventions for 80x87-based AppliCationScccoreririninieneeese e 132
7.5.1 Passing Valuesin 80x87-based APPliCaLiONScccoveereeereeerieirieenieesieenieeas 132

7.5.2 Returning Values in 80x87-based AppliCationScccveeeveienennenneneeneeieneas 133

ST L o B =0 0 7= OSSOSO 135
B.L INETOTUCTION ..ottt en e 135
8.2 Using Pragmas to SPeCify OPtioNScccccvvviiere ettt s 136
8.3 Using Pragmas to Specify Default Librariescccoveveieieneciececeeecese e sese e 137
8.4 The ALIAS Pragma (C ONlY)cciciiiiieiiinirieieienese sttt s 138
8.5 The ALLOC_TEXT Pragma (C ONlY)cceceririririiririeieeresisie e 139
8.6 ThE CODE_SEG PragIMAacueererurieuerererieiesesesesiesesesesseseessssssssesssessssasssessesessssssssesessssssnsas 139
8.7 The COMMENT PragIMAcueireririeierinerieieiesesesisseseses e be e e sese e besesessebesesesessesasssessneas 140
8.8 THE DATA_SEG Pragmalccovvireeieienieirieieeseree ettt seenas 141
8.9 The DISABLE_MESSAGE Pragma (C ONlY) ..cccceveiieirieirieeseesie e 141
8.10 The DUMP_OBJECT_MODEL Pragma (C+ ONlY) .coeeeeeeeeeeeeeeeeeeeeeseeeseeeeseessesenes 142
8.11 The ENABLE_MESSAGE Pragma (C ONlY)cccvovvivrieiireeresieseereeeeseeeeesese e see e e 142
8.12 ThE ENUM PragiMa.....ccccveiiiiiiisieiieseeieieseeseees e e st saeste e st saes e e saensensssessesnessesnessenses 142
8.13 ThE ERROR PraQIMAc.eoiivrieieiiisieieieeresieteese st st seneesesnas 143
8.14 The EXTRER Pragmaccuceuiiiriiieieirereeietese ettt 143
8.15 The FUNCTION Pragmaccovverueeeiriinieieesenie ettt be e s 144
8.16 The INCLUDE_ALIAS PragMalccucueererueieiiririsieesesesiesese et sesessssesessssssesesessesesessses 145
8.17 Setting Priority of Static Data Initialization (C++ Only)ccoeoeviiininnirsereee e 145
8.18 The INLINE_DEPTH Pragma (C++ OnlY) ...ccocvcivieeciee et 146
8.19 The INLINE_RECURSION Pragma (C++ ONlY)veeveeeeeeeseeeeeeeseeeee e 147
8.20 The INTRINSIC PragMalcccecceieereeierierieeeeereeeeeesese st te e seeste e seesaesesaeseensesessessessesses 147
8.21 The MESSAGE PragiMalcceierieeeieieieeeeesese st e st te st s ste e saenesns e s eneesessesssssesses 148
8.22 THE ONCE PragMaccvcveereeeeetesiesestestesiestes e steseessessessessesessesessessessessessessesssssessessessensen 148
8.23 ThE PACK PragiMac.ceiieiieieirerieteene sttt s 149
8.24 The READ_ONLY _FILE Pragmacccverueeeririnieieiisisieee st 150
8.25 The TEMPLATE_DEPTH Pragma (C++ OnlY) ...cccooveeviienieeseeereseseee s 150
8.26 The WARNING Pragma (CH+ OnNlY) .ovcvvieiieirieiseseieee e 151
8.27 AUXIlIANY PragimMasceiieuirieiirieie ettt sttt sttt sttt nne e 151
8.27.1 Specifying Symbol ArDULEScceiiiiiiiieie e 151

ST A A L= =Y A= 152
8.27.3 Predefined AlIASEScooviveeeeeiirie ettt 154
8.27.3.1 Predefined " cdecl” AliaScccvcvvvveie i 154

8.27.3.2 Predefined " pastal” AlIaScccceveeieiisise e 155

8.27.3.3 Predefined " __watCall" AliaSccccoevrrnciiireerree e 155

8.27.4 Alternate Names for SYMDOIScccoceeieiieie e 156

8.27.5 Describing Calling INfOrmMationcoeoeeiririeninere e 157
8.27.5.1 Loading Data Segment REQISLENcoereeererinenenere s 159

8.27.5.2 Defining Exported Symbolsin Dynamic Link Libraries 159

8.27.5.3 Defining Windows Callback FUNCLIONSccoeeveiniiniirenee 160

8.27.5.4 Forcing aStack Frame ..o 160

8.27.6 Describing Argument INfOrmationccccoeveineineineiseese e 160
8.27.6.1 Passing ArgumentS in REQISIEScveveveeeeieeeece s seese e 161

8.27.6.2 Forcing Arguments into Specific REGIStErScccevvevveveeceeeccenececien, 163

8.27.6.3 Passing Argumentsto In-Line FUNCLioNScccccocvevevievenccene e, 164

8.27.6.4 Removing Arguments from the Stack ..., 164

8.27.6.5 Passing Arguments in Reverse Ordercoooveverereneeieneieeeneseeaens 165

8.27.7 Describing Function Return Information cccooeoernieninene e 165

vii

Table of Contents

8.27.7.1 Returning Function Values in REQISLENScccocrvererenenenene e 166

8.27.7.2 REtUrNING SIIUCLUIESc.eeueeiieeeeeiieiere ettt s 167

8.27.7.3 Returning Floating-Point Daacccoveeneereiinieeneesee e 168

8.27.8 A Function that Never REIUMScoviiririeireeneeneese e 169

8.27.9 Describing How FUNCLiONS USE MEMOIYc.oiviiiiiiiriecnieeseeeie et 169
8.27.10 Describing the Registers Modified by a FUNCtion ..o, 173
ST 0 N N T 1 o = 174
8.27.12 Auxiliary Pragmas and the 80X87cccveverrriesiereeieeeereeeeese et see e s 175
8.27.12.1 Using the 80x87 to Pass ArgUMENLSccccceveveveesieseeneereeeeieneenens 175

8.27.12.2 Using the 80x87 to Return Function Valuescccccecvevvvvecivcneenen. 178

8.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls 178

32Dt TOPICS vttt ettt h et b et b et b e b e bt s ekt s e eb e e bt e e Rt R Rt R et b et b e e b e b e 179
9 32-Dit MEMOIY MOUELS ...ttt bbb ettt b et 181
Q. L INEFOTUCTION ..ottt en e 181
9.2 32-Dit COUEMOUELS ...t 181
9.3 32-Dit DAAMOUEIS ..ot e 181
9.4 Summary of 32-bit MemMOry MOUEIScooeeieeee e 182
9.5 Hat MEMOIY MOGEL ...ttt bbb 182
9.6 Mixed 32-bit MemOry MOGEL ..o e e 182
9.7 Linking Applications for the Various 32-bit Memory Modelsccovvrinniincenieccnine, 183
0.8 MEMONY LAYOULovereieieirete ettt e s st e r e rennennea 183
10 32-bit Assembly Language CONSIAEratiONSccereeierererieierieerieesieesiee sttt reseebe s 185
0I5 T 11 o [F o (o PSSP 185
IO BT v R o == 01 1 o) o | 185
10.2. 1 TYPE "CRE" ...ttt 185

10.2.2 TYPE"SNOIT INE" ...ttt e e ebe s 186

10.2.3 TYPEIONG INE" ..ottt s sae s 186

10.2.4 TYPE "INE" ettt sttt 186

10.2.5 TYPE "FIOAL" ..ottt e 186

10.2.6 TYPE "AOUDIE" ...ttt 187

TO.3 MEMONY LAYOULoceeiuiitiiiitieteste ettt e et 188
10.4 Calling Conventions for Non-80x87 APPlICALIONSccovereeeririnieeniee e 189
10.4.1 Passing Arguments Using Register-Based Calling Conventionsc.ccccee.. 189

10.4.2 Sizes of Predefined TYPES ...vcveeceeirese sttt s 190

10.4.3 Size of ENUMEIEEd TYPES .uveveeeicirere sttt s e et sresre e 191

10.4.4 Effect of Function Prototypes on ArgUMENtSccoeeererereereereeneniesesesesienees 191

10.4.5 Interfacing to Assembly Language FUNCLIONSc.cooeievenenienieneeeeeeceeeiee 192

10.4.6 Using Stack-Based Calling CONVENLIONScceererinenenie i 195

10.4.7 Functions with Variable Number of Argumentsccoceoveinennenenenenenennen. 198

10.4.8 Returning Values from FUNCLIONSccccoreirieirieienieseeseseseee e 198

10.5 Calling Conventions for 80x87-based AppliCationScccveierieiineieneiesee e 200
10.5.1 Passing Vauesin 80x87-based AppliCationsc.ccoeereennenneneeeneeseeee 201

10.5.2 Returning Valuesin 80x87-based Applicationscccoevvvverieveveserereceeene 202

11 32-DIt PrAQIMESecveererieeeiresieieee sttt eb e b et bbbt bbbt st e bbb bt e s b 203
L1 L INEFOTUCTION .ttt 203
11.2 Using Pragmas to SPECify OPLiONSccoriiiririie i 204
11.3 Using Pragmas to Specify Default Librariesocoviiiiieieniieiceesreeesese s 205

viii

Table of Contents

11.4 The ALIAS Pragma (C ONlY) .ocooececueiererinieieneresieie e 206
11.5The ALLOC_TEXT Pragma (C ONlY) ...ccoceeirririeirerinieiene st es 207
11.6 The CODE_SEG PragiMacuceererieueuereririeseesesesisesessstesesessssesesesessssesssessssesesessssesensssssssas 207
11.7 The COMMENT PragMacccueoereririeenesirierieseseesesesessetesesessssesesesessssesssessssesesessssesensssssnsas 208
11.8 THE DATA_SEG PragiMal ...cccueieeieiieierieie ettt sttt s st 209
11.9 The DISABLE_MESSAGE Pragma (C ONlY)cccoiririreirieesieesie e 209
11.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)cccieveieveeeieescecee e 210
11.11 The ENABLE_MESSAGE Pragma (C ONlY)covevierrrereireniereeesesreeeseseenee s 210
11.12 THE ENUM PragMa....c.coviveieeiiririeieiisesisieieseses e st sss s enesennas 210
11.13 The ERROR PragMAc.coiierteiiuiiirieieiesesesieieseses e ese sttt b ssssse e sene e 211
11.24 The EXTREF Pragmac.occiiiieeesieee ettt s 211
11.15 The FUNCTION Pragmac.ccovueueiererieieenesisieiee st 212
11.16 The INCLUDE_ALIAS PragMacccoueueeriririeieesereeieie st ee e e sesassssesessssenas 213
11.17 Setting Priority of Static Data Initialization (C++ Only)ccccccvveevveiecececeeeeeceee, 213
11.18 The INLINE_DEPTH Pragma (C++ ONlY) ..o 214
11.19 The INLINE_RECURSION Pragma (C+ ONlY) ...ceeeeeeeeeeeeeeeeeeeseeeeeeseeesse e 215
11.20 THE INTRINSIC PragimMaccccvirereireriereinesmsreseses s s s snsne e snenenas 215
11.21 The MESSAGE PragMalcccceieiiirieiesieseeeeeeieeesresiesse e stessesres e saesse e saessensessesesnessens 216
11.22 THE ONCE PragMAvcveiireeeeieiresieteseses et s et b e ssse s sese s seneesesnas 216
11.23 ThE PACK PraQIMAcoveueuiiriieieirisiete ettt bbb 217
11.24 The READ_ONLY _FILE PragMmalc.ccoorerueieninerieieenesinecieesesie e 218
11.25 The TEMPLATE_DEPTH Pragma (CH+ OnlY) ..o 218
11.26 The WARNING Pragma (CH+ ONlY) .occovoueuiiririeiee et es 219
11.27 AUXITAIY PragimMasccoveeuerieieiieieniee ettt st ettt st 219
11.27.1 Specifying Symbol ArDULEScoeoiiiiiieee s 219
I g e =Y T 220
11.27.3 Predefined AlIGSESccvvreereiereseeeeese e 222
11.27.3.1 Predefined " cdecl” AliaSccccceoveeeiveie e 223

11.27.3.2 Predefined " __pascal” AlIESccoceevrreiienreenesese e 223

11.27.3.3 Predefined " __stdcall” AlESccccevrreiiinreeereeeneeeeea 223

11.27.3.4 Predefined " __syscall” AlI8Sc.ccccoenvireiiiniecesese e 224

11.27.3.5 Predefined " watcall" Alias (register calling convention) 224

11.27.3.6 Predefined "__watcall" Alias (stack calling convention) 225

11.27.4 Alternate Names for SYMbOIS ... 225
11.27.5 Describing Calling INfOrMationcoerrineineenenere e 227
11.27.5.1 Loading Data Segment REGISIErcooevreireiireeeee e 228

11.27.5.2 Defining Exported Symbolsin Dynamic Link Libraries 229

11.27.5.3 Forcing a Stack Frameccccvovvieveviicieseceeee e 229

11.27.6 Describing Argument INfOrmMationccccceevievinereseessieseeeeeseee e enens 230
11.27.6.1 Passing Arguments in REGISLErScccvvvveciiieeie e 230

11.27.6.2 Forcing Arguments into Specific RegIStErSccoeveveieiniinienienene 233

11.27.6.3 Passing Argumentsto In-Line FUNCLIONSccccovrinenincnenenenne 233

11.27.6.4 Removing Arguments from the Stackccoeeveinennennenesenenne, 234

11.27.6.5 Passing Argumentsin ReVErse Ordercccveeeveeeneieneneseneseennene 234

11.27.7 Describing Function Return INfOrmationcccoeeeveineineineneseseseneeee 235
11.27.7.1 Returning Function Valuesin REGISLErSocevverreneeneieseesieene 235

11.27.7.2 RELUINING SITUCLUESveeeeeeeeiesieseesie e seesee e iesee e e e snese e snennes 236

11.27.7.3 Returning Floating-Point Dataccccceeveeveeieeienesisesc e 237

11.27.8 A Function that Never REIUINSc.coeorrieeinineeinesieee s 238
11.27.9 Describing How FUNCtions USE MEMONYcocevvieiecieeceee e e 239
11.27.10 Describing the Registers Modified by a FUNCtion ..o 242
12.27.21 AN EXBMPLE .ottt e 243

Table of Contents

11.27.12 Auxiliary Pragmas and the 80X87cccveierirere e 244

11.27.12.1 Using the 80x87 to Pass ArgUMENtSccccoceeererenenesienesee e 244

11.27.12.2 Using the 80x87 to Return Function Valuesc.cccveeveercenee 247

11.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls 247

IN-1iN@ ASSEMBIY LANQUBOEveveeeeeeeeeeeee et te st sttt s e e e e e eseesessesresbesseseentesteseensenaeneeneenensensenrenses 249
12 In-1in€ ASSEMDIY LANGUAGEouvevieieeieeiieieie sttt sa e e eeteete e sresbestesae st e bestessenteaenseneenenns 251

12.1 In-line Assembly Language Default EnVironmentccccevevenevieseciese e 251

12.2 In-line Assembly Language TULOMT@lccooeeiririninere e e 252

12.3 Labelsin In-1in€ ASSEMDIY COOEeoiuiiiiiireeeeeeree e 257

12.4 Variablesin In-line Assembly COE ..o 257

12.5 In-line Assembly Language USING _8SIMcc.cerieerieeriienieeseeesieseese s seenes 259

12.6 In-line Assembly DirectiveS and OPCOUEScorirerireeerieiirieerieese e 260

Structured EXception HaNdliNG iN Coovvcice et st er e 265
13 Structured EXCeption HaNAIINGcoooeiieenenn e e s 267

13. 1 Termination HANAIErSccooviiiieiieeeeree et 267

13.2 Exception Filters and Exception HAaNAIErS ..o 274

13.3 Resuming Execution After an EXCEPLIONcocoeiiirineninieieee e 275

13.4 Mixing and Matching _try/_finally and _try/ exceptcceoiiininninniennenseneee 276

13.5 Refining EXCeption HaNAIINGcooiiiriiirieinieeeciecseee st 278

13.6 Throwing Y our OWN EXCEPLIONSccciuiririiriniereeiereeie sttt et 281

1 0=0 [0 [=Ta IS = 001 283
14 Creating ROM-based APPlICALIONScoiririeriiriiierie ettt s e e e 285

LA L INEFOTUCTION ...ttt ettt e et b et bt b 285

14.2 ROMEDIE FUNCLIONScuiiitiieiiiieesiee ettt sttt 285

14.3 System-Dependent FUNCLIONSooeiiiiirieireinicesieest ettt 286

14.4 Modifying the Startup COOEcoereirieiree e 287

14.5 Choosing the Correct Floating-Point OPtioncocovirrirnenirereese e 288

N o 0= o= TS 289
A. Use of ENVIronment VariablESociiiiiie e 291
ALLFORCE ...ttt bbbt bbb st b b st st b bbb b bRt e e bbb 291
AL2ZTINCLUDE ...ttt et skt b et et 291

ALBLIB b ettt b bRttt Re et e bRt eenan 291

N 1 = T TP 292

AL LIBWIIN et sttt e b e et e e b st e e nae e s be e saeesaneenres 292

ALBLIBOS2 ...ttt e n e 292

AT LIBPHAR oottt et 293

ALBINOBT e b R Rt e bbbt r e 293

AL PATH bbb bbb e bbbt 293

ALLO TIMP et bbb e bbbt b ekt E b b et ee bbbt 294
ALLLWATCOM .ottt sttt s st b bt se b bt e b b ettt e et bebenas 295

Table of Contents

ALL2WEC ettt bbb bRt bbbt bbbt b et e 295
ALLBWWECCBBE ...ttt ettt sttt b bt st b bt e bbb e et b et se bk e st et s bbbt nn e b 295
ALTAWCL ettt bbb b e s £ bbb b bt e bbbttt 296
ALLSWWECLSBE ...oeeeieeeieieieesis et se et se st st s e st e e ek b e s e et et e st se st et ene st s et seneneeenas 296
A LEWCGMEMORY ...ttt ettt s b et ae et saeesesneesneeneesneeneas 296
ALLT WD e bt b et b e b b e b e nh e e e b e et e e b sareenneenanas 297
ALLBWDW .ttt et et R e 297
ALLIWLANG .ottt et p et n et 298
AL20WWPP bbb bRt b bbb 298
AL2LWWPPSEBE ...ttt ettt ettt b et bbb e bbbt e b et e bbb 298
B. Open Watcom C DiagnOStiC MESSAESccuerueruerierieeeirereetesie sttt see e see e e e e ssesae s e saesresee s 301
B.1Warning LEVEl 1 MESSAgEScceerueirieirieeeiene st st st sesie sttt sbe e st sbe e 302
B.2Warning LEVEl 2 MESSEgEScccevieirieerieesieseste sttt sttt sttt st 307
B.3Warning LEVEl 3IMESSAgEScoeirieirieinieisteneste sttt sttt sttt st 308
B.AWarning LEVE 4 IMESSEgESc.coeirieerieisieeste sttt sttt st s sttt ettt 310
B.5 EFTOr IMESSA0ESveiueeieeeieiteeiesteeieseeeteeseeseeeseesseeneesseessesseessesseessessenssesnsensesnsesseessesneessesnees 310
B.6 INfOrmational MESSAgESc..ccveeeireeirire e st e e se e nesbesaesnenreneas 330
B.7 Pre-compiled Header MESSAJEScccovrieeceriece ettt e e ne e sre e 331
B.8 Miscellaneous Messages and Phrasescccocvveevieeiececicceee st 332
C. Open Watcom C++ DiagNOStiC MESSAGESccvervirierierierieieeeieeiesese st siesie e ste e seeseesseseesesnessessesneas 333
C.1 DiagNOStIC MESSAgEScoveuerieuirieieteniete sttt sttt st se et se bbbt b e bt b e se b e b seebeseebenrenens 334
D. Open Watcom C/C++ RUN-TIME MESSAgEScccevirietirieierieierieiesieesiee sttt s sre s sbeseebesaese s 525
D.1 RUN-TIME ErrOr MESSAJESecviiieierieieriee ettt sttt st st st bt st sttt 525
D.2 errno Values and Their MEANINGScccoeveereeereeecerere e e e ste e s se e e e e eneenes 526
D.3 Math RUN-TIiME Error MESSAZESccuccueeeeeeresesteseseste e se st ste e saesasse s e eneesessesnesrenes 527

Xi

Xii

Open Watcom C/C++ User’s Guide

Open Watcom C/C++ User’s Guide

1 About This Manual

Thismanual contains the following chapters:

Chapter 1 —

Chapter 2 —

Chapter 3—

Chapter 4 —

Chapter 5—

Chapter 6 —

Chapter 7 —

Chapter 8 —

Chapter 9 —

"About This Manual".
This chapter provides an overview of the contents of this guide.
"Open Watcom C/C++ Compiler Options' on page 5.

This chapter provides a summary and reference section for all the C and C++ compiler
options.

"The Open Watcom C/C++ Compilers' on page 63.

This chapter describes how to compile an application from the command line. This chapter
also describes compiler environment variables, benchmarking hints, compiler diagnostics,
#include file processing, the preprocessor, predefined macros, extended keywords, and the
code generator.

"Precompiled Headers" on page 97.

This chapter describes the use of precompiled headers to speed up compilation.

"The Open Watcom C/C++ Libraries' on page 101.

This chapter describes the Open Watcom C/C++ library directory structure, C libraries,
classlibraries, math libraries, 80x87 math libraries, alternate math libraries, the "NO87"
environment variable, and the run-time initialization routines.

"16-bit Memory Models" on page 113.

This chapter describes the Open Watcom C/C++ memory models (including code and data
models), the tiny memory model, the mixed memory model, linking applications for the
various memory models, creating atiny memory model application, and memory layout in
an executable.

"16-bit Assembly Language Considerations' on page 119.

This chapter describes issues relating to 16-bit interfacing such as parameter passing
conventions.

"16-bit Pragmas" on page 135.
This chapter describes the use of pragmas with the 16-bit compilers.

"32-bit Memory Models" on page 181.

About This Manual 3

Open Watcom C/C++ User’s Guide

4

This chapter describes the Open Watcom C/C++ memory models (including code and data
models), the flat memory model, the mixed memory model, linking applications for the
various memory models, and memory layout in an executable.

Chapter 10 — "32-bit Assembly Language Considerations" on page 185.

This chapter describes issues relating to 32-bit interfacing such as parameter passing
conventions.

Chapter 11 — "32-bit Pragmas" on page 203.

This chapter describes the use of pragmas with the 32-bit compilers.
Chapter 12 — "In-line Assembly Language" on page 251.

This chapter describes in-line assembly language programming using the auxiliary pragma.
Chapter 13— "Creating ROM-based Applications" on page 285.

This chapter discusses some embedded systems issues as they pertain to the C library.
Appendix A. — "Use of Environment Variables' on page 291.

This appendix describes all the environment variables used by the compilers and related
toals.

Appendix B. — "Open Watcom C Diagnostic Messages' on page 301.

This appendix lists all of the Open Watcom C diagnostic messages with an explanation for
each.

Appendix C. — "Open Watcom C++ Diagnostic Messages' on page 333.

This appendix lists all of the Open Watcom C++ diagnostic messages with an explanation
for each.

Appendix D. — "Open Watcom C/C++ Run-Time Messages' on page 525.

This appendix lists all of the C/C++ run-time diagnostic messages with an explanation for
each.

About This Manual

2 Open Watcom C/C++ Compiler Options

Source files can be compiled using either the IDE or command-line compilers. This chapter describes al
the compiler options that are available.

For information about compiling applications from the IDE, see the Open Watcom Graphical Tools User’s
Guide.

For information about compiling applications from the command line, see the chapter entitled "The Open
Watcom C/C++ Compilers" on page 63.

The Open Watcom C/C++ compiler command names (compiler_name) are:

WCC the Open Watcom C compiler for 16-bit Intel platforms.
WPP the Open Watcom C++ compiler for 16-bit Intel platforms.
WCC386 the Open Watcom C compiler for 32-bit Intel platforms.
WPP386 the Open Watcom C++ compiler for 32-bit Intel platforms.

2.1 Compiler Options - Summarized Alphabetically

In this section, we present a terse summary of compiler options. This summary is displayed on the screen
by simply entering the compiler command name with no arguments.

Option: Description:

(16-bit only) 8088 and 8086 instructions (default for 16-bit) (see "0" on page 51)
(16-bit only) 188 and 186 instructions (see"1" on page 51)

(16-hit only) 286 instructions (see "2" on page 51)

(16-bit only) 386 instructions (see "3" on page 51)

(16-bit only) 486 instructions (see "4" on page 51)

(16-bit only) Pentium instructions (see "5" on page 51)

(16-bit only) Pentium Pro instructions (see"6" on page 51)

(32-bit only) generate 386 instructions based on 386 instruction timings and use
register-based argument passing conventions (see "3{ r|s}" on page 51)

Wo o, WNEO

=

3s (32-bit only) generate 386 instructions based on 386 instruction timings and use
stack-based argument passing conventions (see "3{r|s}" on page 51)

4r (32-bit only) generate 386 instructions based on 486 instruction timings and use
register-based argument passing conventions (see "4{r|s}" on page 52)

4s (32-bit only) generate 386 instructions based on 486 instruction timings and use
stack-based argument passing conventions (see "4{r|s}" on page 52)

5r (32-bit only) generate 386 instructions based on Intel Pentium instruction timings and use
register-based argument passing conventions (default for 32-hit) (see"5{r|s}" on page 53)

5s (32-bit only) generate 386 instructions based on Intel Pentium instruction timings and use
stack-based argument passing conventions (see "5{r|s}" on page 53)

6r (32-bit only) generate 386 instructions based on Intel Pentium Pro instruction timings and

use register-based argument passing conventions (see "6{ r|s}" on page 53)

Compiler Options - Summarized Alphabetically 5

Open Watcom C/C++ User’s Guide

6

6s (32-bit only) generate 386 instructions based on Intel Pentium Pro instruction timings and
use stack-based argument passing conventions (see "6{ r[s}" on page 53)

ad[=<file_name>] generate makefile style auto depend file (see "ad[=<file_name>]" on page 31)

adbs force dlashes generated in makefile style auto depend to backward (see "adbs' on page
32)

add[=<file_name>] specify source dependancy name generated in make-style autodep file (see
"add[=<file_name>]" on page 32)

adhp[=<file_name>] specify path to use for headers which result with no path, and are filename only. (see
"adhp[=<path_name>]" on page 32)

adfs force dlashes generated in makefile style auto depend to forward (see "adfs" on page 33)

adt[=<target_name>] specify target name generated in makefile style auto depend (see
"adt[=<target_name>]" on page 33)

bc build target is a console application (see "bc" on page 15)

bd build target isaDynamic Link Library (DLL) (see"bd" on page 16)

bg build target isa GUI application (see "bg" on page 16)

bm build target is a multi-thread environment (see "bm" on page 16)

br build target uses DLL version of C/C++ run-time libraries (see "br" on page 16)

bt[=<0s>] build target for operating system <os> (see "bt[=<0s>]" on page 16)

bw build target uses default windowing support (see "bw" on page 17)

do (C++ only) no debugging information (see "d0" on page 22)

dl line number debugging information (see "d1" on page 22)

di+ (C only) line number debugging information plus typing information for global symbols
and local structs and arrays (see "d1+" on page 22)

d2 full symbolic debugging information (see "d2" on page 23)

d2i (C++ only) d2 and debug inlines; emit inlines as external out-of-line functions (see "d2i"
on page 23)

d2s (C++ only) d2 and debug inlines; emit inlines as static out-of-line functions (see "d2s" on
page 23)

d2t (C++ only) full symbolic debugging information, without type names (see "d2t" on page
23)

d3 full symbolic debugging with unreferenced type names (see "d3" on page 23) ,*

d3i (C++ only) d3 plus debug inlines; emit inlines as external out-of-line functions (see "d3i"
on page 23)

d3s (C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions (see "d3s" on
page 23)

d<name>[=text] preprocessor #define name [text] (see "d<name>[=text]" on page 25)

d+ allow extended -d macro definitions (see "d+" on page 25)

db generate browsing information (see "db" on page 33)

e<number> set error limit number (default is 20) (see "e<number>" on page 27)

ecc set default calling conventionto _ cdecl (see "ecc" on page 38)

ecd set default calling convention to __stdcall (see "ecd” on page 38)

ecf set default calling convention to __fastcall (see "ecf" on page 38)

ecp set default calling convention to ___pascal (see "ecp” on page 38)

ecr set default calling convention to __ fortran (see "ecr" on page 38)

€Ccs set default calling conventionto __ syscall (see "ecs' on page 38)

ecw set default calling convention to __ watcall (default) (see "ecw" on page 38)

ee call epilogue hook routine (see "ee" on page 24)

ef use full path namesin error messages (see "ef" on page 27)

el force enum base typeto use at least anint (see "el" on page 38)

force enum base type to use minimum (see "em" on page 38)
emit routine name before prologue (see "en™ on page 24)
ep[<number>] call prologue hook routine with number of stack bytes available (see "ep[<number>]" on

page 24)

33

Compiler Options - Summarized Alphabetically

Open Watcom C/C++ Compiler Options

€q
er
et

ew
ez
fc=<file_name>

do not display error messages (they are still written to afile) (see "eq" on page 27)

(C++ only) do not recover from undefined symbol errors (see "er" on page 27)

Pentium profiling (see "et" on page 24)

(C++ only) generate less verbose messages (see "ew" on page 28)

(32-bit only) generate Phar Lap Easy OMF-386 object file (see "ez" on page 34)

(C++ only) specify file of command lines to be batch processed (see "fc=<file_name>" on
page 34)

fhq][=<file_name>] use precompiled headers (see "fh[g][=<file_name>]" on page 34)

fhd
fhr
fhw
fhwe

fi=<file_name>
fo=<file_name>

fpc
fpi

fpi87

fp2
fp3
fp5

fp6

fpd

fpr
fr=<file_name>
ft

fti

fx

fzh

fzs
g=<codegroup>
h{w,d,c}
i=<directory>

j

k

m{f,s,;m,c,l,h}

nc=<name>
nd=<name>
nm=<name>
nt=<name>

store debug info for pre-compiled header once (DWARF only) (see "fhd" on page 34)
(C++ only) force compiler to read pre-compiled header (see "fhr" on page 34)

(C++ only) force compiler to write pre-compiled header (see "fhw" on page 34)

(C++ only) don’'t include pre-compiled header warnings when "we" is used (see "fhwe"
on page 34)

forcefile_name to beincluded (see "fi=<file_name>" on page 34)

set object or preprocessor output file specification (see "fo[=<file_name>]
(preprocessor)" on page 26) (see "fo[=<file_name>]" on page 35)

generate callsto floating-point library (see "fpc" on page 44)

(16-bit only) generate in-line 80x87 instructions with emulation (default)

(32-bit only) generate in-line 387 instructions with emulation (default) (see "fpi" on page
44)
(16-bit only) generate in-line 80x87 instructions

(32-bit only) generate in-line 387 instructions (see "fpi87" on page 45)

generate in-line 80x87 instructions (see "fp2" on page 45)

generate in-line 387 instructions (see "fp3" on page 45)

generate in-line 80x87 instructions optimized for Pentium processor (see "fp5" on page

46)
generate in-line 80x87 instructions optimized for Pentium Pro processor (see "fp6" on
page 46)

enable generation of Pentium FDIV bug check code (see "fpd" on page 46)

generate 8087 code compatible with older versions of compiler (see "fpr" on page 62)
set error file specification (see "fr[=<file_name>]" on page 35)

(C++ only) try truncated (8.3) header file specification (see "ft" on page 35)

(C only) track include file opens (see "fti" on page 35)

(C++ only) do not try truncated (8.3) header file specification (see "fx" on page 36)
(C++ only) do not automatically append extensions for include files (see "fzh" on page
36)

(C++ only) do not automatically append extensions for source files (see "fzs' on page 36)
set code group name (see "g=<codegroup>" on page 47)

set debug output format (Open Watcom, Dwarf, Codeview) (see "h{ w,d,c}" on page 25)
add directory to list of include directories (see "i=<directory>" on page 36)

change char default from unsigned to signed (see"j" on page 39)

(C++ only) continue processing files (ignore errors) (see"k" on page 36)

memory model — mf=flat (see "mf" on page 53), ms=small (see "ms" on page 53),
mm=medium (see "mm" on page 53), mc=compact (see "mc" on page 53), mi=large (see
"ml" on page 53), mh=huge (see "mh" on page 54) (default is"ms" for 16-bit and
Netware, "mf" for 32-bit)

set name of the code class (see "nc=<name>" on page 47)

set name of the "data" segment (see "nd=<name>" on page 47)

set module name different from filename (see "nm=<name>" on page 48)

set name of the "text" segment (see "nt=<name>" on page 48)

Compiler Options - Summarized Alphabetically 7

Open Watcom C/C++ User’s Guide

8

of{a,b,c,d,ef f+h,i+k,l I+ mn,op,r,stu,x,z control optimization (see"oad" on page 55) (see "of" on page

pil

18)
preprocessor ignores #line directives (see "pil" on page 26)

p{el,c,w=<num>} preprocess file only, sending output to standard output; "c" include comments; "¢e"

t=<num>
u<name>

Y

\C...
w<number>
wed=<num>
wee=<num>
we

wo

WX

xd

xdt

xds

Xr

XS

Xst

XSS

Za,e}

zat
zC

zd{f,p}

zl
zev

Zi{f,p}

zZfw

z9
zg{f,p}
Zk0
zkOu
ZK1
K2
I

encrypt identifiers (C++ only); "I" include #line directives; w=<num> wrap output lines
at <num> columns (zero means no wrap) (see"pf el,c,w=<num>}" on page 26)
operate quietly (see"d" on page 28)

save/restore segment registers (see 'r" on page 62)

return chars and shorts asints (see "ri" on page 39)

remove stack overflow checks (see"s" on page 25)

generate callsto grow the stack (see "sg" on page 19)

touch stack through SSfirst (see "st" on page 20)

(C++ only) set tab stop multiplier (see "t=<num>" on page 28)

preprocessor #undef name (see "u<name>" on page 27)

output function declarations to .def file (with typedef names) (see"v" on page 36)

(C++ only) VC++ compatibility options (see "vc..." on page 62)

set warning level number (default isw1) (see "w<number>" on page 28)

warning control: disable warning message <num> (see "wcd=<number>" on page 28)
warning control: enable warning message <num> (see "wce=<number>" on page 28)
treat all warnings as errors (see "we" on page 28)

(C only) (16-bit only) warn about problems with overlaid code (see "wo" on page 28)
set warning level to maximum setting (see "wx" on page 29)

(C++ only) disable exception handling (default) (see "xd" on page 60)

(C++ only) disable exception handling (same as "xd") (see "xdt" on page 60)

(C++ only) disable exception handling (table-driven destructors) (see "xds" on page 60)
(C++ only) enable RTTI (see"xr" on page 39)

(C++ only) enable exception handling (see "xs"' on page 60)

(C++ only) enable exception handling (direct calls for destruction) (see "xst" on page 60)
(C++ only) enable exception handling (table-driven destructors) (see "xss' on page 60)
disable/enable language extensions (default is ze) (see "za"' on page 29) (see "z€" on page
29)

(C++ only) disable alternative tokens (see "zat" on page 36)

place literal stringsin code segment (see "zc" on page 39)

allow DSregister to "float" or "peg" it to DGROUP (default is zdp) (see "zd{f,p}" on
page 54)

(32-hit only) load DS register directly from DGROUP (see "zdl" on page 54)

(C only, Unix extension) enable arithmetic on void derived types (see "zev" on page 54)
(C++ only) let scope of for loop initialization extend beyond loop (see "zf" on page 36)
allow FSregister to be used (default for all but flat memory model) or not be used
(default for flat memory model) (see "zf{f,p}" on page 54)

generate FWAIT instructions on 386 and later (see"zfw" on page 54)

output function declarations to .def (without typedef names) (see "zg" on page 37)
allow GSregister to be used or not used (see "zg{f,p}" on page 55)

double-byte char support for Kanji (see"zk{0,1,2,1}" on page 61)

trandlate Kanji double-byte characters to UNICODE (see "zkOu" on page 61)
double-byte char support for Chinese/Taiwanese (see "zk{0,1,2,1}" on page 61)
double-byte char support for Korean (see "zk{0,1,2,I1}" on page 61)

double-byte char support if current code page has lead bytes (see "zk{0,1,2,1}" on page
61)

Zku=<codepage> load UNICODE translate table for specified code page (see "zku=<codepage>" on page

il

61)
suppress generation of library file names and referencesin object file (see "zI" on page

37)

Compiler Options - Summarized Alphabetically

Open Watcom C/C++ Compiler Options

zd
aAf
s

m

zmf
zp[{1,2,4,8,16}]
Zpw

A

i

yago)

zs
zt<number>

suppress generation of file dependency information in object file (see "zld" on page 37)
add default library information to object files (see "zIf" on page 38)

remove automatically inserted symbols (such as runtime library references) (see"zls' on
page 38)

place each function in separate segment (near functions not allowed) (see "zm" on page
49)

place each function in separate segment (near functions allowed) (see "zmf" on page 50)
set minimal structure packing (member aignment) (see "zp[{1,2,4,8,16}]" on page 39)
output warning when padding is added in a struct/class (see "zpw" on page 41)

operate quietly (see"zqg" on page 31)

inline floating point rounding code (see "zri" on page 55)

omit floating point rounding code (see "zro" on page 55)

syntax check only (see"zs' on page 31)

set data threshold (default is zt32767) (see "zt<number>" on page 41)

do not assume that SS contains segment of DGROUP (see "zu" on page 55)

(C++ only) enable virtual function removal optimization (see"zv" on page 42)
Microsoft Windows prol ogue/epil ogue code sequences (see "'zw" on page 20)

(16-bit only) Microsoft Windows optimized prologue/epilogue code sequences (see "zZW
(optimized)" on page 21)

(16-bit only) Microsoft Windows smart callback sequences (see"zZWSs" on page 21)
remove " @size" from __stdcall function names (10.0 compatible) (see "zz" on page 62)

2.2 Compiler Options - Summarized By Category

In the following sections, we present a terse summary of compiler options organized into categories.

Option:

bc

bd

bg

bm

br
bt[=<0s>]
bw

of

2.2.1 Target Specific

Description:

build target is a console application (see "bc" on page 15)

build target isaDynamic Link Library (DLL) (see"bd" on page 16)

build target isa GUI application (see "bg" on page 16)

build target is a multi-threaded environment (see "bm" on page 16)

build target uses DLL version of C/C++ run-time library (see "br" on page 16)
build target for operating system <os> (see "bt[=<0s>]" on page 16)

build target uses default windowing support (see "bw" on page 17)

generate traceabl e stack frames as needed (see "of" on page 18)

always generate traceable stack frames (see "of+" on page 18)

generate callsto grow the stack (see "sg" on page 19)

touch stack through SSfirst (see "st" on page 20)

generate code for Microsoft Windows (see "zw" on page 20)

(16-bit only) Microsoft Windows optimized prol ogue/epil ogue code sequences (see "zZW
(optimized)" on page 21)

(16-bit only) Microsoft Windows smart callback sequences (see "zZWSs' on page 21)

Compiler Options - Summarized By Category 9

Open Watcom C/C++ User’s Guide

2.2.2 Debugging/Profiling

Option:
do

di

di+

d2
d2i

d2s
d2t
d3
(0]
d3s
ee
en

ep[<number>]

et
h{w,d,c}

S

2.2.3 Preprocessor

Option:

Description:

(C++ only) no debugging information (see "d0" on page 22)

line number debugging information (see "d1" on page 22)

(C only) line number debugging information plus typing information for global symbols
and local structs and arrays (see "d1+" on page 22)

full symbolic debugging information (see "d2" on page 23)

(C++ only) d2 and debug inlines; emit inlines as external out-of-line functions (see "d2i"
on page 23)

(C++ only) d2 and debug inlines; emit inlines as static out-of-line functions (see "d2s" on
page 23)

(C++ only) d2 but without type names (see "d2t" on page 23)

full symbolic debugging with unreferenced type names (see "d3" on page 23)

(C++ only) d3 plus debug inlines; emit inlines as external out-of-line functions (see "d3i"
on page 23)

(C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions (see "d3s' on
page 23)

call epilogue hook routine (see "e€" on page 24)

emit routine names in the code segment (see "en" on page 24)

call prologue hook routine with number stack bytes available (see "ep[<number>]" on
page 24)

Pentium profiling (see "et" on page 24)

set debug output format (Open Watcom, DWARF, Codeview) (see "h{w,d,c}" on page
25)

remove stack overflow checks (see"'s" on page 25)

Description:

d<name>[=text] precompilation #define name [text] (see "d<name>[=text]" on page 25)

d+

allow extended "d" macro definitions on command line (see "d+" on page 25)

fo[=<file_name>] set preprocessor output file name (see "fo[=<file_name>] (preprocessor)” on page 26)

pil

preprocessor ignores #line directives (see "pil" on page 26)

p{el,c,w=<num>} preprocessfile

u<name>

c preserve comments

e encrypt identifiers (C++ only)

I insert #line directives

w=<num> wrap output lines at <num> columns. Zero means no wrap.

(see"p{el,c,w=<num>}" on page 26)
undefine macro name (see "u<name>" on page 27)

10 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

2.2.4 Diagnostics

Option:

e<number>

cgaga

t=<num>
w<number>
wcd=<num>
wee=<num>
we

WX

Za,e}

q

zs

Option:

Description:

set error limit number (see "e<number>" on page 27)

use full path names in error messages (see "ef" on page 27)

do not display error messages (they are till written to afile) (see"eq" on page 27)
(C++ only) do not recover from undefined symbol errors (see"er" on page 27)

(C++ only) aternate error message formatting (see "ew" on page 28)

operate quietly (see"d" on page 28)

set tab stop multiplier (see "t=<num>" on page 28)

set warning level number (see "w<number>" on page 28)

warning control: disable warning message <num> (see "wcd=<number>" on page 28)
warning control: enable warning message <num> (see "wce=<number>" on page 28)
treat all warnings as errors (see "we" on page 28)

set warning level to maximum setting (see "wx" on page 29)

disable/enable language extensions (see "za" on page 29) (see "z€e" on page 29)
operate quietly (see"zqg" on page 31)

syntax check only (see"zs" on page 31)

2.2.5 Source/Output Control

Description:

ad[=<file_name>] generate makefile style auto depend file (see "ad[=<file_name>]" on page 31)

adbs

force dlashes generated in makefile style auto depend to backward (see "adbs' on page
32)

add[=<file_name>] set source depend name for makefile style auto depend file (see "add[=<file_name>]"

on page 32)

adhp[=<path prefix>] set default path for header dependancies which result in name only. (see

adfs

"adhp[=<path_name>]" on page 32)
force slashes generated in makefile style auto depend to forward (see "adfs" on page 33)

adt[=<target_name>] specify target name generated in makefile style auto depend (see

db
ez

"adt[=<target_name>]" on page 33)
generate browsing information (see "db" on page 33)
generate PharLap EZ-OMF object files (see "ez" on page 34)

fc=<file_name> (C++ only) specify file of command lines to be batch processed (see "fc=<file_name>" on

page 34)

fhq][=<file_name>] use precompiled headers (see "fh[g][=<file_name>]" on page 34)

fhd
fhr

fhw

fhwe

store debug info for pre-compiled header once (DWARF only) (see"fhd" on page 34)
(C++ only) force compiler to read pre-compiled header (will never write) (see "fhr" on
page 34)

(C++ only) force compiler to write pre-compiled header (will never read) (see "fhw" on
page 34)

(C++ only) don’'t include pre-compiled header warnings when "we" is used (see "fhwe"
on page 34)

fi=<file_name> forcefile_nameto beincluded (see "fi=<file_name>" on page 34)
fo[=<file_name>] set object or preprocessor output file name (see "fo[=<file_name>]" on page 35)
fr[=<file_name>] set error file name (see "fr[=<file_name>]" on page 35)

ft

(C++ only) try truncated (8.3) header file specification (see "ft" on page 35)

Compiler Options - Summarized By Category

11

Open Watcom C/C++ User’s Guide

fti (C only) track include file opens (see "fti" on page 35)
fx (C++ only) do not try truncated (8.3) header file specification (see "fx" on page 36)
fzh (C++ only) do not automatically append extensions for include files (see "fzh" on page
36)
fzs (C++ only) do not automatically append extensions for source files (see "fzs' on page 36)
i=<directory> another include directory (see "i=<directory>" on page 36)
k continue processing files (ignore errors) (see "k" on page 36)
% output function declarations to .def (see"v" on page 36)
zat (C++ only) disable alternative tokens (see "zat" on page 36)
V] (C++ only) let scope of for loop initialization extend beyond loop (see "zf" on page 36)
Z9 generate function prototypes using base types (see "zg" on page 37)
| remove default library information (see "zl" on page 37)
Zd remove file dependency information (see "zld" on page 37)
Af add default library information to object files (see "zIf" on page 38)
s remove automatically generated symbols references (see "zls" on page 38)
2.2.6 Code Generation
Option: Description:
ecc set default calling conventionto _ cdecl (see "ecc" on page 38)
ecd set default calling conventionto _ stdcall (see "ecd" on page 38)
ecf set default calling convention to __fastcall (see "ecf" on page 38)
ecp set default calling convention to ___pascal (see "ecp” on page 38)
ecr set default calling convention to __fortran (see "ecr" on page 38)
€cs set default calling convention to __syscall (see "ecs' on page 38)
ecw set default calling convention to _ watcall (default) (see"ecw" on page 38)
el force enum base typeto use at least anint (see "ei" on page 38)
em force enum base type to use minimum (see "em" on page 38)
j change char default from unsigned to signed (see"j" on page 39)
ri return chars and shorts asints (see "ri" on page 39)
Xr (C++ only) enable RTTI (see"xr" on page 39)
zc place literal stringsin the code segment (see "zc" on page 39)
7p{1,2,48,16} pack structure members (see "zp[{1,2,4,8,16}]" on page 39)
Zpw output warning when padding is added in a struct/class (see "zpw" on page 41)
zt<number> set data threshold (see "zt<number>" on page 41)
v (C++ only) enable virtual function removal optimization (see"zv" on page 42)

2.2.7 80x86 Floating Point

Option: Description:

fpc callsto floating-point library (see "fpc" on page 44)

fpi in-line 80x87 instructions with emulation (see "fpi" on page 44)

fpi87 in-line 80x87 instructions (see "fpi87" on page 45)

fp2 generate floating-point for 80x87 (see "fp2" on page 45)

fp3 generate floating-point for 387 (see "fp3" on page 45)

fp5 optimize floating-point for Pentium (see "fp5" on page 46)

fp6 optimize floating-point for Pentium Pro (see "fp6" on page 46)

fpd enable generation of Pentium FDIV bug check code (see "fpd" on page 46)

12 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

2.2.8 Segments/Modules

Option:

g=<codegroup>
nc=<name>
nd=<name>
nm=<name>
nt=<name>

zm

zmf

Description:

set code group name (see "g=<codegroup>" on page 47)
set code class hame (see "'nc=<name>" on page 47)

set data segment name (see "nd=<name>" on page 47)
set module name (see "nm=<name>" on page 48)

set name of text segment (see "nt=<name>" on page 48)

place each function in separate segment (near functions not allowed) (see "zm" on page

49)

(C++ only) place each function in separate segment (near functions allowed) (see "zmf"

on page 50)

2.2.9 80x86 Run-time Conventions

Option:

OO, WNEO

3r
3s
4r
4s
5r
5s
6r
6s
m{f,s,;m,c,l,h}
zdf
zdp
zdl
zf
zp
zof
zgp
i
zo
pal|

Description:

(16-bit only) 8088 and 8086 instructions (see "0" on page 51)

(16-bit only) 188 and 186 instructions (see"1" on page 51)

(16-bit only) 286 instructions (see "2" on page 51)

(16-bit only) 386 instructions (see "3" on page 51)

(16-bit only) 486 instructions (see "4" on page 51)

(16-bit only) Pentium instructions (see"5" on page 51)

(16-bit only) Pentium Pro instructions (see"6" on page 51)

(32-bit only) 386 register calling conventions (see "3{r|s}" on page 51)
(32-bit only) 386 stack calling conventions (see "3{r[s}" on page 51)

(32-bit only) 486 register calling conventions (see "4{r|s}" on page 52)
(32-bit only) 486 stack calling conventions (see "4{ r|s}" on page 52)

(32-bit only) Pentium register calling conventions (see "5{r|s}" on page 53)
(32-bit only) Pentium stack calling conventions (see "5{r|s}" on page 53)
(32-bit only) Pentium Pro register calling conventions (see "6{r|s}" on page 53)
(32-bit only) Pentium Pro stack calling conventions (see "6{r|s}" on page 53)
memory model (Flat,Small,Medium,Compact,Large,Huge) (see "mf" on page 53)
DSfloatsi.e. not fixed to DGROUP (see"zd{f,p}" on page 54)

DSis pegged to DGROUP (see "zd{f,p}" on page 54)

Load DS directly from DGROUP (see "zdl" on page 54)

FSfloatsi.e. not fixed to asegment (see "zf{f,p}" on page 54)

FSis pegged to a segment (see "zf{f,p}" on page 54)

GSfloatsi.e. not fixed to a segment (see "zg{f,p}" on page 55)

GSis pegged to a segment (see "zg{f,p}" on page 55)

Inline floating point rounding code (see "zri" on page 55)

Omit floating point rounding code (see "zro" on page 55)

SS 1= DGROUP (see "zu" on page 55)

2.2.10 Optimizations

Compiler Options - Summarized By Category

13

Open Watcom C/C++ User’s Guide

Option:

oa
ob

oc

od
oe[=<num>]
oh

oi

oi+

ok
ol
ol+
om
on
00
op
or
0s
ot
ou
(0)'4
0oz

Description:

relax aliasing constraints (see "oa" on page 55)

enable branch prediction (see "ob" on page 56)

disable <call followed by return> to <jump> optimization (see "oc" on page 56)
disable all optimizations (see "od" on page 56)

expand user functionsin-line. <num> controls max size (see "oe=<num>" on page 57)
enabl e repeated optimizations (longer compiles) (see "oh" on page 57)

expand intrinsic functionsin-line (see "oi" on page 57)

(C++ only) expand intrinsic functionsin-line and set inline_depth to maximum (see "oi+"
on page 57)

enable control flow prologues and epilogues (see "ok" on page 57)

enable loop optimizations (see "ol" on page 57)

enable loop optimizations with loop unrolling (see "ol+" on page 58)

generate in-line 80x87 code for math functions (see "om" on page 58)

allow numerically unstable optimizations (see "on" on page 58)

continue compilation if low on memory (see"00" on page 58)

generate consistent floating-point results (see "op" on page 58)

reorder instructions for best pipeline usage (see "or" on page 58)

favor code size over execution time in optimizations (see "0s" on page 58)
favor execution time over code size in optimizations (see "ot" on page 58)

all functions must have unique addresses (see "ou" on page 59)

equivalent to -obmiler -s (see "ox" on page 59)

NULL pointsto valid memory in the target environment (see "0z" on page 59)

2.2.11 C++ Exception Handling

Option:

xd
xdt
xds
XS
Xst
XSS

Description:

disable exception handling (default) (see "xd" on page 60)

disable exception handling (same as "xd") (see "xdt" on page 60)

disable exception handling (table-driven destructors) (see "xds"' on page 60)
enable exception handling (see "xs" on page 60)

enable exception handling (direct calls for destruction) (see "xst" on page 60)
enable exception handling (table-driven destructors) (see "xss' on page 60)

2.2.12 Double-Byte/Unicode Characters

Option:
zk{0,1,2,1}

ZkOu

Description:

double-byte char support: 0=Kanji,1=Chinese/Taiwanese,2=Korean,|=local (see
"zk{0,1,2,1}" on page 61)
trans ate double-byte Kanji to UNICODE (see "zkOu" on page 61)

Zku=<codepage> load UNICODE translate table for specified code page (see "zku=<codepage>" on page

61)

14 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

2.2.13 Compatibility with Microsoft Visual C++

Option: Description:
VC... V C++ compatibility options (see "vc..." on page 62)
vcap allow aloca() or _aloca() in a parameter list

2.2.14 Compatibility with Older Versions of the 80x86 Compilers

Option: Description:

r save/restore segment registers across calls (see "r" on page 62)

fpr generate backward compatible 80x87 code (see "fpr" on page 62)

z generate backward compatible __stdcall conventions by removing the " @size" from

__stdcall function names (10.0 compatible) (see "zz" on page 62)

2.3 Compiler Options - Full Description

In the following sections, we present compl ete descriptions of compiler options organized into categories.

2.3.1 Target Specific

This group of options deals with characteristics of the target application; for example, simple executables
versus Dynamic Link Libraries, character-mode versus graphical user interface, single-threaded versus
multi-threaded, and so on.

be

(OS2, Win16/32 only) This option causes the compiler to emit into the object file references to the
appropriate startup code for a character-mode console application. The presence of Li bMai n/ DLLMai n
or W nMai n/ WA\ nMai n in the source code does not influence the selection of startup code. Only mai n
and wimai n are significant.

If none of "bc", "bd", "bg" or "bw" are specified then the order of priority in determining which
combination of startup code and libraries to use are as follows.

1. Thepresenceof oneof Li bMai n or DLLMai n impliesthat the DLL startup code and libraries
should be used.

2. The presence of W nMai n or wA nMai n implies that the GUI startup code and libraries should
be used.

3. Thepresence of nai n or wrai n impliesthat the default startup code and libraries should be
used.

If both awide and non-wide version of an entry point are specified, the "wide" entry point will be used.
Thus wW nMai n iscalled when both W nMVai n and wW nMai n are present. Similarly, wmai n iscalled
when both mai n and wirai n are present (and W nMai n/ wW nMai n are not present). By default, if both
wirai n and W nMai n areincluded in the source code, then the startup code will attempt to call

WW nMai n (since both "wide" and "windowed" entry points were included).

Compiler Options - Full Description 15

Open Watcom C/C++ User’s Guide

bd

bm

br

(OS2, Win16/32 only) This option causes the compiler to emit into the object file references to the
run-time DLL startup code (referencetothe __DLLst art _ symbol) and, if required, special versions of
the run-time libraries that support DLLs. The presence of mai n/ wai n or W nMai n/ WA\ nMai n inthe
source code does not influence the selection of startup code. Only Li bMai n and DLLMai n are significant
(see"bc" on page 15). If you are building a DLL with statically linked C runtime (the default), it is
recommended that you compile at least one of its object files with the "bd" switch to ensure that the DLL’s
Cruntimeis properly initialized. Themacro __ SW BDwill be predefined if "bd" is selected.

(OS2, Win16/32 only) This option causes the compiler to emit into the object file references to the
appropriate startup code for awindowed (GUI) application. The presence of Li bMai n/ DLLMai n or
nmai n/ wirai n in the source code does not influence the selection of startup code. Only W nMai n and
WW nMai n are significant (see "bc" on page 15).

(Netware, 0S/2, Win32 only) This option causes the compiler to emit into the object file references to the
appropriate multi-threaded library name(s). Themacros _MTI and__ SW BMwill be predefined if "bm" is
selected.

(052, Win32 only) This option causes the compiler to emit into the object file references to the run-time
DLL library name(s). Therun-time DLL libraries are specia subsets of the Open Watcom C/C++ run-time
librariesthat are available as DLLs. When you use this option with an OS/2 application, you must also
specify the "CASEEXACT" option to the Open Watcom Linker. Themacros _DLL and__ SW BRwill be
predefined if "br" is selected.

bt[=<o0s>]

This option causes the compiler to define the "build” target. Thisoption isused for cross-devel opment
work. It prevents the compiler from defining the default build target (which is based on the host system the
compiler isrunning on). The default build targets are:

DOS when the host operating system is DOS,

0s2 when the host operating system is 0S/2,

NT when the host operating system is Windows NT (including Windows 95),
ONX when the host operating system is QNX. or

LINUX when the host operating system is Linux.

It also prevents the compiler from defining the default target macro. Instead the compiler defines a macro
consisting of the string "<os>" converted to uppercase and prefixed and suffixed with two underscores.
The default target macros are described in the section entitled "Open Watcom C/C++ Predefined Macros"
on page 74.

For example, specifying the option:;

bt =f oo

16 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

bw

of

would cause the compiler to define the macro

FOO

and prevent it from defining MSDOS, _DOSand__ DOS__ if the compiler was being run under DOS,
__0s2__ if using the OS/2 hosted compiler,__ NT__ if using the Windows NT or Windows 95 hosted
compiler, _ ONX__and__ UNI X__ if using the QNX hosted version. or__ LI NUX__and _UNI X__ if
using the Linux hosted version. Any string consisting of letters, digits, and the underscore character may

be used for the target name.

The compiler will also construct an environment variable called <os>_INCLUDE and seeiif it has been
defined. If the environment variable is defined then each directory listed in it is searched (in the order that
they were specified). For example, the environment variable WINDOWS INCLUDE will be searched if
bt=\WINDOWS option was specified.

Example:
set wi ndows_i ncl ude=\wat com h\wi n

Include file processing is described in the section entitled "Open Watcom C/C++ #include File Processing”
on page 70.

Severa target names are recoghized by the compiler and perform additional operations.
Targetname Additional operation
DOS Defines the macros _ DOS and MSDCS.

WINDOWS Same as specifying one of the "zw" options. Defines the macros _ W NDOWS (16-bit
only)and __ W NDOW5_386__ (32-bit only).

NETWARE (32-hit only) Causes the compiler to use stack-based calling conventions. Also defines
themacro __ NETWARE_386_ _.

QNX Definesthemacro __ UNI X_ .
LINUX Definesthemacro __ UNI X_ .

Specifying "bt" with no target name following restores the default target name.

(Win16 only) This option causes the compiler to import a special symbol so that the default windowing
library codeislinked into your application. The presence of Li bMai n/ DLLMai n in the source code does
not influence the selection of startup code. Only rmai n, wrai n, W nMai n and WA nMai n are
significant (see "bc" on page 15). Themacro __ SW BWwill be predefined if "bw" is selected.

This option selects the generation of traceable stack frames for those functions that contain calls or require
stack frame setup.

(16-bit only) To use Open Watcom’s "Dynamic Overlay Manager" (DOS only), you must compile all
modules using one of the "of" or "of +" options ("of" is sufficient).

For near functions, the following function prologue sequence is generated.

Compiler Options - Full Description 17

Open Watcom C/C++ User’s Guide

of+

(16-bit only)
push BP
mov BP, SP

(32-bit only)

push EBP
nov EBP, ESP

For far functions, the following function prologue sequence is generated.

(16-bit only)

inc BP
push BP
nmov BP, SP
(32-bit only)
inc EBP
push EBP

nov EBP, ESP
The BP/EBP value on the stack will be even or odd depending on the code model.

For 16-bit DOS systems, the Dynamic Overlay Manager uses this information to determine if the return
address on the stack is a short address (16-bit offset) or long address (32-bit segment:offset).

Do not use this option for 16-bit Windows applications. It will alter the code sequence generated for
"_export" functions.

Example:
C>compiler_name t oast er / of

Themacro __ SW OF will be predefined if "of" is selected.

This option selects the generation of traceable stack frames for all functions regardless of whether they
contain calls or require stack frame setup. This option isintended for devel opers of embedded systems
(ROM-based applications).

To use Open Watcom’s "Dynamic Overlay Manager" (16-bit DOS only), you must compile all modules
using one of the "of" or "of+" options ("of" is sufficient).

For near functions, the following function prologue sequence is generated.
(16-bit only)
push BP
nov BP, SP
(32-bit only)

push EBP
nov EBP, ESP

For far functions, the following function prologue sequence is generated.

18 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

sg

(16-bit only)
inc BP
push BP
nmov BP, SP

(32-bit only)
inc EBP
push EBP

nov EBP, ESP
The BP/EBP value on the stack will be even or odd depending on the code model.

For 16-bit DOS systems, the Dynamic Overlay Manager uses this information to determine if the return
address on the stack is a short address (16-bit offset) or long address (32-bit segment: offset).

Do not use this option for 16-bit Windows applications. It will alter the code sequence generated for
" export" functions.

Example:
C>compiler_name t oaster /of +

Thisoption is useful for 32-bit 0S/2 and Win32 multi-threaded applications. It requests the code generator
to emit arun-time call at the start of any function that has more than 4K bytes of automatic variables
(variables located on the stack).

Under 32-bit OS/2, the stack is grown automatically in 4K pages for any threads, other than the primary
thread, using the stack "guard page" mechanism. The stack consists of in-use committed pages topped of f
with a special guard page. A memory reference into the 4K guard page causes the operating system to
grow the stack by one 4K page and to add anew 4K guard page. Thisworks fine when there isless than
4K of automatic variablesin afunction. When there is more than 4K of automatic data, the stack must be
grown in an orderly fashion, 4K bytes at atime, until the stack has grown sufficiently to accommodate all
the automatic variable storage requirements. Hence the requirement for a stack-growing run-time routine.
The stack-growing run-time routineis called __ GRO.

The "stack=" linker option specifies how much stack is available and committed for the primary thread
when an executable starts. The stack size parameter to _begi nt hr ead() specifies how much stack is
availablefor achild thread. The child thread starts with just 4k of stack committed. The stack will not
grow to be bigger than the size specified by the stack size parameter.

Under 32-bit Windows (Win32), the stack is grown automatically in 4K pages for all threads using a
similar stack "guard page" mechanism. The stack consists of in-use committed pages topped off with a
specia guard page. The techniques for growing the stack in an orderly fashion are the same as that
described above for OS/2.

The "stack=" linker option specifies how much stack is available for the primary thread when an executable
starts. The "commit stack=" linker directive specifies how much of that stack is committed when the
executable starts. 1f no "commit stack=" directiveis used, it defaults to the same value as the stack size.
The stack size parameter to _begi nt hr ead() specifies how much stack is committed for a child thread.
If the size is set to zero, the size of the primary thread stack is used for the child thread stack. When the
child thread executes, the stack space is not otherwise restricted.

Themacro __ SW SGwill be predefined if "sg" is selected.

Compiler Options - Full Description 19

Open Watcom C/C++ User’s Guide

st
This option causes the code generator to ensure that the first reference to the stack in afunction isto the
stack "bottom" using the SS register. 1f the memory for this part of the stack is not mapped to the task, a
memory fault will occur involving the SS register. This permits an operating system to all ocate additional
stack space to the faulting task.
Suppose that a function requires 100 bytes of stack space. The code generator usually emits an instruction
seguence to reduce the stack pointer by the required number of bytes of stack space, thereby establishing a
new stack bottom. When the "st" option is specified, the code generator will ensure that the first reference
to the stack is to amemory location with the lowest address. |f amemory fault occurs, the operating
system can determine that it was a stack reference (since the SSregister isinvolved) and also how much
additional stack space isrequired.
See the description of the "sg" option for a more general solution to the stack allocation problem. The
macro __ SW_ST will be predefined if "st" is selected.
zZwW
(16-bit only) This option causes the compiler to generate the prologue/epilogue code sequences required for
Microsoft Windows applications. The following "fat" prologue/epilogue sequence is generated for any
functions declared to be "far _export" or "far pascal".
far pascal func(...)
far _export func(...)
far _export pascal func(...)
push DS
pop AX
nop
inc BP
push BP
mov BP, SP
push DS
mov DS, AX
bop DS
pop BP
dec BP
retf n
Themacro __ W NDOWS__ will be predefined if "zw" is selected.
(32-bit only) This option causes the compiler to generate any special code sequences required for 32-bit
Microsoft Windows applications. Themacro _ W NDOWS__ and W NDOW5 386 will be
predefined if "zw" is selected.
zW (optimized)

(16-bit only) This option issimilar to "zw" but causes the compiler to generate more efficient
prologue/epil ogue code sequences in some cases. This option may be used for Microsoft Windows
applications code other than user callback functions. Any functions declared as "far _export" will be
compiled with the "fat" prologue/epilogue code sequence described under the "zw" option.

20 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

zWs

far _export func(...)
far _export pascal func(...)

The following "skinny" prologue/epilogue sequence is generated for functions that are not declared to be
"far _export”.

far pascal func(...)
far func(...)

inc BP
push BP
mov BP, SP
pop BP

dec BP
retf n

Themacro W NDOWS__ will be predefined if "zZW" is selected.

(16-bit only) This option issimilar to "zZW" but causes the compiler to generate "smart callbacks'. This
option may be used for Microsoft Windows user callback functionsin executablesonly. It isnot permitted
for DLLs. Normally, acallback function cannot be called directly. Y ou must use MakeProclnstance to
obtain afunction pointer with which to call the callback function.

If you specify "zZWs" then you do not need to use MakeProclnstance in order to call your own callback
functions. Any functions declared as "far _export" will be compiled with the "smart" prologue code
sequence described here.

The following example shows the usual prologue code sequence that is generated when the "zZWs' option is
NOT used.

Example:
compiler_name wi napp /nt /bt=wi ndows /dl

short FAR PASCAL __ export Functionl(short varl,
| ong varl ong,
short var2)

{
0000 1e FUNCTI ON1 push ds
0001 58 pop ax
0002 90 nop
0003 45 i nc bp
0004 55 push bp
0005 89 eb5 nov bp, sp
0007 1e push ds
0008 8e d8 nov ds, ax

The following example shows the "smart" prologue code sequence that is generated when the "zZWs' option
isused. The assumption hereisthat the SSregister contains the address of DGROUP.

Compiler Options - Full Description 21

Open Watcom C/C++ User’s Guide

Example:
compiler_name wi napp /nt /bt=wi ndows /d1 /zW

short FAR PASCAL __ export Functionl(short varl,
| ong varl ong,
short var2)

{
0000 8c doO FUNCTI ON1 nov ax, ss
0002 45 i nc bp
0003 55 push bp
0004 89 e5 nmov bp, sp
0006 1e push ds
0007 8e d8 nov ds, ax

2.3.2 Debugging/Profiling

do

d1

di+

a2

22

This group of options deals with all the forms of debugging information that can be included in an object
file. Support for profiling of Pentium code is also described.

(C++ only) No debugging information is included in the object file.

Line number debugging information isincluded in the object file. This option provides additional
information to the Open Watcom Debugger (at the expense of larger object files and executablefiles). Line
numbers are handy when debugging your application with the Open Watcom Debugger at the source code
level. Code speed is not affected by thisoption. To avoid recompiling, the Open Watcom Strip Utility can
be used to remove debugging information from the executable image.

(C only) Line number debugging information plus typing information for global symbolsand loca structs
and arraysisincluded in the object file. Although global symbol information can be made available to the
Open Watcom Debugger through a Open Watcom Linker option, typing information for global symbols
and local structs and arrays must be requested when the source fileis compiled. This option provides
additional information to the Open Watcom Debugger (at the expense of larger object files and executable
files). Code speed is not affected by this option. To avoid recompiling, the Open Watcom Strip Utility can
be used to remove debugging information from the executable image.

In addition to line number information, local symbol and data type information is included in the object
file. Although global symbol information can be made available to the Open Watcom Debugger through a
Open Watcom Linker option, local symbol and typing information must be requested when the sourcefile
iscompiled. Thisoption provides additional information to the Open Watcom Debugger (at the expense of
larger object files and executable files).

By default, the compiler will select the "od" level of optimization if "d2" is specified (see the description of
the"od" option). Starting with version 11.0, the compiler now expands functions in-line where appropriate.
This means that symbolic information for the in-lined function will not be available.

The use of this option will make the debugging chore somewhat easier at the expense of code speed and
size. To create production code, you should recompile without this option.

Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

d2i

d2s

dat

d3

d3i

d3s

ee

en

(C++ only) Thisoptionisidentical to "d2" but does not permit in-lining of functions. Functions are emitted
as external out-of-line functions. This option can result in larger object and/or executable files than with
"d2" (we are discussing both "code" and "file" size here).

(C++ only) Thisoption isidentical to "d2" but does not permit in-lining of functions. Functions are emitted
as static out-of-line functions. This option can result in larger object and/or executable files than with "d2"
or "d2i" (we are discussing both "code" and "file" size here). Link times are faster than "d2i" (fewer
segment relocations) but executables are dightly larger.

(C++ only) Thisoptionisidentical to "d2" but does not include type name debugging information. This
option can result in smaller object and/or executable files (we are discussing "file" size here).

Thisoption isidentical to "d2" but also includes symbolic debugging information for unreferenced type
names. Note that this can result in very large object and/or executable files when header fileslike
W NDOW5. Hor OS2. Hare included.

(C++ only) Thisoptionisidentical to "d3" but does not permit in-lining of functions. Functions are emitted
as external out-of-line functions. This option can result in larger object and/or executable files than with
"d3" (we are discussing both "code" and "file" size here).

(C++ only) Thisoptionisidentical to "d3" but does not permit in-lining of functions. Functions are emitted
as static out-of-line functions. This option can result in larger object and/or executable files than with "d3"
or "d3i" (we are discussing both "code" and "file" size here). Link times are faster than "d3i" (fewer
segment relocations) but executables are dightly larger.

This option causes the compiler to generateacall to __ EPI in the epilogue sequence at the end of every
function. This user-written routine can be used to collect/record profiling information. Other related
options are "ep[<number>]" and "en". Themacro __ SW EE will be predefined if "e€" is selected.

The compiler will emit the function name into the object code as a string of charactersjust before the
function prologue sequenceis generated. The string isterminated by a byte count of the number of
charactersin the string.

; void Toaster(int arg)

db "Toaster", 7
public Toaster
Toast er | abel byt e

ret

Compiler Options - Full Description 23

Open Watcom C/C++ User’s Guide

This option isintended for developers of embedded systems (ROM-based applications). It may also be
used in conjunction with the "ep" option for special user-written profiling applications. The macro
__ SW ENwill be predefined if "en" is selected.

ep[<number>]
This option causes the compiler to generate acall to auser-written _ PROroutine in the prologue sequence
at the start of every function. This routine can be used to collect/record profiling information. The optional
argument <number> can be used to cause the compiler to allocate that many bytes on the stack as a place
for __PROto storeinformation. Other related options are "ee" on page 23 and "en" on page 23. The
macro __ SW_EP will be predefined if "ep" is selected.

et
(Pentium only) This option causes the compiler to generate code into the prolog of each function to count
exactly how much time is spent within that function, in clock ticks. Thisoptionisvalid only for Pentium
compatible processors (i.e., the instructions inserted into the code do not work on 486 or earlier
architectures). The Pentium "rdtsc" opcode is used to obtain the instruction cycle count.

At the end of the execution of the program, afile will be written to the same location as the executable,
except with a”.prf* extension. The contents of the file will look like this:

Example:
1903894223 1 main
1785232334 1376153 StageA
1882249150 13293 StageB
1830895850 2380 StageC
225730118 99 StageD

Thefirst column is the total number of clock ticks spent inside of the function during the execution of the
program, the second column is the number of times it was called and the third column is the individual
function name. The total number of clock ticks includes time spent within functions called from this
function.

The overhead of the profiling can be somewhat intrusive, especially for small leaf functions (i.e., it may
skew your results somewhat).

h{w,d,c}
The type of debugging information that is to be included in the object file is one of "Open Watcom",
"DWARF" or "Codeview". The default is"DWARF".

If you wish to use the Microsoft Codeview debugger, then choose the "hc" option (this option causes
Codeview Level 4 information to be generated). 1t will be necessary to run the Microsoft Debugging
Information Compactor, CVPACK, on the executable once the linker has created it. For information on
requesting the linker to automatically run CVPACK, see the section entitled "OPTION CVPACK" in the
Open Watcom Linker User’s Guide. Alternatively, you can run CVPACK from the command line.

When linking the application, you must also choose the appropriate Open Watcom Linker DEBUG
directive. Seethe Open Watcom Linker User’s Guide for more information.

Stack overflow checking is omitted from the generated code. By default, the compiler will emit code at the
beginning of every function that checks for the "stack overflow" condition. This option can be used to
disable thisfeature. Themacro __ SW S will be predefined if "s" is selected.

24 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

2.3.3 Preprocessor

This group of options deals with the compiler preprocessor.

d<name>[=text]

d+

This option can be used to define a preprocessor macro from the command line. If =text is not specified,
then 1 isassumed. In other words, specifying / dDBGON is equivalent to specifying / dDBGON=1 on the
command line.

If =text is specified, then this option is equivalent to including the following line in your source code.
#def i ne nanme text
Consider the following example.

Example:
d_ MODDATE="87. 05. 04"

The above example is equivaent to aline in the source file containing:

#defi ne _MODDATE "87. 05. 04"

The syntax of any "d" option which follows on the command line is extended to include C/C++ tokens as
part of "text". Thetoken string isterminated by a space character. This permits more complex syntax than
isnormally allowed.

Example:
/d+ /d_radx=x*3. 1415926/ 180

Thisis equivalent to specifying the following in the source code.

Example:
#define _radx x*3.1415926/ 180

Open Watcom C++ extends this feature by allowing parameterized macros. When a parameter list is
specified, the "=" character must not be specified. It aso permitsimmediate definition of the macro as
shown in the second line of the example.

Example:
/d+ /d_rad(x)x*3.1415926/ 180
/d+_rad(x)x*3.1415926/ 180

Thisis equivalent to specifying the following in the source code.

Example:
#define _rad(x) x*3.1415926/ 180

fo[=<file_name>] (preprocessor)

The"fo" option is used with any form of the "p" (preprocessor) option to name the output file drive, path,
file name and extension. If the output file nameis not specified, it is constructed from the source file name.
If the output file extension is not specified, itis".i" by default.

Compiler Options - Full Description 25

Open Watcom C/C++ User’s Guide

Example:
C>compiler_name report /p /fo=d:\proj\prep\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fo=d: \ proj \ pr ep then the output file would be called d: \ proj \ prep. i . A default filename
extension must be preceded by a period (".").

Example:
C>compiler_name report /p /fo=d:\proj\prep\.cpr

By default, #line directives embedded in source files are processed and will be used as a basis for file name
and line number information in error messages, _ FILE__and __ LINE__ symboals, etc. The"pil" option
causes the preprocessor to ignore #line directives and refer to actual file names and line numbers.

pfe,l,c,w=<num>}
Theinput file is preprocessed and, by default, iswritten to the standard output file. The "fo" option may be
used to redirect the output to afile with default extension ".i".

Specify "pc" if you wish to include the original source comments in the Open Watcom C/C++ preprocessor
output file.

(C++ Only) Specify "pe" if you wish to encrypt the origina identifiers when they are written to the Open
Watcom C/C++ preprocessor output file.

Specify "pl" if youwish toinclude #l i ne directives.
Specify "pcl” or "plc" if you wish both source comments and #line directives.

Use the "w=<num>" suffix if you wish to wish output linesto wrap at <num> columns. Zero means no
wrap.

Example:
C>compiler_name report /pcel w=80

Theinput fileis preprocessed only. When only "p" is specified, source comments and #line directives are
not included. Y ou must request these using the "c" and "I" suffixes. When the output of the preprocessor is
fed into the compiler, the #l i ne directive enables the compiler to issue diagnosticsin terms of line
numbers of the original sourcefile.

The options which are supported when the Open Watcom C/C++ preprocessor is requested are: "d", "fi",

||f0||, "i", ||m?|' and llull.

u<name>
The"u" option may be used to turn off the definition of a predefined macro. 1f no name is specified then all
predefined macros are undefined.

Example:
C>compiler_name report /uM | 386

26 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

2.3.4 Diagnostics

This group of options deals with the control of compiler diagnostics.

e<number>

ef

eq

er

ew

t=<num>

The compiler will stop compilation after reaching <number> errors. By default, the compiler will stop
compilation after 20 errors.

This option causes the compiler to display full path namesfor filesin error messages.

This option causes the compiler to not display error messages on the console; however, they are still written
to afile (see "fr[=<file_name>]" on page 35).

(C++ only) This option causes the C++ compiler to not recover from undefined symbol errors. By defaullt,
the compiler recovers from "undefined symbol” errors by injecting a special entry into the symbol table that
prevents further issuance of diagnostics relating to the use of the same name. Specify the "er" option if you
want all uses of the symbol to be diagnosed.

Example:
struct S {

1
void foo(S *p) {
p->m = 1; // nenber 'm has not been declared in 'S

}
void bar(S *p) {

p->m= 2; // no error unless "er" is specified
}

(C++ only) This option causes the C++ compiler to generate equivalent but less verbose diagnostic
messages.

This option is equivalent to the "zg" option (see "zq" on page 31).

(C++ only) The"t" option is used to set the tab stop interval. By default, the compiler assumes atab stop
occursat multiplesof 8 (1+nx 8=1, 9, 17, ... for n=0, 1, 2, ...). When the compiler reports a line number
and column number in a diagnostic message, the column number has been adjusted for intervening tabs. If
the default tab stop setting for your text editor is not amultiple of 8, then you should use this option.

Example:
C>compiler_name report /t=4

Compiler Options - Full Description 27

Open Watcom C/C++ User’s Guide

w<number>

The compiler will issue only warning type messages of severity <number> or below. Type 1 warning
messages are the most severe while type 3 warning messages are the least severe. Specify "wQ" to prevent
warning messages from being issued. Specify "wx" to obtain all warning messages.

wed=<number>

The compiler will not issue the warning message indicated by <number>.

wece=<number>

we

wo

WX

Za

Ze

The compiler will issue the warning message indicated by <number> despite any pragmas that may have
disabled it.

By default, the compiler will continue to create an object file when there are warnings produced. This
option can be used to treat al warnings as errors, thereby preventing the compiler from creating an object
fileif there are warnings found within a module.

(C only) (16-bit only) This option tells the compiler to emit warnings for things that will cause problems
when compiling code for use in overlays.

This option sets the warning level to its maximum setting.

This option helps to ensure that the module to be compiled conformsto the ISO/ANSI C or C++
programming language specification (depending on the compiler which is selected). The macro
NO_EXT_KEYS (no extended keywords) will be predefined if "za" is selected. The "ou" option will be
enabled (see"ou" on page 59). See also the description of the "ze" option.

When using the C compiler, there is an exception to the enforcement of the |SO C standard programming
language specification. The use of C++ style comments (// comment) are not diagnosed.

The "ze" option (default) enables the use of the following compiler extensions:
1. Thereguirement for at least one external definition per module is relaxed.

2. When using the C compiler, some forgiveable pointer type mismatches become warnings instead
of errors.

3. In-line math functions are allowed (note that errno will not be set by in-line functions).

4. When using the C compiler, anonymous structs/unions are allowed (thisis always permitted in
C++).

28 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Example:
struct {
int a;
uni on {
i nt b;
float alt_b;
b
int c
} X

In the above example, "x.b" isavalid reference to the "b" field.

For C only, 1SO function prototype scope rules are relaxed to allow the following program to
compile without any errors.

Example:
void foo(struct a *__p);

struct a {
int b;
int c;

b

void bar(void)

{

struct a x;
foo(&x);

According to a strict interpretation of the ISO C standard, the function prototype introduces a
new scope which is terminated at the semicolon (;). The effect of thisisthat the structure tag "a"
in the function "foo" is not the same structure tag "a" defined after the prototype. A diagnostic
must be issued for a conforming 1SO C implementation.

A trailing comma. (,) is allowed after the last constant in an enum declaration.

Example:
enum col our { RED, GREEN, BLUE, };

The ISO requirement that all enums have a base type of int isrelaxed. The motivation for this
extension is conservation of storage. Many enums can be represented by integral typesthat are
smaller in size than anint.

Example:
enum col our { RED, GREEN, BLUE, };

void foo(void)
{

enum col our x;

X = RED;
}

In the example, "x" can be stored in an unsigned char because its values span the range 0 to 2.

Compiler Options - Full Description 29

Open Watcom C/C++ User’s Guide

8. ThelSO requirement that the base type of a bitfield be int or unsigned isrelaxed. Thisallowsa
programmer to allocate bitfields from smaller units of storage than an int (e.g., unsigned char).

Example:
struct {
unsigned char a : 1;
unsi gned char b : 1;
unsigned char ¢ : 1;

}ox;

struct {
unsigned a : 1;
unsigned b : 1;
unsigned ¢ : 1;
by,

In the above example, the size of "X" is the same size as an unsigned char whereas the size of "y"

isthe same size as an unsigned int.

9. Thefollowing macros are defined.

_near, near
_far, far, SOVDLINK (16-bit)
_huge, huge

__based

_segnent

_segnane

_self

_cdecl, cdecl, SOWLINK (16-bit)
__pascal, pasca

_fastcal

_fortran, fortran

_inline

_interrupt, interrupt
_export

_| oadds

_saveregs

_stdcal

_syscall, SOWLINK (32-bit), SOVDLINK (32-bit)

_farlé6

See also the description of the "za" option.

zq
The "quiet mode" option causes the informational messages displayed by the compiler to be suppressed.
Normally, messages are displayed identifying the compiler and summarizing the number of lines compiled.
Aswell, adot is displayed every few seconds while the code generator is active, to indicate that the
compiler is still working. These messages are all suppressed by the "quiet mode" option. Error and
warning messages are not suppressed.

V4

The compiler will check the source code only and omit the generation of object code. Syntax checking,

type checking, and so on are performed as usual.

30 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

2.3.5 Source/Output Control

This group of options deals with control over the input files and output files that the compiler processes
and/or creates.

ad[=<file_name>]

adbs

This option enables generation of auto dependancy infomation in a makefile syntax generating a
<target>:<depends...> list. If the auto depend fileis not specified, it is constructed from the source file
name. If the depend extension is not specified, itis".d" by default.

Example:
C>compiler_name report /ad=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fo=d: \ proj \ obj thenthe dependancy filewould be called d: \ pr oj \ obj . d.

A default filename extension must be preceded by a period (".").

Example:
C>compiler_name report /ad=d:\proj\obj\.dep

The file generated has content

Example:
<t arget nane>: <i nput source file> <included header files...>

included header files exclude those which come <watcom>/h.

When generating makefile style auto depend files, this option forces any slashes"/" or "\" to be "\". Certain
operations can cause mixed slashes, this forces the output to be appropriate for the make used.

add[=<file_name>]

Set the first dependancy name in a makefile style auto depend file. The default for thisis the source name
specified to compile. Thisfile spec follows the rules specified for other files. (see "ad[=<file_name>]" on
page 31)

adhp[=<path_name>]

When including file with "" delimiters, the filename resulting in makefile type auto dependancy files will
have no path. This alows these filesto be given a path, and said path will may berelative. This
path_name is prepended to the filename exactly, so atrailing slash must be specified.

Thisissue only affects headers found in the current directory. If the header was found in the source’s
directory, it receives a path, which means there will be at least one [IS_JPATH_CHAR in the path,
otherwise it isfound in the current directory.

let meillustrate....

Example:
source. obj: source.c header.h

Compiler Options - Full Description 31

Open Watcom C/C++ User’s Guide

Thistarget rule will work when compiling within the source’ s directory ONLY, otherwise dependancy files
source.c and header.h will not be found; no rule to make them; and make fails.

Example:
out put / sour ce. obj : sourcepat h/ source. c header.h

(what is generated now, when compiling source.c within sourcepath)
Thiswill also fail if the make evaluates this rule from some place other than sourcepath.
Thiswill work, however, if the header was really found in the current directory. (no option required)

(one possible intent... which will be generated now, if header.h is not in the current path, but is with the
source, and the compile is done outside sourcepath)

Example:
out put / out put . obj : sourcepat h/ source. ¢ sourcepat h/ header. h

Thisrule can be consistantly generated by specifying -adhp=sourcepath/ . Then when the header fileis
found in the current directory, especially when it is sourcepath, will not have had a path, and will receive
the default header path. The rule may then be processed from outside that current directory. [
-ahdp=$(SOMEVAR)/ | may be specified... thiswill result in output as $(SOMEVAR) which make may
expand]

(another possibleintent... which will result in referencing the same header file always, when running a
make from outside the current path specified when the compile was originally invoked...)

Example:
out put / out put . obj : sourcepat h/ source. c
current _path_at_comnpil e/ header. h

-adhp=currentpath/

This says currentpath, because the rule is generated based on the state of when the compile is done, and
should be viewed as past tense so that the rule specifies accurately what was compiled...

adfs

When generating makefile style auto depend files, this option forces any slashes"/" or "\" to be"/". Certain
operations can cause mixed slashes, this forces the output to be appropriate for the make used.

adt[=<target_name>]
This option enables generation of auto dependancy infomation in a makefile syntax. The target namein the
file can be specified. If the auto depend target is not specified, it is constructed from the source file name.
If the target extension is not specified, itis".obj" by default.

Example:
C>compiler_name report /adt=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fo=d: \ proj \ obj thenthe dependancy filewould be called d: \ pr oj \ obj . obj .

A default filename extension must be preceded by a period (".").

32 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

db

ez

Example:
C>compiler_name report /adt=d:\proj\obj\.dep

The file generated has content

Example:
<t arget nane>: <i nput source file> <included header files...>

included header files exclude those which come <watcom>/h.

Use this option to generate browsing information. The browsing information is recorded in a file whose
name is constructed from the source file name and the extension ".mbr".

(32-bit only) The compiler will generate an object file in Phar Lap Easy OMF-386 (object module format)
instead of the default Microsoft OMF. Themacro _ SW EZ will be predefined if "ez" is selected.

fe=<file_name>

(C++ only) The specified "batch" file contains alist of command lines to be processed. This enablesthe
processing of a number of source files together with options for each file with one single invocation of the
compiler. Only one"fc" option is allowed and no source file names are permitted on the command line.

Example:
[bat ch. t xt]
nai n /onatx /zp4
partl part2 /onatx /zp4 /dl
part3 /onatx /zp4 /d2

C>compiler_name / f c=\wat com h\ bat ch. t xt

Each linein thefileistreated stand-alone. In other words, the options from one line do not carry over to
another line. However, any options specified on the command line or the associated compiler environment
variable will carry over to theindividual command linesin the batch file. When the compiler diagnoses
errorsin asource file, processing of subsequent command linesis halted unless the "k™ option was specified
(see k" on page 36).

fh[q][=<file_name>]

fhd

fhr

The compiler will generate/use a precompiled header for the first header file referenced by #i ncl ude in
the sourcefile. Seethe chapter entitled "Precompiled Headers" on page 97 for more information.

The compiler will store debug info for the pre-compiled header once (DWARF only). See the chapter
entitled "Precompiled Headers' on page 97 for more information.

(C++ only) This option will force the compiler to read the pre-compiled header if it appearsto be
up-to-date; otherwise, it will read the header files included by the source code. 1t will never write the
pre-compiled header (even when it is out-of-date). See the chapter entitled "Precompiled Headers' on page
97 for more information.

Compiler Options - Full Description 33

Open Watcom C/C++ User’s Guide

fhw

(C++ only) This option will force the compiler to write the pre-compiled header (even when it appearsto
be up-to-date). Seethe chapter entitled "Precompiled Headers" on page 97 for more information.

fhwe
(C++ only) This option will ensure that pre-compiled header warnings are not counted as errors when the
"we" (treat warnings as errors) option is specified.

fi=<file_name>
The specified fileisincluded asif a

#i nclude "<fil e_name>"
directive were placed at the start of the sourcefile.

Example:
C>compiler_name report /fi=\watcom h\stdarg.h

fo[=<file_name>]
When generating an object file, the "fo" option may be used to name the object file drive, path, file name
and extension. If the object file nameis not specified, it is constructed from the source file name. If the
object file extension is not specified, it is".obj" by default.

Example:
C>compiler_name report /fo=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fo=d: \ proj\obj thentheobject filewould becalled d: \ pr oj \ obj . obj .

A default filename extension must be preceded by a period (".").

Example:
C>compiler_name report /fo=d:\proj\obj\.dbo

fr[=<file_name>]
The "fr" option is used to name the error file drive, path, file name and extension. If the error file nameis
not specified, it is constructed from the source file name. If the output file extension is not specified, itis
".err" by default. If no part of the name is specified, then no error fileis produced (i.e., /fr disables
production of an error fil€).

Example:
C>compiler_name report /fr=d:\proj\errs\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fr=d:\proj\errs thentheoutput filewould becaled d: \ proj\errs. err. A default filename
extension must be preceded by a period (".").

Example:
C>compiler_ name report /fr=d:\proj\errs\.erf

34 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

fti

fx

fzh

fzs

(C++ only) If the compiler cannot open a header file whose file name islonger than 8 |etters or whose file
extension is longer than 3 letters, it will truncate the name at 8 letters and the extension at 3 letters and try
to open afile with the shortened name. Thisis the default behaviour for the compiler.

For example, if the compiler cannot open the header filecalled st r st ream h, it will attempt to open a
header filecalled st r st r ea. h.

(C only) Whenever afileis open asaresult of #i ncl ude directive processing, an informational message
isprinted. The message contains the file name and line number identifying where the #i ncl ude directive
was located.

(C++ only) This option can be used to disable the truncated header filename processing that the compiler
does by default (see "ft" above).

(C++ only) This option can be used to stop the compiler from automatically adding extensions to include
files. The default behaviour of the compiler isto search for the specified file, then to try known extensions
if the file specifier does not have an extension. Thus, #include <string> could be matched by ’string’,
"string.h’ or "string.hpp’ (see"fzs" below). Themacro __ SW FZHwill be defined when this switch is
used.

(C++ only) This option can be used to stop the compiler from automatically adding extensions to source
files. The default behaviour of the compiler isto search for the specified file, then to try known extensions
if the file specifier does not have an extension. Thus, 'src_file' could be matched by 'src_file',

"src_file.cpp’ or 'src_file.cc’ (seefzh" above). Themacro __ SW FZS will be defined when this switch is
used.

i=<directory>

where "<directory>" takes the form
[d:]path;[d:]path...

The specified paths are added to the list of directoriesin which the compiler will search for "include” files.
See the section entitled "Open Watcom C/C++ #include File Processing” on page 70 for information on
directory searching.

(C++ only) This option instructs the compiler to continue processing subsequent source files after an error
has been diagnosed in the current source file. See the option "fc=<file_name>" on page 33 for information
on compiling multiple source files.

Open Watcom C will output function declarations to a file with the same filename as the C source file but
with extension ".def". The "definitions’ file may be used as an "include" file when compiling other
modulesin order to take advantage of the compiler’s function and argument type checking.

Compiler Options - Full Description 35

Open Watcom C/C++ User’s Guide

zat

zf

29

zl

SO C++ defines a number of alternative tokens that can be used instead of certain traditional tokens. For
example"and" instead of "& &", "or" instead of "||", etc. See section 2.5 of the ISO C++ 98 standard for the
complete list of such tokens. The "zat" option disables support for these tokens so that the names "and",
"or", etc are no longer reserved.

Starting with Open Watcom 1.3, the scope of a variable declared in the initialization expression of afor
loop header is by default limited to the body of the loop. Thisisin accordance with the ISO C++ standard.
The "zf" option causes the compiler to revert to the behavior it had before Open Watcom 1.3. In particular,
it causes the scope of variables declared in the initialization expression of afor loop header to extend
beyond the loop.

Example:
#i ncl ude <i ostreanr

void f()
{
for(int i =0; i <10; ++i) {
std::cout << i << "\n";
}
std::cout << "Value of i at loop termnation: " << i << "\n"
}

The above code will not compile with Open Watcom 1.3 or later because the variable "i" is out of scopein
the last output statement. The "zf" option will allow such code to compile by extending the scope of "i"
beyond the loop.

The"zg" option issimilar to the "v" option except that function declarations will be output to the "DEF"
file using base types (i.e., typedefs are reduced to their base type).

Example:
t ypedef unsigned int Ul NT;
U NT f(UNT x)

return(x + 1);

}

If you use the "v" option, the output will be:

extern U NT f(UNT);

If you use the "zg" option, the output will be:

extern unsigned int f(unsigned int);

By default, the compiler places in the object file the names of the C libraries that correspond to the memory
model and floating-point options that were selected. The Open Watcom Linker uses these library namesto
select the libraries required to link the application. If you use the "z|" option, the library names will not be

included in the generated object file.

36 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

The compiler may generate external references for library code that conveniently cause the linker to link in
different code. One such caseis: if you have any functions that pass or return floating-point values (i.e.,
float or double), the compiler will insert an external reference that will cause the floating-point formatting
routinesto be included in the executable. The "zI" option will disable these external references.

Use this option when you wish to create a library of object modules which do not contain Open Watcom
C/C++ library name references.

zld
By default, the compiler placesin the object file the names and time stamps of all the files referenced by the
source file. Thisfile dependency information can then be used by WMAKE to determine that thisfile
needs to be recompiled if any of the referenced files has been modified since the object file was created.
This option causes the compiler to not emit this information into the object file.

zIf
The"zIf" option tells the compilers to emit references for all default library information into the compiled
object file. Seealso the options"zl", "zld" and "zls".

Zls
The"zls" option tells the compilers to remove automatically inserted symbols. These symbols are usually
used to force symbol referencesto be fixed up from the run-time libraries. An example would be the
symbol _ DLLstart_, that isinserted into any object file that has a DIIMain() function defined within its
source file.

2.3.6 Code Generation
This group of options deals with controlling some aspects of the code that is generated by the compiler.

ecc
set default calling convention to __cdecl

ecd
set default calling convention to __stdcall

ecf
set default calling conventionto __ fastcall

ecp
set default calling convention to __pascal

ecr
set default calling conventionto _ fortran

ecs

set default calling convention to __syscall

Compiler Options - Full Description 37

Open Watcom C/C++ User’s Guide

ecw

ei

em

ri

Xr

ZC

set default calling conventionto _ watcall (default)

This option can be used to force the compiler to alocate at least an "int" for all enumerated types. The
macro __ SW El will be predefined if "ei" is selected.

This option can be used to force the compiler to allocate the smallest storage unit required to hold all
possible values given for an enumerated list. This option isthe default for the x86 architecture. The macro
__ SW EMwiill be predefined if "em" is selected.

The default char typeis changed from an unsigned to asigned quantity. The macros
__CHAR _SIGNED__ and__ SW J will be predefined if "j" is selected.

Functions declared to return integral types such as chars and shorts are promoted to returning ints. This
allows non-1SO-conforming source code which does not properly declare the return types of functionsto
work properly. The use of this option should be avoided.

The"xr" option is used to to enable the use of the C++ feature called Run-Time Type Information (RTTI).
RTTI can only be used with classes that have virtual functions declared. Thisrestriction impliesthat if you
enable RTTI, the amount of storage used for a classin memory does not change. The RTTI information is
added to the virtual function information block so there will be an increase in the executable size if you
choose to enable RTTI. Thereisno execution penalty at all unless you use the dynamic_cast<> feature in
which case, you should be aware that the operation requires alookup operation in order to perform the
conversion properly. Y ou can mix and match modules compiled with and without "xr", with the caveat that
dynamic_cast<> and typeid() may not function (return NULL or throw an exception) if used on aclass
instance that was not compiled with the "xr" option.

The"zc" option causes the code generator to place literal strings and const items in the code segment.

Example:
extern const int cvar
int var = 2;
const int ctable[5] ={ 1, 2, 3, 4, 5 };
char *birds[3] ={ "robin", "finch", "wen" };

1,

In the above example, cvar and ct abl e and thestrings " r obi n", "fi nch", etc. areplacedinthe
code segment. Thisoption is supported in large data or flat memory models only, or if the item is explicitly
"far". Themacro __ SW ZCwill be predefined if "zc" is selected.

zp[{1,2,4,8,16)]

The"zp" option allows you to specify the alignment of membersin a structure. The default is"zp2" for the
16-bit compiler and "zp8" for 32-bit compiler. The alignment of structure membersis described in the

38 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

following table. If the size of the member is1, 2, 4, 8 or 16, the alignment is given for each of the "zp"
options. If the member of the structure is an array or structure, the alignment is described by the row "x".

zpl zp2 zp4 zp8 zpl6
sizeof (menber) \----mmmmm
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | O 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
X | aligned to | argest nenber

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc.

Note that packed structures are padded to ensure that consecutive occurrences of the same structurein
memory are aligned appropriately. Thisisillustrated when the following example is compiled with "zp4".
The amount of padding is determined as follows. If the largest member of structure"s' is 1 bytethen"s" is
not aligned. If the largest member of structure"s" is 2 bytesthen "s" is aligned according to row 2. If the
largest member of structure 's' is 4 bytesthen s isaligned according to row 4. If the largest member of
structure"'s" is 8 bytesthen "'s" is aligned according to row 8. At present, there are no scalar objects that
can have asize of 16 bytes. If the largest member of structure "s" isan array or structure then "'s" is aligned
according to row "x". Padding istheinclusion of slack bytes at the end of a structure in order to guarantee
the alignment of consecutive occurrences of the same structure in memory.

To understand why structure member alignment may be important, consider the following example.

Example:
#i ncl ude <stdio. h>
#i ncl ude <stddef. h>

typedef struct meno_el {

char dat e[9] ;
struct meno_el *prev, *next;
i nt ref _nunber;
char sex;

} meno;

void main()

{
printf("Ofset of % is %\ n",
"date", offsetof(meno, date));
printf("Ofset of % is %d\n",
"prev", offsetof(meno, prev));
printf("Ofset of % is %\n",
"next", offsetof(meno, next));
printf("Offset of % is %\ n",
"ref _nunber", offsetof(meno, ref nunber));
printf("Ofset of % is %\ n",
"sex", offsetof(meno, sex));
printf("Size of % is %\n",
"memo", sizeof(nmemo));
printf("Nunmber of padding bytes is %\n",
si zeof (meno)
- (offsetof (meno, sex) + sizeof(char)));
}

Compiler Options - Full Description 39

Open Watcom C/C++ User’s Guide

In the above example, the default alignment "zp8" will cause the pointer and integer items to be aligned on
even addresses although the array "date” is 9 bytesin length. The items are 2-byte aligned when
sizeof(item) is 2 and 4-byte aligned when sizeof (item) is 4.

On computer systems that have a 16-bit (or 32-bit) bus, improved performance can be obtained when
pointer, integer and floating-point items are aligned on an even boundary. This could be done by careful
rearrangement of the fields of the structure or it can be forced by use of the "zp" option.

16-bit output when conpiled zpl:
O fset of date is O

O fset of previs 9

O fset of next is 11

O fset of ref _nunber is 13
Ofset of sex is 15

Size of menp is 16

Nunber of padding bytes is 0

16-bit output when conpiled zp4:
O fset of date is O

Ofset of prev is 10

O fset of next is 12

O fset of ref _nunber is 14

O fset of sex is 16

Size of menp is 18

Nunber of padding bytes is 1

32-bit output when conpiled zpl:
O fset of date is O

O fset of previs 9

O fset of next is 13

O fset of ref nunber is 17

O fset of sex is 21

Size of menp is 22

Nunber of padding bytes is 0

32-bit output when conpiled zp4:
O fset of date is O

Ofset of prev is 12

O fset of next is 16

O fset of ref _nunmber is 20

O fset of sex is 24

Size of menp is 28

Nunber of padding bytes is 3

Zpw
The compiler will output a warning message whenever padding is added to a struct/class for alignment
purposes.

zt<number>

The "data threshold" option is used to set the maximum size for data objects to be included in the default
data segment. This option can be used with the compact, large, and huge (16-bit) memory models only.
These are memory models where there can be more than one data segment. Normally, all data objects
whose sizeisless than or equal to the threshold value are placed in the default data segment *_DATA"
unless they are specifically declared to be f ar items. When thereis alarge amount of static data, it is
often useful to set the data threshold size so that all objects larger than this size are placed in another (far)

40 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

r4'4

data segment. For example, the option "zt100" causes al data objects larger than 100 bytesin size to be
implicitly declared as f ar and grouped in other data segments.

The default data threshold value is 32767. Thus, by default, all objects greater than 32767 bytesin size are
implicitly declared as f ar and will be placed in other data segments. If the "zt" option is specified without
asize, the datathreshold valueis 256. The largest value that can be specified is 32767 (alarger value will
result in 256 being selected).

If the"zt" option is used to compile any module in a program, then you must compile all the other modules
in the program with the same option (and value).

Care must be exercised when declaring the size of objects in different modules. Consider the following
declarations in two different C files. Suppose we define an array in one module as follows:

extern int Array[100] ={ O };

and, suppose we reference the same array in another module as follows:

extern int Array[10];

Assuming that these modules were compiled with the option "zt100", we would have a problem. In the first
module, the array would be placed in another segment since Ar r ay[100] isbigger than the data
threshold. In the second module, the array would be placed in the default data segment since Ar r ay[10]
is smaller than the data threshold. The extra code required to reference the object in another data segment
would not be generated.

Note that this problem can also occur even when the "zt" option is not used (i.e., for objects greater than

32767 bytesin size). There are two solutions to this problem: (1) be consistent when declaring an object’s
size, or, (2) do not specify the size in data reference declarations.

(C++ only) Enable virtual function removal optimization.

2.3.7 80x86 Floating Point

This group of options deals with control over the type of floating-point instructions that the compiler
generates. There are two basic types — floating-point calls (FPC) or floating-point instructions (FP1).
They are selectable through the use of one of the compiler options described below. Y ou may wish to use
the following list when deciding which option best suits your requirements. Here is a summary of
advantages/disadvantages to both.

FPC
1. not |IEEE floating-point
2. not tailorable to processor
3. usescoprocessor if present; simulates otherwise
4. 32-bit/64-bit accuracy
5. runssomewhat faster if coprocessor present
6. faster emulation (fewer bits of accuracy)
7. leaner "math" library
8. fatter application code (callsto library rather than in-line instructions)
9. application cannot trap floating-point exceptions
10. ideal for ROM applications

Compiler Options - Full Description 41

Open Watcom C/C++ User’s Guide

FPI, FPI87

| EEE floating-point

tailorable to processor (see fp2, fp3, fp5, fp6)

uses coprocessor if present; emulates | EEE otherwise
up to 80-bit accuracy

runs "full-tilt" if coprocessor present

dlower emulation (more bits of accuracy)

fatter "math" library

leaner application code (in-line instructions)
application can trap floating-point exceptions

ideal for general-purpose applications

BOO~NoGOA®DNE

=4

To see the difference in the type of code generated, consider the following small example.

Example:
#i ncl ude <stdi o. h>
#i ncl ude <tine. h>

voi d main()

clock t <cstart, cend;
cstart = clock();
/*

*/

cend = cl ock();

printf("%.2f seconds to cal cul ate\n",
((float)cend - cstart) / CLOCKS PER _SEC);

}
The following 32-bit code is generated by the Open Watcom C compiler (wcc386) using the "fpc" option.

mai n_ push ebx
push edx
cal | cl ock_
nov edx, eax
cal | cl ock_
cal | __UAFS ; unsigned 4 to floating single
nmv ebx, eax
nov eax, edx
cal | __UAFS ; unsigned 4 to floating single
nov edx, eax
nmv eax, ebx
cal | __FSS ; floating single subtract
nmv edx, 3c23d70aH
cal | __FSM ; floating single nmultiply
cal | __FSFD ; floating single to floating double
push edx
push eax
push of fset L1
cal | printf_
add esp, 0000000cH
pop edx
pop ebx
ret

The following 32-bit code is generated by the Open Watcom C compiler (wcc386) using the "fpi" option.

42 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

foc

fpi

mai n_ push ebx
push edx
sub esp, 00000010H
cal | cl ock_
nov edx, eax
cal | cl ock_
xor ebx, ebx
nmv [esp], eax
nov +4H esp] , ebx
nmv +8H[esp] , edx
nov +0cH esp], ebx
fild gword ptr [esp] ; integer to double
fild gword ptr +8H esp] ; integer to double
f subp st(1), st ; subtract
f mul dword ptr L2 ; multiply
sub esp, 00000008H
fstp gword ptr [esp] ; store into nenory
push of fset L1
cal | printf_
add esp, 0000000cH
add esp, 00000010H
pop edx
pop ebx

ret

All floating-point arithmetic is done with calls to afloating-point emulation library. If anumeric data
processor is present in the system, it will be used by the library; otherwise floating-point operations are
simulated in software. This option should be used for any of the following reasons:

1. Speed of floating-point emulation is favoured over code size.
2. Anapplication containing floating-point operationsis to be stored in ROM and an 80x87 will not
be present in the system.

Themacro __ SW FPCwill be predefined if "fpc" is selected.

Note: When any modulein an application is compiled with the "fpc" option, then all modules must be
compiled with the "fpc" option.

Different math libraries are provided for applications which have been compiled with a particular
floating-point option. See the section entitled "Open Watcom C/C++ Math Libraries' on page 105.

See the section entitled " The NO87 Environment Variable" on page 107 for information on testing the
floating-point simulation code on personal computers equipped with a coprocessor.

(16-bit only) The compiler will generate in-line 80x87 numeric data processor instructionsinto the object
code for floating-point operations. Depending on which library the code is linked against, these
instructions will be left asis or they will be replaced by special interrupt instructions. In the latter case,
floating-point will be emulated if an 80x87 is not present. Thisis the default floating-point option if none
is specified.

(32-bit only) The compiler will generate in-line 387-compatible numeric data processor instructionsinto
the object code for floating-point operations. When any module containing floating-point operationsis
compiled with the "fpi" option, coprocessor emulation software will be included in the application when it
islinked.

Compiler Options - Full Description 43

Open Watcom C/C++ User’s Guide

fpi87

fp2

fp3

For 32-bit Open Watcom Windows-extender applications or 32-bit applications run in Windows 3.1 DOS
boxes, you must also include the WEMJ387. 386 fileinthe [386enh] section of the SYSTEM | NI file.

Example:
devi ce=C; \ WATCOM bi nwA wenu387. 386

Note that the WDEBUG. 386 file which isinstalled by the Open Watcom Installation software contains the
emulation support found in the WVEMU387. 386 file.

Thus, a math coprocessor need not be present at run-time. Thisisthe default floating-point option if none
isspecified. Themacros __ FPI __ and _ SW FPI will be predefined if "fpi" is selected.

Note: When any module in an application is compiled with a particular "floating-point™ option, then all
modules must be compiled with the same option.

If you wish to have floating-point emulation software included in the application, you should select the
"fpi" option. A math coprocessor need not be present at run-time.

Different math libraries are provided for applications which have been compiled with a particular
floating-point option. See the section entitled "Open Watcom C/C++ Math Libraries' on page 105.

See the section entitled " The NO87 Environment Variable" on page 107 for information on testing the math
coprocessor emulation code on personal computers equipped with a coprocessor.

(16-bit only) The compiler will generate in-line 80x87 numeric data processor instructions into the object
code for floating-point operations. An 8087 or compatible math coprocessor must be present at run-time.
If the "2" option is used in conjunction with this option, the compiler will generate 287 and upwards
compatible instructions; otherwise, the compiler will generate 8087 compatible instructions.

(32-bit only) The compiler will generate in-line 387-compatible numeric data processor instructions into
the object code for floating-point operations. When the "fpi87" option is used exclusively, coprocessor
emulation software is not included in the application when it islinked. A 387 or compatible math
coprocessor must be present at run-time.

Themacros __FPI __ and _ SW FPI 87 will be predefined if "fpi87" is selected. See Note with
description of "fpi" option.

The compiler will generate in-line 80x87 numeric data processor instructions into the object code for
floating-point operations. For Open Watcom compilers generating 16-bit code, this option is the default.
For 32-bit applications, use this option if you wish to support those few 386 systems that are equipped with
a 287 numeric data processor ("fp3" is the default for Open Watcom compilers generating 32-bit code).
However, for 32-bit applications, the use of this option will reduce execution performance. Use this option
in conjunction with the "fpi" or "fpi87" options. The macro __ SW_FP2 will be predefined if "fp2" is
selected.

The compiler will generate in-line 387-compatible numeric data processor instructionsinto the object code
for floating-point operations. For 16-bit applications, the use of this option will limit the range of systems

44 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

on which the application will run but there are execution performance improvements. For Open Watcom
compilers generating 32-bit code, this option is the default. Use this option in conjunction with the "fpi* or
"fpi87" options. Themacro __ SW FP3 will be predefined if "fp3" is selected.

fp5
The compiler will generate in-line 80x87 numeric data processor instructions into the object code for
floating-point operations. The sequence of floating-point instructions will be optimized for greatest
possible performance on the Intel Pentium processor. For 16-bit applications, the use of this option will
limit the range of systems on which the application will run but there are execution performance
improvements. Use this option in conjunction with the "fpi" or "fpi87" options. Themacro __ SW FP5
will be predefined if "fp5" is selected.

fp6
The compiler will generate in-line 80x87 numeric data processor instructions into the object code for
floating-point operations. The sequence of floating-point instructions will be optimized for greatest
possible performance on the Intel Pentium Pro processor. For 16-bit applications, the use of this option
will limit the range of systems on which the application will run but there are execution performance
improvements. Use this option in conjunction with the "fpi" or "fpi87" options. Themacro __ SW FP6
will be predefined if "fp6" is selected.

fod
A subtle problem was detected in the FDIV instruction of Intel’s original Pentium CPU. In certainrare
cases, the result of afloating-point divide could have less precision than it should. Contact Intel directly for
more information on the issue.

As aresult, the run-time system startup code has been modified to test for afaulty Pentium. If the FDIV
instruction is found to be flawed, the low order bit of the run-time system variable __ chi pbug will be set.

extern unsigned __near __chipbug;

If the FDIV instruction does not show the problem, the low order bit will be clear. If the Pentium FDIV
flaw isaconcern for your application, there are two approaches that you could take:

1. Youmaytestthe _chi pbug variablein your codein all floating-point and memory models
and take appropriate action (such as display awarning message or discontinue the application).

2. Alternately, you can use the "fpd" option when compiling your code. This option directs the
compiler to generate additional code whenever an FDIV instruction is generated which tests the
low order bit of __chi pbug and, if on, calls the software workaround code in the math
libraries. If the bit is off, an in-line FDIV instruction will be performed as before.

If you know that your application will never run on a defective Pentium CPU, or your analysis shows that

the FDIV problem will not affect your results, you need not use the "fpd" option. Themacro __ SW FPD
will be predefined if "fpd" is selected.

2.3.8 Segments/Modules

This group of options deals with object file data structures that are generated by the compiler.

Compiler Options - Full Description 45

Open Watcom C/C++ User’s Guide

g=<codegroup>
The generated code is placed in the group called "<codegroup>". The default "text" segment name will be
"<codegroup>_TEXT" but this can be overridden by the "nt" option.

Example:
C>compiler_name report /g=RPTGROUP /s

(16-bit only) <<

Thisis useful when compiling applications for small code models where the total application will contain
more than 64 kilobytes of code. Each group can contain up to 64 kilobytes of code. The application
follows a"mixed" code model sinceit contains amix of small and large code (intra-segment and
inter-segment calls). Memory models are described in the chapter entitled "16-bit Memory Models" on
page 113. Thef ar keyword is used to describe routines that are referenced from one group/segment but
are defined in another group/segment.

For small code models, the "s" option should be used in conjunction with the "g" option to prevent the
generation of callsto the C run-time "stack overflow check” routine (__ STK). You must also avoid calls
to other "small code" C run-time library routines since inter-segment "near" callsto C library routines are
not possible.

>> (16-hit only)

nc=<name>
The default "code" classnameis"CODE". The small code modedl " TEXT" segment and the large code
model "module_name TEXT" segments belong to the "CODE" class. This option allows you to select a
different class name for these code segments. The name of the "code" classis explicitly set to "<name>".

Note that the default "data" class namesare "DATA" (for the "CONST", "CONST2" and "_DATA"
segments) and "BSS" (for the"_BSS" segment). Thereis no provision for changing the data class names.

nd=<name>
This option permits you to define a special prefix for the "CONST", "CONST2", " _DATA", and"_BSS"
segment names. The name of the group to which these segments belong is also changed from "DGROUP"
to "<name>_GROUP'. Thisoption is especially useful in the creation of 16-bit Dynamic Link Library
(DLL) routines.

Example:
C>compiler_name report /nd=spec

In the above example, the segment names become "specCONST", "specCONST2", "spec_ DATA", and
"spec_BSS" and the group hame becomes "spec_ GROUP".

By default, the data group "DGROUP" consists of the "CONST", "CONST2", " DATA",and"_BSS'
segments. The compiler places certain types of datain each segment. The "CONST" segment contains
constant literals that appear in your source code.

Example:
char *birds[3] ={ "robin", "finch", "wen" };

printf("Hello world\n");

46 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

In the above example, the strings "Hello world\n", "robin”, "finch", etc. appear in the "CONST" segment.
The"CONST2" segment contains initialized read-only data.

Example:
extern const int cvar = 1;
int var = 2;
int table[5] =
char *birds[3]

In the above example, the constant variable cvar isplaced in the "CONST2" segment.
The"_BSS' segment contains uninitialized data such as scalars, structures, or arrays.

Example:
int varl;
int arrayl[400];

Other data segments containing data, specifically declared to be f ar or exceeding the data threshold (see
"zt" option), are named either "module_nameN_DATA" when using the C compiler or
"module_name DATAN" when using the C++ compiler where "N" is some integral number.

Example:
int far array2[400];

In the above example, ar r ay 2 is placed in the segment "reportll DATA" (C) or "report DATA11"
(C++) provided that the module nameis "report”.

The macro __ SW _NDwill be predefined if "nd" is selected.

nm=<name>

By default, the object file name and the module name that is placed within it are constructed from the
source file name. When the "nm" option is used, the module name that is placed into the object fileis
"<name>". For large code models, the "text" segment name is"<name>_TEXT" unlessthe "nt" optionis
used.

In the following example, the preprocessed output from r epor t . ¢ isstored on drive "D" under the name
tenp. c. Thefileiscompiled with the "nm" option so that the module name imbedded into the object file
is"REPORT" rather than "TEMP".

Example:
C>compiler_name report /pl /fo=d:\tenp.c
C>compiler_name d: \tenp /nmereport /fo=report

Since the "fo" option isaso used, the resultant object fileiscaled r eport. obj .

nt=<name>

The name of the "text" segment is explicitly set to "<name>". By default, the "text" segment nameis
" TEXT" for small code models and "module_name TEXT" for large code models.

Compiler Options - Full Description 47

Open Watcom C/C++ User’s Guide

Application Menory

Type

32-bit
16/ 32-bit
16/ 32-bit
16/ 32-bit
16/ 32-bit
16-bi t

zZm

Model

conpact
| ar ge
huge

_TEXT
nmodul e_nane_ TEXT
_TEXT
nodul e_name_ TEXT
nodul e_name_ TEXT

The"zm" option instructs the code generator to place each function into a separate segment.

In small code models, the segment nameis" TEXT" by defaullt.

(C only) In large code model s, the segment name is composed of the function name concatenated with the

string"_TEXT".

(C++ only) In large code models, the segment name is composed of the module name concatenated with the
string"_TEXT" and a unique integral number.

The default string"_TEXT" can be altered using the "nt" option (see "nt=<name>" on page 47).

The advantages to this option are:

1. Since each function is placed in its own segment, functions that are not required by an
application are omitted from the executable by the linker (when "OPTION ELIMINATE" is

specified).

N

This can result in smaller executables.

3. Thisbenefit applies to both small and large code models.
4. Thisoption allows you to create granular libraries without resorting to placing each functionin a
separate file.

Example:

static int foo(

{

return x - 1;

}

static int

{

near fool(

return x + 1;

}

int foo2(int y)

{
}

return foo(y)

int foo3(int x,

{
}

return x +y * x;

int x)

int y)

int x)

* fool(y-1);

48 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

zmf

The disadvantages to this option are:

1

The "near call" optimization for static functions in large code modelsis disabled (e.g., the
function f oo in the example above will never be "near called”". Static functions will always be
"far called" in large code models.

Near static functionswill till be "near called" (e.g., thefunction f 0ol is"near called" in the
example above). However, this can lead to problems at link time if the caller function endsup in
adifferent segment from the called function (the linker will issue a message if thisis the case).
The "common epilogue” optimization islost.

Thelinker "OPTION ELIMINATE" must be specified when linking an application to take
advantage of the granularity inherent in object files/libraries compiled with this option.

Any assumptions about relative position of functions are invalid. Consider the following code
which attempts to determine the size of a code region by subtracting function addresses:

Example:
regi on_size = (unsigned | ong)&f unction2 - (unsigned
[ong) functi onl;

When "zm" isin effect, r egi on_si ze may be extremely large or even a negative value. For
the above code to work asintended, both f unct i onl and f unct i on2 (and every function
intended to be located between them) must reside in a single code segment.

This option can be used in paging environments where special segment ordering may be employed. The
"aloc_text" pragmais often used in conjunction with this option to place functions into specific segments.

Themacro __ SW ZMwill be predefined if "zm" is selected.

(C++ only) Thisoption isidentical to the "zm" option (see "zm" on page 48) except for the following large
code model consideration.

Instead of placing each function in a segment with a different name, the code generator will place each
function in a segment with the same name (the name of the module suffixed by "_TEXT").

The advantages to this option are;

1
2.

All functionsin amodule will reside in the same physical segment in an executable.

The "near call" optimization for static functionsin large code models is not disabled (e.g., the
function f 00 in the example above will be "near called". Static functions will always be "near
called" in large code models.

The problem associated with calling "near" functions goes away since all functionsin amodule
will reside in the same physical segment (e.g., the function f 001 is"near" in the example
above).

The disadvantages to this option are:

1

The size of aphysical segment isrestricted to 64K in 16-bit applications. Although this may
limit the number of functions that can be placed in the segment, the restriction isonly on a"per
modul€" basis.

Although less constricting, the size of a physical segment is restricted to 4G in a 32-bit
application.

Compiler Options - Full Description 49

Open Watcom C/C++ User’s Guide

2.3.9 80x86 Run-time Conventions

3{rls}

This group of options deals with the 80x86 run-time environment.

(16-bit only) The compiler will make use of only 8086 instructions in the generated object code. Thisisthe
default. The resulting code will run on 8086 and all upward compatible processors. Themacro __ SW 0
will be predefined if "0" is selected.

(16-bit only) The compiler will make use of 186 instructionsin the generated object code whenever
possible. The resulting code probably will not run on 8086 compatible processors but it will run on 186
and upward compatible processors. Themacro __ SW 1 will be predefined if "1" is selected.

(16-bit only) The compiler will make use of 286 instructionsin the generated object code whenever
possible. The resulting code probably will not run on 8086 or 186 compatible processors but it will run on
286 and upward compatible processors. Themacro __ SW 2 will be predefined if "2" is sel ected.

(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or "zgf" options
are used) in the generated object code whenever possible. The code will be optimized for 386 processors.
The resulting code probably will not run on 8086, 186 or 286 compatible processors but it will run on 386
and upward compatible processors. Themacro __ SW 3 will be predefined if "3" is selected.

(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or "zgf" options
are used) in the generated object code whenever possible. The code will be optimized for 486 processors.
The resulting code probably will not run on 8086, 186 or 286 compatible processors but it will run on 386
and upward compatible processors. Themacro __ SW 4 will be predefined if "4" is selected.

(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or "zgf" options
are used) in the generated object code whenever possible. The code will be optimized for the Intel Pentium
processor. The resulting code probably will not run on 8086, 186 or 286 compatible processors but it will
run on 386 and upward compatible processors. The macro __ SW 5 will be predefined if "5" is selected.

(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or "zgf" options
are used) in the generated object code whenever possible. The code will be optimized for the Intel Pentium
Pro processor. The resulting code probably will not run on 8086, 186 or 286 compatible processors but it
will run on 386 and upward compatible processors. The macro __ SW 6 will be predefined if "6" is
selected.

(32-bit only) The compiler will generate 386 instructions based on 386 instruction timings (see "4", "5" and
"6" below).

50 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

4{rls}

If the"r" suffix is specified, the following machine-level code strategy is employed.

*» The compiler will pass arguments in registers whenever possible. Thisisthe default method used to
pass arguments (unless the "bt=netware" option is specified).

* All registers except EAX are preserved across function calls.

» When any form of the "fpi" option is used, the result of functions of type "float" and "double" is
returned in ST(0).

» When the "fpc" option is used, the result of afunction of type "float" isreturned in EAX and the
result of afunction of type "double" isreturned in EDX:EAX.

» The resulting code will be smaller than that which is generated for the stack-based method of passing
arguments (see "3s" below).

» The default naming convention for al global functionsis such that an underscore character (* ") is
suffixed to the symbol name. The default naming convention for all global variablesis such that an
underscore character ("_") is prefixed to the symbol name.

If the"s" suffix is specified, the following machine-level code strategy is employed.

» The compiler will pass all arguments on the stack.

* The EAX, ECX and EDX registers are not preserved across function calls.

* The FS and GSregisters are not preserved across function calls.

* Theresult of afunction of type "float" isreturned in EAX. The result of afunction of type "double"
isreturned in EDX:EAX.

* The resulting code will be larger than that which is generated for the register method of passing
arguments (see"3r" above).

* The naming convention for all global functions and variablesis modified such that no underscore
characters ("_") are prefixed or suffixed to the symbol name.

The"s' conventions are similar to those used by the MetaWare High C 386 compiler.
By default, "r" is selected if neither "r" nor "s" is specified.

Themacro __ SW 3 will be predefined if "3" isselected. The macro__ SW 3R will be predefined if "r" is
selected (or defaulted). Themacro _— SW 3S will be predefined if "s" is selected.

(32-bit only) Thisoption isidentical to "3{r|s}" except that the compiler will generate 386 instructions
based on 486 instruction timings. The code is optimized for 486 processors rather than 386 processors. By
default, "r" is selected if neither "r" nor "s" is specified. Themacro __ SW 4 will be predefined if "4" is
selected. Themacro __ SW 3Rwill be predefined if "r" is selected (or defaulted). Themacro_ SW 3S
will be predefined if "s" is selected.

Compiler Options - Full Description 51

Open Watcom C/C++ User’s Guide

5{rls}

6{rls}

mf

ms

mm

mc

ml

(32-bit only) This optionisidentical to "3{r|s}" except that the compiler will generate 386 instructions
based on Intel Pentium instruction timings. Thisisthe default. The codeis optimized for Intel Pentium
processors rather than 386 processors. By default, "r" is selected if neither "r" nor "s" is specified. The
macro __ SW 5 will be predefined if "5" isselected. The macro__ SW 3R will be predefined if "r" is
selected (or defaulted). Themacro _ SW 3Swill be predefined if "s" is selected.

(32-bit only) Thisoption isidentical to "3{r|s}" except that the compiler will generate 386 instructions
based on Intel Pentium Pro instruction timings. The code is optimized for Intel Pentium Pro processors
rather than 386 processors. By default, "r" is selected if neither "r" nor "'s" is specified. The macro

__ SW 6 will be predefined if "6" isselected. Themacro__ SW 3R will be predefined if "r" is selected (or
defaulted). Themacro __ SW 3S will be predefined if "s" is selected.

(32-bit only) The "flat" memory model (code and data up to 4 gigabytes) is selected. By default, the 32-bit
compiler will select this memory model unless the target system is Netware in which case "small" is
selected. The following macros will be predefined.

M_386FM
M _386FM
" FLAT _

The "small" memory model (small code, small data) is selected. By default, the 16-bit compiler will select
this memory model. When the target system is Netware, the 32-bit compiler will select this memory model.
The following macros will be predefined.

M_ | 86SM
_M_186SM
M 386SM
M _386SM
~ SWALL_

The "medium™ memory model (big code, small data) is selected. The following macros will be predefined.

M_1 86MM
__MEDIUM__

The "compact" memory model (small code, big data) is selected. The following macros will be predefined.
M_ |1 86CM

_M_186CM
~ _COMPACT__

The "large" memory model (big code, big data) is selected. The following macros will be predefined.

52 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

mh

zd{f,p}

zdl

zev

zf{f,p}

zfw

M 1 86LM
__LARGE__

(16-bit only) The "huge" memory model (big code, huge data) is selected. The following macroswill be
predefined.

M 1 86HM
_HUGE__

Memory models are described in the chapters entitled "16-bit Memory Models" on page 113 and "32-bit
Memory Models' on page 181. Other architectural aspects of the Intel 86 family such as pointer size are
discussed in the sections entitled " Sizes of Predefined Types' on page 124 in the chapter entitled "16-bit
Assembly Language Considerations' or "Sizes of Predefined Types' on page 190 in the chapter entitled
"32-bit Assembly Language Considerations'

The "zdf" option allows the code generator to use the DS register to point to other segments besides
"DGROUP' Thisisthe default in the 16-bit compact, large, and huge memory models (except for 16-bit
Windows applications).

The"zdp" option informs the code generator that the DS register must always point to "DGROUP" Thisis
the default in the 16-bit small and medium memory models, all of the 16-bit Windows memory models, and
the 32-bit small and flat memory models. Themacro __ SW_ZDF will be predefined if "zdf" is selected.
Themacro __ SW ZDP will be predefined if "zdp" is selected.

(32-bit only) The"zdl" option causes generation of code to load the DS register directly from DGROUP
(rather than the default run-time call). This option causes the generation of a segment relocation. This
option is used with the "zdp" option but not the "zdf" option.

The "zev" option is an extension to the Watcom C compiler to allow arithmetic operations on void derived
types. This option has been added for compatibility with some Unix compilers and is not SO compliant.
The use of this option should be avoided.

The "zff" option allows the code generator to use the FS register (default for all but flat memory model).
The"zfp" option informs the code generator that the FS register must not be used (default in flat memory
model). Themacro __ SW ZFF will be predefined if "zff" isselected. The macro__ SW_ZFP will be
predefined if "zfp" is selected.

The"zfw" option turns on generation of FWAIT instructions on 386 and later CPUs. Note that when
targeting 286 and earlier, this option has no effect because FWAITs are always required for
synchronization between CPU and FPU.

This option generates larger and slower code and should only be used when restartable floating-point
exceptions are required.

Compiler Options - Full Description 53

Open Watcom C/C++ User’s Guide

zg{f,p}

zri

Z2ro

ZU

Themacro __ SW ZFWwill be predefined if "zfw" is selected.

The"zgf" option alows the code generator to use the GS register (default for all memory models). The
"zgp" option informs the code generator that the GS register must not be used. Themacro __ SW_ZG- will
be predefined if "zgf" isselected. Themacro __ SW_ZGP will be predefined if "zgp" is selected.

(32-bit only) The"zri" option inlines the code for floating point rounding. Normally afunction call is
generated for each float to int conversion which may not be desirable.

Themacro __ SW ZRI will be predefined if "zri" is selected.

The"zro" option omits the code for floating point rounding. This resultsin non-conformant code - the
rounding mode is not ISO/ANSI C compliant - but the code generated is very fast.

The macro __ SW_ZROwill be predefined if "zro" is selected.

The "zu" option relaxes the restriction that the SS register contains the base address of the default data
segment, "DGROUP'. Normaly, al dataitems are placed into the group "DGROUP" and the SSregister
contains the base address of this group. When the "zu" option is selected, the SSregister isvolatile
(assumed to point to another segment) and any global data references require loading a segment register
such as DS with the base address of "DGROUP".

(16-bit only) This option is useful when compiling routines that are to be placed in a Dynamic Link Library
(DLL) sincethe SSregister points to the stack segment of the calling application upon entry to the function.

Themacro __ SW ZUwill be predefined if "zu" is selected.

2.3.10 Optimizations

oa

When specified on the command line, optimization options may be specified individually (oa, oi) or the
letters may be strung together (oailt).

Alias checking isrelaxed. When this option is specified, the code optimizer will assume that global
variables are not indirectly referenced through pointers. This assumption may reduce the size of the code
that is generated. The following example helpsto illustrate this point.

54 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

ob

oc

od

Example:
extern int i;

void rtn(int *pi)

{
int k;
for(k = 0; k <10; ++k) {
(*pi)++
i ++;
}
}

In the above example, if "i" and "*pi" referenced the same integer object then "i" would be incremented by
2 each time through the "for" loop and we would call the pointer reference "*pi" an alias for the variable
"i". Inthis situation, the compiler could not bind the variable "i" to aregister without making sure that the
"in-memory" copy of "i" was kept up-to-date. In most cases, the above situation does not arise. Rarely
would we reference the same variable directly by name and indirectly through a pointer in the same routine.
The"oa" option instructs the code generator that such cases do not arise in the module to be compiled. The
code generator will be able to produce more efficient code when it does not have to worry about the alias
"problem™.

Themacro __ SW QA will be predefined if "oa" is selected.

When the "ob" option is specified, the code generator will try to order the blocks of code emitted such that
the "expected" execution path (as determined by a set of simple heuristics) will be straight through, with
other cases being handled by jumps to separate blocks of code "out of line". Thiswill result in better cache
utilization on the Pentium. If the heuristics do not apply to your code, it could result in a performance
decrease.

This option may be used to disable the optimization wherea"CALL" followed by a"RET" (return) is
changed into a"JMP" (jump) instruction.

(16-bit only) This option is required if you wish to link an overlayed program using the Microsoft DOS
Overlay Linker. The Microsoft DOS Overlay Linker will create overlay callsfor a"CALL" instruction
only. Thisoption is not required when using the Open Watcom Linker.

Themacro __ SW OCwill be predefined if "oc" is selected.

Non-optimized code sequences are generated. The resulting code will be much easier to debug when using
the Open Watcom Debugger. By default, the compiler will select "od" if "d2" is specified. If "d2" is
followed by one of the other "0?" options then "od" is overridden.

Example:
C>compiler_name report /d2 /os

Themacro __ SW ODwill be predefined if "od" is selected.

Compiler Options - Full Description 55

Open Watcom C/C++ User’s Guide

oe=<num>

oh

oi

Oi+

ok

ol

Certain user functions are expanded in-line. The criteriafor which functions are selected for in-line
expansion is based on the "size" of the function in terms of the number of "tree nodes’ generated by the
function. Functions are internally represented as tree structures, where each operand and each operator isa
node of thetree. For example, thestatementa = -b * (¢ + d) canberepresented as atree with 8
nodes, one for each operand and operator.

The number of "nodes" generated corresponds closely with the number of operators used in an expression.
Functions which require more than "<num>" nodes are not expanded in-line. The default number is 20.
With larger "<num>" values, more (larger) functions will be expanded in-line. This optimization is
especially useful when locally-referenced functions are small in size.

Example:
C>compiler_name dhrystone /oe

This option enables repeated optimizations (which can result in longer compiles).

Certain library functions are generated in-line. Y ou must include the appropriate header file containing the
prototype for the desired function so that it will be generated in-line. The functions that can be generated
in-line are:

abs _disable div _enabl e f abs _fmenchr
_frencnp _fencpy _frenset _fstrcat _fstrcnmp _fstrcpy
_fstrlen i npd (2) i npw i np | abs Idiv (2)
_lrotl (2) _lrotr (2) menchr mencnp nmencpy nmenset (1)
novedat a outpd (2) outpw out p _rotl _rotr
strcat strchr strcnp (1) strcpy strlen

*1 16-bit only

*2 32-bit only

Themacros __ I NLI NE_FUNCTI ONS__ and _ SW O will be predefined if "oi" is selected.

(C++ only) This option encompasses "o0i" but also setsinline_depth to its maximum (255). By default,
inline_depthis 3. Theinline_depth can also be changed by using the C++ i nl i ne_dept h pragma.

This option enables flowing of register save (from prologue) down into the function’s flow graph. This
means that register save/restores will not be executed when it is not necessary (as can be the case when a
function consists of an if-else construct with a simple part that does little and a more complex part that does
alot).

L oop optimizations are performed. This includes moving loop-invariant expressions outside the loops.
Themacro __ SW OL will be predefined if "ol" is selected.

56 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

ol+

om

on

00

op

or

0s

ot

L oop optimizations are performed including loop unrolling. This includes moving loop-invariant
expressions outside the loops and turning some loops into straight-line code. Themacro __ SW OL will be
predefined if "ol+" is selected.

Generate in-line 80x87 code for math functions like sin, cos, tan, etc. If thisoption is selected, it isthe
programmer’ s responsibility to make sure that arguments to these functions are within the range accepted
by thef si n, fcos, etc. instructions since no run-time check ismade. For 16-bit, you must also
include the "fp3" option to get in-line 80x87 code (except for fabs). The functions that can be generated
in-line are;

atan cos exp fabs 10gl1l0 | og sin sgrt tan

Themacro __ SW OMwill be predefined if "om" is selected.

This option allows the compiler to replace floating-point divisions with multiplications by the reciprocal.
This generates faster code, but the result may not be the same because the reciprocal may not be exactly
representable. Themacro _ SW ONwill be predefined if "on" is selected.

By default, the compiler will abort compilation if it runs low on memory. This option forces the compiler
to continue compilation even when low on memory, however, this can result in very poor code being
generated. Themacro __ SW OOwill be predefined if "00" is selected.

This option causes the compiler to store intermediate floating-point results into memory in order to generate
consistent floating-point results rather than keeping values in the 80x87 registers where they have more
precision. Themacro __ SW OP will be predefined if "op" is selected.

This option enables reordering of instructions (instruction scheduling) to achieve better performance on
pipelined architectures such as the Intel 486 and Pentium processors. This option is essential for generating
fast code for the Intel Pentium processor. Selecting this option will make it slightly more difficult to debug
because the assembly language instructions generated for a source statement may be intermixed with
instructions generated for surrounding statements. Themacro __ SW_ORwill be predefined if "or" is
selected.

Space is favoured over time when generating code (smaller code but possibly slower execution). By
default, the compiler selects a balance between "space" and "time". Themacro __ SW OS will be
predefined if "os" is selected.

Timeisfavoured over space when generating code (faster execution but possibly larger code). By defaullt,
the compiler selects a balance between "space” and "time". Themacro __ SW OT will be predefined if "ot"
is selected.

Compiler Options - Full Description 57

Open Watcom C/C++ User’s Guide

ou

(0) 4

o0z

This option forces the compiler to make sure that all function labels are unique. Thus the compiler will not
place two function labels at the same address even if the code for the two functions areidentical. This
option is automatically selected if the "za" option is specified. Themacro __ SW QU will be predefined if
"ou" is selected.

The"obmiler" and "s" (no stack overflow checking) options are selected.

This option prevents the compiler from omitting NULL pointer checks on pointer conversions. By defaullt,
the compiler omits NULL pointer checks on pointer conversions when it is safe to do so. Consider the
following example.

struct Bl {
int bl;
i
struct B2 {
int b2;
b
struct D: Bl, B2 {
int d;
b
void clear_D(D *p)
{
p->d = 0;
Bl *pl = p;
pl->bl = O;
B2 *p2 = p;
p2->b2 = 0;
}

In this example, the C++ compiler must ensure that p1 and p2 become NULL if p isNULL (since no
offset adjustment is allowed for aNULL pointer). However, the first executable statement impliesthat p is
not NULL since, in most operating environments, the executing program would crash at the first executable
statement if p wasNULL. The"oz" option will prevent the compiler from omitting the check for aNULL
pointer.

Themacro __ SW OZ will be predefined if "0z" is selected.
When "ox" is combined with the "on", "oa" and "ot" options ("onatx") and the "zp4" option, the code
generator will attempt to give you the fastest executing code possible irrespective of architecture. Other
options can give you architecture specific optimizations to further improve the speed of your code. Note
that specifying "onatx" is equivalent to specifying "onatblimer" and "'s". See the section entitled
"Benchmarking Hints" on page 67 for more information on generating fast code.

2.3.11 C++ Exception Handling

The"xd..." options disable exception handling. Consequently, it is not possible to use throw, try, or catch
statements, or to specify afunction exception specification. If your program (or alibrary which it includes)
throws exceptions, then one of the "xs..." options should be used to compile all the modules in your

58 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

xd

xdt

xds

XS

xst

XSS

program; otherwise, any active objects created within the module will not be destructed during exception
processing.

Multiple schemes are possible, alowing experimentation to determine the optimal scheme for particular

circumstances. Y ou can mix and match schemes on amodule basis, with the proviso that exceptions should
be enabled wherever it is possible that a created object should be destructed by the exception mechanism.

This option disables exception handling. It isthe default option if no exception handling option is
specified. When this option is specified (or defaulted):

» Destruction of objectsis caused by direct callsto the appropriate destructors

« Destructor functions are implemented with direct calls to appropriate destructors to destruct base
classes and class members.

Thisoption isthe same as"xd" (see"xd").

This option disables exception handling. When this option is specified:
* Destruction of objectsis caused by direct callsto the appropriate destructors.
» Destruction of base classes and class members is accomplished by interpreting tables.

* This option, in general, generates smaller code, with increased execution time and with more
run-time system routines included by the linker.

This option enables exception handling using a balanced scheme. When this option is specified:
» Tables are interpreted to effect destruction of temporaries and automatic objects; destructor functions

are implemented with direct calls to appropriate destructors to destruct base classes and class
members.

This option enables exception handling using a time-saving scheme. When this option is specified:
« Destruction of temporaries and automatic objects is accomplished with direct calls to appropriate
destructors; destructor functions are implemented with direct calls to appropriate destructors to
destruct base classes and class members.

* This scheme will execute faster, but will use more space in general.

This option enables exception handling using a space-saving scheme. When this option is specified:

Compiler Options - Full Description 59

Open Watcom C/C++ User’s Guide

* Tables are interpreted to effect destruction of temporaries and automatic objects; destruction of base
classes and class members is accomplished by interpreting tables.

* This option, in general, generates smaller code, with increased execution time.

2.3.12 Double-Byte/Unicode Characters

This group of options deals with compile-time aspects of character sets used in the source code.

zk{0,1,2,1}

ZkOu

This option causes the compiler to recognize double-byte charactersin strings. When the compiler scans a
text string enclosed in quotes (), it will recognize the first byte of a double-byte character and suppress
lexical analysis of the second byte. Thiswill prevent the compiler from misinterpreting the second byte as
a"\" or quote (") character.

zk, zk0 These options cause the compiler to process strings for Japanese double-byte characters
(range 0x81 - Ox9F and OXEO - OxFC). The charactersin the range AO - DF are single-byte
Katakana.

zk1 This option causes the compiler to process strings for Traditional Chinese and Taiwanese

double-byte characters (range 0x81 - OXFC).

k2 This option causes the compiler to process strings for Korean Hangeul double-byte
characters (range 0x81 - OxFD).

I This option causes the compiler to process strings using the current code page. If the local
character set includes double-byte characters then string processing will check for lead
bytes.

The macro __ SW_ZK will be predefined if any "zk" option is selected.

This option causes the compiler to process strings for Japanese double-byte characters (range 0x81 - Ox9F
and OXEOQ - OXFC). The charactersin the range AO - DF are single-byte Katakana. All characters, including
Kanji, in wide characters (L' ¢') and wide strings (L"string") are translated to UNICODE.

When the compiler scans atext string enclosed in quotes ("), it will recognize the first byte of a double-byte
character and suppress lexical analysis of the second byte. Thiswill prevent the compiler from
misinterpreting the second byte asa"\" or quote (") character.

Zku=<codepage>

Charactersin wide characters (L'c’) and wide strings (L"string") are translated to UNICODE. The
UNICODE trandlate table for the specified code page is loaded from afile with the name "UNICODE.cpn"
where "cpn" is the code page number (e.g., zku=850 selects file "UNICODE.850"). The compiler locates
thisfile by searching the paths listed in the PATH environment variable.

60 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

2.3.13 Compatibility with Microsoft Visual C++

vC...

vecap

This group of options deals with compatibility with Microsoft’s Visual C++ compiler.

The"vc" option prefix is used to introduce a set of Microsoft Visual C++ compatibility options. At present,
thereisonly one: vcap.

This options tells the compiler to allow _alloca() to be used in a parameter list. The optimizer hasto do
extrawork to allow this but sinceit israre (and easily worked around if you can), you have to ask the
optimizer to handle this case. Y ou also may get less efficient code in some cases.

2.3.14 Compatibility with Older Versions of the 80x86 Compilers

for

2z

This group of options deals with compatibility with older versions of Open Watcom’ s 80x86 compilers.

This option instructs the compiler to generate function prologue and epilogue sequences that save and
restore any segment registers that are modified by the function. Caution should be exercised when using
this option. If the value of the segment register being restored matches the value of a segment that was
freed within the function, a general protection fault will occur in protected-mode environments. By defaullt,
the compiler does not generate code to save and restore segment registers. This option is provided for
compatibility with the version 8.0 release. Themacro __ SW Rwill be predefined if "r" is selected.

Use this option if you want to generate floating-point instructions that will be compatible with version 9.0
or earlier of the compilers. For more information on floating-point conventions see the sections entitled
"Using the 80x87 to Pass Arguments' on page 175 and "Using the 80x87 to Pass Arguments' on page 244.

Use this option if you want to generate __stdcall function names that will be compatible with version 10.0
of the compilers. When this option is omitted, all C symbols (extern "C" symbolsin C++) are suffixed by
"@nnn" where "nnn" is the sum of the argument sizes (each size is rounded up to a multiple of 4 bytes so
that char and short are size 4). When the argument list contains"...", the "@nnn" suffix is omitted. This
convention is compatible with Microsoft. For more information on the __stdcall convention see the section
entitled "Open Watcom C/C++ Extended Keywords' on page 79.

Compiler Options - Full Description 61

Open Watcom C/C++ User’s Guide

62 Compiler Options - Full Description

3 The Open Watcom C/C++ Compilers

This chapter covers the following topics.
» Command line syntax (see "Open Watcom C/C++ Command Line Format")
* Environment variables used by the compilers (see "Environment Variables' on page 64)

» Examples of command line syntax (see "Open Watcom C/C++ Command Line Examples' on page
65)

* Interpreting diagnostic messages (see "Compiler Diagnostics' on page 69)
» #include file handling (see "Open Watcom C/C++ #include File Processing” on page 70)

» Using the preprocessor built into the compilers (see "Open Watcom C/C++ Preprocessor” on page
73)

* System-dependent macros predefined by the compilers (see "Open Watcom C/C++ Predefined
Macros' on page 74)

» Additional keywords supported by the compilers (see "Open Watcom C/C++ Extended Keywords®
on page 79)

* Based pointer support in the compilers (see "Based Pointers" on page 86)

* Notes about the Code Generator (see "The Open Watcom Code Generator" on page 94)

3.1 Open Watcom C/C++ Command Line Format

The formal Open Watcom C/C++ command line syntax is shown below.

compiler_name [optiong] [file_spec] [options] [@extra_opts]

The square brackets [] denote items which are optional.

compiler_nameis one of the Open Watcom C/C++ compiler command names.

WCC is the Open Watcom C compiler for 16-bit Intel platforms.
WPP is the Open Watcom C++ compiler for 16-bit Intel platforms.
WCC386 is the Open Watcom C compiler for 32-bit Intel platforms.
WPP386 is the Open Watcom C++ compiler for 32-bit Intel platforms.

Open Watcom C/C++ Command Line Format 63

Open Watcom C/C++ User’s Guide

file_spec

options

extra_opts

is the file name specification of one or more files to be compiled. If file_spec is specified
asthe single character ".", an input file is read from standard input and the output file name
defaults to stdin.obyj.

If no drive is specified, the default drive is assumed.

If no path is specified, the current working directory is assumed. If thefileisnot inthe
current directory, an adjacent "C" directory (i.e.,, . . \ ¢) issearched if it exists.

If no file extension is specified, the compiler will check for afile with one of the following
extensionsin the order listed:

.CPP (C++ only)
.CC (C++ only)
.C (CIC++)

If aperiod"." is specified but not the extension, the file is assumed to have no filename
extension.

If only the compiler name is specified then the compiler will display alist of available
options.

isalist of valid compiler options, each preceded by adash (/") or adash ("-"). Options
may be specified in any order.

is the name of an environment variable or file which contains additional command line
options to be processed. If the specified environment variable does not exist, asearch is
made for afile with the specified name. If no file extension isincluded in the specified
name, the default file extension is".occ". A search of the current directory ismade. If not
successful, an adjacent "OCC" directory (i.e., . . \ occ) issearched if it exists.

3.2 Open Watcom C/C++ DLL-based Compilers

The compilers are aso availablein Dynamic Link Library (DLL) form.

WCCD
WPPDI 86
WCCD386
WPPD386

isthe DLL version of the Open Watcom C compiler for 16-bit Intel platforms.
isthe DLL version of the Open Watcom C++ compiler for 16-bit Intel platforms.
isthe DLL version of the Open Watcom C compiler for 32-bit Intel platforms.
isthe DLL version of the Open Watcom C++ compiler for 32-bit Intel platforms.

The DLL versions of the compilers can be loaded from the Open Watcom Integrated Devel opment
Environment (IDE) and Open Watcom Make.

3.3 Environment Variables

Environment variables can be used to specify commonly used compiler options. There is one environment
variable for each compiler (the name of the environment variable is the same as the compiler name). The
Open Watcom C/C++ environment variable names are:

64 Environment Variables

The Open Watcom C/C++ Compilers

WCC used with the Open Watcom C compiler for 16-bit Intel platforms

Example:
C>set wee=/d1 /ot

WPP used with the Open Watcom C++ compiler for 16-bit Intel platforms

Example:
C>set wpp=/dl /ot

WCC386 used with the Open Watcom C compiler for 32-bit Intel platforms

Example:
C>set wec386=/d1 /ot

WPP386 used with the Open Watcom C++ compiler for 32-hit Intel platforms

Example:
C>set wpp386=/dl /ot

The options specified in environment variables are processed before options specified on the command line.
The above examples define the default options to be "d1" (include line number debugging information in
the object file), and "ot" (favour time optimizations over size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use the "#"
character initsplace. Thisisrequired by the syntax of the "SET" command.

Once a particular environment variable has been defined, those options listed become the default each time
the associated compiler isused. The compiler command line can be used to override any options specified
in the environment string.

These environment variables are not examined by the Open Watcom Compile and Link utilities. Sincethe
Open Watcom Compile and Link utilities pass the relevant options found in their associated environment
variables to the compiler command line, their environment variable options take precedence over the
options specified in the environment variables associated with the compilers.

Hint: If you are running DOS and you use the same compiler options all the time, you may find it
handy to define the environment variable in your DOS system initialization file, AUTOEXEC. BAT.

If you are running Windows NT, use the " System"” icon in the Control Panel to define environment
variables.

If you are running OS/2 and you use the same compiler options all the time, you may find it handy to
define the environment variable in your OS/2 system initialization file, CONFI G SYS.

Environment Variables 65

Open Watcom C/C++ User’s Guide

3.4 Open Watcom C/C++ Command Line Examples

The following are some examples of using Open Watcom C/C++ to compile C/C++ source programs.

Example:
C>compiler_name report /dl /s

The compiler processesr eport . c(pp) producing an object file which contains source line number
information. Stack overflow checking is omitted from the object code.

Example:
C>compiler name /mm /fpc cal ¢

The compiler compiles cal c. c(pp) for the Intel "medium” memory model and generates callsto
floating-point library emulation routines for al floating-point operations. Memory models are described in
the chapter entitled "16-bit Memory Models' on page 113.

Example:
C>compiler_name kwi kdraw /2 /fpi 87 /oaxt

The compiler processes kwi kdr aw. ¢c(pp) producing 16-bit object code for an Intel 286 system
equipped with an Intel 287 numeric data processor (or any upward compatible 386/387, 486D X, or Pentium
system). While the choice of these options narrows the number of microcomputer systems where this code
will execute, the resulting code will be highly optimized for this type of system.

Example:
C>compiler_name / nf /3s cal c

The compiler compiles cal c. c(pp) for the Intel 32-bit "flat" memory model. The compiler will
generate 386 instructions based on 386 instruction timings using the stack-based argument passing
convention. The resulting code will be optimized for Intel 386 systems. Memory models are described in
the chapter entitled "32-bit Memory Models' on page 181. Argument passing conventions are described in
the chapter entitled "32-bhit Assembly Language Considerations' on page 185.

Example:
C>compiler_name kwi kdraw / 4r /fpi 87 / oai nxt

The compiler processes kwi kdr aw. c(pp) producing 32-bit object code for an Intel 386-compatible
system equipped with a 387 numeric data processor. The compiler will generate 386 instructions based on
486 instruction timings using the register-based argument passing convention. The resulting code will be
highly optimized for Intel 486 systems.

Example:
C>compiler_name . . \ sour ce\ nodabs /d2

The compiler processes . . \ sour ce\ nodabs. c(pp) (afileinadirectory which is adjacent to the
current one). The object fileis placed in the current directory. Included with the object code and datais
information on local symbols and datatypes. The code generated is straight-forward, unoptimized code
which can be readily debugged with the Open Watcom Debugger.

66 Open Watcom C/C++ Command Line Examples

The Open Watcom C/C++ Compilers

Example:
C>set compiler_name=/i #\i ncl udes /nt
C>compiler_name \ cprogs\grep.tst /fi=ionods.c

The compiler processes the program contained in thefile \ cpr ogs\ grep. t st. Thefilei onods. c is
included asiif it formed part of the source input stream. The include search path and memory model
options are defaults each time the compiler isinvoked. The memory model option could be overridden on
the command line. After looking for an "include" file in the current directory, the compiler will search each
directory listed in the "i" path. See the section entitled "Open Watcom C/C++ #include File Processing” on
page 70 for more information.

Example:
C>compiler_name grep /fo=..\obj\

The compiler processes the program contained in thefile gr ep. c(pp) whichislocated in the current
directory. The object fileis placed in the directory . . \ obj under the name gr ep. obj .

Example:
C>compiler_name / dDBG=1 grep /fo=..\obj\.dbo

The compiler processes the program contained in thefile gr ep. c(pp) which islocated in the current
directory. The macro "DBG" is defined so that conditional debugging statements that have been placed in
the source are compiled. The object fileis placed in the directory . . \ obj and its filename extension will
be".dbo" (instead of ".ohj"). Selection of a different filename extension permits easy identification of
object files that have been compiled with debugging statements.

Example:
C>compiler_name / g=GKS /s \ gks\ gopks

The compiler generates code for gopks. c(pp) and placesit into the"GKS" group. If the"g" option had
not been specified, the code would not have been placed in any group. Assume that this file contains the
definition of the routine gopengks asfollows:

void far gopengks(int workstation, long int h)

{

}

For asmall code model, the routine gopengks must be defined in thisfileas f ar sinceitisplacedin
another group. The"s' option is also specified to prevent arun-time call to the stack overflow check
routine which will be placed in adifferent code segment at link time. The gopengks routine must be
prototyped by C routinesin other groups as

void far gopengks(int workstation, long int h);

since it will appear in adifferent code segment.

Open Watcom C/C++ Command Line Examples 67

Open Watcom C/C++ User’s Guide

3.5 Benchmarking Hints

The Open Watcom C/C++ compiler contains many options for controlling the code to be produced. Itis
impossible to have a certain set of compiler options that will produce the absolute fastest execution times
for all possible applications. With that said, we will list the compiler options that we think will give the
best execution times for most applications. Y ou may have to experiment with different options to see
which combination of options generates the fastest code for your particular application.

The recommended options for generating the fastest 16-bit Intel code are:

Pentium Pro /onatx /oh /oi+ /ei /zp8 /6 /fpi87 /fp6

Pentium /onatx /oh /oi+ /ei /zp8 /5 [fpi87 /fp5
486 /onatx /oh /oi+ /ei /zp8 /4 [fpi87 /fp3
386 fonatx /oh /oi+ /ei /zp8 /3 /fpi8T7 /fp3
286 fonatx /oh /oi+ /ei /zp8 /2 [fpi8T7 /fp2
186 /onatx /oh /oi+ /el /zp8 /1 [fpi87
8086 /onatx /oh /oi+ /ei /zp8 /0 /fpi87

The recommended options for generating the fastest 32-bit Intel code are:

Pentium Pro /onatx /oh /oi+ /ei /zp8 /6 /fp6

Pentium /onatx /oh /oi+ /ei /zp8 /5 [fp5
486 /onatx /oh /oi+ /ei /zp8 /4 [fp3
386 /onatx /oh /oi+ /ei /zp8 /3 /fp3

The"oi+" option isfor C++ only. Under some circumstances, the "ob" and "ol+" optimizations may also
give better performance with 32-bit Intel code.

Option "on" causes the compiler to replace floating-point divisions with multiplications by the reciprocal.
This generates faster code (multiplication is faster than division), but the result may not be the same
because the reciprocal may not be exactly representable.

Option "o€" causes small user written functions to be expanded in-line rather than generating acall to the
function. Expanding functions in-line can further expose other optimizations that couldn’'t otherwise be
detected if acall was generated to the function.

Option "o0a" causes the compiler to relax alias checking.

Option "ot" must be specified to cause the code generator to select code sequences which are faster without
any regard to the size of the code. The default isto select code sequences which strike a balance between

size and speed.

Option "ox" is equivalent to "obmiler" and "'s" which causes the compiler/code generator to do branch
prediction ("ob"), generate 387 instructions in-line for math functions such as sin, cos, sgrt ("om™), expand

68 Benchmarking Hints

The Open Watcom C/C++ Compilers

intrinsic functionsin-line ("oi"), perform loop optimizations ("ol"), expand small user functionsin-line
("o€"), reorder instructions to avoid pipeline stalls ("or"), and to not generate any stack overflow checking
("s"). Option "or" isvery important for generating fast code for the Pentium and Pentium Pro processors.

Option "oh" causes the compiler to attempt repeated optimizations (which can result in longer compiles but
more optimal code).

Option "oi+" causes the C++ compiler to expand intrinsic functionsin-line (just like "oi") but also setsthe
inline_depth to its maximum (255). By default, inline_depth is 3. Theinline _depth can also be changed by
usingthe C++i nl i ne_dept h pragma.

Option "el" causes the compiler to allocate at least an "int" for all enumerated types.

Option "zp8" causes all datato be aligned on 8 byte boundaries. The default is"zp2" for the 16-bit
compiler and "zp8" for 32-bit compiler. If, for example, "zpl" packing was specified then this would pack
all datawhich would reduce the amount of data memory required but would require extra clock cyclesto
access data that is not on an appropriate boundary.

Options"0", "1","2","3","4", "5" and "6" emit Intel code sequences optimized for processor-specific
instruction set features and timings. For 16-bit Intel applications, the use of these options may limit the
range of systems on which the application will run but there are execution performance improvements.

Options "fp2", "fp3", "fp5" and "fp6" emit Intel floating-point operations targetted at specific features of
the math coprocessor in the Intel series. For 16-bit Intel applications, the use of these options may limit the
range of systems on which the application will run but there are execution performance improvements.

Option "fpi87" causesin-line Intel 80x87 numeric data processor instructions to be generated into the
object code for floating-point operations. Floating-point instruction emulation is not included so asto
obtain the best floating-point performance in 16-bit Intel applications.

For 32-bit Intel applications, the use of the "fp5" option will give good performance on the Intel Pentium
but less than optimal performance on the 386 and 486. The use of the "5" option will give good
performance on the Pentium and minimal, if any, impact on the 386 and 486. Thus, the following set of
options gives good overall performance for the 386, 486 and Pentium processors.

/onatx /oh /oi+ /ei /zp8 /5 [fp3

3.6 Compiler Diagnostics

If the compiler prints diagnostic messages to the screen, it will also place a copy of these messagesin afile
in your current directory. The file will have the same file name as the source file and an extension of ".err".
The compiler issues two types of diagnostic messages, namely warnings or errors. A warning message
does not prevent the production of an object file. However, error messages indicate that a problemis
severe enough that it must be corrected before the compiler will produce an object file. The error fileisa
handy reference when you wish to correct the errors in the source file.

Just to illustrate the diagnostic features of Open Watcom C/C++, we will modify the "hello" program in
such away asto introduce some errors.

Compiler Diagnostics 69

Open Watcom C/C++ User’s Guide

Example:
#i ncl ude <stdi o. h>
int main()
int x;
printf("Hello world\n");
return(y);
}

The equivalent C++ program follows:

Example:
#i ncl ude <i ostream h>
#i ncl ude <i onani p. h>

int main()
int Xx;
cout << "Hello world" << endl;
return(y);

}

In this example, we have added the lines:
int x;

and

return(y);
and changed the keyword voi dtoi nt .
We compile the program with the "warning" option.

Example:
C>compiler_name hell o /w3

For the C program, the following output appears on the screen.

hello.c(7): Error! E1011: Synmbol 'y’ has not been decl ared

hell 0. c(5): Warning! W202: Synbol ’'x’' has been defined, but not
ref erenced

hello.c: 8 lines, included 174, 1 warnings, 1 errors

For the C++ program, the following output appears on the screen.

hello.cpp(8): Error! E029: (col 13) synbol 'y’ has not been decl ared

hel l 0. cpp(9): Warning! W14: (col 1) no reference to synmbol 'x

hello.cpp(9): Note! N392: (col 1) 'int x’ in 'int main(void)
defined in: hello.cpp(6) (col 9)

hello.cpp: 9 lines, included 1628, 1 warning, 1 error

Here we see an example of both types of messages. An error and awarning message have been issued. As
indicated by the error message, we require a declarative statement for the identifier y. Thewarning
message indicates that, whileit is not aviolation of the rules of C/C++ to define a variable without ever
using it, we probably did not intend to do so. Upon examining the program, we find that:

70 Compiler Diagnostics

The Open Watcom C/C++ Compilers

1. thevariable x should have been assigned a value, and
2. thevariable y has probably been incorrectly typed and should have been entered as x.

The complete list of Open Watcom C/C++ diagnostic messagesis presented in an appendix of this guide.

3.7 Open Watcom C/C++ #include File Processing

When using the #i ncl ude preprocessor directive, a header isidentified by a sequence of characters
placed between the "<" and ">" delimiters (e.g., <file>) and a sourcefile isidentified by a sequence of
characters enclosed by quotation marks (e.g., "file"). Open Watcom C/C++ makes a distinction between
the use of "<>" or quotation marks to surround the name of the file to beincluded. The search techniques
for header files and source files are dlightly different. Consider the following example.

Example:
#include <stdio.h> /* a system header file */
#include "stdio.h" /* your own header or source file */

Y ou should use "<" and ">" when referring to standard or system header files and quotation marks when
referring to your own header and source files.

The character sequence placed between the delimitersin an #i ncl ude directive represents the name of
thefileto beincluded. The file name may include drive, path, and extension.

It is not necessary to include the drive and path specifiers in the file specification when the file resides on a
different drive or in adifferent directory. Open Watcom C/C++ provides a mechanism for looking up
include files which may be located in various directories and disks of the computer system. Open Watcom
C/C++ searches directories for header and source filesin the following order (the search stops once the file
has been located):

1. If thefile specification enclosed in quotation marks ("file-spec") or angle brackets (<file-spec>)
contains the compl ete drive and path specification, that file isincluded (provided it exists). No
other searching is performed. The drive need not be specified in which case the current drive is
assumed.

2. If thefile specification is enclosed in quotation marks, the current directory is searched.

3. Next, if thefile specification is enclosed in quotation marks, the directory of the file containing
the#i ncl ude directiveis searched. If the current fileisalso an #i ncl ude file, the directory
of the parent file is searched next. This search continues recursively through all the nested
#i ncl ude files until the original source file’ sdirectory is searched.

4. Next, if thefile specification enclosed in quotation marks (“file-spec") or in angle brackets
(<file-spec>), each directory listed in the "i" path is searched (in the order that they were
specified).

5. Next, each directory listed in the <os>_INCL UDE environment variableis searched (in the

order that they were specified). The environment variable name is constructed from the current
build target name. The default build targets are:

Open Watcom C/C++ #include File Processing 71

Open Watcom C/C++ User’s Guide

DOS when the host operating system is DOS,

(O7 when the host operating system is OS/2,

NT when the host operating system is Windows NT/95, or
QNX when the host operating system is QNX.

LINUX when the host operating systemis Linux.

For example, the environment variable OS2_INCL UDE will be searched if the build target is
"OS2". The build target would be OS/2 if:

1. thehost operating system is OS/2 and the "bt" option was not specified, or
2. the"bt=0S2" option was explicitly specified.

6. Next, each directory listed in the INCL UDE environment variable is searched (in the order that
they were specified).

7. Findly, if thefile specification is enclosed in quotation marks, an adjacent "H" directory (i.e.,
..\ h)issearchedif it exists.

In the above example, <st di 0. h>and " st di 0. h" could refer to two different filesif thereisa
st di 0. h inthe current directory and one in the Open Watcom C/C++ include file directory

(\ WATCOM H) and the current directory isnot listed in an "i" path or the INCLUDE environment
variable.

The compiler will search the directories listed in "i" paths (see description of the"i" option) and the
INCL UDE environment variable in amanner analogous to that which the operating system shell will use
when searching for programs by using the PATH environment variable.

The"SET" command is used to define an INCL UDE environment variable that contains alist of
directories. A command of the form

SET I NCLUDE=[d:] path;[d:]path...

isissued before running Open Watcom C/C++ thefirst time. The brackets indicate that the drive "d:" is
optional and the ellipsis indicates that any number of paths may be specified. For Windows NT, use the
"System" icon in the Control Panel to define environment variables.

Weillustrate the use of the #i ncl ude directivein the following example.

Example:
#i ncl ude <stdi o. h>
#i ncl ude <tine. h>
#i ncl ude <dos. h>

72 Open Watcom C/C++ #include File Processing

The Open Watcom C/C++ Compilers

#i ncl ude "conmon. c"
int main()

initialize();
update_files();
create_report();
finalize();

}

#i nclude "partl.c"
#i nclude "part2.c"

If the above text is stored in the sourcefile r epor t . ¢ inthe current directory then we might issue the
following commands to compile the application.

Example:
Crem-- Two places to |l ook for include files
C>set i nclude=c:\wat com h; b:\ headers
Crem-- Now conpile application specifying a
Crem third location for include files
C>compiler_name report /fo=..\obj\ /i=..\source

In the above example, the "SET" command is used to define the INCL UDE environment variable. It
specifiesthat the \ wat com h directory (of the "C" disk) and the \ header s directory (adirectory of the
"B" disk) are to be searched.

The Open Watcom C/C++ "i" option defines athird place to search for include files. The advantage of the
INCL UDE environment variable isthat it need not be specified each time the compiler is run.

3.8 Open Watcom C/C++ Preprocessor

The Open Watcom C/C++ preprocessor forms an integral part of Open Watcom C/C++. When any form of
the"p" option is specified, only the preprocessor isinvoked. No codeis generated and no object fileis
produced. The output of the preprocessor is written to the standard output file, although it can also be
redirected to afile using the "fo" option. Suppose the following C/C++ program is contained in the file
negi d. c.

Open Watcom C/C++ Preprocessor 73

Open Watcom C/C++ User’s Guide

Example:
#define _IBWPC 0O
#define I BWS2 1

#if _TARGET == _| BWPS2

char *Sysld = { "IBM PS/ 2" };
#el se

char *Sysld = { "IBM PC" };
#endi f

/* Return pointer to Systemldentification */
char *Get Sysl d()

return(Sysld);
}

We can use the Open Watcom C/C++ preprocessor to generate the C/C++ code that would actually be
compiled by the compiler by issuing the following command.

Example:
C>compiler_name nmsgid /plc /fo /d_TARGET=_I BMPS2

Thefilenmsgi d. i will be created and will contain the following C/C++ code.

#ine 1 "megid.c"

char *Sysld = { "IBMPS/ 2" };
#ine 9 "megid.c"

/* Return pointer to System ldentification */
char *CGet Sysl d()

return(Sysld);
}

Note that thefile msgi d. i can be used as input to the compiler.

Example:
C>compiler_name nsgi d. i

Since #1 i ne directives are present in the file, the compiler can issue error messages in terms of the
original source file line numbers.

74 Open Watcom C/C++ Preprocessor

The Open Watcom C/C++ Compilers

3.9 Open Watcom C/C++ Predefined Macros

In addition to the standard 1SO-defined macros supported by the Open Watcom C/C++ compilers, several
additional system-dependent macros are also defined. These are described in this section. See the Open
Watcom C Language Reference manual for a description of the standard macros.

The Open Watcom C/C++ compilers run on various host operating systems including DOS, OS/2,
Windows NT, Windows 95 and QNX. Any of the supported host operating systems can be used to develop
applications for a number of target systems. By default, the target operating system for the application is
the same as the host operating system unless some option or combination of optionsis specified. For
example, DOS applications are built on DOS by default, OS/2 applications are built on OS2 by defaullt,
and so on. But the flexibility isthereto build applications for other operating systems/environments.

The macros described below may be used to identify the target system for which the application is being
compiled. (Note: In several placesin the following text, apair of underscore characters appearsas___
which resembles a single, elongated underscore.)

The Open Watcom C/C++ compilers support both 16-bit and 32-bit application development. The
following macros are defined for 16-bit and 32-bit target systems.

16-bit 32-bit
__X86_ __X86_
_ 186 386
M | 86 M 1 386
M 186 M 1386
_M_I X86 _M_I X86
Notes

1. The__X86__ identifiesthetarget asan Intel environment.
2. The__186__,M 186 and_M I 86 macrosidentify the target as a 16-bit Intel environment.

3. The__386__,M 1386 and_M | 386 macrosidentify the target as a 32-hit Intel
environment.

4. The_M | X86 macroisidentically equal to 100 times the architecture compiler option value (/0,
11,12,13, 14,15, etc.). If "/5" (Pentium instruction timings) was specified as a compiler option,
then thevalue of _ M | X86 would be 500.

The Open Watcom C/C++ compilers support application development for a variety of operating systems.
The following macros are defined for particular target operating systems.

Tar get Macr os

DOSs __D0os__, _DOs, MsDOS

oS/ 2 _0s2__

QNX __oONX L, UNEX

Net war e __NETWARE__, __ NETWARE 386__

NT __NT__

W ndows __WNDOAN5__, _WNDOAN5, __W NDONS5_386__
Li nux _LIENUX_ ., __UNEX

Open Watcom C/C++ Predefined Macros 75

Open Watcom C/C++ User’s Guide

Notes:

The__DOS__, DOS and MSDOS macros are defined when the build target is"DOS" (16-hit
DOS or 32-hit extended DOS).

The __ 0S2__ macro is defined when the build target is"OS2" (16-bit or 32-bit 0S/2).

The _ ONX__and _UNI X__ macros are defined when the build target is "QNX" (16-bit or
32-hit QNX).

The _NETWARE __ and _ NETWARE 386__ macros are defined when the build target is
"NETWARE" (Novell NetWare).

The __ NT__ macro is defined when the build target is"NT" (Windows NT and Windows 95).

The W NDOWAS__ macro is defined when the build target is"WINDOWS" or one of the "zw",
"ZW", "ZWs' options is specified (identifies the target operating system as 16-bit Windows or
32-hit extended Windows but not Windows NT or Windows 95).

The _ W NDOWS macro is defined when the build target is "WINDOWS' or one of the "zw",
"ZW", "ZWSs' options is specified and you are using a 16-bit compiler (identifies the target
operating system as 16-bit Windows).

The W NDOAS5_386__ macro is defined when the build target is"WINDOWS' or the "zw"
option is specified and you are using a 32-bit compiler (identifies the target operating system as
32-bit extended Windows).

The _LINUX_ _and _UNI X_ _ macrosare defined when the build target is"LINUX" (32-bit
Linux).

The following macros are defined for the indicated options.

bm MT

br _DLL

f pi __FPI__

fpi87 __FPI__

] __CHAR _SIGNED__

oi __INLI NE_FUNCTI ONS_ _
Xr _CPPRTTI (C++ only)
XS __CPPUNW ND (C++ only)
XSS _CPPUNW ND (C++ only)
xst __CPPUNW ND (C++ only)
za NO_EXT_KEYS

zZw __WNDONS__

zZW __WNDONS__

AL __WNDONS__

The following memory model macros are defined for the indicated memory model options.

76 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

Al l 16-bit only 32-bit only
__FLAT _ M 386FM _M 386FM
__SMALL_ M 186SM M | 86SM M 386SM _M 386SM

_MEDI UM M I86MM M | 86MM M 386MM M 386MM
__COWACT__ M 186CM _M | 86CM M 386CM _ M 386CM
__LARGE_ M 186LM _M |86LM M 386LM _M 386LM

HUGE_ M 186HM M | 86HM

The following macros indicate which compiler is compiling the C/C++ source code.

__cplusplus

Open Watcom C++ predefinesthemacro __ cpl uspl us to identify the compiler asa
C++ compiler.

__WATCOMC__

Open Watcom C/C++ predefinesthemacro __ WATCOMC __ to identify the compiler as one
of the Open Watcom C/C++ compilers.

The value of the macro depends on the version number of the compiler. The valueis 100
times the version number (version 8.5 yields 850, version 9.0 yields 900, etc.). Note that
for Open Watcom 1.0, the value of this macro is 1200, for Open Watcom 1.1 it is 1210 etc.

__ WATCOM_CPLUSPLUS__

Open Watcom C++ predefinesthemacro _~ WATCOM CPLUSPLUS _ toidentify the
compiler as one of the Open Watcom C++ compilers.

The value of the macro depends on the version number of the compiler. Thevalueis 100
times the version number (version 10.0 yields 1000, version 10.5 yields 1050, etc.). Note
that for Open Watcom 1.0, the value of this macro is 1200, for Open Watcom 1.1 it is 1210
etc.

The following macros are defined for compatibility with Microsoft.

__CPPRTTI Open Watcom C++ predefinesthe _ CPPRTTI macro to indicate that C++ Run-Time
Type Information (RTTI) isin force. Thismacro is predefined if the Open Watcom C++
"xr" compile option is specified and is not defined otherwise.

__CPPUNWIND

Open Watcom C++ predefinesthe __ CPPUNW ND macro to indicate that C++ exceptions
supported. Thismacro is predefined if any of the Open Watcom C++ "xs", "xss" or "xst"
compile options are specified and is not defined otherwise.

_INTEGRAL_MAX_BITS

Open Watcom C/C++ predefinesthe | NTEGRAL_ MAX_BI TS macro to indicate that
maximum number of bits supported in an integral type (see the description of the" _int64"
keyword in the next section). Itsvalueis 64 currently.

_PUSHPOP_SUPPORTED

Open Watcom C/C++ predefines the _ PUSHPOP_ SUPPORTED macro to indicate that
#pragma pack(push) and #pr agma pack(pop) are supported.

_STDCALL_SUPPORTED

Open Watcom C/C++ predefinesthe _ STDCALL__ SUPPORTED macro to indicate that the
standard 32-bit Win32 calling convention is supported.

Open Watcom C/C++ Predefined Macros 77

Open Watcom C/C++ User’s Guide

The following table summarizes the predefined macros supported by the compilers and the values that the
respective compilers assign to them. A "yes' under the column means that the compiler supports the macro
with the indicated value. Note that the C and C++ compilers sometime support the same macro but with
different values (including no value which means the symbol is defined without a value).

78 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

Pr edefi ned Macro

Supported by Conpiler

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes

Yes
Yes

Yes

Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes

and Setting wee wcc386 wpp wp
_.386__=1 Yes
__3R _=
_based=__based Yes Yes Yes
_cdecl =__cdecl Yes Yes Yes
cdecl =__cdecl Yes Yes Yes
__cplusplus=1 Yes
_CPPRTTI =1 Yes
_ CPPUNW ND=1 Yes
_export=__export Yes Yes Yes
_farl6=__farl6 Yes Yes Yes
_far=__far Yes Yes Yes
far=__far Yes Yes Yes
_fastcall=__fastcall Yes Yes Yes
__FLAT__=1 Yes
_fortran=__fortran Yes Yes Yes
fortran=__fortran Yes Yes Yes
__FPI__=1 Yes Yes Yes
_huge=__huge Yes Yes Yes
huge=__huge Yes Yes Yes
__186__=1 Yes Yes
_inline=__inline Yes Yes Yes
_ | NTEGRAL_MAX_BI TS=64 Yes Yes Yes
_interrupt=__interrupt Yes Yes Yes
interrupt=__interrupt Yes Yes Yes
_l oadds=__1 oadds Yes Yes Yes
_M 386FM-1
M 386FM-1
_ M 1386=1 Yes
M | 386=1 Yes
M. 186=1 Yes Yes
M | 86=1 Yes Yes
M | 86SM=1 Yes Yes
M | 86SMF1 Yes Yes
_M_1 X86=0 Yes Yes
_M_1 X86=500 Yes
_near=__near Yes Yes Yes
near =__near Yes Yes Yes

_NT__=1 (on Wn32 platform Yes Yes Yes
_pascal =__pascal Yes Yes Yes
pascal =__pascal Yes Yes Yes
_saveregs=__saveregs Yes Yes Yes
_segnent =__segnent Yes Yes Yes
_segnanme=__segnane Yes Yes Yes
_self=__self Yes Yes Yes
__SMALL__=1 Yes Yes
SOMDLI NK=__far Yes
SOVDLI NK=_Syscal | Yes
SOWLI NK=__ cdecl Yes
SOMLI NK=_Syscal | Yes
_ STDCALL_ SUPPORTED=1 Yes
__SWo0=1 Yes Yes
__SW3R=1 Yes
__SWh5=1 Yes
__SW FP287=1 Yes
__SW FP2=1 Yes
__SW FP387=1
__SW FP3=1 Yes
__SWFPI=1 Yes Yes Yes
__SW MF=1 Yes
__SW vs=1 Yes
__SW zZDP=1 Yes Yes Yes
__SW ZFP=1 Yes Yes Yes
__SW ZzGF=1 Yes
__SW zGP=1 Yes Yes
_stdcal |l =__stdcall Yes Yes Yes
_syscall =__syscall Yes Yes Yes
__WATCOM CPLUSPLUS__=1280 Yes
__WATCOMC__=1280 Yes Yes Yes

Open Watcom C/C++ Predefined Macros

Yes

79

Open Watcom C/C++ User’s Guide

__X86__

=1 Yes Yes Yes Yes

3.10 Open Watcom C/C++ Extended Keywords

Open Watcom C/C++ supports the use of some special keywords to describe system dependent attributes of
functions and other object names. These attributes are inspired by the Intel processor architecture and the
plethora of function calling conventions in use by compilersfor this architecture. In keeping with the ISO
C and C++ language standards, Open Watcom C/C++ uses the double underscore (i.e., " ") or single
underscore followed by uppercase letter (e.g., "_S") prefix with these keywords. To support compatibility
with other C/C++ compilers, aternate forms of these keywords are a so supported through predefined

macros.

__near

_ far

__huge

__based

__segment

__segname

Open Watcom C/C++ supportsthe ___near keyword to describe functions and other object
names that are in near memory and pointers to near objects.

Open Watcom C/C++ predefines the macros near and _near to be equivalent to the
__near keyword.

Open Watcom C/C++ supportsthe _ f ar keyword to describe functions and other object
names that are in far memory and pointersto far objects.

Open Watcom C/C++ predefinesthe macros f ar, _f ar and SOVDLI NK (16-hit only) to
be equivalent tothe __ f ar keyword.

Open Watcom C/C++ supportsthe __huge keyword to describe functions and other object
names that are in huge memory and pointers to huge objects. The 32-bit compilers treat
these as equivalent to far objects.

Open Watcom C/C++ predefines the macros huge and _huge to be equivalent to the
___huge keyword.

Open Watcom C/C++ supportsthe _ based keyword to describe pointers to objects that
appear in other segments or the objects themselves. See the section entitled "Based
Pointers' on page 86 for an explanation of the __based keyword.

Open Watcom C/C++ predefines the macro _based to be equivalent tothe __based
keyword.

Open Watcom C/C++ supportsthe ~ segnent keyword which is used when describing
objects of type segment. See the section entitled "Based Pointers" on page 86 for an
explanation of the __segnent keyword.

Open Watcom C/C++ predefines the macro _segmnent to be equivalent to the
__segnent keyword.

Open Watcom C/C++ supportsthe __ segnane keyword which is used when describing
seghame constant based pointers or objects. See the section entitled "Based Pointers' on
page 86 for an explanation of the __segnane keyword.

Open Watcom C/C++ predefines the macro _ segnane to be equivalent to the
___segnane keyword.

80 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

self

__restrict

_Packed

__cdecl

__pascal

_ fortran

Open Watcom C/C++ supportsthe __sel f keyword which is used when describing self
based pointers. See the section entitled "Based Pointers" on page 86 for an explanation of
the _sel f keyword.

Open Watcom C/C++ predefinesthemacro _sel f tobeequivalenttothe _ sel f
keyword.

Open Watcom C/C++ providesthe _ restrict type qualifier as an alternative to the ISO C99
restrict keyword; it is supported even when C99 keywords aren't visible. Thistype
qualifier is used as an optimization hint. Any object accessed through arestrict qualified
pointer may only be accessed through that pointer and the compiler may assume that there
will be no aliasing.

Open Watcom C/C++ supportsthe _ Packed keyword which is used when describing a
structure. If specified before the struct keyword, the compiler will force the structure to be
packed (no alignment, no gaps) regardless of the setting of the command-line option or the
#pragma controlling the alignment of members.

Open Watcom C/C++ supportsthe _ cdecl keyword to describe C functionsthat are
called using a special convention.

Notes:
1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument
ispushed first. The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a
structure is returned, the called routine returns a pointer in register AX/EAX to
the return value which is stored in the data segment (DGROUP).

4. For the 16-bit compiler, registers AX, BX, CX and DX, and segment register ES
are not saved and restored when a call is made.

5. For the 32-bit compiler, registers EAX, ECX and EDX are not saved and
restored when a call is made.

Open Watcom C/C++ predefinesthe macros cdecl , _cdecl, _Cdecl and SOMLI NK
(16-bit only) to be equivalent tothe __ cdecl keyword.

Open Watcom C/C++ supportsthe __pascal keyword to describe Pascal functions that
are called using a specia convention described by apragmain the "stddef.h" header file.

Open Watcom C/C++ predefines the macros pascal , _pascal and_Pascal tobe
equivalenttothe __pascal keyword.

Open Watcom C/C++ supportsthe _ f or t r an keyword to describe functions that are
called from FORTRAN. It converts the name to uppercase letters and suppressesthe " "
which is appended to the function name for certain calling conventions.

Open Watcom C/C++ predefinesthe macros f or t r an and _f or t r an to be equivalent to
the __fortran keyword.

Open Watcom C/C++ Extended Keywords 81

Open Watcom C/C++ User’s Guide

__interrupt Open Watcom C/C++ supportsthe __i nt er r upt keyword to describe afunction that is
an interrupt handler.

Example:
#i ncl ude <i 86. h>

void __interrupt int10(union I NTPACK r)
{

}

The code generator will emit instructions to save al registers. The registers are saved on
the stack in a specific order so that they may be referenced using the "INTPACK" union as
shown in the DOS example above. The code generator will emit instructions to establish
addressability to the program’ s data segment since the DS segment register contents are
unpredictable. The function will return using an "IRET" (16-bit) or "IRETD" (32-bit)
(interrupt return) instruction.

Open Watcom C/C++ predefinesthemacros i nt errupt and _i nt errupt tobe
equivaenttothe i nt err upt keyword.

__declspec(modifier)
Open Watcom C/C++ supportsthe _ decl spec keyword for compatibility with
Microsoft C++. The __decl spec keyword is used to modify storage-class attributes of
functions and/or data. There are several modifiers that can be specified with the
__decl spec keyword: t hr ead, naked, dllinport, dllexport, __ pragma(
"string"), __cdecl, __pascal, _fortran, __stdcall, and
__syscal | . Theseattributes are a property only of the declaration of the object or
function to which they are applied. Unlikethe __near and__ f ar keywords, which
actually affect the type of object or function (in this case, 2- and 4-byte addresses), these
storage-class attributes do not redefine the type attributes of the object itself. The
___pragnma modifier is supported by Open Watcom C++ only. Thet hr ead attribute
affects dataand objectsonly. The naked, __pragma, __cdecl, __pascal,
__fortran, __stdcall, and__syscal | attributes affect functionsonly. The
dl I'i nport and dl | export attributes affect functions, data, and objects. For more
information onthe __decl spec keyword, please see the section entitled "The __declspec
Keyword" on page 90.

__export Open Watcom C/C++ supportsthe __export keyword to describe functions and other
object names that are to be exported from a Microsoft Windows DLL, OS/2 DLL, or
Netware NLM. See aso the description of the "zu" option.

Example:
void __export _Setcolor(int color)

{

}

Open Watcom C/C++ predefinesthe macro _export to beequivalenttothe _export
keyword.

82 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

__loadds

__saveregs

__stdcall

__syscall

Open Watcom C/C++ supportsthe _ | oadds keyword to describe functions that require
specific loading of the DS register to establish addressability to the function’s data
segment. This keyword is useful in describing afunction that will be placed in a Microsoft
Windows or OS/2 1.x Dynamic Link Library (DLL). See also the description of the "nd"
and "zu" options.

Example:
void __export __ loadds _Setcolor(int color)

{

}

If the function in an OS/2 1.x Dynamic Link Library requires access to private data, the
data segment register must be loaded with an appropriate value since it will contain the DS
value of the calling application upon entry to the function.

Open Watcom C/C++ predefinesthe macro | oadds to be equivalent tothe | oadds
keyword.

Open Watcom C/C++ recognizesthe __saver egs keyword which is an attribute used by
C/C++ compilers to describe afunction that must save and restore all registers.

Open Watcom C/C++ predefinesthe macro _saver egs to be equivalent to the
___saver egs keyword.

(32-bit only) The __ st dcal | keyword may be used with function definitions, and
indicates that the 32-bit Win32 calling convention isto be used.

Notes:
1. All symbols are preceded by an underscore character.

2. All Csymbols (extern "C" symbolsin C++) are suffixed by " @nnn" where
"nnn" is the sum of the argument sizes (each size is rounded up to amultiple of 4
bytes so that char and short are size 4). When the argument list contains"...", the
"@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument
ispushed first. The called routine will remove the arguments from the stack.

4. When astructureisreturned, the caller allocates space on the stack. The address
of the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of
the space allocated for the return value. Floating-point values are returned in
80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.
(32-bit only) The __syscal | keyword may be used with function definitions, and

indicates that the calling convention used is compatible with functions provided by 32-bit
0s/2.

Open Watcom C/C++ Extended Keywords 83

Open Watcom C/C++ User’s Guide

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or
trailing underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument
ispushed first. The calling routine will remove the arguments from the stack.

3. When astructureis returned, the caller allocates space on the stack. The address
of the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of
the space allocated for the return value. Floating-point values are returned in
80x87 register ST(0).

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

Open Watcom C/C++ predefinesthemacros _syscal |, _Syst em SOMLI NK (32-bit
only) and SOVDLI NK (32-hit only) to be equivalenttothe __ syscal | keyword.

_ farl6 (32-bit only) Open Watcom C/C++ recognizesthe __ f ar 16 keyword which can be used
to define far 16-bit (farl6) pointers (16-bit selector with 16-bit offset) or far 16-bit function
prototypes. This keyword can be used under 32-bit OS/2 to call 16-bit functions from your
32-bit flat model program. Integer arguments will automatically be converted to 16-bit
integers, and 32-bit pointers will be converted to far16 pointers before calling a special
thunking layer to transfer control to the 16-bit function.

Open Watcom C/C++ predefinesthemacros _f ar 16 and__Far 16 to be equivaent to the
__far 16 keyword. Thiskeyword is compatible with Microsoft C.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4
gigabyte segment referenced by the DS register is divided into 8192 areas of 64K bytes
each. A farl6 pointer consists of a 16-bit selector referring to one of the 64K byte areas,
and a 16-bit offset into that area.
A pointer declared as,

[type] _ farl6 *name;
defines an object that isafarl6 pointer. If such apointer is accessed in the 32-bit
environment, the compiler will generate the necessary code to convert between the far16

pointer and a"flat" 32-bit pointer.

For example, the declaration,

char __far16 *bufptr;
declares the object buf pt r to be afarl6 pointer to char.
A function declared as,

[type] _ farl6 func([arg_list]);

declares a 16-hit function. Any calls to such afunction from the 32-bit environment will
cause the compiler to convert any 32-bit pointer arguments to far16 pointers, and any int

84 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

_Segl16

arguments from 32 bitsto 16 bits. (In the 16-bit environment, an object of typeint is only
16 hits.) Any return value from the function will have its return value converted in an
appropriate manner.

For example, the declaration,

char * __far16 Scan(char *buffer, int len, short err);

declaresthe 16-bit function Scan. When thisfunction is called from the 32-bit
environment, the buf f er argument will be converted from a flat 32-bit pointer to afarl6
pointer (which, in the 16-bit environment, would be declaredas char __far *. The
| en argument will be converted from a 32-bit integer to a 16-bit integer. The err
argument will be passed unchanged. Upon returning, the far16 pointer (far pointer in the
16-bit environment) will be converted to a 32-bit pointer which describes the equivalent
location in the 32-bit address space.

(32-bit only) Open Watcom C/C++ recognizesthe _ Seg16 keyword which has a similar
but not identical functionasthe __ f ar 16 keyword described above. Thiskeywordis
compatible with IBM C Set/2 and IBM VisualAge C++.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4
gigabyte segment referenced by the DS register is divided into 8192 areas of 64K bytes
each. A farl6 pointer consists of a 16-bit selector referring to one of the 64K byte areas,
and a 16-bit offset into that area.

Notethat _Segl16 isnot interchangeablewith __ f ar 16.

A pointer declared as,

[type] * _Segl6 name;

defines an object that isafarl6 pointer. Notethat the Seg16 appears on the right side of
the* which isoppositetothe __ f ar 16 keyword described above.

For example,

char * _Segl6 bufptr;
declares the object buf pt r to be afarl6 pointer to char (the same as above).

The _Seg16 keyword may not be used to describe a 16-bit function. A #pragma directive
must be used instead. A function declared as,

[type] * _Segl6 func([parm_list]);
declares a 32-hit function that returns afar16 pointer.

For example, the declaration,

char * _Segl6 Scan(char * buffer, int len, short err);

declares the 32-bit function Scan. No conversion of the argument list will take place.
Thereturn value is afarl6 pointer.

Open Watcom C/C++ Extended Keywords 85

Open Watcom C/C++ User’s Guide

__pragma

__int64

Open Watcom C++ supportsthe __ pr agnma keyword to support in-lining of member
functions. The __ pr agma keyword must be followed by parentheses containing a string
that names an auxiliary pragma. Here is a simplified example showing usage and syntax.

Example:
#pragma aux fast_mul =\
"imul eax, edx" \
parm cal l er [eax] [edx] \
val ue struct;

struct fixed {
unsi gned v;
1
fixed _ _pragma("fast_nmul") operator *(fixed, fixed);

fixed two = { 2 };
fixed three = { 3 };

fixed foo()
{

}

See the chapters entitled " 16-bit Pragmas" on page 135 and "32-bit Pragmas’ on page 203
for more information on pragmeas.

return two * three;

Open Watcom C/C++ supportsthe _ i nt 64 keyword to define 64-bit integer data objects.

Example:
static __int64 biglnt;

Also supported are signed and unsigned 64-bit integer constants.
signed _int64 Usethe"i64" suffix for asigned 64-bit integer constant.

Example:
12345i 64
123451 64

unsigned __ int64 Use the "ui64" suffix for an unsigned 64-hit integer constant.

Example:
12345Ui 64
12345ul 64

The run-time library supports formatting of __i nt 64 items (see the description of the
printf library function).

86 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

Example:
#i ncl ude <stdi o. h>
#include <limts. h>

void main()

__int64 bigint;
__int64 bigint2;

bigint2 = 8164 * (LONG_MAX + 1164);
for(bigint = 0;
bi gi nt <= bi gi nt 2;
bigint += bigint2 / 16) {
printf("Hello world %.d\n", bigint);

}
}
Restrictions
switch An__i nt 64 expression cannot be used in a switch statement.
bit fields More than 32 bitsin a 64-bit bitfield is not supported.

3.11 Based Pointers

Near pointers are generally the most efficient type of pointer because they are small, and the compiler can
assume knowledge about what segment of the computer’s memory the pointer (offset) refersto. Far
pointers are the most flexible because they allow the programmer to access any part of the computer’s
memory, without limitation to a particular ssgment. However, far pointers are bigger and slower because
of the additional flexibility.

Based pointers are a compromise between the efficiency of near pointers and the flexibility of far pointers.
With based pointers, the programmer takes responsibility to tell the compiler which segment a near pointer
(offset) belongs to, but may still access segments of the computer’s memory outside of the normal data
segment (DGROUP). Theresult is apointer type which is as small as and amost as efficient as a near
pointer, but with most of the flexibility of afar pointer.

An object declared as a based pointer falls into one of the following categories:

» the based pointer isin the segment described by another object,
» the based pointer, used as a pointer to another object of the same type (asin alinked list), refersto

the same segment,
» the based pointer is an offset to no particular segment, and must be combined explicitly with a

segment value to produce avalid pointer.

To support based pointers, the following keywords are provided:
__based
__segment
__segnane
__self

The following operator is also provided:

Based Pointers 87

Open Watcom C/C++ User’s Guide

>
These keywords and operator are described in the following sections.

Two macros, defined in mal | oc. h, arealso provided:

_NULLSEG
_NULLOFF

They are used in amanner similar to NULL, but are used with objectsdeclaredas ___segnent and
__based respectively.

3.11.1 Segment Constant Based Pointers and Objects

A segment constant based pointer or object has its segment value based on a specific, named segment. A
segment constant based object is specified as.

[type] _ based(__ segname("segment")) object _name;
and a segment constant based pointer is specified as:
[type] _ based(__segname("segment")) * object-name;

where segnent isthe name of the segment in which the pointer or object is based. As shown above, the
segment name is always specified asa string. There are three special segment names recognized by the
compiler:

_ CODE"
" _CONST"
" _DATA"

The" _CODE" segment isthe default code segment. The " _ CONST" segment is the segment containing
constant values. The" _DATA" segment is the default data segment. If the segment name is not one of the
three recognized names, then a segment will be created with that name. If a segment constant based object
is being defined, then it will be placed in the named segment. If a segment constant based pointer is being
defined, then it can point at objects in the named segment.

The following examples illustrate segment constant based pointers and objects.
Example:
int _ based(__segnane("_CODE")) ival = 3;
int _ based(__segnane("_CODE")) *iptr;
i val isan object that residesin the default code segment. i pt r isan object that residesin the data

segment (the usual place for data objects), but points at an integer which resides in the default code
segment. i pt r issuitablefor pointing at i val .

88 Based Pointers

The Open Watcom C/C++ Compilers

Example:
char __ based(__segnane("GOODTHI NGS")) thing;

t hi ng isan object which resides in the segment GOODTHI NGS, which will be created if it does not

already exist. (The creation of segmentsis done by the linker, and is a method of grouping objects and
functions. Nothing isimplicitly created during the execution of the program.)

3.11.2 Segment Object Based Pointers

A segment object based pointer derivesits segment value from another named object. A segment object
based pointer is specified as follows:

[type] __ based(segment) *name;
where segnent isan object defined astype __segment .

An object of type __ segnent may contain a segment value. Such an object is particularly designed for
use with segment object based pointers.

The following example illustrates a segment object based pointer:

Example:
__segment seg,
char __based(seg) *cptr;

The object seg contains only a segment value. Whenever the object cpt r isused to point to a character,
the actual pointer value will be made up of the segment value found in seg and the offset value found in
cpt r. Theobject seg might be assigned values such as the following:

* aconstant value (e.g., the segment containing screen memory),

« the result of the library function _bheapseg,
* the segment portion of another pointer value, by casting it to thetype __ segmnent .

3.11.3 Void Based Pointers

A void based pointer must be explicitly combined with a segment value to produce a reference to a memory
location. A void based pointer does not infer its ssgment value from another object. The : > (base)
operator is used to combine a segment value and a void based pointer.

For example, on a personal computer running DOS with a color monitor, the screen memory begins at
segment 0xB800, offset 0. In avideo text mode, to examine the first character currently displayed on the
screen, the following code could be used:

Example:

Based Pointers 89

Open Watcom C/C++ User’s Guide

extern void nain()

{
__segmnent screen
char __ based(void) *scrptr;
screen = 0xB80O0;
scrptr = 0;
printf("Top left character is "% .\n",
*(screen:>scrptr));
}

The general form of the : > operator is:
segment :> offset

where segnent isan expression of type _ segnent, andof f set isan expression of type __ based(
void) *.

3.11.4 Self Based Pointers

A self based pointer infersits segment value from itself. It is particularly useful for structures such as
linked lists, where all of the list elements are in the same segment. A self based pointer pointing to one
element may be used to access the next element, and the compiler will use the same segment as the original
pointer.

The following example illustrates a function which will print the values stored in the last two members of a

linked list:
Example:
struct a {
struct a __based(__self) *next;
i nt nunber ;
1
extern void PrintLastTwo(struct a far *list)
{
__segnent seg;
struct a __ based(seg) *aptr;
seg = FP_SEE list);
aptr = FP_OFF(list);
for(; aptr !'= _NULLOFF;, aptr = aptr->next) {
if(aptr->next == NULLOFF) {
printf("Last itemis %\ n",
aptr->nunber);
} else if(aptr->next->next == _NULLCFF) {
printf("Second last itemis %l\n",
aptr->numnber);
}
}
}

The argument to the function Pr i nt Last Two isafar pointer, pointing to alinked list structure anywhere
in memory. It isassumed that all members of a particular linked list of thistype reside in the same segment
of the computer’s memory. (Another instance of the linked list might reside entirely in a different

90 Based Pointers

The Open Watcom C/C++ Compilers

segment.) The abject seg is given the segment portion of the far pointer. The object apt r isgiven the
offset portion, and is described as being based in the segment stored in seg.

The expression apt r - >next referstothe next member of the structure stored in memory at the offset
stored in apt r and the segment implied by apt r, whichisthevauestoredin seg. So far, the behavior
isno different than if next had been declared as,

struct a *next;

The expression apt r - >next - >next illustrates the difference of using a self based pointer. The first
part of the expression (apt r - >next) occurs as described above. However, using the result to point to
the next member occurs by using the offset value found in the next member and combining it with the
segment value of the pointer used to get to that member, which is still the segment implied by aptr,
whichisthevalue storedin seg. If next had not beendeclaredusing ___based(__ self), then
the second pointing operation would refer to the offset value found in the next member, but with the
default data segment (DGROUP), which may or may not be the same segment as stored in seg.

3.12 The __declspec Keyword

Open Watcom C/C++ supportsthe _ decl spec keyword for compatibility with Microsoft C++. The
__decl spec keyword is used to modify storage-class attributes of functions and/or data.

__declspec(thread) is used to define thread local storage (TLS). TLS isthe mechanism by which each
thread in a multithreaded process allocates storage for thread-specific data. 1n standard
multithreaded programs, datais shared among all threads of a given process, whereas
thread local storage is the mechanism for allocating per-thread data.

Example:
__decl spec(thread) static int tls _data = O;

The following rules apply to the use of the t hr ead attribute.
» Thet hr ead attribute can be used with data and objects only.

* You can specify the t hr ead attribute only on data items with static storage
duration. Thisincludes global data objects (both st at i ¢ and ext er n), local static
objects, and static data members of classes. Automatic data objects cannot be
declared with the t hr ead attribute. The following exampleillustrates this error:

Example:
#define TLS __decl spec(thread)
voi d funcl()

TLS int tls_data; /'l Wong!
}
int func2(TLS int tls_data) /1 Wong!
{

return tls_data;
}

The __declspec Keyword 91

Open Watcom C/C++ User’s Guide

* Thet hr ead attribute must be used for both the declaration and the definition of a
thread local object, whether the declaration and definition occur in the same file or
separate files. The following example illustrates this error:

Example:
#define TLS __decl spec(thread)
extern int tls_data; /1 This generates an error,
because the
TLS int tls_data; /1 declaration and the

definition differ.

* Classes cannot use the t hr ead attribute. However, you can instantiate class
objectswith the t hr ead attribute, aslong as the objects do not need to be
constructed or destructed. For example, the following code generates an error:

Example:
#define TLS __decl spec(thread)
TLS class A /1 Wong! C asses are not objects
/1 Code
1
A AQbj ect ;

Because the declaration of objectsthat usethe t hr ead attribute is permitted, these
two examples are semantically equivalent:

Example:
#define TLS __decl spec(thread)
TLS class B

/1 Code
} BObj ect; /1 Ckay! BObject declared thread
| ocal .

class C
/1 Code

1
TLS C Cnject; [/ Ckay! CObject declared thread
| ocal .

» Standard C permits initialization of an object or variable with an expression
involving areferenceto itself, but only for objects of non-static extent. Although
C++ normally permits such dynamic initialization of an object with an expression
involving areference to itsalf, this type of initialization is not permitted with thread

local objects.

Example:
#define TLS _ decl spec(thread)
TLS int tls_i =tls_i; /1 C and C++ error
int j =j; /[l Ckay in C++; C
error
TLS int tls_k = sizeof(tls_k); [// Ckay in C and
C++

92 The __declspec Keyword

The Open Watcom C/C++ Compilers

Note that asi zeof expression that includes the object being initialized does not
congtitute areferenceto itself and isallowed in C and C++.

__declspec(naked) indicates to the code generator that no prologue or epilogue sequenceisto be
generated for afunction. Any statements other than "_asm" directives or auxiliary pragmas
are not compiled. _asm Essentially, the compiler will emit a"label" with the specified
function name into the code.

Example:
#i ncl ude <stdio. h>
int __ declspec(naked) foo(int x)
{
_asm {
#if defined(__386_)
i nc eax
#el se
i nc ax
#endi f
ret
}
}

voi d main()

printf("%\ n", foo(1));

The following rules apply to the use of the naked attribute.

» The naked attribute cannot be used in adata declaration. The following declaration
would be flagged in error.

Example:
__decl spec(naked) static int data object = O;

__declspec(dllimport) is used to declare functions, data and objects imported from aDLL.

Example:

#define DLLI nport _ decl spec(dllinport)

DLLImport void dll_func();
DLLI nport int dll_data;

Functions, data and objects are exported from aDLL by use of

__decl spec(dl | export), the _export keyword (for which

__decl spec(dl I export) isthereplacement), or through linker "EXPORT"
directives.

Note: When calling functions imported from other modules, it is not strictly necessary to
usethe _decl spec(dl | i mport) modifier to declare the functions. This modifier
however must always be used when importing data or objects to ensure correct behavior.

__declspec(dllexport) is used to declare functions, data and objects exported fromaDLL. Declaring

functionsasdl | export eliminatesthe need for linker "EXPORT" directives. The
__decl spec(dl | export) attributeisareplacement forthe _export keyword.

The __declspec Keyword 93

Open Watcom C/C++ User’s Guide

__declspec(__pragma(" string")) is used to declare functions which adhere to the conventions described
by the pragmaidentified by "string".

Example:
#i ncl ude <stdi o. h>

#pragma aux my_stdcall "_*" \
parmroutine [] \
val ue struct struct caller [] \
nmodi fy [eax ecx edx];

struct list {
struct list *next;
i nt val ue;
fl oat flt_val ue;

b
#defi ne STDCALL _ decl spec(__pragma("my_stdcall"))
STDCALL struct list foo(int x, char *y, double z);

voi d main()

int a =1;
char *b = "Hell o there";
doubl e ¢ = 3.1415926;

struct list t;

t =foo(a, b, ¢c);
printf("%\ n", t.value);

}
struct list foo(int x, char *y, double z)
{
struct list tnp;
printf("%\n", y);
tnp. next = NULL;
tmp. val ue = x;
tmp. flt_value = z;
return(tmp);
}

The __pr agnma modifier is supported by Open Watcom C++ only.

__declspec(__cdecl) is used to declare functions which conform to the Microsoft compiler calling
convention.

__declspec(__pascal) is used to declare functions which conform to the OS/2 1.x and Windows 3.x
calling convention.

__declspec(__fortran) isused to declare functions which conform to the __ fortran calling convention.

94 The __declspec Keyword

The Open Watcom C/C++ Compilers

Example:
#i ncl ude <stdi o. h>

#defi ne DLLFunc __ decl spec(dllinport __ fortran)
#define DLLData __ decl spec(dllinport)

#i fdef __cplusplus
extern "C' {
#endi f

DLLFunc int dlil_func(int, int, int);
DLLData int dll_data;

#i fdef __ cplusplus
1

#endi f

voi d main()

printf("% %\n", dll_func(1,2,3), dll_data);

__declspec(__stdcall) is used to declare functions which conform to the 32-bit Win32 "standard" calling
convention.

Example:
#i ncl ude <stdi o. h>

#defi ne DLLFunc __decl spec(dllinport __ stdcall)
#defi ne DLLData __decl spec(dllinport)

DLLFunc int dlIl _func(int, int, int);
DLLData int dll _data;

void main()

printf("% %\n", dll_func(1,2,3), dll_data);
}

__declspec(__syscall) is used to declare functions which conform to the 32-bit OS/2 _ syscall caling
convention.

3.13 The Open Watcom Code Generator

The Open Watcom Code Generator performs such optimizations as common subexpression elimination,
global flow analysis, and so on.

In some cases, the code generator can do a better job of optimizing codeif it could utilize more memory.
Thisisindicated when a

Not enough nmenory to optim ze procedure ' xxxx’

message appears on the screen as the source program is compiled. In such an event, you may wish to make
more memory available to the code generator.

The Open Watcom Code Generator 95

Open Watcom C/C++ User’s Guide

A special environment variable may be used to obtain memory usage information or set memory usage
limits on the code generator. The WCGMEMORY environment variable may be used to request a report
of the amount of memory used by the compiler’s code generator for its work area.

Example:
C>set WCGVEMORY=?

When the memory amount is"?" then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of memory for a
work area.

Example:
C>set WCGAVEMORY=128

When the memory amount is"nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytesisrequested. If lessthan "nnnK" is available then the compiler will quit with afatal error message. If
more than "nnNnNK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same results (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers
with different memory configurations, you must ensure that the WCGMEMORY environment variableis
set identically on both machines.

The second reason where this feature is useful is on virtual memory paging systems (e.g., 0S/2) where an
unlimited amount of memory can be used by the code generator. If avery large module is being compiled,
it may take avery long time to compileit. The code generator will continue to alocate more and more
memory and cause an excessive amount of paging. By restricting the amount of memory that the code
generator can use, you can reduce the amount of time required to compile aroutine.

96 The Open Watcom Code Generator

4 Precompiled Headers

4.1 Using Precompiled Headers

Open Watcom C/C++ supports the use of precompiled headers to decrease the time required to compile
several source filesthat include the same header file.

4.2 When to Precompile Header Files

Using precompiled headers reduces compilation time when:
* You always use alarge body of code that changes infrequently.

* Your program comprises multiple modules, al of which use the same first include file and the same
compilation options. In this case, thefirst include file along with &l the files that it includes can be
precompiled into one precompiled header.

Because the compiler only uses the first include file to create a precompiled header, you may want to create
amaster or global header file that includes all the other header files that you wish to have precompiled.
Then all source files should include this master header file asthe first #i ncl ude inthe sourcefile. Even
if you don’t use amaster header file, you can benefit from using precompiled headers for Windows
programs by using #i ncl ude <w ndows. h> asthefirst includefile, or by using #i ncl ude

<af xwi n. h> asthefirst include file for MFC applications.

Thefirst compilation — the one that creates the precompiled header file — takes a bit longer than
subsequent compilations. Subsequent compilations can proceed more quickly by including the precompiled
header.

Y ou can precompile C and C++ programs. In C++ programming, it is common practice to separate class
interface information into header files which can later be included in programs that use the class. By
precompiling these headers, you can reduce the time a program takes to compile.

Note: Although you can use only one precompiled header (. PCH) file per sourcefile, you can use
multiple . PCHfilesin a project.

4.3 Creating and Using Precompiled Headers

Precompiled code is stored in afile called a precompiled header when you use the precompiled header
option (/fh or /fhg) on the command line. The /fh option causes the compiler to either create a
precompiled header or use the precompiled header if it already exists. The /fhq optionis similar but
prevents the compiler from issuing informational or warning messages about precompiled header files. The
default name of the precompiled header fileis one of WCC. PCH, WCC386. PCH, WPP. PCH, or
WPP386. PCH (depending on the compiler used). You can also control the name of the precompiled

Creating and Using Precompiled Headers 97

Open Watcom C/C++ User’s Guide

header that is created or used with the /fh=filename or /fhq=filename ("specify precompiled header
filename") options.

Example:
/ f h=pr oj ect x. pch
/ f hg=pr oj ect x. pch

4.4 The "/fh[q]" (Precompiled Header) Option

The /fh option instructs the compiler to use a precompiled header file with a default name of WCC. PCH,
WCC386. PCH, WPP. PCH, or WPP386. PCH (depending on the compiler used) if it exists or to create
oneif it doesnot. Thefileis created in the current directory. Y ou can use the /fh=filename option to
change the default name (and placement) of the precompiled header. Add theletter "q" (for "quiet") to the
option name to prevent the compiler from displaying precompiled header activity information.

The following command line uses the /fh option to create a precompiled header.

Example:

wpp /fh nyprog. cpp
wpp386 /fh nyprog. cpp

The following command line creates a precompiled header named nmypr og. pch and placesitin the
\ pr oj pch directory.

Example:
wpp / fh=\proj pch\ nyprog. pch nyprog. cpp
wpp386 /f h=\proj pch\ myprog. pch nyprog. cpp

The precompiled header is created and/or used when the compiler encountersthe first #i ncl ude directive
that occursin the sourcefile. In a subsequent compilation, the compiler performs a consistency check to
seeif it can use an existing precompiled header. If the consistency check fails then the compiler discards
the existing precompiled header and builds a new one.

The /fhg form of the precompiled header option prevents the compiler from issuing warning or
informational messages about precompiled header files. For example, if you change a header file, the

compiler will tell you that it changed and that it must regenerate the precompiled header file. If you specify
/fhq then the compiler just generates the new precompiled header file without displaying a message.

4.5 Consistency Rules for Precompiled Headers

If a precompiled header file exists (either the default file or one specified by /fh=filename), it is compared
to the current compilation for consistency. A new precompiled header file is created and the new file
overwrites the old unless the following requirements are met:

* The current compiler options must match those specified when the precompiled header was created.

* The current working directory must match that specified when the precompiled header was created.

» The name of thefirst #i ncl ude directive must match the one that was specified when the
precompiled header was created.

98 Consistency Rules for Precompiled Headers

Precompiled Headers

* All macros defined prior to thefirst #i ncl ude directive must have the same values as the macros
defined when the precompiled header was created. A sequence of #def i ne directives need not
occur in exactly the same order because there are no semantic order dependenciesfor #def i ne
directives.

* The value and order of include paths specified on the command line with /i options must match those
specified when the precompiled header was created.

* The time stamps of all the header files (all files specified with #i ncl ude directives) used to build
the precompiled header must match those that existed when the precompiled header was created.

Consistency Rules for Precompiled Headers 99

Open Watcom C/C++ User’s Guide

100 Consistency Rules for Precompiled Headers

5 The Open Watcom C/C++ Libraries

The Open Watcom C/C++ library routines are described in the Open Watcom C Library Reference
manual, and the Open Watcom C++ Class Library Reference manual.

5.1 Open Watcom C/C++ Library Directory Structure

Since Open Watcom C/C++ supports both 16-bit and 32-bit application development, libraries are grouped
under two major subdirectories. The LI B286 directory is used to contain libraries for 16-bit application
development. The LI B386 directory is used to contain libraries for 32-bit application development.

For 16-bit application development, the Intel x86 processor-dependent libraries are placed under the
\ WATCOM LI B286 directory.

For 32-bit application devel opment, the Intel 386 and upward-compatible processor-dependent libraries are
placed under the \ WATCOM LI B386 directory.

Since Open Watcom C/C++ also supports several operating systems, including DOS, OS/2, Windows 3.x
and Windows NT, system-dependent libraries are grouped under different directories underneath the
processor-dependent directories.

For DOS applications, the system-dependent libraries are placed in \ WATCOM LI B286\ DCS (16-hit
applications) and \ WATCOM LI B386\ DOS (32-bit applications).

For OS/2 applications, the system-dependent libraries are placed in \ WATCOM LI B286\ OS2 (16-hit
applications) and \ WATCOM LI B386\ OS2 (32-bit applications).

For Microsoft Windows applications, the system-dependent libraries are placed in
\ WATCOM LI B286\ W N (16-bit applications) and \ WATCOM LI B386\ W N (32-hit applications).

For Microsoft Windows NT applications, the system-dependent libraries are placed in
\ WATCOM LI B386\ NT (32-hit applications).

For Novell NetWare 386 applications, the system-dependent libraries are placed in
\ WATCOM LI B386\ NETWARE (32-hit applications).

\ wat com
|
___________ o e e e e e e e e e o - -
i b286 i b386
| I
_______ . e
| | | | 1 | |
dos 0s?2 win dos 0s?2 Wi n nt net war e

Open Watcom C/C++ Library Directory Structure 101

Open Watcom C/C++ User’s Guide

5.2 Open Watcom C/C++ C Libraries

Due to the many code generation strategies possible in the 80x86 family of processors, a number of
versions of the libraries are provided. Y ou must use the libraries which coincide with the particular
architecture, operating system, and code generation strategy or model that you have selected. For the type
of code generation strategy or model that you intend to use, refer to the description of the "m?' memory
model compiler option. The various code models supported by Open Watcom C/C++ are described in the
chapters entitled "16-bit Memory Models" on page 113 and "32-bit Memory Models" on page 181.

We have selected a simple naming convention for the libraries that are provided with Open Watcom
C/C++. Letters are affixed to the file name to indicate the particular strategy with which the modulesin the
library have been compiled.

16-bit only

S

MT

DL

32-bit only

3R

3S

denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"small" memory model (small code, small data).

denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"medium" memory model (big code, small data).

denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"compact” memory model (small code, big data).

denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"large" memory model (big code, big data).

denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"huge" memory model (big code, huge data).

denotes a version of the Open Watcom C/C++ libraries which may be used with OS/2
multi-threaded applications.

denotes a version of the Open Watcom C/C++ libraries which may be used when creating
an OS/2 Dynamic Link Library.

denotes a version of the Open Watcom C/C++ libraries that will be used by programs
which have been compiled for the "flat/small" memory models using the "3r", "4r" or "5r"
option.

denotes a version of the Open Watcom C/C++ libraries that will be used by programs
which have been compiled for the "flat/small" memory models using the"3s", "4s" or "5s"
option.

The Open Watcom C/C++ 16-hit libraries are listed below by directory.

102 Open Watcom C/C++ C Libraries

The Open Watcom C/C++ Libraries

Under \ WATCOM LI B286\ DOS

CLIBS.LIB (DCOS snal | nodel support)

CLIBMLIB (DOS nedi um nodel support)

CLIBC. LIB (DOS conpact nodel support)

CLIBL.LIB (DCs | arge nodel support)

CLIBH. LIB (DOS huge nodel support)

GRAPH. LI B (nmodel independent, DOS graphics support)
Under \ WATCOM LI B286\ OS2

CLIBS. LI B (0s/2 small nodel support)

CLIBM LI B (OS/ 2 medi um nodel support)

CLIBC. LIB (Os/ 2 conpact nodel support)

CLIBL.LIB (Os/2 | arge nodel support)

CLIBH. LIB (0S/ 2 huge nodel support)

CLIBMIL.LIB (0Os/2 multi-thread, |arge nodel support)

CLIBDLL.LIB (0Os/2 DLL, |large nodel support)

DOSPMVB. LIB (Phar Lap 286 PM snal |l nobdel support)

DOSPMM LIB (Phar Lap 286 PM nmedi um nodel support)

DOSPMC. LI B (Phar Lap 286 PM conpact nodel support)

DOSPML. LI B (Phar Lap 286 PM 1 arge nodel support)

DOSPVH. LI B (Phar Lap 286 PM huge nodel support)

Under \ WATCOM LI B286\ W N

CLIBS.LIB (W ndows sna
CLIBM LI B (W ndows ned
CLIBC. LIB (W ndows comp
CLIBL.LIB (Wndows |arg
W NDOWS. LI B (W ndows API

| npdel
um nodel
act nodel
e nodel
library)

support)

support)
support)

support)

The Open Watcom C/C++ 32-bit libraries are listed below by directory.

Under \ WATCOM LI B386\ DOS

CLIB3R LI B (flat/small nodels, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small nbdels, "3s", "4s" or "5s" option)
GRAPH. LI B (flat/smal|l nodels, DOS graphics support)
The graphics library GRAPH. LI B isindependent of the argument passing conventions.
Under \ WATCOM LI B386\ OS2
CLIB3R LI B (flat/small nodels, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/snmall nbdels, "3s", "4s" or "5s" option)
Under \ WATCOM LI B386\ W N
CLIB3R LIB (flat/snmall nobdels, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/snmall nobdels, "3s", "4s" or "5s" option)
WN386.LIB (32-bit Wndows API)

Open Watcom C/C++ C Libraries 103

Open Watcom C/C++ User’s Guide

Under \ WATCOM LI B386\ NT

CLIB3R LI B
CLIB3S. LIB

at/smal|l nodels, "3r", "4r" or "5r" option)

I
lat/snall nodels, "3s", "4s" or "5s" option)

NN
—h —h

5.3 Open Watcom C/C++ Class Libraries

The Open Watcom C/C++ Class Library routines are described in the Open Watcom C++ Class Library
Reference manual.

The Open Watcom C++ 16-bit Class Libraries are listed below.

Under \ WATCOM LI B286

(iostreamand string class libraries)
PLI BS. LI B (smal | nodel support)
PLI BM LI B (rmedi um nodel support)
PLI BC. LI B (compact nodel support)
PLIBL. LI B (large nodel support)
PLI BH. LI B (huge nodel support)
PLIBMIL. LIB (OS/2 multi-thread, |arge nodel support)
PLIBDLL. LIB (OS/2 DLL, |arge nodel support)
(complex class library for "fpc" option)
CPLXS.LIB (smal | nodel support)
CPLXM LI B (rmedi um nodel support)
CPLXC. LIB (compact nodel support)
CPLXL.LIB (large nodel support)
CPLXH. LI B (huge nodel support)
(conplex class library for "fpi..
CPLX7S.LIB (small nodel support)
CPLX7M LI B (nmedi um nodel support)
CPLX7C.LIB (conpact nodel support)
CPLX7L. LI B (large nodel support)
CPLX7H.LIB (huge nodel support)

opti ons)

These libraries are independent of the operating system (except those designated for 0S/2). The"7"
designates a library compiled with the " 7" option.

The Open Watcom C++ 32-hit Class Libraries are listed below.

Under \ WATCOM LI B386

(iostreamand string class libraries)
PLIB3R LIB (flat nodels, "3r", "4r" or "5r" option)
PLIB3S.LIB (flat nodels, "3s", "4s" or "5s" option)
PLIBMI3R LIB (rmulti-thread library for OS/2 and W ndows NT)
PLIBMI3S.LIB (rmulti-thread library for OS/2 and W ndows NT)
(conmplex class library for "fpc" option)
CPLX3R. LIB (flat nodels, "3r", "4r" or "5r" option)
CPLX3S.LIB (flat nodels, "3s", "4s" or "5s" option)
(conmplex class library for "fpi..." options)
CPLX73R. LIB (flat nodels, "3r", "4r" or "5r" option)
CPLX73S.LIB (flat nodels, "3s", "4s" or "5s" option)

104 Open Watcom C/C++ Class Libraries

The Open Watcom C/C++ Libraries

These libraries are independent of the operating system (except those designated for OS/2 and Windows
NT). The"3R" and "3S" suffixes refer to the argument passing convention used. The"7" designates a
library compiled with the " 7" option.

5.4 Open Watcom C/C++ Math Libraries

In general, aMath library is required when floating-point computations are included in the application. The
Math libraries are operating-system independent.

For the 286 architecture, the Math libraries are placed under the \ WATCOM LI B286 directory.

For the 386 architecture, the Math libraries are placed under the \ WATCOM LI B386 directory.

An 80x87 emulator library, emu87. | i b, isalso provided which is both operating-system and architecture

dependent.
The following situations indicate that one of the Math libraries should be included when linking the
application.

1. When one or more of the functions described in the mat h. h header file isreferenced, then a

Math library must be included.
If an application islinked and the message

" _fltused_ is an undefined reference"
appears, then aMath library must be included.
(16-bit only) If an application is linked and the message

__init_87_enulator is an undefined reference"

appears, then one of the modules in the application was compiled with one of the "fpi", "fpi87",
"fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87 emulator library (
emu87. 1 i b)) or the 80x87 fixup library (noenu87. | i b) should be included when linking
the application.

If the "fpi87" option was used, the 80x87 fixup library noenmu87. | i b should be included when
linking the application.

The 80x87 emulator is contained in emu87. 1 i b. Usenoenu87.1i b in place of
ermu87. | i b when the emulator is not wanted.

(32-bit only) If an application is linked and the message

__init_387_enulator is an undefined reference"
appears, then one of the modules in the application was compiled with one of the "fpi", "fpi87",
"fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87 emulator library (
emu387. | i b) should be included when linking the application.

If the "fpi87" option was used, the empty 80x87 emulator library noermu387. | i b should be
included when linking the application.

Open Watcom C/C++ Math Libraries 105

Open Watcom C/C++ User’s Guide

The 80x87 emulator is contained in enu387. 1 i b. Usenoenu387.1i b inplace of
enu387. | i b when the emulator is not wanted.

Normally, the compiler and linker will automatically take care of this. Simply ensure that the WATCOM
environment variable includes the location of the Open Watcom C/C++ libraries.

5.5 Open Watcom C/C++ 80x87 Math Libraries

One of the following Math libraries must be used if any of the modules of your application were compiled
with one of the Open Watcom C/C++ "fpi", "fpi87", "fp2", "fp3" or "fp5" options and your application
requires floating-point support for the reasons given above.

16-bit libraries:

MATH87S. LI B (smal | nodel)

MATH87M LI B (medi um nodel)

MATH87C. LI B (conpact nodel)
MATH87L. LI B (I arge nodel)

MATHB7H. LI B (huge nodel)

NOEMJUB7. LI B

DOS\ EMU87. LI B (DOS dependent)

OS2\ EMUBY. LI B (OS/ 2 dependent)

W N EMUB7. LI B (W ndows dependent)
W N\ MATH87C. LI B (W ndows dependent)
W N\ MATH87L. LI B (W ndows dependent)

32-bit libraries:
MATH387R. LIB (flat/small nodels, "3r", "4r" or "5r" option)
MATH387S. LIB (flat/small nodels, "3s", "4s" or "5s" option)

DOS\ EMJ387. LI B (DOS dependent)

W N\ EMJ387. LI B (W ndows dependent)
OS2\ EMJ387. LI B (OS/ 2 dependent)

NT\ EMJ387. LI B (W ndows NT dependent)

The "fpi" option causes an 80x87 numeric data processor emulator to be linked into your application in
addition to any 80x87 math routines that were referenced. This emulator will decode and emulate 80x87
instructions when an 80x87 is not present in the system or if the environment variable NO87 has been set
(this variable is described below).

For 32-bit Open Watcom Windows-extender applications or 32-bit applications run in Windows 3.1 DOS
boxes, you must also include the WEMJ387. 386 fileinthe [386enh] section of the SYSTEM | NI file.

Example:
devi ce=C: \ WATCOM bi nwA wernmu387. 386

Note that the WDEBUG. 386 file which isinstalled by the Open Watcom Installation software contains the
emulation support found in the WVEMJ387. 386 file.

When the "fpi87" option is used exclusively, the emulator is not included. In this case, the application must
be run on personal computer systems equipped with the numeric data processor.

106 Open Watcom C/C++ 80x87 Math Libraries

The Open Watcom C/C++ Libraries

5.6 Open Watcom C/C++ Alternate Math Libraries

One of the following Math libraries must be used if any of the modules of your application were compiled
with the Open Watcom C/C++ "fpc" option and your application requires floating-point support for the
reasons given above. The following Math libraries include support for floating-point which is done
out-of-line through run-time calls.

16-bit libraries:

MATHS. LI B (smal | nodel)

MATHM LI B (medi um nodel)

MATHC. LI B (conpact nodel)

MATHL. LI B (I arge nodel)

MATHH. LI B (huge nodel)

W N\ MATHC. LI B (W ndows dependent)
W N MATHL. LI B (W ndows dependent)

32-hit libraries:

MATH3R LIB (flat/small nodels, "3r", "4r" or "5r" option)
MATH3S. LIB (flat/small nodels, "3s", "4s" or "5s" option)

Applications which are linked with one of these libraries do not require a numeric data processor for
floating-point operations. If oneis present in the system, it will be used; otherwise floating-point
operations are simulated in software. The numeric data processor will not be used if the environment
variable NO87 has been set (this variable is described below).

5.7 The NO87 Environment Variable

If you have a numeric data processor (math coprocessor) in your system but you wish to test a version of
your application that will use floating-point emulation ("fpi" option) or simulation ("fpc" option), you can
define the NO87 environment variable.

(16-bit only) The application must be compiled using the "fpc" (floating-point calls) option and linked with
the appropriate mat h?. | i b library or the "fpi" option (default) and linked with the appropriate
mat h877?.1i b and enu87. 1 i b libraries.

(32-bit only) The application must be compiled using the "fpc" (floating-point calls) option and linked with
the appropriate mat h3?. | i b library or the "fpi" option (default) and linked with the appropriate

mat h38772. |i b library.

Using the "SET" command, define the environment variable as follows:

C>SET NO87=1

Now, when you run your application, the 80x87 will beignored. To undefine the environment variable,
enter the command:

CSET NO87=

The NO87 Environment Variable 107

Open Watcom C/C++ User’s Guide

5.8 The Open Watcom C/C++ Run-time Initialization Routines

Source files are included in the package for the Open Watcom C/C++ application startup (or initialization)
sequence.

(16-bit only) Theinitialization code directories/files are listed below:

Under \ WATCOM SRC\ STARTUP

W LDARGV. C (wild card processing for argv)
8087CW C (val ue | oaded into 80x87 control word)

Under \ WATCOM SRC\ STARTUP\ DCS (DOS initialization)

CSTRT086. ASM (startup for 16-bit apps)

DOS16M ASM (startup code for Tenberry Software’ s DOS/ 16M
CMVAI N086. C (final part of initialization sequence)

VDEF. | NC (macros included by assenbly code)

Under \ WATCOM SRC\ STARTUP\ W N (Windows initialization)

CSTRTWL6. ASM (startup for 16-bit Wndows apps)
LI BENTRY. ASM (startup for 16-bit W ndows DLLS)
VDEF. | NC (rmacros included by assenbly code)

Under \ WATCOM SRC\ STARTUP\ 0S2 (OS/2 initialization)

CMAI NO86. C (final part of initialization sequence)
MAI NOL6. C (mddle part of initialization sequence)
CSTRTOL6. ASM (startup for 16-bit OS/2)

EXI TWEBG. H (header file required by MAI NOL6. C)

WOS2. H (header file required by MAI NOL6. C)
INNTFINI . H (header file required by NMAI NOL6. C)
MDEF. | NC (macros included by assenbly code)

Thefollowing is a summary description of the startup filesfor DOS. The startup files for Windows and
0S/2 are similar. The assembler file CSTRT086. ASMcontains the first part of the initialization code and
the remainder is continued in the file CMAI N086. C. Itis CMAI NO86. Cthat calls your main routine
(main).

The DOS16M ASMfileisaspecial version of the CSTRT086. ASMfile which is required when using the
Tenberry Software, Inc. DOS/16M 286 DOS extender.

(32-bit only) Theinitialization code directoriesfiles are listed below:

Under \ WATCOM SRC\ STARTUP

WLDARGY.C (wild card processing for argv)
8087CW C (val ue | oaded into 80x87 control word)

108 The Open Watcom C/C++ Run-time Initialization Routines

The Open Watcom C/C++ Libraries

Under \ WATCOM SRC\ STARTUP\ 386

CSTRT386. ASM (startup for nost DOS Extenders)
CSTRTWB2. ASM (startup for 32-bit W ndows)

CSTRTX32. ASM (startup for FlashTek DOS Ext ender)
CMAIN386.C (final part of initialization sequence)

The assembler files CSTRT* . ASMcontain the first part of theinitialization code and the remainder is
continued in the file CMAI N386. C. Itis C\VAI N386. Cthat calls your main routine (mai n) .

The source code is provided for those who wish to customize the initialization sequence for special
applications.

Thefilewi | dar gv. ¢ contains an alternate form of "argv" processing in which wild card command line
arguments are transformed into lists of matching file names. Wild card arguments are any arguments
containing "*" or "?' characters unless the argument is placed within quotes (). Consider the following
example in which we run an application called "TOUCH" with the argument "*.c".

Cstouch *.c

Suppose that the application was linked with the object code for the file wi | dar gv. ¢. Suppose that the
filesapl. c, ap2. ¢ and ap3. ¢ are stored in the current directory. The single argument "*.c" is
transformed into alist of arguments such that:

argc == 4

argv[1l] points to "apl.c"
argv[2] points to "ap2.c"
argv[3] points to "ap3.c"

The source filewi | dar gv. ¢ must be compiled to produce the object file wi | dar gv. obj . Thisfile

must be specified before the Open Watcom C/C++ libraries in the linker command file in order to replace
the standard "argv" processing.

The Open Watcom C/C++ Run-time Initialization Routines 109

Open Watcom C/C++ User’s Guide

110 The Open Watcom C/C++ Run-time Initialization Routines

16-bit Topics

16-bit Topics

112

6 16-bit Memory Models

6.1 Introduction

This chapter describes the various 16-bit memory models supported by Open Watcom C/C++. Each
memory model is distinguished by two properties; the code model used to implement function calls and the
data model used to reference data.

6.2 16-bit Code Models

There are two code models;

1. thesmal code model and
2. thebig code model.

A small code model is onein which all callsto functions are made with near calls. Inanear cal, the
destination addressis 16 bits and is relative to the segment value in segment register CS. Hence, in asmall
code model, al code comprising your program, including library functions, must be less than 64K.

A big code model isonein which all callsto functions are made with far calls. In afar call, the destination
addressis 32 bits (a segment value and an offset relative to the segment value). This model allows the size
of the code comprising your program to exceed 64K.

Note: [f your program contains less than 64K of code, you should use a memory model that employs
the small code model. Thiswill result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

6.3 16-bit Data Models

There are three data models;

1. thesmall datamodel,
2. thebig data model and
3. thehuge data model.

A small data model isone in which al references to data are made with near pointers. Near pointers are 16
bits; all data references are made relative to the segment value in segment register DS. Hence, in a small
data model, all data comprising your program must be less than 64K.

A big datamodel is onein which al references to data are made with far pointers. Far pointers are 32 bits
(asegment value and an offset relative to the segment value). This removes the 64K limitation on data size
imposed by the small datamodel. However, when afar pointer isincremented, only the offset is adjusted.
Open Watcom C/C++ assumes that the offset portion of afar pointer will not be incremented beyond 64K .

16-bit Data Models 113

16-bit Topics

The compiler will assign an object to a new segment if the grouping of datain a segment will cause the
object to cross a segment boundary. Implicit in thisis the requirement that no individual object exceed 64K
bytes. For example, an array containing 40,000 integers does not fit into the big data model. An object
such as this should be described as huge.

A huge data model isonein which all references to data are made with far pointers. Thisissimilar to the
big data model. However, in the huge data model, incrementing a far pointer will adjust the offset and the
segment if necessary. The limit on the size of an object pointed to by afar pointer imposed by the big data
model isremoved in the huge data model.

Notes:

1. If your program contains less than 64K of data, you should use the small datamodel. This will
result in smaller and faster code since references using near pointers produce fewer instructions.

2. Thehuge datamodel should be used only if needed. The code generated in the huge data model

is not very efficient since arun-time routineis called in order to increment far pointers. This
increases the size of the code significantly and increases execution time.

6.4 Summary of 16-bit Memory Models

As previously mentioned, a memory model is a combination of a code model and adatamodel. The
following table describes the memory models supported by Open Watcom C/C++.

Menory Code Dat a Def aul t Def aul t
Model Model Model Code Dat a
Poi nt er Poi nt er
tiny smal | smal | near near
smal | smal | smal | near near
medi um bi g snal | far near
conpact snmal | bi g near far
| arge bi g bi g far far
huge bi g huge far huge

6.5 Tiny Memory Model

In the tiny memory model, the application’s code and data must total less than 64K bytesin size. All code

and data are placed in the same segment. Use of the tiny memory model allows the creation of a COM file
for the executable program instead of an EXE file. For more information, see the section entitled "Creating
aTiny Memory Model Application” in this chapter.

6.6 Mixed 16-bit Memory Model

A mixed memory model application combines elements from the various code and data models. A mixed
memory model application might be characterized as one that uses the near, far, or huge keywords when
describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be described as a
mixed memory model. In an application such asthis, most of the dataisin a 64K segment (DGROUP) and

114 Mixed 16-bit Memory Model

16-bit Memory Models

hence can be referenced with near pointers relative to the segment value in segment register DS. This
results in more efficient code being generated and better execution times than one can expect from a big
datamodel. Data objects outside of the DGROUP segment are described with the far keyword.

6.7 Linking Applications for the Various 16-bit Memory
Models

Each memory model requires different run-time and floating-point libraries. Each library assumesa
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model.

Menory Run-tine Fl oati ng- Poi nt Fl oati ng- Poi nt
Model Li brary Calls Library Li brary (80x87)
tiny CLIBS. LI B MATHS. LI B MATH87S. LI B
+CSTART_T. OBJ +(NO) EMU87. LI B
smal | CLIBS. LI B MATHS. LI B MATHB7S. LI B

+(NO) EMU87. LI B

medi um CLIBM LI B MATHM LI B MATHS87M LI B
+(NO) EMUS7. LI B*

conpact CLIBC. LIB MATHC. LI B MATH87C. LI B
+(NO) EMJUB7. LI B*

large CLIBL.LIB MATHL. LI B MATHS7L. LI B
+(NO) EMU87. LI B*

huge CLIBH. LI B MATHH. LI B MATHS7H. LI B
+(NO) EMUS7. LI B*

* Oneof emu87. 1 i bornoenu87. 1 i b will beused with the 80x87 math libraries depending on the use
of the"fpi" (include emulation) or "fpi87" (do not include emulation) options.

6.8 Creating a Tiny Memory Model Application

Tiny memory model programs are created by compiling all modules with the small memory model option
and linking in the special initidization file"CSTART_T.OBJ'. Thisfileisfound in the Open Watcom
C/C++ LI B286\ DOS directory. It must be the first object file specified when linking the program.

The following sequence will create the executable file"MY PROG.COM" from the file"MYPROG.C":

Creating a Tiny Memory Model Application 115

16-bit Topics

Example:
Cwee nyprog /s
Cw ink systemcomfile myprog
Most of the details of linking a"COM" program are handled by the "SY STEM COM" directive (see the

w syst em | nk filefor details). When linking a"COM" program, the message " Stack segment not
found" isissued. This message may beignored.

6.9 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. &l segments not belonging to group "DGROUP" with class "CODE"
2. all other segments not belonging to group "DGROUP"
3. all segments belonging to group "DGROUP" with class "BEGDATA"
4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
5. all segments belonging to group "DGROUFP" with class "BSS"
6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location 0 can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS* and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file
In addition to these special segments, the following conventions are used by Open Watcom C/C++.
1. The"CODE" class contains the executable code for your application. In asmall code modél, this
consists of the segment *_TEXT". In abig code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the sourcefile.

2. The"FAR_DATA" class consists of the following:

(@ data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(© literals whose size exceeds the data threshold in large data memory models (the
datathreshold is 32K unless changed using the "zt" compiler option)

116 Memory Layout

16-bit Memory Models

(d) literals defined using the "FAR" or "HUGE" keyword.
Y ou can override the default naming convention used by Open Watcom C/C++ to name segments.
1. TheOpen Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for abig code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

Memory Layout 117

16-bit Topics

118 Memory Layout

/ 16-bit Assembly Language Considerations

7.1 Introduction

This chapter will deal with the following topics.

1

2.

The data representation of the basic types supported by Open Watcom C/C++.

The memory layout of a Open Watcom C/C++ program.

The method for passing arguments and returning values.

The two methods for passing floating-point arguments and returning floating-point values.
One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" optionsis specified
for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an 80x87
emulator isincluded from amath library if the application includes floating-point operations.

When the "fpi87" option is used exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified. In this case,
the compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

7.2 Data Representation

This section describes the internal or machine representation of the basic types supported by Open Watcom

C/C++.

7.2.1 Type "char”

An item of type "char" occupies 1 byte of storage. Itsvaueisin the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can be used to
change the default from unsigned to signed. If "char" is signed, an item of type "char" isin the following

range.

-128 <= n <= 127

Y ou can force an item of type "char" to be unsigned or signed regardless of the default by defining them to
be of type "unsigned char" or "signed char" respectively.

Data Representation 119

16-bit Topics

7.2.2 Type "short int"

An item of type "short int" occupies 2 bytes of storage. Itsvaueisin the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If anitem of type
"short int" isto be unsigned, it must be defined as "unsigned short int". Inthiscase, itsvalueisinthe
following range.

0 <= n <= 65535

7.2.3 Type "long int"

An item of type "long int" occupies 4 bytes of storage. Itsvalueisin the following range.

- 2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If anitem of type
"long int" isto be unsigned, it must be defined as "unsigned long int". In this case, itsvalueisin the
following range.

0 <= n <= 4294967295

7.2.4 Type "int"
An item of type "int" occupies 2 bytes of storage. Itsvalueisin the following range.
-32768 <= n <= 32767

Note that "int" is signed and hence "int" and "signed int" are equivalent. If anitem of type "int" isto be
unsigned, it must be defined as "unsigned int". In this caseits value isin the following range.

0 <= n <= 65535
If you are generating code that executes in 16-bit mode, "short int" and "int" are equivalent, "unsigned short

int" and "unsigned int" are equivalent, and "signed short int" and "signed int" are equivalent. This may not
be the case in other environments where "int" and "long int" are 4 bytes.

7.2.5 Type "float"

A datum of type "float" is an approximate representation of areal number. Each datum of type "float"
occupies 4 bytes. If misthe magnitude of x (an item of type "float") then x can be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3. 402823e38

Data of type "float" are represented internally asfollows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

120 Data Representation

16-bit Assembly Language Considerations

e m e oo o e e ee o eoao oo +
| S| Biased | Si gni ficand |
| | Exponent | |
e mm e oo o e e e ee o eaao s +
31 30- 23 22-0
Notes
S S = Sign bit (O=positive, 1=negative)
Exponent The exponent biasis 127 (i.e., exponent value 1 represents 2-126; exponent value 127

represents 20; exponent value 254 represents 2127; etc.). The exponent field is 8 bits long.

Significand Theleading bit of the significand is always 1, hence it is not stored in the significand field.
Thusthe significand is always "normalized”. The significand field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field isall 1 bits and the significand field isall zero bits then the
guantity represents positive or negative infinity, depending on the sign hit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
isaspecial value called aNAN (Not-A-Number).

When the exponent field is al 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal” or nonnormal number.

7.2.6 Type "double”

A datum of type "double" is an approximate representation of areal number. The precision of a datum of
type "double" is greater than or equal to one of type "float". Each datum of type "double" occupies 8 bytes.
If misthe magnitude of x (an item of type "double") then x can be approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

Fom e ek o m m e e e e e e e e e e e e eaa oo +
| S| Biased | Si gni ficand |
| | Exponent | |

T o m o e e e e e e e e e e e e e maa oo +
63 62-52 51-0

Data Representation 121

16-bit Topics

Notes:

S

Exponent

Significand

Zero

Infinity

Not Numbers

S = Sign bit (O=positive, 1=negative)

The exponent biasis 1023 (i.e., exponent value 1 represents 2-1922: exponent value 1023
represents 20; exponent value 2046 represents 21923; etc.). The exponent field is 11 bits
long.

Theleading bit of the significand is always 1, henceit is not stored in the significand field.
Thus the significand is aways "normalized". The significand field is 52 bits long.

A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.

When the exponent field is al 1 bits and the significand field is all zero bits then the
guantity represents positive or negative infinity, depending on the sign bit.

When the exponent field isall 1 bits and the significand field is non-zero then the quantity
isaspecial value called aNAN (Not-A-Number).

When the exponent field isall 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal™ or nonnormal number.

7.3 Memory Layout

Thefollowing d

lescribes the segment ordering of an application linked by the Open Watcom Linker. Note

that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUFP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS* and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable

file.

In addition to th

122 Memory Layout

ese specia segments, the following conventions are used by Open Watcom C/C++.

16-bit Assembly Language Considerations

1. The"CODE" class contains the executable code for your application. In asmall code model, this
consists of the segment *_TEXT". In abig code model, this consists of the segments
"<module>_ TEXT" where <module> is the file name of the source file.

2. The"FAR_DATA" class consists of the following:

(@ data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(© literals whose size exceeds the data threshold in large data memory models (the
datathreshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.
Y ou can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

7.4 Calling Conventions for Non-80x87 Applications

The following sections describe the calling convention used when compiling with the "fpc" compiler
option.

7.4.1 Passing Arguments Using Register-Based Calling Conventions

How arguments are passed to a function with register-based calling conventions is determined by the size
(in bytes) of the argument and where in the argument list the argument appears. Depending on the size,
arguments are either passed in registers or on the stack. Arguments such as structures are almost always
passed on the stack since they are generally too largeto fit in registers. Since arguments are processed
from left to right, the first few arguments are likely to be passed in registers (if they can fit) and, if the
argument list contains many arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to afunction are AX, BX, CX and DX. The following algorithm
describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: AX, DX, BX and CX. Note that
registers are selected from thislist in the order they appear. That is, the first register selected is AX and the
last is CX. For each argument Ai, starting with the left most argument, perform the following steps.

1. If thesizeof Ai is1 byte, convert it to 2 bytes and proceed to the next step. If Ai is of type
"unsigned char", it is converted to an "unsigned int". If Ai isof type "signed char", it is
converted to a"signed int". If Ai isa 1-byte structure, the padding is determined by the
compiler.

2. If anargument has already been assigned a position on the stack, Ai will also be assigned a
position on the stack. Otherwise, proceed to the next step.

Calling Conventions for Non-80x87 Applications 123

16-bit Topics

Notes:

If the size of Ai is 2 bytes, select aregister from the list of availableregisters. If aregisteris
available, Ai is assigned that register. The register isthen removed from the list of available
registers. If no registersare available, Ai will be assigned a position on the stack.

If the size of Ai is 4 bytes, select aregister pair from the following list of combinations: [DX
AX] or [CX BX]. Thefirst available register pair is assigned to Ai and removed from the list of
available pairs. The high-order 16 bits of the argument are assigned to the first register in the
pair; the low-order 16 bits are assigned to the second register in the pair. 1f none of the above
register pairsis available, Ai will be assigned a position on the stack.

If thetype of Ai is"double" or "float" (in the absence of afunction prototype), select [AX BX
CX DX] from the list of availableregisters. All four registers are removed from the list of
available registers. The high-order 16 bits of the argument are assigned to the first register and
the low-order 16 bits are assigned to the fourth register. If any of the four registersis not
available, Ai will be assigned a position on the stack.

All other arguments will be assigned a position on the stack.

Arguments that are assigned a position on the stack are padded to a multiple of 2 bytes. That is,
if a 3-byte structure is assigned a position on the stack, 4 bytes will be pushed on the stack.

Arguments that are assigned a position on the stack are pushed onto the stack starting with the
rightmost argument.

7.4.2 Sizes of Predefined Types

The following table lists the predefined types, their size as returned by the "sizeof" function, the size of an
argument of that type and the registers used to pass that argument if it was the only argument in the

argument list.
Basic Type "sizeof" Argument Registers
Sze Used
char 1 2 [AX]
short int 2 2 [AX]
int 2 2 [AX]
long int 4 4 [DX AX]
float 4 8 [AX BX CX DX]
double 8 8 [AX BX CX DX]
near pointer 2 2 [AX]
far pointer 4 4 [DX AX]
huge pointer 4 4 [DX AX]

Note that the size of the argument listed in the table assumes that no function prototypes are specified.
Function prototypes affect the way arguments are passed. Thiswill be discussed in the section entitled
"Effect of Function Prototypes on Arguments”.

124 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default type as
described in the following table.

Argument Type Passed As
char unsigned int
signed char signed int
unsigned char unsigned int
float double

7.4.3 Size of Enumerated Types

Theintegral type of an enumerated type is determined by the values of the enumeration constants. In strict
ISO/ANSI C mode, al enumerated constants are of type i nt . In the extensions mode, the compiler will
use the smallest integral type possible (excluding | ong ints) that can represent al values of the enumerated
type. For instance, if the minimum and maximum values of the enumeration constants are in the range
—-128 and 127, the enumerated type will be equivalentto a si gned char (size=1 byte). All references
to enumerated constants in the previous instance will have type si gned char. Anenumerated constant
isaways promoted to an i nt when passed as an argument.

7.4.4 Effect of Function Prototypes on Arguments

Function prototypes define the types of the formal parameters of afunction. Their appearance affects the
way in which arguments are passed. An argument will be converted to the type of the corresponding
formal parameter in the function prototype. Consider the following example.

void prototype(float x, int i);
void main()

float x;
i nt i

x = 3.14;
i = 314;
prototype(x, i);

rtn(x, i);

}

The function prototype for pr ot ot ype specifies that the first argument isto be passed asa "float" and the
second argument is to be passed as an "int". Thisresultsin the first argument being passed in registers DX
and AX and the second argument being passed in register BX.

If no function prototype is given, asisthe case for the function r t n, thefirst argument will be passed as a
"double" and the second argument would be passed asan "int". Thisresultsin the first argument being
passed in registers AX, BX, CX and DX and the second argument being passed on the stack.

Note that even though both pr ot ot ype and r t n were called with identical argument lists, the way in
which the arguments were passed was completely different simply because a function prototype for

pr ot ot ype was specified. Function prototyping is an excellent way to guarantee that arguments will be
passed as expected to your assembly language function.

Calling Conventions for Non-80x87 Applications 125

16-bit Topics

7.4.5 Interfacing to Assembly Language Functions

Consider the following example.

Example:

voi d main()
long int x;
i nt i;
long int y;
X =7,
i = 77;
y = 777,
nyrtn(x, i, vy);

}
nmyr t n isan assembly language function that requires three arguments. The first argument is of type "long
int", the second argument is of type "int" and the third argument is again of type "longint". Using therules
for register-based calling conventions, these arguments will be passed to myr t n in the following way:

1. Thefirst argument will be passed in registers DX and AX leaving BX and CX as available
registers for other arguments.

2. The second argument will be passed in register BX leaving CX as an available register for other
arguments.

3. Thethird argument will not fit in register CX (its size is 4 bytes) and hence will be pushed on the
stack.

Let uslook at the stack upon entry to nyrt n.

Small Code Model
O f set
o a o +
0 | return address | <- SP points here
Fom e oo - +
2 | argument #3 |
I I
o e +
6 I I
Big Code Model
O f set
o a o +
0 | return address | <- SP points here
I I
o a o +
4 | argunent #3 [
I I
Fom e oo - +
8 | I

126 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Notes:

1. Thereturn addressisthe top element on the stack. In asmall code model, the return addressis 1
word (16 bits); in abig code model, the return address is 2 words (32 bits).

Register SP cannot be used as a base register to address the third argument on the stack. Register BPis
normally used to address arguments on the stack. Upon entry to the function, register BP is set to point to
the stack but before doing so we must save its contents. The following two instructions achieve this.

push BP ; save current value of BP
nov BP, SP ; get access to argunents

After executing these instructions, the stack looks like this.

Small Code Model
O f set
o a o +
0 | saved BP | <- BP and SP point here
Fom e oo - +
2 | return address |
S +
4 | argunent #3 |
I I
o a o +
8 I I
Big Code Model
O f set
o a o +
0 | saved BP | <- BP and SP point here
Fom e oo - +
2 | return address |
I I
S +
6 | argunment #3 |
I I
o a o +
10 I I

As the above diagrams show, the third argument is at offset 4 from register BP in asmall code model and
offset 6 in abig code model.

Upon exit from nyr t n, we must restore the value of BP. The following two instructions achieve this.

nov SP, BP ; restore stack pointer
pop BP ; restore BP

The following is a sample assembly language function which implements myrt n.

Calling Conventions for Non-80x87 Applications 127

16-bit Topics

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segnent byte public ' CODE

assumne CS: _TEXT

assune DS: DGROUP

public nyrtn_

myrtn_ proc near
push BP ; save BP
nmov BP, SP ; get access to argunents

body of function

nov SP, BP ; restore SP

pop BP ; restore BP

ret 4 ; return and pop last arg
nyrtn_ endp
_TEXT ends

Large Memory Model (big code, big data)

DGROUP group _DATA, _BSS

MYRTN_TEXT segnent byte public ' CODE
assune CS: MYRTN_TEXT

public nyrtn_

nyrtn_ proc far
push BP ; save BP
nmov BP, SP ; get access to argunents

; body of function

nov SP, BP ; restore SP

pop BP ; restore BP

ret 4 ; return and pop last arg
nyrtn_ endp

MYRTN_TEXT ends
Notes:

1. Global function names must be followed with an underscore. Global variable names must be
preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and AX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option.

3. Thedirection flag must be clear before returning to the caller.

4. Inasmall code model, any segment containing executable code must belong to the segment
" TEXT" and the class"CODE". Thesegment"_TEXT" must have a"combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment *_TEXT". In abig code
model there is no restriction on the naming of segments which contain executable code.

5. Inasmall data model, segment register DS contains the segment address of the group
"DGROUP'. Thisisnot the casein abig data model.

128 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. Ingeneral, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop those arguments
off the stack in the "ret" instruction.

7.4.6 Functions with Variable Number of Arguments

A function prototype with a parameter list that ends with ",..." has a variable number of arguments. In this
case, al arguments are passed on the stack. Since no prototyping information exists for arguments
represented by ",...", those arguments are passed as described in the section "Passing Arguments”.

7.4.7 Returning Values from Functions

The way in which function values are returned depends on the size of the return value. The following
exampl es describe how function values are to be returned. They are coded for a small code model.

1. 1-bytevaluesareto bereturned inregister AL.

Example:
_TEXT segnent byte public ' CODE
assune CS: _TEXT
public Retl_

Ret1_ proc near ; char Ret1()
nmov AL,' G
ret

Ret1_ endp

_TEXT ends
end

2. 2-bytevaluesareto bereturned in register AX.

Example:
_TEXT segment byte public ' CODFE
assune CS: TEXT
public Ret2_

Ret 2_ proc near ; short int Ret2()
nov AX, 77
ret

Ret2_ endp

_TEXT ends
end

3. 4-bytevauesareto bereturned in registers DX and AX with the most significant word in
register DX.

Calling Conventions for Non-80x87 Applications 129

16-bit Topics

Example:
_TEXT segnent byte public ' CODE
assune CS: _TEXT
public Ret4_

Ret4_ proc near ; long int Ret4()
mov AX,word ptr CS:Val 4+0
nmov DX, word ptr CS: Val 4+2
ret

Val 4 dd 7777777

Ret 4 _ endp

_TEXT ends
end

4. 8-bytevalues, except structures, are to be returned in registers AX, BX, CX and DX with the
most significant word in register AX.

Example:
. 8087
_TEXT segment byte public ' CODE
assune CS: TEXT
public Ret8_

Ret 8 proc near ; doubl e Ret8()
nmov DX, word ptr CS:Val 8+0
nmov CX,word ptr CS:Val 8+2
mov BX, word ptr CS:Val 8+4
nov AX,word ptr CS:Val 8+6
ret

Val 8: dg 7.7

Ret 8_ endp

_TEXT ends
end

The".8087" pseudo-op must be specified so that all floating-point constants are generated in
8087 format. When using the "fpc" (floating-point calls) option, "float" and "double" are
returned in registers. See section "Returning Valuesin 80x87-based Applications’ when using
the"fpi" or "fpi87" options.

5. Otherwise, the caller allocates space on the stack for the return value and sets register Sl to point

tothisarea. Inabig datamodel, register Sl contains an offset relative to the segment valuein
segment register SS.

130 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Example:
_TEXT segnent byte public ' CODE
assune CS: _TEXT
public RetX_
; struct int_values {
; int valuel, value2, value3, value4, val ueb;

1

Ret X_ proc near ; struct int_values RetX()
nmov word ptr SS:0[SI], 71
nmov word ptr SS:4[Sl], 72
nmov word ptr SS:8[Sl], 73
nmov word ptr SS:12[SI], 74
nmov word ptr SS:16[SI], 75
ret

Ret X_ endp

_TEXT ends
end

When returning values on the stack, remember to use a segment override to the stack segment
(SS).

The following is an example of a Open Watcom C/C++ program calling the above assembly language
subprograms.

#i ncl ude <stdi o. h>

struct int_values {

int val uel;

int val ue2;

int val ue3;

i nt val ue4;

int val ueb;
1
extern char Ret 1(voi d);
extern short int Ret 2(voi d);
extern long int Ret 4(voi d);
extern double Ret 8(voi d) ;

extern struct int_values RetX(void);
void main()
struct int_values x;

printf("Retl
printf("Ret2
printf("Ret4
printf("Ret8
x = Ret X();

%\n", Retl());
%\ n", Ret2());
%d\n", Retd());
%\n", Ret8());

printf("RetXl1 = %d\n", x.valuel);
printf("RetX2 = %\ n", x.value2);
printf("RetX3 = %\n", x.value3);
printf("RetX4 = %\ n", x.value4d);
printf("RetX5 = %\ n", x.value5);

Calling Conventions for Non-80x87 Applications 131

16-bit Topics

The above function should be compiled for a small code model (use the "ms* or "mc" compiler option).

7.5 Calling Conventions for 80x87-based Applications

When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87" options, al
floating-point arguments are passed on the 80x86 stack. The rules for passing arguments are as follows.

1. If theargument is not floating-point, use the procedure described earlier in this chapter.

2. If theargument is floating-point, it is assigned a position on the 80x86 stack.

7.5.1 Passing Values in 80x87-based Applications
Consider the following example.

Example:
extern void nmyrtn(int, float, double,long int);

voi d main()

fl oat X;
doubl e y;
i nt i;
long int j;

X

1.7,
i .

7,
y = 77.77

j 77,

nyrtn(i, X, VY, |);

}

myr t n isan assembly language function that requires four arguments. The first argument is of type "int" (
2 bytes), the second argument is of type "float" (4 bytes), the third argument is of type "double" (8 bytes)
and the fourth argument is of type "long int" (4 bytes). These argumentswill be passedto myrt ninthe
following way:

1. Thefirst argument will be passed in register AX leaving BX, CX and DX as available registers
for other arguments.

2. The second argument will be passed on the 80x86 stack sinceit is a floating-point argument.
3. Thethird argument will also be passed on the 80x86 stack since it is a floating-point argument.

4. Thefourth argument will be passed on the 80x86 stack since a previous argument has been
assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost argument is pushed
first.

Any assembly language function must obey the following rule.

1. All arguments passed on the stack must be removed by the called function.

132 Calling Conventions for 80x87-based Applications

16-bit Assembly Language Considerations

The following is a sample assembly language function which implements nmyr t n.

Example:

. 8087

_TEXT segnment byte public ' CODE

assune CS: _TEXT
public nmyrtn_

myrtn_ proc near

; body of function

ret 16 ; return and pop argunents
myrtn_ endp
_TEXT ends

end

Notes:

1

2.

Function names must be followed by an underscore.

All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and EAX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option. Inthisexample, AX does not have to be saved as it was used to pass the first argument.
Floating-point registers can be modified without saving their contents.

The direction flag must be clear before returning to the caller.

This function has been written for a small code model. Any segment containing executable code
must belong to the class "CODE" and the segment *_TEXT". On entry, CS contains the segment
address of the segment "_TEXT". The above restrictions do not apply in a big code memory
model.

When writing assembly language functions for asmall code model, you must declare them as
"near". If you wish to write assembly language functions for a big code model, you must declare
them as"far".

7.5.2 Returning Values in 80x87-based Applications

Floating-point values are returned in ST(0) when using the "fpi" or "fpi87" options. All other values are
returned in the manner described earlier in this chapter.

Calling Conventions for 80x87-based Applications 133

16-bit Topics

134 Calling Conventions for 80x87-based Applications

8 16-bit Pragmas

8.1 Introduction

A pragmais acompiler directive that provides the following capabilities.

* Pragmas allow you to specify certain compiler options.

* Pragmas can be used to direct the Open Watcom C/C++ code generator to emit specialized
sequences of code for calling functions which use argument passing and value return techniques that
differ from the default used by Open Watcom C/C++.

* Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the C/C++ language level. The code generator can use thisinformation to generate more efficient
code.

» Any seguence of in-line machine language instructions, including DOS and BIOS function calls, can
be generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is used to
describe the syntax of pragmas.

keywords A keywor d is shown in amono-spaced courier font.

program-item A program-item is shown in aroman bold-italicsfont. A program-item isasymbol name
or numeric value supplied by the programmer.

punctuation A punctuati on charact er showninamono-spaced courier font must be entered as
is.

A punctuation character shown in aroman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
alb|c One of a, b or ¢ may be specified.

a:=b The item a is defined in terms of b.

(@ Item ais evaluated first.

The following classes of pragmas are supported.

Introduction 135

16-bit Topics

* pragmas that specify options

* pragmas that specify default libraries

* pragmas that describe the way structures are stored in memory

* pragmas that provide auxiliary information used for code generation

8.2 Using Pragmas to Specify Options

Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles unused symbols.

check_stack

For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for al unused symbols. Thisis
the default. Specifying

#pragma of f (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Notethat if the warning level
is not high enough, warning messages for unused symbols will not be issued even if
"unreferenced” was specified.

The "check_stack" option controls the way stack overflows are to be handled. For
example,

#pragm on (check_stack);

will cause stack overflows to be detected and

#pragma of f (check_stack);

will cause stack overflows to beignored. When "check_stack" is on, Open Watcom C/C++
will generate arun-time call to a stack-checking routine at the start of every routine
compiled. Thisrun-time routine will issue an error if astack overflow occurs when
invoking the routine. The default isto check for stack overflows. Stack overflow checking
is particularly useful when functions are invoked recursively. Note that if the stack
overflows and stack checking has been suppressed, unpredictable results can occur.

If astack overflow does occur during execution and you are sure that your program is not
inerror (i.e. itisnot unnecessarily recursing), you must increase the stack size. Thisis
done by linking your application again and specifying the "STACK" option to the Open
Watcom Linker with alarger stack size.

It isalso possible to specify more than one option in apragma asillustrated by the
following example.

#pragma on (check_stack unreferenced);

136 Using Pragmas to Specify Options

16-bit Pragmas

reuse_duplicate strings (C only) (C Only) The "reuse_duplicate_strings" option controls the way Open
Watcom C handles identical stringsin an expression. For example,

#pragma on (reuse_duplicate_strings);

will cause Open Watcom C to reuse identical stringsin an expression. Thisisthe default.
Specifying

#pragma of f (reuse_duplicate_strings);

will cause Open Watcom C to generate additional copies of the identical string. The
following example shows where this may be of importance to the way the application
behaves.

Example:
#i ncl ude <stdio. h>

#pragma of f (reuse_duplicate_strings)

voi d poke(char *, char *);
void main()

poke("Hello world\n", "Hello world\n");
}

voi d poke(char *x, char *y)

{
X[3] ="'X;
printf(x);
y[4 ="Y;
printf(y);

/*

Def aul t out put:
Hel Xo worl d

Hel XY wor | d

*/

8.3 Using Pragmas to Specify Default Libraries

Default libraries are specified in special object module records. Library names are extracted from these
special records by the Open Watcom Linker. When unresolved references remain after processing all
object modules specified in linker "FILE" directives, these default libraries are searched after all libraries
specified in linker "LIBRARY" directives have been searched.

By default, that isif no library pragmais specified, the Open Watcom C/C++ compiler generates, in the
object file defining the main program, default libraries corresponding to the memory model and
floating-point model used to compilethefile. For example, if you have compiled the source file containing
the main program for the medium memory model and the floating-point calls floating-point model, the
libraries "clibm" and "mathm™ will be placed in the object file.

If you wish to add your own default libraries to thislist, you can do so with alibrary pragma. Consider the
following example.

Using Pragmas to Specify Default Libraries 137

16-bit Topics

#pragma |ibrary (nylib);
The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characterssuch as’\’,’:’ or’,’ (i.e., any character not allowedinaC
identifier), you must enclose it in double quotes as in the following example.

#pragma |library ("\watcom|i b286\dos\graph.lib");
#pragma library ("\watcom|ib386\dos\graph.lib");

If you wish to specify more than one library in alibrary pragmayou must separate them with spacesasin
the following example.

#pragma library (mylib "\watcom | i b286\dos\graph.lib");
#pragma library (nmylib "\watcom|ib386\dos\graph.lib");

8.4 The ALIAS Pragma (C Only)

The"alias" pragma can be used to emit alias records in the object file, causing the linker to substitute
references to a specified symbol with references to another symbol. Either identifiers or names (strings)
may be used. Strings are used verbatim, while names corresponding to identifiers are derived as
appropriate for the kind and calling convention of the symbol. The following describes the form of the
"alias" pragma.

#pragma alias (alias, subst) [;]

where description:

alias is either aname or an identifier of the symbol to be aiased.

subst is either aname or an identifier of the symbol that referencesto al i as will be replaced
with.

Consider the following example.
extern int var;

void fn(void)

#pragma alias (var, "other_var");

Instead of var the linker will reference symbol named "other_var". Symbol var need not be defined,
although "other_var" hasto be.

138 The ALIAS Pragma (C Only)

16-bit Pragmas

8.5 The ALLOC_TEXT Pragma (C Only)

The"alloc_text" pragma can be used to specify the name of the text segment into which the generated code
for afunction, or alist of functions, isto be placed. The following describes the form of the "alloc_text"

pragma.

#pragma all oc_text (seg_name, fn {, fn}) [;]

where description:
seg_name is the name of the text segment.
fn is the name of afunction.

Consider the following example.
extern int fnl(int);

extern int fn2(void);
#pragma alloc_text (ny_text, fnl, fn2);

The code for the functions f n1 and f n2 will be placed in the segment my_t ext . Note: function
prototypes for the named functions must exist prior to the "aloc_text" pragma.

8.6 The CODE_SEG Pragma

The "code_seg" pragma can be used to specify the name of the text segment into which the generated code
for functionsisto be placed. The following describes the form of the "code_seg" pragma.

#pragma code_seg (seg nhame [, class hame]) [;]

where description:
seg_name is the name of the text segment optionally enclosed in quotes. Also, seg_name may bea
macro asin:

#defi ne seg_nane "MY_CODE_ SEG'
#pragm code_seg (seg_hame);

class name isthe optional class name of the text segment and may be enclosed in quotes. Please note
that in order to be recognized by the linker as code, a class name hasto end in "CODE".
Also, cl ass__nane may beamacro asin:

#defi ne cl ass_nane " My_CODE"
#pragma code_seg ("MY_CODE_SEG', class_nane);

Consider the following example.

The CODE_SEG Pragma 139

16-bit Topics

#pragma code_seg (my_text);
int incr(int i)

return(i +1);

}
int decr(int i)
{
return(i - 1);
}

The code for the functions i ncr and decr will be placed in the segment ny_t ext .

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragm code_seg ();

8.7 The COMMENT Pragma

The "comment" pragma can be used to place acomment record in an object file or executablefile. The
following describes the form of the "comment" pragma.

#pragma coment (comment_type [, "comment_string"]) [;]

where description:
comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records. Library
names are extracted from these special records by the Open Watcom
Linker. When unresolved references remain after processing all object
modules specified in linker "FILE" directives, these default libraries are
searched after all libraries specified in linker "LIBRARY" directives have
been searched.

The"lib" form of this pragma offers the same features as the "library"
pragma. Seethe section entitled "Using Pragmas to Specify Default
Libraries' on page 137 for more information.

" comment_string" isan optional string literal that provides additional information for some comment
types.

Consider the following example.

#pragma coment (lib, "nylib");

140 The COMMENT Pragma

16-bit Pragmas

8.8 The DATA_SEG Pragma

The"data_seg" pragma can be used to specify the name of the segment into which dataisto be placed. The
following describes the form of the "data_seg" pragma.

#pragma data_seg (seg name [, class hame]) [;]

where description:
seg_name is the name of the data segment and may be enclosed in quotes. Also, seg_nane may be
amacro asin:

#defi ne seg_nanme "MY_DATA SEG'
#pragm data_seg (seg _hane);

class name isthe optional class name of the data segment and may be enclosed in quotes. Also,
cl ass_nane may beamacro asin;

#def i ne cl ass_nane "My_CLASS"
#pragma data_seg ("MY_DATA SEG', class_nane);

Consider the following example.
#pragma data_seg (my_data);

static int i;
static int j;

Thedatafori andj will be placed in the segment ny _dat a.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma data_seg ();

8.9 The DISABLE_MESSAGE Pragma (C Only)

The "disable_message" pragma disables the issuance of specified diagnostic messages. The form of the
"disable_message" pragmais as follows.

#pragma di sabl e_nessage (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This humber corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages' on page 301. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

The DISABLE_MESSAGE Pragma (C Only) 141

16-bit Topics

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

8.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)

The "dump_object model" pragma causes the C++ compiler to print information about the object model for
an indicated class or an enumeration name to the diagnostics file. For class names, thisinformation
includes the offsets and sizes of fields within the class and within base classes. For enumeration names,
thisinformation consists of alist of al the enumeration constants with their values.

The general form of the "dump_object_model" pragmais as follows.

#pragm
#pragma

dunp_obj ect _nodel class [;]
dunp_obj ect _nodel enumeration [;]

class::= adefined C++ classfreeof errors
enumer ation ::= a defined C++ enumer ation name

This pragmais designed to be used for information purposes only.

8.11 The ENABLE_MESSAGE Pragma (C Only)

The "enable_message" pragma re-enables the issuance of specified diagnostic messages that have been
previously disabled. The form of the "enable_message" pragmais as follows.

#pragma enabl e_nmessage (msg_num {, msg hum}) [;]
where description:
msg_num is the number of the diagnostic message. This number corresponds to the number issued by

the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages' on page 301. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 141.

8.12 The ENUM Pragma

The "enum" pragma affects the underlying storage-definition for subsequent enum declarations. The forms
of the "enum" pragma are as follows.

#pragm
#pragma
#pragma
#pragma

enumint [;]
enum m ni mum [;]
enumoriginal [;]
enum pop [;]

142 The ENUM Pragma

16-bit Pragmas

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei" compiler
option).

original Reset back to the original compiler option setting (i.e., what was or was not specified on the

command line).
pop Restore the previous setting.

Thefirst three forms al push the previous setting before establishing the new setting.

8.13 The ERROR Pragma

The"error" pragma can be used to issue an error message with the specified text. The following describes
the form of the "error" pragma.

#pragma error "errortext" [;]

where description:
"error text" isthetext of the message that you wish to display.

Y ou should use the ISO #error directive rather than this pragma. This pragmais provided for compatibility
with legacy code. The following isan example.

#if defined(__386_)
#el sei f defined(_ 86)
#el sé' '

#pragma error ("neither _ 386__ or _ 86 __ defined");
#endi f

8.14 The EXTREF Pragma

The "extref" pragmais used to generate a reference to an external function or dataitem. The form of the
"extref" pragmais asfollows.

#pragma extref name [;]

The EXTREF Pragma 143

16-bit Topics

where description:

name is the name of an external function or dataitem. It must be declared to be an external
function or data item before the pragmais encountered. In C++, when name isafunction,
it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the object file even
if that function or dataitem is not referenced in the module. The external reference will cause the linker to
include the module containing that name in the linked program or DLL.

Thisis useful for debugging since you can cause debugging routines (callable from within debugger) to be
included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without necessarily
referencing the data item anywhere in your code.

8.15 The FUNCTION Pragma

Certain functions, such as those listed in the description of the "oi" and "om" options, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a specia way.
For example, the compiler may choose to generate in-line code for the function. Theintrinsic attribute for
these special functionsis set by specifying the "oi" or "om" option or using an "intrinsic" pragma. The
"function" pragma can be used to remove the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:
fn isthe name of afunction.

Suppose the following source code was compiled using the "om" option so that when one of the special
math functionsis referenced, the intrinsic form will be used. In our example, we have referenced the
function si n which does have an intrinsic form. By specifying si n ina"function" pragma, the intrinsic
attribute will be removed, causing the function si n to be treated as a regular user-defined function.

#i ncl ude <mat h. h>
#pragma function(sin);

doubl e test(double x)

return(sin(x));

144 The FUNCTION Pragma

16-bit Pragmas

8.16 The INCLUDE_ALIAS Pragma

In certain situations, it can be advantageous to remap the names of include files. Most commonly this
occurs on systems that do not support long file names when building source code that references header
fileswith long names.

The form of the "include_alias" pragmafollows.

#pragma include_alias ("alias name', "rea name") [;]
#pragma i nclude_alias (<alias name>, <real name>) [;]

where description:
alias name isthe namereferenced ininclude directives in source code.
real_name is the trand ated name that the compiler will reference instead.

The following is an example.

#pragma i nclude_alias("LongFil eNane.h", "Ifn.h")
#i ncl ude "LongFi | eNane. h"

In the example, the compiler will attempt to read Ifn.h when LongFileName.h was included.

Note that only simple textual substitution is performed. The aliased name must match exactly, including
double quotes or angle brackets, as well as any directory separators. Also, double quotes and angle
brackets may not be mixed a single pragma.

Thevalue of the predefined __FI LE__ symbol, as well as the filename reported in error messages, will be
the true filename after substitution was performed.

8.17 Setting Priority of Static Data Initialization (C++ Only)

The"initialize" pragma sets the priority for initialization of static datain thefile. This priority only applies
to initialization of static data that requires the execution of code. For example, the initialization of a class
that contains a constructor requires the execution of the constructor. Note that if the sequence in which
initialization of static datain your program takes place has no dependencies, the "initialize" pragma need
not be used.

The general form of the "initialize" pragmaisasfollows.

#pragnma initialize [before | after] priority [;]

priority::= n | library | program

Setting Priority of Static Data Initialization (C++ Only) 145

16-bit Topics

where description:

n isanumber representing the priority and must be in the range 0-255. The larger the
priority, the later the point at which initialization will occur.

Prioritiesin the range 0-20 are reserved for the C++ compiler. Thisisto ensure that proper initialization of
the C++ run-time system takes place before the execution of your program. The "library" keyword
represents a priority of 32 and can be used for class libraries that require initialization before the program is
initialized. The "program" keyword represents a priority of 64 and is the default priority for any compiled
code. Specifying "before" adjusts the priority by subtracting one. Specifying "after" adjusts the priority by
adding one.

A sourcefile containing the following "initialize" pragma specifies that the initialization of static datain the
file will take place before initialization of al other static data in the program since a priority of 63 will be
assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before”, the initialization of the static datain the file will occur after
initialization of all other static datain the program since a priority of 65 will be assigned.

Note that the following is equivalent to the "before" example

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program” keywords are more descriptive in the intent of the pragmas.
It is recommended that a priority of 32 (the priority used when the "library" keyword is specified) be used
when developing class libraries. Thiswill ensure that initialization of static data defined by the class
library will take place before initialization of static data defined by the program. The following "initialize"
pragma can be used to achievethis.

Example:
#pragma initialize library

8.18 The INLINE_DEPTH Pragma (C++ Only)

When an in-line function is called, the function call may be replaced by the in-line expansion for that
function. Thisin-line expansion may include callsto other in-line functions which can also be expanded.
The"inline_depth" pragma can be used to set the number of times this expansion of in-line functions will
occur for acall.

The form of the "inline_depth" pragmais as follows.

146 The INLINE_DEPTH Pragma (C++ Only)

16-bit Pragmas

#pragma inline_depth [(1 n D] [;]

where description:

n isthe depth of expansion. If n is0, no expansion will occur. If nis1, only theoriginal call
isexpanded. If nis2, theoriginal call and the in-line functions invoked by the original
function will be expanded. The default value for n is3. The maximum value for n is 255.
Note that no expansion of recursive in-line functions occur unless enabled using the
"inline_recursion” pragma.

8.19 The INLINE_RECURSION Pragma (C++ Only)

The"inline_recursion" pragma controls the recursive expansion of inline functions. The form of the
"inline_recursion” pragmais as follows.

#pragma inline_recursion [(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion is specified by
the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses expansion of recursive
inline functions. Thisisthe default.

8.20 The INTRINSIC Pragma

Certain functions, those listed in the description of the "oi" option, have intrinsic forms. These functions
are special functions that are recognized by the compiler and processed in a special way. For example, the
compiler may choose to generate in-line code for the function. The intrinsic attribute for these special
functionsis set by specifying the "oi" option or using an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:
fn is the name of afunction.
Suppose the following source code was compiled without using the "oi" option so that no function had the

intrinsic attribute. 1f we wanted the intrinsic form of the si n function to be used, we could specify the
function in an "intrinsic" pragma.

The INTRINSIC Pragma 147

16-bit Topics

#i ncl ude <mat h. h>
#pragma intrinsic(sin);

doubl e test(double x)

{
}

return(sin(x));

8.21 The MESSAGE Pragma

The "message" pragma can be used to issue a message with the specified text to the standard output without
terminating compilation. The following describes the form of the "message” pragma.

#pragma nmessage ("messagetext") [;]

where description:
"message text" isthe text of the message that you wish to display.

Thefollowing is an example.
#if defined(__386__)
#el se

#pragm nessage ("assuming 16-bit conpile");
#endi f

8.22 The ONCE Pragma

The "once" pragma can be used to indicate that the file which contains this pragma should only be opened
and processed "once". The following describes the form of the "once" pragma.

#pragm once [;]

Assume that the file "foo.h" contains the following text.

Example:
#i f ndef _FOO_H_| NCLUDED
#define _FOO H_| NCLUDED
#pragnma once

#endi.f

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it records the file's
name. Subseguently, whenever the compiler encountersa #i ncl ude statement that refersto "foo.h", it

148 The ONCE Pragma

16-bit Pragmas

will not open the include file again. This can help speed up processing of #i ncl ude files and reduce the
time required to compile an application.

8.23 The PACK Pragma

The "pack" pragma can be used to control the way in which structures are stored in memory. There are 4
forms of the "pack” pragma.

The following form of the "pack” pragma can be used to change the alignment of structures and their fields
in memory.

#pragma pack (n) [;]

where description:
n is1, 2, 4, 8 or 16 and specifies the method of alignment.
The alignment of structure membersis described in the following table. If the size of the member is1, 2, 4,

8 or 16, the alignment is given for each of the "zp" options. If the member of the structureis an array or
structure, the alignment is described by the row "x".

zpl zp2 zp4 zp8 zpl6
sizeof (menber) \----------iim
| 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
X | aligned to | argest nenber

An aignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc. If the
largest member of structure "x" is 1 byte then "x" isnot aligned. If the largest member of structure "x" is 2
bytes then "x" is aligned according to row 2. If the largest member of structure "x" is 4 bytesthen "X" is
aligned according to row 4. If the largest member of structure "x" is 8 bytes then "x" is aligned according
torow 8. If the largest member of structure "x" is 16 bytesthen "x" is aligned according to row 16.

If no value is specified in the "pack" pragma, a default value of 2 isused. Note that the default value can be
changed with the "zp" Open Watcom C/C++ compiler command line option.

The following form of the "pack” pragma can be used to save the current alignment amount on an internal
stack.

#pragma pack (push) [;]

The following form of the "pack” pragma can be used to save the current alignment amount on an internal
stack and set the current alignment.

The PACK Pragma 149

16-bit Topics

#pragma pack (push, number) [;]

The following form of the "pack™ pragma can be used to restore the previous alignment amount from an
internal stack.

#pragma pack (pop) [;]

8.24 The READ _ONLY_FILE Pragma

Explicit listing of dependenciesin a makefile can often be tedious in the development and maintenance
phases of aproject. The Open Watcom C/C++ compiler will insert dependency information into the object
file asit processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. The"read_only_file" pragma can be used to prevent the name of the source file that includes it
from being included in the dependency information that is written to the object file.

This pragmais commonly used in system header files since they change infrequently (and, when they do,
there should be no impact on source files that have included them).

The form of the "read_only_file" pragmafollows.

#pragma read_only file [;]

For more information on make dependencies, see the section entitled "Automatic Dependency Detection
(\AAUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

8.25 The TEMPLATE_DEPTH Pragma (C++ Only)

The "template_depth” pragma provides a hard limit for the amount of nested template expansions allowed
so that infinite expansion can be detected.

The form of the "template_depth" pragmais as follows.

#pragma tenplate_depth [(] n D] [;]

where description:

n isthe depth of expansion. If the value of n islessthan 2, if will default to 2. If n isnot
specified, awarning message will be issued and the default value for n will be 100.

The following example of recursive template expansion illustrates why this pragma can be useful.

150 The TEMPLATE_DEPTH Pragma (C++ Only)

16-bit Pragmas

Example:
#pragma tenpl ate_dept h(10);

tenpl ate <class T>

struct S {
S<T*> x;
b

S<char > v;

8.26 The WARNING Pragma (C++ Only)

The"warning" pragma sets the level of warning messages. The form of the "warning" pragmais as
follows.

#pragnma war ni ng msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C++ Diagnostic
Messages' on page 333. If nsg_numis™*", the level of all warning messages is changed
to the specified level. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

level isanumber from 0 to 9 and represents the level of the warning message. When avalue of
zero is specified, the warning becomes an error.

8.27 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

8.27.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initialy, the compiler defines
adefault set of attributes. Each auxiliary pragmarefers to one of the following.

1. asymbol (such as avariable or function)
2. atypedefinition that resolvesto afunction type
3. thedefault set of attributes defined by the compiler

When an auxiliary pragmarefersto a particular symbol, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragmathat refers to the same
symbol.

An example of atype definition that resolves to a function typeis the following.

Auxiliary Pragmas 151

16-bit Topics

typedef void (*func_type)();

When an auxiliary pragmarefers to a such atype definition, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to each function whose type matches the specified type definition.

When "default” is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specificaly referenced by a previous auxiliary pragma.

Note that al auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which synbol x is referenced
#pragnma aux y <attrs_1>;

code in which synbol y is referenced
code in which synbol z is referenced
#pragma aux default <attrs_2>;
#pragma aux x <attrs_3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>and<attrs_3>.

2. Symbol y isassigned theinitial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>.

8.27.2 Alias Names

When asymbol referred to by an auxiliary pragmaincludes an alias name, the attributes of the alias name
are aso assumed by the specified symbol.

There are two methods of specifying diasinformation. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general
sinceit is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an aliasis asfollows.

#pragma aux (sym, alias) [;]

152 Auxiliary Pragmas

16-bit Pragmas

where description:
sym isany valid C/C++ identifier.
alias isthe alias name and is any valid C/C++ identifier.

Consider the following example.

#pragma aux push_args parm|[] ;
#pragma aux (rtn, push_args)

Theroutine r t n assumes the attributes of the alias name push_ ar gs which specifies that the arguments
tort n are passed on the stack.

Let uslook at an example in which the symbal is a type definition.
typedef void (func_type)(int);

#pragnma aux push_args parm[];
#pragma aux (func_type, push_args);

extern func_type rtnl;
extern func_type rtn2;

Thefirst auxiliary pragma defines an alias name called push_ ar gs that specifies the mechanism to be
used to pass arguments. The mechanism isto pass al arguments on the stack. The second auxiliary
pragma associ ates the attributes specified in the first pragma with the type definition f unc_t ype. Since
rtnlandrtn2areof typefunc_type, argumentsto either of those functionswill be passed on the
stack.

The general form of an auxiliary pragmathat can be used to specify an aliasis as follows.

#pragma aux (alias) sym aux_attrs [;]

where description:

alias isthe alias name and is any valid C/C++ identifier.

sym isany valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

#pragm aux Ms_C "_*" \
parmcaller [] \
val ue struct float struct routine [ax]\
nmodi fy [ax bx cx dx es];

#pragma aux (Ms_C) rtnil;

#pragma aux (Ms_C) rtn2;

#pragma aux (Ms_C) rtn3;

Auxiliary Pragmas 153

16-bit Topics

Theroutinesrt nl, rtn2 andrt n3 assume the same attributes as the alias name M5_ C which defines the
calling convention used by the Microsoft C compiler. Whenever callsaremadeto rtnl, rtn2 and
rtn3, theMicrosoft C calling convention will be used.

Note that if the attributes of M5_ C change, only one pragma needs to be changed. If we had not used an
alias name and specified the attributes in each of the three pragmasfor rtnl, rtn2 andrt n3, wewould
have to change al three pragmas. This approach also reduces the amount of memory required by the
compiler to process the sourcefile.

WARNING! The alias name M5_ Cisjust another symbol. If M5_ C appeared in your source code, it
would assume the attributes specified in the pragmafor M5_C.

8.27.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. The following isalist of these symbols.

__cdecl __cdecl orcdecl definesthe calling convention used by Microsoft compilers.
_ fastcall __fastcall orfastcall definesthe calling convention used by Microsoft compilers.
_ fortran __fortranorfortran definesthe calling convention used by Open Watcom

FORTRAN compilers.

__pascal __pascal orpascal definesthe calling convention used by OS/2 1.x and Windows 3.x
API functions.

__stdcall __stdcal | orstdcal | definesthe calling convention used by Microsoft compilers.

__watcall __watcal | orwat cal | definesthe calling convention used by Open Watcom
compilers.

The following describes the attributes of the above alias names.

8.27.3.1 Predefined " _cdecl" Alias

#pragma aux __cdecl " _*" \
parmcaller [] \
val ue struct float struct routine [ax] \
nmodi fy [ax bx cx dx es]

Notes:
1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register AX.

154 Auxiliary Pragmas

16-bit Pragmas

4. RegistersAX, BX, CX and DX, and segment register ES are not saved and restored when a call
ismade.

8.27.3.2 Predefined "__pascal” Alias

#pragma aux __pascal "'\
parmreverse routine [] \
val ue struct float struct caller [] \
nmodi fy [ax bx cx dx es]

Notes:
1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register AX will
contain address of the space allocated for the return value.

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored when a call
ismade.

8.27.3.3 Predefined " _watcall" Alias

#pragm aux __watcall "*_ " \
parmroutine [ax bx cx dx] \
val ue struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have
been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the arguments if any were pushed on the stack.

3. When astructureis returned, the caller allocates space on the stack. The address of the allocated
spaceisput into Sl register. The called routine then places the return value there. Upon
returning from the call, register AX will contain address of the space allocated for the return

value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

Auxiliary Pragmas 155

16-bit Topics

8.27.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol from its
source form to its object form.

#pragm aux sym obj_name [;]

where description:
sym isany valid C/C++ identifier.
obj_name isany character string enclosed in double quotes.

When specifying obj _nane, some characters have a special meaning:

where description:
* is unmodified symbol name
n is symbol name converted to uppercase

! is symbol name converted to lowercase

is aplaceholder for "@nnn", where nnn is size of all function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character istreated asliteral

Several examples of source to object form symbol name trandlation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.
#pragma aux MyRtn "*_";

Thisisthe default for all function names.

In the following example, the name "MyVar" will bereplaced by "_MyVar" in the object file.
#pragma aux Myvar "_*"

Thisisthe default for all variable names.

In the following example, the lower case version "myrtn" will be placed in the object file.
#pragma aux MyRtn "I";

In the following example, the upper case version "MY RTN" will be placed in the object file.
#pragma aux MyRtn "A";

In the following example, the name "MyRtn" will be replaced by *_MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

156 Auxiliary Pragmas

16-bit Pragmas

#pragma aux MyRtn "_*#",

In the following example, the name "MyRtn" will be replaced by " MyRtn#" in the object file.

#pragm aux MyRtn " _*\#";

The default mapping for al symbols can also be changed as illustrated by the following example.

#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character (").

8.27.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a function isto be called.

#pragma aux sym far [;]
or
#pragm aux sym near [;]
or
#pragma aux sym = in_line [;]

in_line::={ const | (seqg id) | (of f set id) | (rel of f id)

| (f | oat fpinst) |"asm" }

where

const

fpinst

offset
rel of f

asm

description:

is afunction name.

isavalid C/C++ integer constant.
isany valid C/C++ identifier.

is a sequence of bytesthat forms avalid 80x87 instruction. The keyword float must
precede f pi nst so that special fixups are applied to the 80x87 instruction.

specifies the segment of the symbol i d.
specifies the offset of the symbol i d.
specifies the relative offset of the symbol i d for near control transfers.

is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate afar call to the function nyrt n.

#pragnma aux nyrtn far;

Auxiliary Pragmas

157

16-bit Topics

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, afar call will be generated even if you are compiling for amemory model with a
small code model.

In the following example, Open Watcom C/C++ will generate anear call to the function nyrt n.

#pragma aux nyrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, anear call will be generated even if you are compiling for amemory model with a
big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes following the "="
character in the auxiliary pragmawhenever acall to node4 isencountered. node4 iscaled anin-line
function.

voi d node4(void);

#pragm aux node4 = \
0Oxb4 0x00 /* nov AH, 0 */ \
0xb0 0x04 /* nov AL, 4 */ \
Oxcd 0x10 /* int 10H */ \

nodify [AH AL];

The sequence in the above DOS exampl e represents the following lines of assembly language instructions.

nov AH, 0 ; select function "set node"
nov AL, 4 ; specify node (node 4)
i nt 10H ; BIOS video call

The above example demonstrates how to generate BIOS function callsin-line without writing an assembly
language function and calling it from your C/C++ program. The C prototype for the function node4 is not
necessary but isincluded so that we can take advantage of the argument type checking provided by Open
Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

voi d node4(void);
#pragm aux node4 =
"mov AH, 0",
"mov AL, 4",
"int 10H"
nmodify [AH AL];

P

If a sequence of in-line assembly language instructions contains 80x87 floating-point instructions, each
floating-point instruction must be preceded by "float". Note that thisis only required if you have specified
the "fpi" compiler option; otherwiseit will be ignored.

The following example generates the 80x87 "square root" instruction.
doubl e nysqrt (doubl e);
#pragma aux mysqrt parm [8087] =\
float 0xd9 Oxfa /* fsqrt */;

A sequence of in-line assembly language instructions may contain symbolic references. In the following
example, anear cal to the function nyal i as is made whenever nyr t n iscalled.

158 Auxiliary Pragmas

16-bit Pragmas

extern void nyalias(void);

voi d nyrtn(void);

#pragma aux myrtn = \
0xe8 rel off myalias /* near call */;

In the following example, afar call to the function nmyal i as is made whenever myr t n iscalled.

extern void nyalias(void);

voi d nyrtn(void);

#pragm aux nmyrtn = \
0Ox9a offset nyalias seg nyalias /* far call */;

8.27.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). Thisisusualy the caseif you are using alarge
data memory model. Suppose you wish to call afunction that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced
to compile your application so that the segment register DS contained the default data segment (asmall data
memory model).

The following form of the auxiliary pragmawill cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified function.

#pragm aux sym parm | oadds [;]

where description:
sym isafunction name.
Alternatively, the following form of the auxiliary pragmawill cause the segment register DS to be loaded

with the segment address of the default data segment as part of the prologue sequence for the specified
function.

#pragma aux sym |oadds [;]

where description:

sym isafunction name.

8.27.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in adynamic link library is asymbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbolsin dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method isto use the following form of the
auxiliary pragma.

Auxiliary Pragmas 159

16-bit Topics

#pragma aux sym export [;]

where description:

sym isafunction name.

8.27.5.3 Defining Windows Callback Functions

When compiling a Microsoft Windows application, you must use the "zZW" option so that specia
prologue/epil ogue sequences are generated. Furthermore, callback functions require larger

prol ogue/epil ogue sequences than those generated when the "zZW" compiler option is specified. The
following form of the auxiliary pragmawill cause a callback prologue/epilogue sequence to be generated
for a callback function when compiled using the "zZW" option.

#pragma aux sym export [;]

where description:
sym isacallback function name.
Alternatively, the "zw" compiler option can be used to generate callback prologue/epilogue sequences.

However, all functions contained in a module compiled using the "zw" option will have a callback
prologue/epil ogue sequence even if the functions are not callback functions.

8.27.5.4 Forcing a Stack Frame

Normally, afunction contains a stack frame if arguments are passed on the stack or an automatic variable is
allocated on the stack. No stack frame will be generated if the above conditions are not satisfied. The
following form of the auxiliary pragmawill force a stack frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym isafunction name.

8.27.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++ isto use for
calling functions. Thisis particularly useful when interfacing to functions that have been compiled by

other compilers or functions written in other programming languages.

The general form of an auxiliary pragmathat describes argument passing is the following.

160 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym parm {pop_info|reverse |{reg_set}} [;]

pop_info::= caller | routine

where description:

sym isafunction name.

reg_set iscaled aregister set. Theregister sets specify the registersthat are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

8.27.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular function.

#pragma aux sym parm {reg_set} [;]

where description:

sym isafunction name.

reg_set iscalled aregister set. The register sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within aregister set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type float and double are aways pushed on the stack when the "fpi* or "fpi87"
option is used.

double Arguments of type double can only be passed in the following register combination:
AX:BX:CX:DX. For example, if the following register set was specified for aroutine
having an argument of type double,

[AX BX SI DI]

the argument would be pushed on the stack since avalid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type double is supported only when the "fpc" option isused. Note that this argument
passing method does not include the passing of 8-byte structures.

Auxiliary Pragmas 161

16-bit Topics

far pointer A far pointer can only be passed in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DlI, DI:Sl,
SI:BX, BX:AX, DS.CX, DS.DX, DS:DI, DS:Sl, DS:BX, DS:AX, ES:CX, ES:.DX, ES:DI,
ES:SI, ES:BX or ESAX. For example, if afar pointer is passed to a function with the
following register set,

[ES BP]

the argument would be pushed on the stack since avalid register combination for afar
pointer is not contained in the register set.

longint, float Theonly registersthat will be assigned to 4-byte arguments (e.g., arguments of type long
int,) are: DX:AX, CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DlI, DX:Sl, DI:BX,
SI:AX, CX:DX, DX:DI, DI:Sl, SI:BX and BX:AX. For example, if the following register
set was specified for aroutine with one argument of type long int,

[ES DI]

the argument would be pushed on the stack since avalid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes 4-byte structures. Note that this argument passing method includes arguments of
type float but only when the "fpc" option is used.

int The only registersthat will be assigned to 2-byte arguments (e.g., arguments of type int)
are: AX, BX, CX, DX, Sl and DI. For example, if the following register set was specified
for aroutine with one argument of typeint,

[BF]

the argument would be pushed on the stack since avalid register combination for 2-byte
arguments is not contained in the register set.

char Arguments whose sizeis 1 byte (e.g., arguments of type char) are promoted to 2 bytes and
are then assigned registers as if they were 2-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

Notes:
1. Thedefault register set is[AX BX CX DX].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX.

3. If you are compiling for amemory model with asmall data model, or the "zdp" compiler option
is specified, any register combination containing register DS becomesillegal. Inasmall data
model, segment register DS must remain unchanged as it pointsto the program’ s data segment.
Note that the "zdf" compiler option can be used to specify that register DS does not contain that

162 Auxiliary Pragmas

16-bit Pragmas

segment address of the program’ s data segment. In this case, register combinations containing
register DS are legal .

Consider the following example.
#pragma aux nmyrtn parm[ax bx cx dx] [bp si];
Suppose myr t n isaroutine with 3 arguments each of typelong int.

1. Thefirst argument will be passed in the register pair DX:AX.

2. The second argument will be passed in the register pair CX:BX.

3. Thethird argument will be pushed on the stack since BP:Sl is not avalid register pair for
arguments of typelong int.

It is possible for registers from the second register set to be used before registers from the first register set
areused. Consider the following example.

#pragma aux nmyrtn parm[ax bx cx dx] [si di];

Suppose myr t n isaroutine with 3 arguments, the first of type int and the second and third of type long
int.

1. Thefirst argument will be passed in the register AX.
2. The second argument will be passed in the register pair CX:BX.
3. Thethird argument will be passed in the register set DI:Sl.

Note that registers are no longer selected from aregister set after registers are selected from subsequent
register sets, even if al registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:
1. If asingle empty register set is specified, al arguments are passed on the stack.

2. If noregister set is specified, the default register set [AX BX CX DX] is used.

8.27.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say "mycopy", that
copiesdata. The first argument is the source, the second argument is the destination, and the third
argument isthe length to copy. If we want the first argument to be passed in the register Sl, the second
argument to be passed in register DI and the third argument to be passed in register CX, the following
auxiliary pragma can be used.

voi d nycopy(char near *, char *, int);
#pragma aux mycopy parm[SI] [DI] [CX;

Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

Auxiliary Pragmas 163

16-bit Topics

8.27.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is described by an
auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line functions is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom C/C++ assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line function called

scrol | acti vepgup.

voi d scrollactivepgup(char, char, char, char, char, char);
#pragma aux scrollactivepgup =\
“mov AH, 6" \

"int 10h" \
parm[ch] [cl] [dh] [dI] [al] [bh] \
nodi fy [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. Therow and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. Therow and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. Thenumber of lines blanked at the bottom of the window is passed in register AL.

4. Theattribute to be used on the blank linesis passed in register BH.
When passing arguments, Open Watcom C/C++ will convert the argument so that it fits in the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrol | acti vepgup was called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if anin-line function required its argument in register
pair DX:AX and the argument was of type short int, the argument would be converted to long int before
assigning it to register pair DX:AX.
In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of asingle 8-hit register (1 byte) is assigned atype of unsigned char.

2. A register set consisting of asingle 16-bit register (2 bytes) is assigned atype of unsigned short
int.

3. A register set consisting of two 16-hit registers (4 bytes) is assigned atype of unsigned long int.

4. A register set consisting of four 16-bit registers (8 bytes) is assigned atype of double.

8.27.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

164 Auxiliary Pragmas

16-bit Pragmas

#pragm aux sym parm (caller | routine) [;]

where description:

sym isafunction name.

"caller" specifiesthat the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routing" is omitted, "routine" is assumed

unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

8.27.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

#pragm aux sym parmreverse [;]

where description:

sym isafunction name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments
are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing argumentsis most useful for functions that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such a function.

#pragma aux rtn parmreverse [];

8.27.7 Describing Function Return Information
Using auxiliary pragmas, you can describe the way functions areto return values. Thisis particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in

other programming languages.

The general form of an auxiliary pragmathat describes the way a function returnsits value is the following.

#pragma aux sym val ue {no8087 | reg set | struct_info} [;]
struct_info::= struct {float | struct | (routine | caller) | reg set}

Auxiliary Pragmas 165

16-bit Topics

where description:

sym isafunction name.

reg set iscaled aregister set. The register sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

8.27.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
afunction’svalue.

#pragma aux sym val ue reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

Note that the method described below for returning values of type float or doubleis supported only when
the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, Sl or
DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (except far pointers), only the following register pairs are allowed:
DX:AX, CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:Dl, DX:Sl, DI:BX, SI:AX,
CX:DX, DX:DI, DI:Sl, SI:BX or BX:AX. If noregister set is specified, registers DX:AX
will beused. Thisform of the auxiliary pragmaislegal for functions of type float when
using the "fpc" option only.

far pointer For functions that return far pointers, the following register pairs are allowed: DX:AX,
CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:Sl, DI:BX, SI:AX, CX:DX, DX:DlI,
DI:Sl, SI:BX, BX:AX, DS:CX, DS.DX, DS:DI, DS:Sl, DS:BX, DS:AX, ES.CX, ES.DX,
ES.DI, ES:SI, ES:.BX or ES.AX. If noregister set is specified, the registers DX:AX will be
used.

8-byte For 8-byte return values (including functions of type double€), only the following register
combination isalowed: AX:BX:CX:DX. If noregister set is specified, the registers
AX:BX:CX:DX will be used. Thisform of the auxiliary pragmaislegal for functions of
type double when using the "fpc" option only.

166 Auxiliary Pragmas

16-bit Pragmas

Notes:
1. Anempty register set isnot allowed.
2. If you are compiling for amemory model which has a small data model, any of the above

register combinations containing register DS becomesillegal. In asmall data model, segment
register DS must remain unchanged as it points to the program’ s data segment.

8.27.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the stack for the
return value and sets register Sl to point to it. The called routine then places the return value at the location
pointed to by register Sl.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

#pragma aux sym val ue struct (caller|routine) reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

"caller" specifiesthat the caller will alocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
functioniscalled. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register AX by the
called routine. It is assumed that the memory for the return value is allocated from the stack segment (the
stack segment is contained in segment register SS).

"routine” specifies that the called routine will allocate memory for the return value. Upon returning to the
caler, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: AX, DX, BX, CX, Sl or DI. Notethat in abig
data model, the address in the return register is assumed to be in the segment specified by the value in the
SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-bytestructure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If noregister set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, Sl or DI.
If no register set is specified, register AX will be used.

Auxiliary Pragmas 167

16-bit Topics

3. A 4-byte structure will be returned in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DlI, DI:Sl, SI:BX
or BX:AX. If noregister set is specified, register pair DX:AX will be used.

The following form of the auxiliary pragma can be used to specify that structureswhose sizeis 1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register Sl toit.

#pragma aux sym val ue struct struct [;]

where description:

sym isafunction name.

8.27.7.3 Returning Floating-Point Data

There are afew ways available for specifying how the value for afunction whose type isfloat or doubleis
to be returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in registers. Instead, the caller will allocate space on the stack for the
return value and point register Sl toit.

#pragma aux sym value struct float [;]

where description:
sym isafunction name.
In other words, floating-point values are to be returned in the same way structures are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in 80x87 registers when compiling with the "fpi" or "fpi87" option.
Instead, the value will be returned in 80x86 registers. Thisis the default behaviour for the "fpc" option.
Function return values whose type is float will be returned in registers DX:AX. Function return values
whose type is double will be returned in registers AX:BX:CX:DX. Thisisthe default method for the "fpc"
option.

#pragma aux sym val ue no8087 [;]

where description:
sym isafunction name.
The following form of the auxiliary pragma can be used to specify that function return values whose typeis

float or double are to be returned in ST(0) when compiling with the "fpi" or "fpi87" option. Thisform of
the auxiliary pragmais not legal for the "fpc" option.

168 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym val ue [8087] [;]

where description:

sym isafunction name.

8.27.8 A Function that Never Returns

The following form of the auxiliary pragma can be used to describe a function that does not return to the
caler.

#pragma aux sym aborts [;]

where description:
sym isafunction name.

Consider the following example.

#pragm aux exitrtn aborts;
extern void exitrtn(void);

void rtn()

exitrtn();

exi t rt n isdefined to be afunction that does not return. For example, it may call exi t toreturntothe
system. In this case, Open Watcom C/C++ generates a”jmp" instruction instead of a"call" instruction to
invokeexi trtn.

8.27.9 Describing How Functions Use Memory

The following form of the auxiliary pragma can be used to describe afunction that does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by the caler.

#pragma aux sym nodify nomenory [;]

where description:
sym isafunction name.

Consider the following example.

Auxiliary Pragmas 169

16-bit Topics

#pragma of f (check_stack);
extern void nyrtn(void);
int i ={ 1033 };

extern Rin()
while(i < 10000) {

i += 383;
}
nyrtn();
i += 13143;

1
To compile the above program, "rtn.c", we issue the following command.

Cwee rtn /oai /dl
Cwp rtn /oai /dl
Cwee386 rtn /oai /dl
Cwpp386 rtn /oai /dl

For illustrative purposes, we omit loop optimizations from the list of code optimizations that we want the
compiler to perform. The "d1" compiler option is specified so that the object file produced by Open
Watcom C/C++ contains source line information.

We can generate afile containing a disassembly of rt n. obj by issuing the following command.

Cwdis rtn /1 /s
The"s" option is specified so that the listing file produced by the Open Watcom Disassembler contains
sourcelinestakenfromrtn. c. Thelistingfilertn. | st appearsasfollows.

Modul e: rtn.c
Group: ' DGROUP* CONST, _DATA

Segnent: ' _TEXT' BYTE 0026 bytes
#pragma of f (check_stack);

extern void MyREn(void);

int i ={ 1033 };
extern Rin()
{
0000 52 Rtn_ push DX
0001 8b 16 00 00 nov DX, _i
while(i < 10000) {
0005 81 fa 10 27 L1 cnp DX, 2710H
0009 7d 06 j ge L2
i += 383;
}
000b 81 c2 7f 01 add DX, 017f H
000f eb f4 jmp L1

170 Auxiliary Pragmas

16-bit Pragmas

MREN() ;
0011 89 16 00 00 L2 nov
0015 e8 00 00 cal |
0018 8b 16 00 00 nov
i += 13143;
00lc 81 c2 57 33 add
0020 89 16 00 00 nov
)
0024 b5a pop
0025 «¢3 ret

No di sassenbly errors

Segnent: ' _DATA" WORD 0002 bytes
0000 09 04 _i

No di sassenbly errors

Let us add the following auxiliary pragmato the sourcefile.

#pragma aux nmyrtn nodi fy nonenory;

Modul e: rtn.c
Group: ' DGROUP' CONST, _DATA

Segnent: ' _TEXT' BYTE 0022 bytes
#pragma of f (check_stack);

extern void M/Rtn(void);
#pragma aux MyRtn nodi fy nonenory;

int i ={ 1033 };
extern Rin()
{

0000 52 Rtn_ push

0001 8b 16 00 00 mov
while(i < 10000) {

0005 81 fa 10 27 L1 cnp

0009 7d 06 ige

i += 383;

}

000b 81 c2 7f 01 add

000f eb f4 jnmp
MREN();

0011 89 16 00 00 L2 mov

0015 e8 00 00 cal |
i += 13143;

0018 81 c2 57 33 add

001c 89 16 00 00 nov

I
002 5a pop
0021 «c3 ret

i, DX
MRt n_
DX, _i

DX, 3357H
(i, DX

DX

If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

DX
DX, _i

DX, 2710H
L2

DX, 017fH
L1

i, DX
MRt n_

DX, 3357H
i, DX

DX

Auxiliary Pragmas 171

16-bit Topics

No di sassenbly errors

Segnment: ' _DATA" WORD 0002 bytes
0000 09 04 i

No di sassenbly errors

Notice that the value of i isinregister DX after completion of the "while" loop. After thecal to myrtn,
thevalueof i isnot loaded from memory into aregister to perform the final addition. The auxiliary
pragmainforms the compiler that myr t n does not modify any memory (i.e., global or static variables) that
isused directly or indirectly by Rt n and hence register DX contains the correct value of i .

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the case where
routines reference memory. The following form of the auxiliary pragma can be used to describe afunction
that does not reference any memory (i.e., global or static variables) that is used directly or indirectly by the
caler.

#pragm aux sym parm nonenory nodi fy nonmenory [;]

where description:
sym isafunction name.
Notes:

1. Youmust specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragmain the above example with the following auxiliary pragma.

#pragma aux nmyrtn parm nomenory nodi fy nomenory;
If you now compile our source file and disassemble the object file using WDIS, the result is the following
listing file.

Modul e: rtn.c
G oup: ' DGROUP' CONST, _DATA

Segnent: ' _TEXT' BYTE 001le bytes
#pragma of f (check_stack);

extern void MyRtn(void);
#pragma aux MyRtn parm nonenory nodi fy nonmenory;

int i ={ 1033 };

172 Auxiliary Pragmas

16-bit Pragmas

extern Rtn()

{
0000 52 Rt n_ push DX
0001 8b 16 00 00 nov DX, _i
while(i < 10000) {
0005 81 fa 10 27 L1 cnp DX, 2710H
0009 7d 06 jge L2
i += 383
}
000b 81 c2 7f 01 add DX, 017fH
000f eb f4 jmp L1
MWREN() ;
0011 e8 00 00 L2 cal | M/Rt n_
i += 13143;
0014 81 c2 57 33 add DX, 3357H
0018 89 16 00 00 nov _i,DX
h
00lc 5a pop DX
001d c3 ret

No di sassenbly errors

Segnent: ' _DATA" WORD 0002 bytes
0000 09 04 _i

No di sassenbly errors

Notice that after completion of the "while" loop we did not have to update i with the valuein register DX
before calling nyrt n. Theauxiliary pragmainforms the compiler that myr t n does not reference any
memory (i.e., global or static variables) that is used directly or indirectly by nyrt n soupdatingi was not
necessary before calling myrt n.

8.27.10 Describing the Registers Modified by a Function

The following form of the auxiliary pragma can be used to describe the registers that a function will use
without saving.

#pragma aux sym nodi fy [exact] reg_set [;]

where description:
sym isafunction name.
reg_set isaregister set.

Specifying aregister set informs Open Watcom C/C++ that the registers belonging to the register set are
modified by the function. That is, the value in aregister before calling the function is different from its
value after execution of the function.

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called function. Also, sincethe AX register is frequently used to return avalue, it is

Auxiliary Pragmas 173

16-bit Topics

aways assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called function does not modify them. The following form of the auxiliary pragma can
be used to describe exactly those registers that will be modified by the called function.

#pragma aux sym nodi fy exact reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

The above form of the auxiliary pragmatells Open Watcom C/C++ not to assume that the registers used to
pass arguments will be modified by the called function. Instead, only the registers specified in the register
set will be modified. Thiswill prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Also, any registersthat are specified in the val ue register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we havetold it that "GetSP" does not
modify any register whatsoever.

Example:
unsi gned CGet SP(voi d);
#if defined(__386__)
#pragma aux CGet SP = value [esp] nodify exact [];
#el se
#pragma aux CGet SP = value [sp] nodify exact [];
#endi f

8.27.11 An Example

Asmentioned in an earlier section, the following pragma defines the calling convention for functions
compiled by Microsoft C.

#pragm aux Ms_C "_*" \
parmcaller [] \
val ue struct float struct routine [ax]\

nmodi fy [ax bx cx dx es];

Let us discuss this pragmain detail.

Lo specifiesthat all function and variable names are preceded by the underscore character ()
when trandlated from source form to object form.

parm caller [] specifiesthat all arguments are to be passed on the stack (an empty register set was
specified) and the caller will remove the arguments from the stack.

valuestruct marks the section describing how the called routine returns structure information.

174 Auxiliary Pragmas

16-bit Pragmas

float specifies that floating-point arguments are returned in the same way as
structures are returned.

struct specifiesthat 1, 2 and 4-byte structures are not to be returned in registers.

routine specifies that the called routine allocates storage for the return structure and

returns with aregister pointing at it.
[ax] specifiesthat register AX is used to point to the structure return value.
modify [ax bx cx dx es]
specifiesthat registers AX, BX, CX, DX and ES are not preserved by the called routine.
Note that the default method of returning integer valuesis used; 1-byte characters are returned in register

AL, 2-byteintegers are returned in register AX, and 4-byte integers are returned in the register pair
DX:AX.

8.27.12 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" optionsis used to compile functions. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

8.27.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a function is compiled with the "fpi" or "fpi87" option. However, they
can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to functions.

#pragma aux sym parm {reg_set} [;]

where description:
sym isafunction name.
reg set isaregister set. Theregister set can contain 80x86 registers and/or the string "8087".

Auxiliary Pragmas 175

16-bit Topics

Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appearsin aregister set, it sSimply means that floating-point arguments can be
passed in 80x87 floating-point registersif the source file is compiled with the "fpi* or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer iscalled ST
and is anumber between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST isinitially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87
floating-point register to be used. The notation ST(n), where"n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relativeto ST.

When afloating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value isloaded into ST(0). When afloating-point value is stored and popped from the
80x87 floating-point register stack, ST isincremented (modulo 8) and ST (1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

S +

0 | 4th fromtop | ST(4)
oo +

1 | 5th fromtop | ST(5)
oo +

2 | 6th fromtop | ST(6)
o m e e e e e oo +

3 | 7th fromtop | ST(7)
e +

ST -> 4 | top of stack | ST(0)
S +

5 | 1st fromtop | ST(1)
oo +

6 | 2nd fromtop | ST(2)
oo +

7 | 3rd fromtop | ST(3)
o m e e e e e oo +

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers asa stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note; For compatibility with code compiled with version 9.0 and earlier, you can compile with
the "fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. Thefour 80x87 floating-point registers that form the stack are uninitialized.

2. Thefour 80x87 floating-point registers that form the 80x87 cache areinitialized
with zero.

176 Auxiliary Pragmas

16-bit Pragmas

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 as in the above diagram. When afloating-point value was pushed on the stack
(asisthe case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

Therulesfor passing arguments are as follows.

1.

2.

If the argument is not floating-point, use the procedure described earlier in this chapter.

If the argument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

If the string "8087" appearsin aregister set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) isnow in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will be in ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragma aux myrtn parm|[8087];

void main()

}

fl oat X;
doubl e Y;
i nt i;
long int j;

X
i
Y
j

7.7,
7,
77.77;

77,

tn(C x, i, Yy,);

So0anon

3

nmyr t n isan assembly language function that requires four arguments. The first argument of type float (4
bytes), the second argument is of typeint (2 bytes), the third argument is of type double (8 bytes) and the
fourth argument is of type long int (4 bytes). These argumentswill be passed to nyr t n in the following

way.

Since "8087" was specified in the register set, the first argument, being of type float, will be
passed in an 80x87 floating-point register.

The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

The third argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

Auxiliary Pragmas 177

16-bit Topics

4. Thefourth argument will also be passed on the stack.

Let us change the auxiliary pragmain the above example as follows.

#pragma aux nmyrtn parm[ax 8087];
The arguments will now be passed to myr t n in the following way.

1. Since"8087" was specified in the register set, the first argument, being of type float will be
passed in an 80x87 floating-point register.

2. The second argument will be passed in register AX, exhausting the set of available 80x86
registers for argument passing.

3. Thethird argument, being of type double, will aso be passed in an 80x87 floating-point register.

4. Thefourth argument will be passed on the stack since no 80x86 registers remain in the register
Set.

8.27.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a floating-point
valuein ST(0).

#pragma aux sym val ue reg set [;]

where description:
sym isafunction name.
reg set isaregister set containing the string "8087", i.e. [8087].

8.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
function unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as acache). The following form of the auxiliary pragma specifies that the
floating-point registers in the 80x87 cache may be modified by the specified function.

#pragma aux sym nodify reg set [;]

where description:
sym isafunction name.
reg_set isaregister set containing the string "8087", i.e. [8087].

Thisinstructs Open Watcom C/C++ to save any local variables that are located in the 80x87 cache before
calling the specified routine.

178 Auxiliary Pragmas

32-bit Topics

32-bit Topics

180

9 32-bit Memory Models

9.1 Introduction

This chapter describes the various 32-bit memory models supported by Open Watcom C/C++. Each

memory model is distinguished by two properties; the code model used to implement function calls and the
data model used to reference data.

9.2 32-bit Code Models

There are two code models;

1. thesmal code model and
2. thebig code model.

A small code model is onein which all callsto functions are made with near calls. Inanear cal, the
destination address is 32 hits and is relative to the segment value in segment register CS. Hence, in asmall
code model, al code comprising your program, including library functions, must be less than 4GB.

A big code model isonein which all callsto functions are made with far calls. In afar call, the destination
addressis 48 bits (a 16-hit segment value and a 32-bit offset relative to the segment value). This model
allows the size of the code comprising your program to exceed 4GB.

Note: If your program contains less than 4GB of code, you should use a memory model that employs
the small code model. Thiswill result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

9.3 32-bit Data Models

There are two data models;

1. thesmall datamodel and
2. thebig data model.

A small data model isone in which al references to data are made with near pointers. Near pointers are 32
bits; all data references are made relative to the segment value in segment register DS. Hence, in asmall
data model, all data comprising your program must be less than 4GB.

A big datamodel is onein which all referencesto data are made with far pointers. Far pointers are 48 bits
(a 16-bit segment value and a 32-bit offset relative to the segment value). This removes the 4GB limitation
on data size imposed by the small datamodel. However, when afar pointer isincremented, only the offset
isadjusted. Open Watcom C/C++ assumes that the offset portion of afar pointer will not be incremented
beyond 4GB. The compiler will assign an object to a new segment if the grouping of datain a segment will

32-bit Data Models 181

32-bit Topics

cause the object to cross a segment boundary. Implicit in thisis the requirement that no individual object
exceed 4GB.

Note: If your program contains less than 4GB of data, you should use the small data model. Thiswill
result in smaller and faster code since references using near pointers produce fewer instructions.

9.4 Summary of 32-bit Memory Models

As previously mentioned, a memory model is a combination of a code model and adatamodel. The
following table describes the memory models supported by Open Watcom C/C++.

Menory Code Dat a Def aul t Def aul t
Model Model Model Code Dat a
Poi nt er Poi nt er
flat snal | snal | near near
snal | snal | snal | near near
medi um bi g smal | far near
conpact snal | bi g near far
| arge bi g bi g far far

9.5 Flat Memory Model

In the flat memory model, the application’s code and data must total less than 4GB in size. Segment
registers CS, DS, SS and ES point to the same linear address space (this does not imply that the segment
registers contain the same value). That is, agiven offset in one segment refers to the same memory location
asthat offset in another segment. Essentially, aflat model operates as if there were no segments.

9.6 Mixed 32-bit Memory Model

A mixed memory model application combines el ements from the various code and data models. A mixed
memory model application might be characterized as one that uses the near, far, or huge keywords when
describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be described as a
mixed memory model. In an application such asthis, most of the dataisin a 4GB segment (DGROUP) and
hence can be referenced with near pointers relative to the segment value in segment register DS. This
results in more efficient code being generated and better execution times than one can expect from a big
datamodel. Data objects outside of the DGROUP segment are described with the far keyword.

182 Mixed 32-bit Memory Model

32-bit Memory Models

9.7 Linking Applications for the Various 32-bit Memory

Models

Each memory model requires different run-time and floating-point libraries. Each library assumesa
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model. Currently, only libraries for the flat/small memory model

are provided.
Menory Run-ti nme Fl oat i ng- Poi nt Fl oat i ng- Poi nt
Model Li brary Li brary (80x87) Library (f-p calls)
flat/small CLIB3R LIB MATH387R. LI B MATH3R. LI B
CLIB3S. LIB MATH387S. LI B MATH3S. LI B
PLIB3R LIB CPLX73R LI B CPLX3R. LI B
PLIB3S.LIB CPLX73S.LIB CPLX3S. LI B

The letter '

'R" or "S" which is affixed to the file name indicates the particular strategy with which the

modulesin the library have been compiled.

R

9.8 Memory

denotes a version of the Open Watcom C/C++ 32-hit libraries which have been compiled
for the "flat/small" memory models using the "3r", "4r" or "5r" option.

denotes a version of the Open Watcom C/C++ 32-hit libraries which have been compiled
for the "flat/small” memory models using the "3s", "4s" or "5s" option.

Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1.

6.

7.

all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the "RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directiveisvalid
for Phar Lap executables only.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP'

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized

datain seg

ments belonging to group "DGROUP". Segments belonging to class "STACK" are used to

define the size of the stack used for your application. Segments belonging to the classes"BSS" and

Memory Layout 183

32-bit Topics

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.
1. The"CODE" class contains the executable code for your application. In asmall code model, this
consists of the segment "_TEXT". In ahbig code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the sourcefile.

2. The"FAR _DATA" class consists of the following:

(a data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(© literals whose size exceeds the data threshold in large data memory models (the
datathreshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.
Y ou can override the default naming convention used by Open Watcom C/C++ to name segments.
1. TheOpen Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for abig code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

184 Memory Layout

10 32-bit Assembly Language Considerations

10.1 Introduction

This chapter will deal with the following topics.

1

2.

The data representation of the basic types supported by Open Watcom C/C++.

The memory layout of a Open Watcom C/C++ program.

The method for passing arguments and returning values.

The two methods for passing floating-point arguments and returning floating-point values.
One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" optionsis specified
for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an 80x87
emulator isincluded from amath library if the application includes floating-point operations.

When the "fpi87" option is used exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified. In this case,
the compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

10.2 Data Representation

This section describes the internal or machine representation of the basic types supported by Open Watcom

C/C++.

10.2.1 Type “char”

An item of type "char" occupies 1 byte of storage. Itsvaueisin the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can be used to
change the default from unsigned to signed. If "char" is signed, an item of type "char" isin the following

range.

-128 <= n <= 127

Y ou can force an item of type "char" to be unsigned or signed regardless of the default by defining them to
be of type "unsigned char" or "signed char" respectively.

Data Representation 185

32-bit Topics

10.2.2 Type "short int"

An item of type "short int" occupies 2 bytes of storage. Itsvaueisin the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If anitem of type
"short int" isto be unsigned, it must be defined as "unsigned short int". Inthiscase, itsvalueisinthe
following range.

0 <= n <= 65535

10.2.3 Type "long int"

An item of type "long int" occupies 4 bytes of storage. Itsvalueisin the following range.

- 2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If anitem of type
"long int" isto be unsigned, it must be defined as "unsigned long int". In this case, itsvalueisin the
following range.

0 <= n <= 4294967295

10.2.4 Type "int"
An item of type "int" occupies 4 bytes of storage. Itsvalueisin the following range.
-2147483648 <= n <= 2147483647

Note that "int" is signed and hence "int" and "signed int" are equivalent. If anitem of type "int" isto be
unsigned, it must be defined as "unsigned int". In this caseits value isin the following range.

0 <= n <= 4294967295
If you are generating code that executesin 32-bit mode, "long int" and "int" are equivalent, "unsigned long

int" and "unsigned int" are equivalent, and "signed long int" and "signed int" are equivalent. This may not
be the case in other environments where "int" and "short int" are 2 bytes.

10.2.5 Type "float"

A datum of type "float" is an approximate representation of areal number. Each datum of type "float"
occupies 4 bytes. If misthe magnitude of x (an item of type "float") then x can be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3. 402823e38

Data of type "float" are represented internally asfollows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

186 Data Representation

32-bit Assembly Language Considerations

e m e oo o e e ee o eoao oo +
| S| Biased | Si gni ficand |
| | Exponent | |
e mm e oo o e e e ee o eaao s +
31 30- 23 22-0
Notes
S S = Sign bit (O=positive, 1=negative)
Exponent The exponent biasis 127 (i.e., exponent value 1 represents 2-126; exponent value 127

represents 20; exponent value 254 represents 2127; etc.). The exponent field is 8 bits long.

Significand Theleading bit of the significand is always 1, hence it is not stored in the significand field.
Thusthe significand is always "normalized”. The significand field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field isall 1 bits and the significand field isall zero bits then the
guantity represents positive or negative infinity, depending on the sign hit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
isaspecial value called aNAN (Not-A-Number).

When the exponent field is al 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal” or nonnormal number.

10.2.6 Type "double”

A datum of type "double" is an approximate representation of areal number. The precision of a datum of
type "double" is greater than or equal to one of type "float". Each datum of type "double" occupies 8 bytes.
If misthe magnitude of x (an item of type "double") then x can be approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

Fom e ek o m m e e e e e e e e e e e e eaa oo +
| S| Biased | Si gni ficand |
| | Exponent | |

T o m o e e e e e e e e e e e e e maa oo +
63 62-52 51-0

Data Representation 187

32-bit Topics

Notes:
S

Exponent

S = Sign bit (O=positive, 1=negative)

The exponent biasis 1023 (i.e., exponent value 1 represents 2-1922: exponent value 1023
represents 20; exponent value 2046 represents 21923; etc.). The exponent field is 11 bits
long.

Significand Theleading hit of the significand is always 1, hence it is not stored in the significand field.

Zero

Infinity

Thus the significand is aways "normalized". The significand field is 52 bits long.

A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.

When the exponent field is al 1 bits and the significand field is all zero bits then the
guantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity

isaspecial value called aNAN (Not-A-Number).

When the exponent field isall 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal™ or nonnormal number.

10.3 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

6.

7.

all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the "RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directiveisvalid
for Phar Lap executables only.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP"

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS' contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable

file.

188 Memory Layout

32-bit Assembly Language Considerations

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

1. The"CODE" class contains the executable code for your application. 1n asmall code model, this
consists of the segment *_TEXT". In abig code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the sourcefile.

2. The"FAR_DATA" class consists of the following:

(@ data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(© literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.
Y ou can override the default naming convention used by Open Watcom C/C++ to name segments.

1. TheOpen Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for abig code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

10.4 Calling Conventions for Non-80x87 Applications

The following sections describe the calling convention used when compiling with the "fpc" compiler
option.

10.4.1 Passing Arguments Using Register-Based Calling Conventions

How arguments are passed to a function with register-based calling conventions is determined by the size
(in bytes) of the argument and where in the argument list the argument appears. Depending on the size,
arguments are either passed in registers or on the stack. Arguments such as structures are amost always
passed on the stack since they are generally too largeto fit in registers. Since arguments are processed
from left to right, the first few arguments are likely to be passed in registers (if they can fit) and, if the
argument list contains many arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to a function are EAX, EBX, ECX and EDX. The following
algorithm describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: EAX, EDX, EBX and ECX.
Note that registers are selected from thislist in the order they appear. That is, the first register selected is
EAX and thelast isECX. For each argument Ai, starting with the left most argument, perform the
following steps.

1. If thesizeof Ai is1 byteor 2 bytes, convert it to 4 bytes and proceed to the next step. If Ai isof
type "unsigned char” or "unsigned short int", it is converted to an "unsigned int". If Ai isof type
"signed char" or "signed short int", it is converted to a"signed int". If Ai isa 1-byte or 2-byte
structure, the padding is determined by the compiler.

Calling Conventions for Non-80x87 Applications 189

32-bit Topics

2. If anargument has already been assigned a position on the stack, Ai will also be assigned a
position on the stack. Otherwise, proceed to the next step.

3. Ifthesizeof Ai is4 bytes, select aregister from the list of available registers. If aregister is
available, Ai isassigned that register. The register isthen removed from the list of available
registers. If no registers are available, Ai will be assigned a position on the stack.

4. If thetypeof Ai is"far pointer", select aregister pair from the following list of combinations:
[EDX EAX] or [ECX EBX]. Thefirst available register pair is assigned to Ai and removed from
thelist of available pairs. The segment value will actually be passed in register DX or CX and
the offset in register EAX or EBX. If none of the above register pairsis available, Ai will be
assigned a position on the stack. Note that 8 bytes will be pushed on the stack even though the
size of an item of type "far pointer" is 6 bytes.

5. If thetype of Ai is"double" or "float" (in the absence of afunction prototype), select aregister
pair from the following list of combinations: [EDX EAX] or [ECX EBX]. Thefirst available
register pair is assigned to Ai and removed from the list of available pairs. The high-order 32
bits of the argument are assigned to the first register in the pair; the low-order 32 bits are
assigned to the second register in the pair. If none of the above register pairsis available, Ai will
be assigned a position on the stack.

6. All other arguments will be assigned a position on the stack.
Notes:

1. Argumentsthat are assigned a position on the stack are padded to a multiple of 4 bytes. That is,
if a 3-byte structure is assigned a position on the stack, 4 bytes will be pushed on the stack.

2. Argumentsthat are assigned a position on the stack are pushed onto the stack starting with the
rightmost argument.

10.4.2 Sizes of Predefined Types

The following table lists the predefined types, their size as returned by the "sizeof" function, the size of an
argument of that type and the registers used to pass that argument if it was the only argument in the

argument list.
Basic Type "sizeof" Argument Registers
Sze Used

char 1 4 [EAX]
short int 2 4 [EAX]

int 4 4 [EAX]

long int 4 4 [EAX]

float 4 8 [EDX EAX]
double 8 8 [EDX EAX]
near pointer 4 4 [EAX]

far pointer 6 8 [EDX EAX]

Note that the size of the argument listed in the table assumes that no function prototypes are specified.
Function prototypes affect the way arguments are passed. Thiswill be discussed in the section entitled
"Effect of Function Prototypes on Arguments”.

190 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default type as
described in the following table.

Argument Type Passed As
char unsigned int
signed char signed int
unsigned char unsigned int
short unsigned int
signed short signed int
unsigned short unsigned int
float double

10.4.3 Size of Enumerated Types

The integral type of an enumerated type is determined by the values of the enumeration constants. In strict
ISO/ANSI C mode, al enumerated constants are of type i nt . In the extensions mode, the compiler will
use the smallest integral type possible (excluding | ong ints) that can represent all values of the enumerated
type. For instance, if the minimum and maximum values of the enumeration constants are in the range
-128 and 127, the enumerated type will be equivalentto a si gned char (size=1 byte). All references
to enumerated constants in the previous instance will have type si gned char. Anenumerated constant
isaways promoted to an i nt when passed as an argument.

10.4.4 Effect of Function Prototypes on Arguments

Function prototypes define the types of the formal parameters of afunction. Their appearance affects the
way in which arguments are passed. An argument will be converted to the type of the corresponding
formal parameter in the function prototype. Consider the following example.

void prototype(float x, int i);
voi d main()

float x;
i nt i

X = 3. 14;

i = 314;
prototype(x, i);
rtn(x, i);

}

The function prototype for pr ot ot ype specifies that the first argument isto be passed as a "float" and the
second argument is to be passed as an "int". Thisresultsin the first argument being passed in register EAX
and the second argument being passed in register EDX.

If no function prototype is given, asisthe case for the function rt n, thefirst argument will be passed asa

"double" and the second argument would be passed as an "int". Thisresultsin the first argument being
passed in registers EDX and EAX and the second argument being passed in register EBX.

Calling Conventions for Non-80x87 Applications 191

32-bit Topics

Note that even though both pr ot ot ype and r t n were called with identical argument lists, the way in
which the arguments were passed was completely different simply because a function prototype for

pr ot ot ype was specified. Function prototyping is an excellent way to guarantee that arguments will be
passed as expected to your assembly language function.

10.4.5 Interfacing to Assembly Language Functions

Consider the following example.

Example:

voi d main()

{
doubl e X;
i nt [
doubl e y
X =7,
i = 77;
y = 777;
myrtn(x, i, y);

}

nyr t n isan assembly language function that requires three arguments. The first argument is of type
"double", the second argument is of type "int" and the third argument is again of type "double". Usingthe
rules for register-based calling conventions, these arguments will be passed to nyr t n in the following

way:

1. Thefirst argument will be passed in registers EDX and EAX leaving EBX and ECX as available
registers for other arguments.

2. The second argument will be passed in register EBX leaving ECX as an available register for
other arguments.

3. Thethird argument will not fit in register ECX (its sizeis 8 bytes) and hence will be pushed on
the stack.

Let uslook at the stack upon entry to nyrt n.

Small Code Mode

O fset
o e +
0 | return address | <- ESP points here
o aa - +
4 | argument #3 |
I |
o a o +
12 | |

192 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Big Code Model
O f set
o a o +
0 | return address | <- ESP points here
e !
8 | argument #3 [
I I
Fom e oo - +
16 | |
Notes:

1. Thereturn addressisthe top element on the stack. In asmall code model, the return addressis 1
double word (32 hits); in abig code model, the return address is 2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function, register EBP
is set to point to the stack but before doing so we must save its contents. The following two instructions
achievethis.

push EBP ; save current value of EBP
nov EBP, ESP ; get access to argunents

After executing these instructions, the stack looks like this.

Small Code Model
O f set
o a o +
0 | saved EBP | <- EBP and ESP point here
o a o +
4 | return address |
Fom e oo - +
8 | argument #3 |
I I
S +
16 I I
Big Code Model
O f set
e a o +
0 | saved EBP | <- EBP and ESP point here
o a o +
4 | return address |
I I
Fom e oo - +
12 | argument #3 |
I I
o aa - +
20 | |

As the above diagrams show, the third argument is at offset 8 from register EBP in a small code model and
offset 12 in abig code model.

Upon exit from nyr t n, we must restore the value of EBP. The following two instructions achieve this.

Calling Conventions for Non-80x87 Applications 193

32-bit Topics

nov ESP, EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrt n.

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ' CODE

assume CS: _TEXT

assune DS: DGROUP

public nyrtn_

myrtn_ proc near
push EBP ; save EBP
nmov EBP, ESP ; get access to argunents

; body of function

nmov ESP, EBP ; restore ESP

pop EBP ; restore EBP

ret 8 ; return and pop last arg
nyrtn_ endp
_TEXT ends

Large Memory Model (big code, big data)

DGROUP group _DATA, _BSS

MYRTN_TEXT segnent byte public ' CODE
assune CS: MYRTN_TEXT
public nyrtn_

nmyrtn_ proc far
push EBP ; save EBP
nmov EBP, ESP ; get access to argunents

body of function

nmov ESP, EBP ; restore ESP

pop EBP ; restore EBP

ret 8 ; return and pop last arg
nmyrtn_ endp

MYRTN_TEXT ends
Notes:

1. Global function names must be followed with an underscore. Global variable names must be
preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and AX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option.

3. Thedirection flag must be clear before returning to the caller.
4. Inasmall code model, any segment containing executable code must belong to the segment
" TEXT" and the class"CODE". The segment"_TEXT" must have a"combine" type of

"PUBLIC". On entry, CS contains the segment address of the segment "_TEXT". In abig code
model there is no restriction on the naming of segments which contain executable code.

194 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

5. Inasmall data model, segment register DS contains the segment address of the group
"DGROUP'. Thisis not the casein a big data model.

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declarethem as "far".

7. Ingenera, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop those arguments
off the stack in the "ret" instruction.

10.4.6 Using Stack-Based Calling Conventions

Let us now consider the example in the previous section except this time we will use the stack-based calling
convention. The most significant difference between the stack-based calling convention and the
register-based calling convention is the way the arguments are passed. When using the stack-based calling
conventions, no registers are used to pass arguments. Instead, all arguments are passed on the stack.

Let uslook at the stack upon entry to nyrt n.

Small Code Model
O f set
e a o +
0 | return address | <- ESP points here
o a o +
4 | argunent #1 [
I I
Fom e oo - +
12 | argument #2 |
I I
o aa - +
16 | argument #3 |
e :
24 | |
Big Code Model
O f set
Fom e oo - +
0 | return address | <- ESP points here
A :
8 | argument #1 |
A I
16 | argument #2 |
I |
Fom e oo - +
20 | argument #3 |
I I
o e +
28 | |

Calling Conventions for Non-80x87 Applications 195

32-bit Topics

Notes:

1. Thereturn addressisthe top element on the stack. In asmall code model, the return addressis 1
double word (32 bits); in abig code model, the return address is 2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function, register EBP
is set to point to the stack but before doing so we must save its contents. The following two instructions

achievethis.
push EBP ; save current val ue of EBP
nmov EBP, ESP ; get access to argunents

After executing these instructions, the stack looks like this.

Small Code Model
O f set
o a o +
0 | saved EBP | <- EBP and ESP point here
Fom e oo - +
4 | return address |
S +
8 | argunent #1 |
I I
o a o +
16 | argument #2 |
I I
o a o +
20 | argument #3 |
I I
Fom e oo - +
28 | |
Big Code Model
O f set
o aa - +
0 | saved EBP | <- EBP and ESP point here
e a o +
4 | return address |
I |
Fom e oo - +
12 | argument #1 |
I I
o e +
20 | argument #2 |
I I
o a o +
24 | argument #3 |
I I
o a o +
32 | |

Asthe above diagrams show, the argument are all on the stack and are referenced by specifying an offset
from register EBP.

Upon exit from nyr t n, we must restore the value of EBP. The following two instructions achieve this.

196 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

nov ESP, EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrt n.

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ' CODE

assume CS: _TEXT

assune DS: DGROUP

public nyrtn

myrtn proc near
push EBP ; save EBP
nmov EBP, ESP ; get access to argunents

body of function

nov ESP, EBP ; restore ESP
pop EBP ; restore EBP
ret
return
myrtn endp
_TEXT ends

Large Memory Model (big code, big data)

DGROUP group _DATA, _BSS

MYRTN_TEXT segnment byte public ' CODE
assumne CS:. MYRTN_TEXT
public myrtn

nmyrtn proc far
push EBP ; save EBP
nmov EBP, ESP ; get access to argunents

body of function

nmov ESP, EBP ; restore ESP
pop EBP ; restore EBP
ret
; return

nyrtn endp

MYRTN_TEXT ends
Notes:

1. Global function names must not be followed with an underscore as was the case with the
register-based calling convention. Global variable names must not be preceded with an
underscore as was the case with the register-based calling convention.

2. All used 80x86 registers except registers EAX, ECX and EDX must be saved on entry and
restored on exit. Segment registers DS and ES must also be saved on entry and restored on exit.
Segment register ES does not have to be saved and restored when using a memory model that is
not asmall datamodel. Note that segment registers only have to be saved and restored if you are
compiling your application with the"r" option.

3. Thedirection flag must be clear before returning to the caller.

Calling Conventions for Non-80x87 Applications 197

32-bit Topics

4. Inasmall code model, any segment containing executable code must belong to the segment
" TEXT" and the class"CODE". The segment "_TEXT" must have a"combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment *_TEXT". In abig code
model thereis no restriction on the naming of segments which contain executable code.

5. Inasmall datamodel, segment register DS contains the segment address of the group
"DGROUP'. Thisisnot the casein abig data model.

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. Ingeneral, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. Thecaller isresponsible for removing arguments from the stack.

10.4.7 Functions with Variable Number of Arguments

A function prototype with a parameter list that ends with ",..." has a variable number of arguments. In this
case, al arguments are passed on the stack. Since no prototyping information exists for arguments
represented by ,...", those arguments are passed as described in the section "Passing Arguments”.

10.4.8 Returning Values from Functions

The way in which function values are returned depends on the size of the return value. The following
exampl es describe how function values are to be returned. They are coded for a small code model.

1. 1-bytevaluesareto bereturned in register AL.

Example:
_TEXT segnent byte public ' CODE
assunme CS: _TEXT
public Retl_

Ret1_ proc near ; char Ret1()
nov AL,’' G
ret

Ret1 endp

_TEXT ends
end

2. 2-bytevauesareto bereturned in register AX.

Example:
_TEXT segnment byte public ' CODE
assune CS: _TEXT

public Ret2_
Ret 2_ proc near ; short int Ret2()
nmov AX, 77
ret
Ret 2_ endp
_TEXT ends
end

198 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

3.

4.

4-byte values are to be returned in register EAX.

Example:
_TEXT segment byte public ' CODE
assune CS: _TEXT
public Ret4_

Ret 4 proc near ; int Ret4()
nov EAX, 7777777
ret

Ret 4 endp

_TEXT ends
end

8-byte values, except structures, are to be returned in registers EDX and EAX. When using the
"fpc" (floating-point calls) option, "float" and "double" are returned in registers. See section
"Returning Vaues in 80x87-based Applications’ when using the "fpi" or "fpi87" options.

Example:
. 8087
_TEXT segnent byte public ' CODE
assune CS:_TEXT
public Ret8_

Ret 8_ proc near ; doubl e Ret 8()
nmov EDX, dword ptr CS: Val 8+4
nmov EAX, dword ptr CS:Val 8
ret

Val 8: dq 7.7

Ret 8 endp

_TEXT ends
end

The".8087" pseudo-op must be specified so that all floating-point constants are generated in
8087 format.

Otherwise, the caller allocates space on the stack for the return value and setsregister ESI to
point to thisarea. In abig data model, register ESI contains an offset relative to the segment
valuein segment register SS.

Example:
_TEXT segnent byte public ' CODE
assune CS:_TEXT
public RetX_

struct int_values {
int valuel, value2, val ue3, val ue4, val ueb5;

; b

Ret X _ proc near ; struct int_values RetX()
nov dword ptr SS:O[ESI], 71
nov dword ptr SS:4[ESI], 72
nmov dword ptr SS:8[ESI], 73
nov dword ptr SS:12[ESI], 74
nmov dword ptr SS:16[ESI], 75
ret

Ret X_ endp

_TEXT ends
end

Calling Conventions for Non-80x87 Applications 199

32-bit Topics

When returning values on the stack, remember to use a segment override to the stack segment

(S9).

The following is an example of a Open Watcom C/C++ program calling the above assembly language

subprograms.

#i ncl ude <stdi 0. h>

struct i
i nt
i nt
i nt
i nt
i nt

b

extern
extern
extern
extern
extern

voi d nmi

{

nt _val ues {

val uel;

val ue2;

val ue3;

val ue4;

val ueb;

char Ret 1(voi d);
short int Ret 2(voi d) ;
| ong int Ret 4(voi d);
doubl e Ret 8(voi d) ;
struct int_values RetX(void);
n()

struct int_values x;

printf("Ret1l
printf("Ret2
printf("Ret4
printf("Ret8

X =

%\n", Retl());
%\ n", Ret2());
%d\n", Ret4());
%\n", Ret8());

Ret X() ;
printf("RetXl = %\ n", x.valuel);
printf("RetX2 = %\ n", x.value2);
printf("RetX3 = %\ n", x.value3);
printf("RetX4 = %\ n", x.valued);
printf("RetX5 = %\ n", x.value5);

}

The above function should be compiled for a small code model (use the "mf", "ms" or "mc" compiler

option).

Note: Returning values from functions in the stack-based calling convention is the same as returning
values from functions in the register-based calling convention when using the "fpc" option.

10.5 Calling Conventions for 80x87-based Applications

When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87" options, al
floating-point arguments are passed on the 80x86 stack. The rules for passing arguments are as follows.

1. If theargument is not floating-point, use the procedure described earlier in this chapter.

2. If theargument is floating-point, it is assigned a position on the 80x86 stack.

200 Calling Conventions for 80x87-based Applications

32-bit Assembly Language Considerations

Note: When compiling using the "fpi" or "fpi87" options, the method used for passing floating-point
arguments in the stack-based calling convention is identical to the method used in the register-based
calling convention. However, when compiling using the "fpi" or "fpi87" options, the method used for
returning floating-point valuesin the stack-based calling convention is different from the method used
in the register-based calling convention. The register-based calling convention returns floating-point
valuesin ST(0), whereas the stack-based calling convention returns floating-point valuesin EDX and
EAX.

10.5.1 Passing Values in 80x87-based Applications
Consider the following example.

Example:
extern void nmyrtn(int, float, double,long int);

void main()

{
fl oat X;
doubl e y;
i nt i
long int j;

X

7.7,
i .

7,
y = 77.77

j 77,

nyrtn(i, X, y, J)

nyr t n isan assembly language function that requires four arguments. The first argument is of type "int" (
4 bytes), the second argument is of type "float” (4 bytes), the third argument is of type "double” (8 bytes)
and the fourth argument is of type "long int" (4 bytes).

When using the stack-based calling conventions, all of the arguments will be passed on the stack. When
using the register-based calling conventions, the above arguments will be passed to myr t n in the following

way:

1. Thefirst argument will be passed in register EAX leaving EBX, ECX and EDX as available
registers for other arguments.

2. The second argument will be passed on the 80x86 stack sinceit is a floating-point argument.
3. Thethird argument will also be passed on the 80x86 stack since it is a floating-point argument.

4. Thefourth argument will be passed on the 80x86 stack since a previous argument has been
assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost argument is pushed
first.

Any assembly language function must obey the following rule.

Calling Conventions for 80x87-based Applications 201

32-bit Topics

1.

All arguments passed on the stack must be removed by the called function.

The following is a sample assembly language function which implements nmyrt n.

Example:

. 8087

_TEXT segment byte public ' CODFE

assune CS. TEXT
public myrtn_

myrtn_ proc near

body of function

ret 16 ; return and pop argunents
nyrtn_ endp

_TEXT ends

end
Notes:

1. Function names must be followed by an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and EAX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option. In thisexample, EAX does not have to be saved as it was used to pass the first argument.
Floating-point registers can be modified without saving their contents.

3. Thedirection flag must be clear before returning to the caller.

4. Thisfunction has been written for asmall code model. Any segment containing executable code
must belong to the class "CODE" and the segment *_TEXT". On entry, CS contains the segment
address of the segment "_TEXT". The above restrictions do not apply in a big code memory
model.

5. When writing assembly language functions for a small code model, you must declare them as

"near". If you wish to write assembly language functions for a big code model, you must declare
them as"far".

10.5.2 Returning Values in 80x87-based Applications

When using the stack-based calling conventions with "fpi" or "fpi87", floating-point values are returned in
registers. Single precision values are returned in EAX, and double precision values are returned in
EDX:EAX.

When using the register-based calling conventions with "fpi" or "fpi87", floating-point values are returned
in ST(0). All other values are returned in the manner described earlier in this chapter.

202 Calling Conventions for 80x87-based Applications

11 32-bit Pragmas

11.1 Introduction

A pragmais acompiler directive that provides the following capabilities.

* Pragmas allow you to specify certain compiler options.

* Pragmas can be used to direct the Open Watcom C/C++ code generator to emit specialized
sequences of code for calling functions which use argument passing and value return techniques that
differ from the default used by Open Watcom C/C++.

* Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the C/C++ language level. The code generator can use thisinformation to generate more efficient
code.

» Any seguence of in-line machine language instructions, including DOS and BIOS function calls, can
be generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is used to
describe the syntax of pragmas.

keywords A keywor d is shown in amono-spaced courier font.

program-item A program-item is shown in aroman bold-italicsfont. A program-item isasymbol name
or numeric value supplied by the programmer.

punctuation A punctuati on charact er showninamono-spaced courier font must be entered as
is.

A punctuation character shown in aroman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
alb|c One of a, b or ¢ may be specified.

a:=b The item a is defined in terms of b.

(@ Item ais evaluated first.

The following classes of pragmas are supported.

Introduction 203

32-bit Topics

* pragmas that specify options
* pragmas that specify default libraries
* pragmas that describe the way structures are stored in memory

* pragmas that provide auxiliary information used for code generation

11.2 Using Pragmas to Specify Options

Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles unused symbols.
For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for al unused symbols. Thisis
the default. Specifying

#pragma of f (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Notethat if the warning level
is not high enough, warning messages for unused symbols will not be issued even if
"unreferenced” was specified.

check_stack The"check_stack™ option controls the way stack overflows are to be handled. For
example,

#pragm on (check_stack);

will cause stack overflows to be detected and

#pragma of f (check_stack);

will cause stack overflows to beignored. When "check_stack" is on, Open Watcom C/C++
will generate arun-time call to a stack-checking routine at the start of every routine
compiled. Thisrun-time routine will issue an error if astack overflow occurs when
invoking the routine. The default isto check for stack overflows. Stack overflow checking
is particularly useful when functions are invoked recursively. Note that if the stack
overflows and stack checking has been suppressed, unpredictable results can occur.

If astack overflow does occur during execution and you are sure that your program is not
inerror (i.e. itisnot unnecessarily recursing), you must increase the stack size. Thisis
done by linking your application again and specifying the "STACK" option to the Open
Watcom Linker with alarger stack size.

It isalso possible to specify more than one option in apragma asillustrated by the
following example.

#pragma on (check_stack unreferenced);

204 Using Pragmas to Specify Options

32-bit Pragmas

reuse_duplicate strings (C only) (C Only) The "reuse_duplicate_strings" option controls the way Open
Watcom C handles identical stringsin an expression. For example,

#pragma on (reuse_duplicate_strings);

will cause Open Watcom C to reuse identical stringsin an expression. Thisisthe default.
Specifying

#pragma of f (reuse_duplicate_strings);

will cause Open Watcom C to generate additional copies of the identical string. The
following example shows where this may be of importance to the way the application
behaves.

Example:
#i ncl ude <stdio. h>

#pragma of f (reuse_duplicate_strings)

voi d poke(char *, char *);
void main()

poke("Hello world\n", "Hello world\n");
}

voi d poke(char *x, char *y)
{
x[3] ='X;
printf(x);
yl4] ='Y;
printf(y);

/*

Def aul t out put:
Hel Xo worl d

Hel XY wor | d

*/

11.3 Using Pragmas to Specify Default Libraries

Default libraries are specified in special object module records. Library names are extracted from these
special records by the Open Watcom Linker. When unresolved references remain after processing all
object modules specified in linker "FILE" directives, these default libraries are searched after all libraries
specified in linker "LIBRARY" directives have been searched.

By default, that isif no library pragmais specified, the Open Watcom C/C++ compiler generates, in the
object file defining the main program, default libraries corresponding to the memory model and
floating-point model used to compilethefile. For example, if you have compiled the source file containing
the main program for the flat memory model and the floating-point calls floating-point model, the libraries
"clib3r" and "math3r" will be placed in the object file.

If you wish to add your own default libraries to thislist, you can do so with alibrary pragma. Consider the
following example.

Using Pragmas to Specify Default Libraries 205

32-bit Topics

#pragma |ibrary (nylib);
The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characterssuch as’\’,’:’ or’,’ (i.e., any character not allowedinaC
identifier), you must enclose it in double quotes as in the following example.

#pragma |library ("\watcom|i b286\dos\graph.lib");
#pragma library ("\watcom|ib386\dos\graph.lib");

If you wish to specify more than one library in alibrary pragmayou must separate them with spacesasin
the following example.

#pragma library (mylib "\watcom | i b286\dos\graph.lib");
#pragma library (nmylib "\watcom|ib386\dos\graph.lib");

11.4 The ALIAS Pragma (C Only)

The"alias" pragma can be used to emit alias records in the object file, causing the linker to substitute
references to a specified symbol with references to another symbol. Either identifiers or names (strings)
may be used. Strings are used verbatim, while names corresponding to identifiers are derived as
appropriate for the kind and calling convention of the symbol. The following describes the form of the
"alias" pragma.

#pragma alias (alias, subst) [;]

where description:

alias is either aname or an identifier of the symbol to be aiased.

subst is either aname or an identifier of the symbol that referencesto al i as will be replaced
with.

Consider the following example.
extern int var;

void fn(void)

#pragma alias (var, "other_var");

Instead of var the linker will reference symbol named "other_var". Symbol var need not be defined,
although "other_var" hasto be.

206 The ALIAS Pragma (C Only)

32-bit Pragmas

11.5 The ALLOC_TEXT Pragma (C Only)

The"alloc_text" pragma can be used to specify the name of the text segment into which the generated code
for afunction, or alist of functions, isto be placed. The following describes the form of the "alloc_text"

pragma.

#pragma all oc_text (seg_name, fn {, fn}) [;]

where description:
seg_name is the name of the text segment.
fn is the name of afunction.

Consider the following example.
extern int fnl(int);

extern int fn2(void);
#pragma alloc_text (ny_text, fnl, fn2);

The code for the functions f n1 and f n2 will be placed in the segment my_t ext . Note: function
prototypes for the named functions must exist prior to the "aloc_text" pragma.

11.6 The CODE_SEG Pragma

The "code_seg" pragma can be used to specify the name of the text segment into which the generated code
for functionsisto be placed. The following describes the form of the "code_seg" pragma.

#pragma code_seg (seg nhame [, class hame]) [;]

where description:
seg_name is the name of the text segment optionally enclosed in quotes. Also, seg_name may bea
macro asin:

#defi ne seg_nane "MY_CODE_ SEG'
#pragm code_seg (seg_hame);

class name isthe optional class name of the text segment and may be enclosed in quotes. Please note
that in order to be recognized by the linker as code, a class name hasto end in "CODE".
Also, cl ass__nane may beamacro asin:

#defi ne cl ass_nane " My_CODE"
#pragma code_seg ("MY_CODE_SEG', class_nane);

Consider the following example.

The CODE_SEG Pragma 207

32-bit Topics

#pragma code_seg (my_text);
int incr(int i)

return(i +1);

}
int decr(int i)
{
return(i - 1);
}

The code for the functions i ncr and decr will be placed in the segment ny_t ext .

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragm code_seg ();

11.7 The COMMENT Pragma

The "comment" pragma can be used to place acomment record in an object file or executablefile. The
following describes the form of the "comment" pragma.

#pragma coment (comment_type [, "comment_string"]) [;]

where description:
comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records. Library
names are extracted from these special records by the Open Watcom
Linker. When unresolved references remain after processing all object
modules specified in linker "FILE" directives, these default libraries are
searched after all libraries specified in linker "LIBRARY" directives have
been searched.

The"lib" form of this pragma offers the same features as the "library"
pragma. Seethe section entitled "Using Pragmas to Specify Default
Libraries' on page 205 for more information.

" comment_string" isan optional string literal that provides additional information for some comment
types.

Consider the following example.

#pragma coment (lib, "nylib");

208 The COMMENT Pragma

32-bit Pragmas

11.8 The DATA_SEG Pragma

The"data_seg" pragma can be used to specify the name of the segment into which dataisto be placed. The
following describes the form of the "data_seg" pragma.

#pragma data_seg (seg name [, class hame]) [;]

where description:
seg_name is the name of the data segment and may be enclosed in quotes. Also, seg_nane may be
amacro asin:

#defi ne seg_nanme "MY_DATA SEG'
#pragm data_seg (seg _hane);

class name isthe optional class name of the data segment and may be enclosed in quotes. Also,
cl ass_nane may beamacro asin;

#def i ne cl ass_nane "My_CLASS"
#pragma data_seg ("MY_DATA SEG', class_nane);

Consider the following example.
#pragma data_seg (my_data);

static int i;
static int j;

Thedatafori andj will be placed in the segment ny _dat a.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma data_seg ();

11.9 The DISABLE_MESSAGE Pragma (C Only)

The "disable_message" pragma disables the issuance of specified diagnostic messages. The form of the
"disable_message" pragmais as follows.

#pragma di sabl e_nessage (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This humber corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages' on page 301. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

The DISABLE_MESSAGE Pragma (C Only) 209

32-bit Topics

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

11.10 The DUMP_OBJECT MODEL Pragma (C++ Only)

The "dump_object model" pragma causes the C++ compiler to print information about the object model for
an indicated class or an enumeration name to the diagnostics file. For class names, thisinformation
includes the offsets and sizes of fields within the class and within base classes. For enumeration names,
thisinformation consists of alist of al the enumeration constants with their values.

The general form of the "dump_object_model" pragmais as follows.

#pragma dunp_obj ect _nodel class [;]
#pragma dunp_obj ect _nodel enumeration [;]
class::=adefined C++ classfreeof errors
enumeration ;:= a defined C++ enumeration name

This pragmais designed to be used for information purposes only.

11.11 The ENABLE_MESSAGE Pragma (C Only)

The "enable_message" pragma re-enables the issuance of specified diagnostic messages that have been
previously disabled. The form of the "enable_message" pragmais as follows.

#pragma enabl e_nmessage (msg_num {, msg hum}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages' on page 301. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 209.

11.12 The ENUM Pragma

The "enum" pragma affects the underlying storage-definition for subsequent enum declarations. The forms
of the "enum" pragma are as follows.

#pragnma enumint [;]
#pragma enum m ni mum [;]
#pragma enum origi nal [;]
#pragma enum pop [;]

210 The ENUM Pragma

32-bit Pragmas

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei" compiler
option).

original Reset back to the original compiler option setting (i.e., what was or was not specified on the

command line).
pop Restore the previous setting.

Thefirst three forms al push the previous setting before establishing the new setting.

11.13 The ERROR Pragma

The"error" pragma can be used to issue an error message with the specified text. The following describes
the form of the "error" pragma.

#pragma error "errortext" [;]

where description:
"error text" isthetext of the message that you wish to display.

Y ou should use the ISO #error directive rather than this pragma. This pragmais provided for compatibility
with legacy code. The following isan example.

#if defined(__386_)
#el sei f defined(_ 86)
#el sé' '

#pragma error ("neither _ 386__ or _ 86 __ defined");
#endi f

11.14 The EXTREF Pragma

The "extref" pragmais used to generate a reference to an external function or dataitem. The form of the
"extref" pragmais asfollows.

#pragma extref name [;]

The EXTREF Pragma 211

32-bit Topics

where description:

name is the name of an external function or dataitem. It must be declared to be an external
function or data item before the pragmais encountered. In C++, when name isafunction,
it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the object file even
if that function or dataitem is not referenced in the module. The external reference will cause the linker to
include the module containing that name in the linked program or DLL.

Thisis useful for debugging since you can cause debugging routines (callable from within debugger) to be
included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without necessarily
referencing the data item anywhere in your code.

11.15 The FUNCTION Pragma

Certain functions, such as those listed in the description of the "oi" and "om" options, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a specia way.
For example, the compiler may choose to generate in-line code for the function. Theintrinsic attribute for
these special functionsis set by specifying the "oi" or "om" option or using an "intrinsic" pragma. The
"function" pragma can be used to remove the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:
fn isthe name of afunction.

Suppose the following source code was compiled using the "om" option so that when one of the special
math functionsis referenced, the intrinsic form will be used. In our example, we have referenced the
function si n which does have an intrinsic form. By specifying si n ina"function" pragma, the intrinsic
attribute will be removed, causing the function si n to be treated as a regular user-defined function.

#i ncl ude <mat h. h>
#pragma function(sin);

doubl e test(double x)

return(sin(x));

212 The FUNCTION Pragma

32-bit Pragmas

11.16 The INCLUDE_ALIAS Pragma

In certain situations, it can be advantageous to remap the names of include files. Most commonly this
occurs on systems that do not support long file names when building source code that references header
fileswith long names.

The form of the "include_alias" pragmafollows.

#pragma include_alias ("alias name', "rea name") [;]
#pragma i nclude_alias (<alias name>, <real name>) [;]

where description:
alias name isthe namereferenced ininclude directives in source code.
real_name is the trand ated name that the compiler will reference instead.

The following is an example.

#pragma i nclude_alias("LongFil eNane.h", "Ifn.h")
#i ncl ude "LongFi | eNane. h"

In the example, the compiler will attempt to read Ifn.h when LongFileName.h was included.

Note that only simple textual substitution is performed. The aliased name must match exactly, including
double quotes or angle brackets, as well as any directory separators. Also, double quotes and angle
brackets may not be mixed a single pragma.

Thevalue of the predefined __FI LE__ symbol, as well as the filename reported in error messages, will be
the true filename after substitution was performed.

11.17 Setting Priority of Static Data Initialization (C++ Only)

The"initialize" pragma sets the priority for initialization of static datain thefile. This priority only applies
to initialization of static data that requires the execution of code. For example, the initialization of a class
that contains a constructor requires the execution of the constructor. Note that if the sequence in which
initialization of static datain your program takes place has no dependencies, the "initialize" pragma need
not be used.

The general form of the "initialize" pragmaisasfollows.

#pragnma initialize [before | after] priority [;]

priority::= n | library | program

Setting Priority of Static Data Initialization (C++ Only) 213

32-bit Topics

where description:

n isanumber representing the priority and must be in the range 0-255. The larger the
priority, the later the point at which initialization will occur.

Prioritiesin the range 0-20 are reserved for the C++ compiler. Thisisto ensure that proper initialization of
the C++ run-time system takes place before the execution of your program. The "library" keyword
represents a priority of 32 and can be used for class libraries that require initialization before the program is
initialized. The "program" keyword represents a priority of 64 and is the default priority for any compiled
code. Specifying "before" adjusts the priority by subtracting one. Specifying "after" adjusts the priority by
adding one.

A sourcefile containing the following "initialize" pragma specifies that the initialization of static datain the
file will take place before initialization of al other static data in the program since a priority of 63 will be
assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before”, the initialization of the static datain the file will occur after
initialization of all other static datain the program since a priority of 65 will be assigned.

Note that the following is equivalent to the "before" example

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program” keywords are more descriptive in the intent of the pragmas.
It is recommended that a priority of 32 (the priority used when the "library" keyword is specified) be used
when developing class libraries. Thiswill ensure that initialization of static data defined by the class
library will take place before initialization of static data defined by the program. The following "initialize"
pragma can be used to achievethis.

Example:
#pragma initialize library

11.18 The INLINE_DEPTH Pragma (C++ Only)

When an in-line function is called, the function call may be replaced by the in-line expansion for that
function. Thisin-line expansion may include callsto other in-line functions which can also be expanded.
The"inline_depth" pragma can be used to set the number of times this expansion of in-line functions will
occur for acall.

The form of the "inline_depth" pragmais as follows.

214 The INLINE_DEPTH Pragma (C++ Only)

32-bit Pragmas

#pragma inline_depth [(1 n D] [;]

where description:

n isthe depth of expansion. If n is0, no expansion will occur. If nis1, only theoriginal call
isexpanded. If nis2, theoriginal call and the in-line functions invoked by the original
function will be expanded. The default value for n is3. The maximum value for n is 255.
Note that no expansion of recursive in-line functions occur unless enabled using the
"inline_recursion” pragma.

11.19 The INLINE_RECURSION Pragma (C++ Only)

The"inline_recursion" pragma controls the recursive expansion of inline functions. The form of the
"inline_recursion” pragmais as follows.

#pragma inline_recursion [(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion is specified by
the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses expansion of recursive
inline functions. Thisisthe default.

11.20 The INTRINSIC Pragma

Certain functions, those listed in the description of the "oi" option, have intrinsic forms. These functions
are special functions that are recognized by the compiler and processed in a special way. For example, the
compiler may choose to generate in-line code for the function. The intrinsic attribute for these special
functionsis set by specifying the "oi" option or using an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:
fn is the name of afunction.
Suppose the following source code was compiled without using the "oi" option so that no function had the

intrinsic attribute. 1f we wanted the intrinsic form of the si n function to be used, we could specify the
function in an "intrinsic" pragma.

The INTRINSIC Pragma 215

32-bit Topics

#i ncl ude <mat h. h>
#pragma intrinsic(sin);

doubl e test(double x)

{
}

return(sin(x));

11.21 The MESSAGE Pragma

The "message" pragma can be used to issue a message with the specified text to the standard output without
terminating compilation. The following describes the form of the "message” pragma.

#pragma nmessage ("messagetext") [;]

where description:
"message text" isthe text of the message that you wish to display.
Thefollowing is an example.

#if defined(__386__)

#el se

#pragm nessage ("assuming 16-bit conpile");
#endi f

11.22 The ONCE Pragma

216

The "once" pragma can be used to indicate that the file which contains this pragma should only be opened
and processed "once". The following describes the form of the "once" pragma.

#pragm once [;]

Assume that the file "foo.h" contains the following text.

Example:
#i f ndef _FOO_H_| NCLUDED
#define _FOO H_| NCLUDED
#pragnma once

#endi.f

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it records the file's
name. Subseguently, whenever the compiler encountersa #i ncl ude statement that refersto "foo.h", it

The ONCE Pragma

32-bit Pragmas

will not open the include file again. This can help speed up processing of #i ncl ude files and reduce the
time required to compile an application.

11.23 The PACK Pragma

The "pack" pragma can be used to control the way in which structures are stored in memory. There are 4
forms of the "pack” pragma.

The following form of the "pack” pragma can be used to change the alignment of structures and their fields
in memory.

#pragma pack (n) [;]

where description:
n is1, 2, 4, 8 or 16 and specifies the method of alignment.
The alignment of structure membersis described in the following table. If the size of the member is1, 2, 4,

8 or 16, the alignment is given for each of the "zp" options. If the member of the structureis an array or
structure, the alignment is described by the row "x".

zpl zp2 zp4 zp8 zpl6
sizeof (menber) \----------iim
| 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
X | aligned to | argest nenber

An aignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc. If the
largest member of structure "x" is 1 byte then "x" isnot aligned. If the largest member of structure "x" is 2
bytes then "x" is aligned according to row 2. If the largest member of structure "x" is 4 bytesthen "X" is
aligned according to row 4. If the largest member of structure "x" is 8 bytes then "x" is aligned according
torow 8. If the largest member of structure "x" is 16 bytesthen "x" is aligned according to row 16.

If no value is specified in the "pack” pragma, a default value of 8 isused. Note that the default value can be
changed with the "zp" Open Watcom C/C++ compiler command line option.

The following form of the "pack” pragma can be used to save the current alignment amount on an internal
stack.

#pragma pack (push) [;]

The following form of the "pack” pragma can be used to save the current alignment amount on an internal
stack and set the current alignment.

The PACK Pragma 217

32-bit Topics

#pragma pack (push, number) [;]

The following form of the "pack™ pragma can be used to restore the previous alignment amount from an
internal stack.

#pragma pack (pop) [;]

11.24 The READ_ONLY_FILE Pragma

Explicit listing of dependenciesin a makefile can often be tedious in the development and maintenance
phases of aproject. The Open Watcom C/C++ compiler will insert dependency information into the object
file asit processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. The"read_only_file" pragma can be used to prevent the name of the source file that includes it
from being included in the dependency information that is written to the object file.

This pragmais commonly used in system header files since they change infrequently (and, when they do,
there should be no impact on source files that have included them).

The form of the "read_only_file" pragmafollows.

#pragma read_only file [;]

For more information on make dependencies, see the section entitled "Automatic Dependency Detection
(\AAUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

11.25 The TEMPLATE_DEPTH Pragma (C++ Only)

The "template_depth” pragma provides a hard limit for the amount of nested template expansions allowed
so that infinite expansion can be detected.

The form of the "template_depth" pragmais as follows.

#pragma tenplate_depth [(] n D] [;]

where description:

n isthe depth of expansion. If the value of n islessthan 2, if will default to 2. If n isnot
specified, awarning message will be issued and the default value for n will be 100.

The following example of recursive template expansion illustrates why this pragma can be useful.

218 The TEMPLATE_DEPTH Pragma (C++ Only)

32-bit Pragmas

Example:
#pragma tenpl ate_dept h(10);

tenpl ate <class T>

struct S {
S<T*> x;
b

S<char > v;

11.26 The WARNING Pragma (C++ Only)

The"warning" pragma sets the level of warning messages. The form of the "warning" pragmais as
follows.

#pragnma war ni ng msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C++ Diagnostic
Messages' on page 333. If nsg_numis™*", the level of all warning messages is changed
to the specified level. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

level isanumber from 0 to 9 and represents the level of the warning message. When avalue of
zero is specified, the warning becomes an error.

11.27 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

11.27.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initialy, the compiler defines
adefault set of attributes. Each auxiliary pragmarefers to one of the following.

1. asymbol (such as avariable or function)
2. atypedefinition that resolvesto afunction type
3. thedefault set of attributes defined by the compiler

When an auxiliary pragmarefersto a particular symbol, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragmathat refers to the same
symbol.

An example of atype definition that resolves to a function typeis the following.

Auxiliary Pragmas 219

32-bit Topics

typedef void (*func_type)();

When an auxiliary pragmarefers to a such atype definition, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to each function whose type matches the specified type definition.

When "default” is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specificaly referenced by a previous auxiliary pragma.

Note that al auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which synbol x is referenced
#pragnma aux y <attrs_1>;

code in which synbol y is referenced
code in which synbol z is referenced
#pragma aux default <attrs_2>;
#pragma aux x <attrs_3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>and<attrs_3>.

2. Symbol y isassigned theinitial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>.

11.27.2 Alias Names

When asymbol referred to by an auxiliary pragmaincludes an alias name, the attributes of the alias name
are aso assumed by the specified symbol.

There are two methods of specifying diasinformation. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general
sinceit is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an aliasis asfollows.

#pragma aux (sym, [farl16] alias) [;]

220 Auxiliary Pragmas

32-bit Pragmas

where description:
sym isany valid C/C++ identifier.
alias isthe alias name and is any valid C/C++ identifier.

Thef ar 16 attribute should only be used on systems that permit the calling of 16-bit code from 32-hit
code. Currently, the only supported operating system that allows thisis 32-bit 0S/2. If you have any
libraries of functions or APIsthat are only available as 16-hit code and you wish to access these functions
and APIs from 32-bit code, you must specify the f ar 16 attribute. If the f ar 16 attribute is specified, the
compiler will generate special code which allows the 16-bit code to be called from 32-bit code. Note that a
f ar 16 function must be a function whose attributes are those specified by one of the alias names
__cdecl or__pascal . Thesealiasnameswill be described in alater section.

Consider the following example.

#pragma aux push_args parm[]
#pragma aux (rtn, push_args)

Theroutine r t n assumes the attributes of the alias name push_ ar gs which specifies that the arguments
tort n are passed on the stack.

Let uslook at an example in which the symbol is atype definition.
typedef void (func_type)(int);

#pragm aux push_args parm/|];
#pragma aux (func_type, push_args);

extern func_type rtnl;
extern func_type rtn2;

Thefirst auxiliary pragma defines an alias name called push_ar gs that specifies the mechanism to be
used to pass arguments. The mechanismisto pass all arguments on the stack. The second auxiliary
pragma associ ates the attributes specified in the first pragma with the type definition f unc_t ype. Since
rtnlandrtn2areof typefunc_type, argumentsto either of those functions will be passed on the
stack.

The general form of an auxiliary pragmathat can be used to specify an aliasis as follows.

#pragma aux (alias) sym aux attrs [;]

where description:

alias isthe alias name and is any valid C/C++ identifier.

sym isany valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

Auxiliary Pragmas 221

32-bit Topics

#pragma aux HGH C "*" \
parm cal ler [] \
val ue no8087 \

nodi fy [eax ecx edx fs gs];
#pragma aux (HHGH C) rtnl;
#pragm aux (HIGH C) rtn2;
#pragma aux (HHGH_ C) rtn3;

Theroutinesrt nl, rtn2 andrt n3 assume the same attributes as the alias name HI GH_C which defines
the calling convention used by the MetaWare High C compiler. Note that register ES must also be
specified in the "modify" register set when using amemory model that is not a small data model.

Whenever callsaremadetort nl, rtn2 andrt n3, the MetaWare High C calling convention will be
used.

Note that if the attributes of Hl GH_C change, only one pragma needs to be changed. If we had not used an
alias name and specified the attributes in each of the three pragmasfor rtnl, rtn2 andrt n3, wewould
have to change all three pragmas. This approach also reduces the amount of memory required by the
compiler to process the sourcefile.

WARNING! Theaiasname H GH_Cisjust another symbol. If H GH_C appeared in your source
code, it would assume the attributes specified in the pragmafor H GH_C.

11.27.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. Thefollowingisalist of these symbols.

__cdecl __cdecl orcdecl definesthe calling convention used by Microsoft compilers.
__fastcall __fastcall orfastcal |l definesthe calling convention used by Microsoft compilers.
_ fortran __fortranorfortran definesthe calling convention used by Open Watcom

FORTRAN compilers.

__pascal __pascal orpascal definesthe calling convention used by OS/2 1.x and Windows 3.x
API functions.

__Stdcall __stdcal | orstdcal | definesaspecial calling convention used by the Win32 API
functions.

__syscall __syscal | orsyscal | definesthe calling convention used by the 32-bit OS/2 AP
functions.

__system ___systemorsyst emareidentical to __syscal | .

__watcall __watcal | orwat cal | definesthe calling convention used by Open Watcom
compilers.

The following describes the attributes of the above aias names.

222 Auxiliary Pragmas

32-bit Pragmas

11.27.3.1 Predefined " __cdecl" Alias

#pragma aux __cdecl " _*" \
parmcaller [] \
val ue struct float struct routine [eax] \
nmodi fy [eax ecx edx]

Notes:
1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register EAX.

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.2 Predefined "__pascal"” Alias

#pragma aux __pascal """\
parmreverse routine [] \
val ue struct float struct caller [] \
nodi fy [eax ebx ecx edx]

Notes:
1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register EAX will
contain address of the space allocated for the return value.

4. RegistersEAX, EBX, ECX and EDX are not saved and restored when a call is made.

11.27.3.3 Predefined "__stdcall" Alias
#pragma aux __stdcall "_*@nn" \
parmroutine [] \
val ue struct struct caller [] \
nodi fy [eax ecx edx]

Auxiliary Pragmas 223

32-bit Topics

Notes:
1. All symbols are preceded by an underscore character.

2. All Csymbols (extern "C" symbolsin C++) are suffixed by "@nnn" where "nnn" is the sum of
the argument sizes (each size is rounded up to amultiple of 4 bytes so that char and short are size
4). When the argument list contains"...", the "@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The called routine will remove the arguments from the stack.

4. When astructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.4 Predefined "__syscall" Alias

#pragma aux __syscall "*" \
parmcaller [] \
val ue struct struct caller [] \
nodi fy [eax ecx edx]

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or trailing
underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.5 Predefined "__watcall" Alias (register calling convention)

#pragma aux __watcall "*_" \
parmroutine [eax ebx ecx edx] \
val ue struct caller

Notes:
1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have

224 Auxiliary Pragmas

32-bit Pragmas

been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the argumentsif any were pushed on the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
spaceis put into ESI register. The called routine then places the return value there. Upon
returning from the call, register EAX will contain address of the space allocated for the return
value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

11.27.3.6 Predefined "__watcall" Alias (stack calling convention)

#pragma aux __watcall "*" \
parmcaller [] \
val ue no8087 struct caller \
nodi fy [eax ecx edx 8087]

Notes:
1. All symbols appear in object form as they do in source form.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.

4. Floating-point values are returned only using 80x86 registers.

5. Registers EAX, ECX and EDX are not preserved by the called routine.

6. Any local variablesthat are located in the 80x87 cache are not preserved by the called routine.

11.27.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol fromits
source form to its object form.

#pragm aux sym obj _name [;]

where description:
sym isany valid C/C++ identifier.
obj_name isany character string enclosed in double quotes.

When specifying obj _nane, some characters have a special meaning:

Auxiliary Pragmas 225

32-bit Topics

where description:
* is unmodified symbol name
A is symbol name converted to uppercase

! is symbol name converted to lowercase

isaplaceholder for "@nnn", where nnn is size of al function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character istreated as literal
Several examples of source to object form symbol name translation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.

#pragma aux MyRtn "*_";

Thisisthe default for all function names.

In the following example, the name "MyVar" will bereplaced by " MyVar" in the object file.
#pragma aux MyVar "_*";

Thisisthe default for all variable names.

In the following example, the lower case version "myrtn” will be placed in the object file.
#pragma aux MyRtn "!";

In the following example, the upper case version "MYRTN" will be placed in the object file.
#pragma aux MyRtn "A~";

In the following example, the name "MyRtn" will be replaced by " MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

#pragma aux MyRtn " *#";

In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object file.
#pragm aux MyRtn " _*\#";

The default mapping for al symbols can also be changed asillustrated by the following example.
#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character ().

226 Auxiliary Pragmas

32-bit Pragmas

11.27.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way afunction isto be called.

#pragma aux sym far [;]
or
#pragm aux sym near [;]
or
#pragma aux sym = in_line [;]

in_line::={ const | (seg id) | (of f set id) | (rel of f id)

| "asm”)

where description:

sym isafunction name.

const isavaid C/C++ integer constant.

id isany valid C/C++ identifier.

seg specifies the segment of the symbol i d.

offset specifies the offset of the symbol i d.

reloff specifies the relative offset of the symbol i d for near control transfers.
asm is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate afar cal to the function myrt n.

#pragma aux nyrtn far;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, afar call will be generated even if you are compiling for a memory model with a
small code model.

In the following example, Open Watcom C/C++ will generate a near call to the function nmyrt n.
#pragma aux nyrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular memory

model. In other words, a near call will be generated even if you are compiling for amemory model with a

big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes following the "="

character in the auxiliary pragmawhenever acall to node4 isencountered. node4 iscaled anin-line
function.

Auxiliary Pragmas 227

32-bit Topics

voi d node4(void);

#pragm aux node4 = \
0Oxb4 0x00 /* nov AH, 0 */ \
0xb0 0x04 /* nov AL, 4 */ \
Oxcd 0x10 /* int 10H */ \

modify [AH AL];

The sequence in the above DOS example represents the following lines of assembly language instructions.

nov AH, O ; select function "set node"
nov AL, 4 ; specify node (node 4)
i nt 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing an assembly
language function and calling it from your C/C++ program. The C prototype for the function node4 is not

necessary but isincluded so that we can take advantage of the argument type checking provided by Open
Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

voi d node4(void);
#pragm aux node4 =
"mov AH, 0",
"mov AL, 4",
"int 10H"
nmodify [AH AL];

— e — —

A sequence of in-line assembly language instructions may contain symbolic references. In the following
example, anear cal to the function nyal i as ismade whenever nmyr t n iscalled.

extern void nyalias(void);

void nyrtn(void);

#pragma aux nyrtn = \
0xe8 reloff nmyalias /* near call */;

In the following example, afar call to the function nyal i as is made whenever nyr t n iscalled.

extern void nyalias(void);

void nyrtn(void);

#pragm aux myrtn = \
0x9a offset nyalias seg nyalias /* far call */;

11.27.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). Thisisusualy the caseif you are using alarge
data memory model. Suppose you wish to call afunction that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced

to compile your application so that the segment register DS contained the default data segment (asmall data
memory model).

The following form of the auxiliary pragmawill cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified function.

228 Auxiliary Pragmas

32-bit Pragmas

#pragma aux sym parm | oadds [;]

where description:
sym isafunction name.
Alternatively, the following form of the auxiliary pragmawill cause the segment register DS to be loaded

with the segment address of the default data segment as part of the prologue sequence for the specified
function.

#pragma aux sym | oadds [;]

where description:

sym isafunction name.

11.27.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in adynamic link library is asymbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbolsin dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method isto use the following form of the
auxiliary pragma.

#pragma aux sym export [;]

where description:

sym isafunction name.

11.27.5.3 Forcing a Stack Frame

Normally, afunction contains a stack frame if arguments are passed on the stack or an automatic variableis
alocated on the stack. No stack frame will be generated if the above conditions are not satisfied. The
following form of the auxiliary pragmawill force a stack frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym isafunction name.

Auxiliary Pragmas 229

32-bit Topics

11.27.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++ isto use for
calling functions. Thisis particularly useful when interfacing to functions that have been compiled by

other compilers or functions written in other programming languages.

The general form of an auxiliary pragmathat describes argument passing is the following.

#pragma aux sym parm {pop_info|reverse |{reg_set}} [;]

pop_info::= caller | routine

where description:

sym isafunction name.

reg_set iscaled aregister set. Theregister sets specify the registersthat are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

11.27.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular function.

#pragm aux sym parm {reg_set} [;]

where description:

sym isafunction name.

reg_set iscalled aregister set. Theregister sets specify the registersthat are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within aregister set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type float and double are always pushed on the stack when the "fpi" or "fpi87"
option is used.

230 Auxiliary Pragmas

32-bit Pragmas

double

far pointer

int

char, short int

others

Notes:

Arguments of type double can only be passed in one of the following register pairs:
EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI,
EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI, ESI:EBX or EBX:EAX. For
example, if the following register set was specified for aroutine having an argument of
type double,

[EBP EBX]

the argument would be pushed on the stack since avalid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type doubleis supported only when the "fpc" option isused. Note that this argument
passing method does not include the passing of 8-byte structures.

A far pointer can only be passed in one of the following register pairs. DX:EAX, CX:EBX,
CX:EAX, CX:ESl, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX, CX:EDX,
DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX, FS.EDX, FS:EDI, FS:ESI, FS:EBX,
FS.EAX, GS.EECX, GS:EDX, GS:EDI, GS:ES|, GS.EBX, GS.EAX, DS.ECX, DS:EDX,
DS.EDI, DS:ESI, DS.EBX, DS:EAX, ES.ECX, ES:EDX, ES.EDI, ES.ES|, ES:EBX or
ES:EAX. For example, if afar pointer is passed to a function with the following register
Set,

[ES EBP]

the argument would be pushed on the stack since avalid register combination for afar
pointer is not contained in the register set.

The only registersthat will be assigned to 4-byte arguments (e.g., arguments of type int)
are: EAX, EBX, ECX, EDX, ESI and EDI. For example, if the following register set was
specified for aroutine with one argument of typeint,

[EBP]

the argument would be pushed on the stack since avalid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes 4-byte structures. Note that this argument passing method also includes arguments
of type float but only when the "fpc" option is used.

Arguments whose sizeis 1 byte or 2 bytes (e.g., arguments of type char and short int as
well as 2-byte structures) are promoted to 4 bytes and are then assigned registers asiif they
were 4-byte arguments.

Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

1. Thedefault register setis[EAX EBX ECX EDX].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX. Specifying register EAX implies that register AX has been specified. Specifying

Auxiliary Pragmas 231

32-bit Topics

register EBX implies that register BX has been specified. Specifying register ECX implies that
register CX has been specified. Specifying register EDX implies that register DX has been
specified. Specifying register EDI impliesthat register DI has been specified. Specifying
register ESI implies that register Sl has been specified. Specifying register EBP implies that
register BP has been specified. Specifying register ESP implies that register SP has been
specified.

3. If you are compiling for amemory model with asmall data model, or the "zdp" compiler option
is specified, any register combination containing register DS becomesillegal. Inasmall data
model, segment register DS must remain unchanged as it points to the program’ s data segment.
Note that the "zdf" compiler option can be used to specify that register DS does not contain that
segment address of the program’ s data segment. In this case, register combinations containing
register DS are legal.

4. If you are compiling for the flat memory model, any register combination containing DS or ES
becomesillegal. Inaflat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

Consider the following example.
#pragma aux myrtn parm[eax ebx ecx edx] [ebp esi];
Suppose myr t n isaroutine with 3 arguments each of type double.

1. Thefirst argument will be passed in the register pair EDX:EAX.

2. The second argument will be passed in the register pair ECX:EBX.

3. Thethird argument will be pushed on the stack since EBP:ESI is not avalid register pair for

arguments of type double.

Itis possible for registers from the second register set to be used before registers from the first register set
are used. Consider the following example.

#pragma aux myrtn parm[eax ebx ecx edx] [esi edi];
Suppose myr t n isaroutine with 3 arguments, the first of type int and the second and third of type double.
1. Thefirst argument will be passed in the register EAX.
2. Thesecond argument will be passed in the register pair ECX:EBX.
3. Thethird argument will be passed in the register set EDI:ESI.

Note that registers are no longer selected from aregister set after registers are selected from subsequent
register sets, even if al registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:
1. If asingle empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [EAX EBX ECX EDX] is used.

232 Auxiliary Pragmas

32-bit Pragmas

11.27.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say "mycopy", that
copiesdata. The first argument is the source, the second argument is the destination, and the third
argument isthe length to copy. If we want the first argument to be passed in the register ESI, the second
argument to be passed in register EDI and the third argument to be passed in register ECX, the following
auxiliary pragma can be used.

voi d nycopy(char near *, char *, int);
#pragma aux mycopy parm[ESI] [ED] [ECX];

Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

11.27.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is described by an
auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line functions is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom C/C++ assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line function called

scrol | acti vepgup.

voi d scrollactivepgup(char, char, char, char, char, char);
#pragma aux scrollactivepgup =\
"mov AH, 6" \

“int 10h" \
parm[ch] [cl] [dh] [dI] [al] [bh] \
modi fy [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. Therow and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. Therow and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. Thenumber of lines blanked at the bottom of the window is passed in register AL.

4. Theattribute to be used on the blank linesis passed in register BH.
When passing arguments, Open Watcom C/C++ will convert the argument so that it fitsin the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrol | acti vepgup was called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if an in-line function required its argument in register
EAX and the argument was of type short int, the argument would be converted to long int before
assigning it to register EAX.
In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of asingle 8-bit register (1 byte) is assigned atype of unsigned char.

Auxiliary Pragmas 233

32-bit Topics

2. A register set consisting of asingle 16-bit register (2 bytes) is assigned atype of unsigned short
int.

3. A register set consisting of asingle 32-hit register (4 bytes) is assigned a type of unsigned long
int.

4. A register set consisting of two 32-bit registers (8 bytes) is assigned atype of double.

11.27.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

#pragma aux sym parm (caller | routine) [;]

where description:

sym isafunction name.

"caller" specifiesthat the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routine" is omitted, "routine" is assumed

unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

11.27.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

#pragm aux sym parmreverse [;]

where description:
sym isafunction name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments

are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing argumentsis most useful for functions that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such afunction.

#pragm aux rtn parmreverse [];

234 Auxiliary Pragmas

32-bit Pragmas

11.27.7 Describing Function Return Information
Using auxiliary pragmas, you can describe the way functions areto return values. Thisis particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in

other programming languages.

The general form of an auxiliary pragmathat describes the way a function returnsits value is the following.

#pragma aux sym val ue {no8087 | reg set | struct_info} [;]
struct_info::= struct {float | struct | (routine | caller) | reg_set}

where description:

sym isafunction name.

reg set iscaled aregister set. The register sets specify the registersthat are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

11.27.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
afunction’svaue.

#pragma aux sym val ue reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

Note that the method described below for returning values of type float or doubleis supported only when
the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registersare allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If noregister set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, Sl or
DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (including near pointers), only the following register are allowed:
EAX, EDX, EBX, ECX, ESl or EDI. If no register set is specified, register EAX will be
used. Thisform of the auxiliary pragmaislegal for functions of type float when using the
"“fpc" option only.

Auxiliary Pragmas 235

32-bit Topics

far pointer For functions that return far pointers, the following register pairs are allowed: DX:EAX,
CX:EBX, CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX,
CX:EDX, DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX, FS:EDX, FS:EDI, FS:ESI,
FSEEBX, FSEEAX, GS.ECX, GS.EEDX, GS:EDI, GS:ESI, GS.EBX, GS.EAX, DS:ECX,
DS.EDX, DS.EDI, DS:ESI, DS.EBX, DS.EAX, ES.ECX, ES.EDX, ES:EDI, ES.ES|,
ES.EBX or ES:EAX. If noregister set is specified, the registers DX:EAX will be used.

8-byte For 8-byte return values (including functions of type double), only the following register
pairsare alowed: EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX,
ECX:EDI, EDX:ESI, EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ES|, ESI:EBX or
EBX:EAX. If noregister set is specified, the registers EDX:EAX will beused. Thisform
of the auxiliary pragmaislegal for functions of type double when using the "fpc" option
only.

Notes:

1. Anempty register setisnot allowed.

2. If you are compiling for amemory model which has a small data model, any of the above
register combinations containing register DS becomesillegal. Inasmall data model, segment
register DS must remain unchanged as it points to the program’ s data segment.

3. If you are compiling for the flat memory model, any register combination containing DS or ES

becomesillegal. Inaflat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

11.27.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the stack for the
return value and sets register ESI to point to it. The called routine then places the return value at the
location pointed to by register ESI.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

#pragma aux sym val ue struct (caller|routine) reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

"caller" specifiesthat the caller will alocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
functioniscalled. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register EAX by the
called routine.

236 Auxiliary Pragmas

32-bit Pragmas

"routine” specifies that the called routine will alocate memory for the return value. Upon returning to the
caler, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: EAX, EDX, EBX, ECX, ESI or EDI. Note that
in abig data model, the address in the return register is assumed to be in the segment specified by the value
in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-bytestructure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If noregister set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, Sl or DI.
If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following registers: EAX, EDX, EBX, ECX,
ESI or EDI. If no register set is specified, register EAX will be used.

The following form of the auxiliary pragma can be used to specify that structureswhose sizeis1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register ESl to it.

#pragma aux sym val ue struct struct [;]

where description:

sym isafunction name.

11.27.7.3 Returning Floating-Point Data

There are afew ways available for specifying how the value for afunction whose typeisfloat or doubleis
to be returned.

The following form of the auxiliary pragma can be used to specify that function return values whose typeis
float or double are not to be returned in registers. Instead, the caller will allocate space on the stack for the
return value and point register ESI to it.

#pragma aux sym val ue struct float [;]

where description:
sym isafunction name.
In other words, floating-point values are to be returned in the same way structures are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in 80x87 registers when compiling with the "fpi" or "fpi87" option.

Auxiliary Pragmas 237

32-bit Topics

Instead, the value will be returned in 80x86 registers. Thisis the default behaviour for the "fpc" option.
Function return values whose type is float will be returned in register EAX. Function return values whose
typeisdouble will be returned in registers EDX:EAX. Thisisthe default method for the "fpc" option.

#pragma aux sym val ue no8087 [;]

where description:
sym isafunction name.
The following form of the auxiliary pragma can be used to specify that function return values whose type is

float or double are to be returned in ST(0) when compiling with the "fpi" or "fpi87" option. Thisform of
the auxiliary pragmais not legal for the "fpc" option.

#pragma aux sym val ue [8087] [;]

where description:

sym isafunction name.

11.27.8 A Function that Never Returns

The following form of the auxiliary pragma can be used to describe a function that does not return to the
caler.

#pragma aux sym aborts [;]

where description:
sym isafunction name.

Consider the following example.

#pragnma aux exitrtn aborts;
extern void exitrtn(void);

void rtn()

exitrtn();

exi trt n isdefined to be afunction that does not return. For example, it may call exi t toreturntothe
system. In this case, Open Watcom C/C++ generates a”jmp" instruction instead of a"call" instruction to
invokeexitrtn.

238 Auxiliary Pragmas

32-bit Pragmas

11.27.9 Describing How Functions Use Memory

The following form of the auxiliary pragma can be used to describe a function that does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by the caler.

#pragma aux sym nodi fy nonenory [;]

where description:
sym isafunction name.

Consider the following example.
#pragma of f (check_stack);
extern void nyrtn(void);
int i ={ 1033 };

extern Rtn()
while(i < 10000) {

i += 383;
}
myrtn();
i += 13143;

1
To compile the above program, "rtn.c”, we issue the following command.

Cwee rtn /oai /dl
Cwp rtn /oai /dl
Cwee386 rtn /oai /dl
C>wpp386 rtn /oai /dl

For illustrative purposes, we omit loop optimizations from the list of code optimizations that we want the
compiler to perform. The "d1" compiler option is specified so that the object file produced by Open
Watcom C/C++ contains source line information.

We can generate afile containing a disassembly of rt n. obj by issuing the following command.

Cwdis rtn /1 /s [r
The"s" option is specified so that the listing file produced by the Open Watcom Disassembler contains
sourcelinestakenfromrt n. c. Thelistingfilert n. | st appearsasfollows.

Modul e: rtn.c
G oup: ' DGROUP' CONST, DATA

Segnent: ' _TEXT' BYTE USE32 00000036 bytes
#pragma of f (check_stack);
extern void nmyrtn(void);

int i ={ 1033 };

Auxiliary Pragmas 239

32-bit Topics

extern Rin() {

0000 52 Rt n_ push EDX
0001 8b 15 00 00 00 00 nov EDX, _i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cnp EDX, 00002710H
000d 7d 08 jge L2

i += 383

}
000f 81 c2 7f 01 00 00 add EDX, 0000017f H
0015 eb fO jnp L1

nyrtn();
0017 89 15 00 00 00 00 L2 nov _i, EDX
001d e8 00 00 00 0O cal | nmyrtn_
0022 8b 15 00 00 00 00 nov EDX, _i

i += 13143;
0028 81 c2 57 33 00 00 add EDX, 00003357H
002e 89 15 00 00 00 00 nov _i, EDX
0034 5a pop EDX
0035 «c3 ret

No di sassenbly errors

Segment: ' _DATA' WORD USE32 00000004 byt es
0000 09 04 00 00 i -

No di sassenbly errors

Let us add the following auxiliary pragmato the sourcefile.

#pragma aux nmyrtn nodi fy nonenory;
If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

Modul e: rtn.c
Group: ' DGROUP' CONST, _DATA

Segnment: ' _TEXT' BYTE USE32 00000030 bytes

#pragma of f (check_stack)
#pragma aux nyrtn nodi fy nonenory;

extern void nmyrtn(void)

int i ={ 1033}
extern Rin() {
0000 52 Rtn_ push EDX
0001 8b 15 00 00 00 0O nov EDX, _i
while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cnp EDX, 00002710H
000d 7d 08 j ge L2
i += 383
}
0oof 81 c2 7f 01 00 0O add EDX, 0000017f H
0015 eb fO i mp L1

240 Auxiliary Pragmas

32-bit Pragmas

nyrtn();
0017 89 15 00 00 00 00 L2 nov _i, EDX
001d e8 00 00 00 0O cal | myrtn_
i += 13143;
0022 81 c2 57 33 00 00 add EDX, 00003357H
0028 89 15 00 00 00 00 nmov _i, EDX
002e 5a pop EDX
002f c¢3 ret

No di sassenbly errors

Segment: ' _DATA' WORD USE32 00000004 byt es
0000 09 04 00 00 i

No di sassenbly errors

Notice that thevalue of i isinregister EDX after completion of the "whil€e" loop. After the call to
nyrtn, thevalueof i isnotloaded from memory into aregister to perform the final addition. The
auxiliary pragmainforms the compiler that myr t n does not modify any memory (i.e., global or static
variables) that is used directly or indirectly by Rt n and hence register EDX contains the correct value of
i

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the case where
routines reference memory. The following form of the auxiliary pragma can be used to describe afunction
that does not reference any memory (i.e., global or static variables) that is used directly or indirectly by the
caller.

#pragm aux sym parm nonenory nodi fy nonenory [;]

where description:
sym isafunction name.
Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

#pragma aux myrtn parm nomenory nodi fy nomenory;
If you now compile our source file and disassemble the object file using WDISS, the result is the following
listing file.

Modul e: rtn.c
G oup: ' DGROUP' CONST, _DATA

Segnent: ' _TEXT' BYTE USE32 0000002a bytes

#pragma of f (check_stack);
#pragma aux nyrtn parm nonenory nodify nonenory;

Auxiliary Pragmas 241

32-bit Topics

extern void nyrtn(void)

int i ={ 1033}
extern Rin() {
0000 52 Rt n_ push EDX
0001 8b 15 00 00 00 00 nov EDX, _i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cnp EDX, 00002710H
000d 7d 08 jge L2

i += 383

}
000f 81 c2 7f 01 00 00 add EDX, 0000017f H
0015 eb fO jnp L1

nyrtn();
0017 e8 00 00 00 0O L2 cal | nyrtn_

i += 13143;
001c 81 c2 57 33 00 00 add EDX, 00003357H
0022 89 15 00 00 00 00 nov _i, EDX
0028 5a pop EDX
0029 «c3 ret

No di sassenbly errors

Segment: ' _DATA' WORD USE32 00000004 byt es
0000 09 04 00 00 i

No di sassenbly errors

Notice that after completion of the "while" loop we did not have to update i with the value in register EDX
before calling nyrt n. Theauxiliary pragmainforms the compiler that myr t n does not reference any
memory (i.e., global or static variables) that is used directly or indirectly by nyrt n soupdatingi was not
necessary before calling myrt n.

11.27.10 Describing the Registers Modified by a Function

The following form of the auxiliary pragma can be used to describe the registers that a function will use
without saving.

#pragma aux sym nodi fy [exact] reg_set [;]

where description:
sym isafunction name.
reg_set isaregister set.

Specifying aregister set informs Open Watcom C/C++ that the registers belonging to the register set are
modified by the function. That is, the value in aregister before calling the function is different from its
value after execution of the function.

242 Auxiliary Pragmas

32-bit Pragmas

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called function. Also, sincethe EAX register is frequently used to return avalue, itis
always assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called function does not modify them. The following form of the auxiliary pragma can
be used to describe exactly those registers that will be modified by the called function.

#pragma aux sym nodi fy exact reg_set [;]

where description:
sym isafunction name.
reg_set isaregister set.

The above form of the auxiliary pragmatells Open Watcom C/C++ not to assume that the registers used to
pass arguments will be modified by the called function. Instead, only the registers specified in the register
set will be modified. Thiswill prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Also, any registersthat are specified in the val ue register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we havetold it that "GetSP" does not
modify any register whatsoever.

Example:
unsi gned CGet SP(voi d);
#if defined(__386__)
#pragma aux CGet SP = value [esp] nodify exact [];
#el se
#pragm aux CGet SP = value [sp] nodify exact [];
#endi f

11.27.11 An Example

Asmentioned in an earlier section, the following pragma defines the calling convention for functions
compiled by MetawWare' s High C compiler.

#pragma aux HGH C "*" \
parmcaller [] \
val ue no8087 \

nodi fy [eax ecx edx fs gs];

Note that register ES must also be specified in the "modify" register set when using a memory model with a
non-small datamodel. Let usdiscuss this pragmain detail.

o specifiesthat all function and variable names appear in object form as they do in source
form.

parm caller [] specifiesthat all arguments are to be passed on the stack (an empty register set was
specified) and the caller will remove the arguments from the stack.

Auxiliary Pragmas 243

32-bit Topics

value no8087 specifies that floating-point values are to be returned using 80x86 registers and not 80x87
floating-point registers.

modify [eax ecx edx fsgs] specifies that registers EAX, ECX, EDX, FSand GS are not preserved by the
called routine.

Note that the default method of returning integer values is used; 1-byte characters are returned in register
AL, 2-byte integers are returned in register AX, and 4-byte integers are returned in register EAX.

11.27.12 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" optionsis used to compile functions. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

11.27.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a function is compiled with the "fpi" or "fpi87" option. However, they
can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to functions.

#pragm aux sym parm {reg_set} [;]

where description:

sym isafunction name.

reg_set isaregister set. Theregister set can contain 80x86 registers and/or the string "8087".
Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appearsin aregister set, it simply means that floating-point arguments can be
passed in 80x87 floating-point registersif the source file is compiled with the "fpi" or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer iscalled ST
and is a number between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST isinitially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87

244 Auxiliary Pragmas

32-bit Pragmas

floating-point register to be used. The notation ST(n), where "n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relative to ST.

When afloating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value isloaded into ST(0). When afloating-point value is stored and popped from the
80x87 floating-point register stack, ST isincremented (modulo 8) and ST(1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

. +
| 4th fromtop | ST(4)
e +
| 5th fromtop | ST(5)
e +
| 6th fromtop | ST(6)
S +
| 7th fromtop | ST(7)
e +
| top of stack | ST(0)
. +
| 1st fromtop | ST(1)
o m e e e e e oo +
| 2nd fromtop | ST(2)
e +
| 3rd fromtop | ST(3)
S +

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers asa stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note:

For compatibility with code compiled with version 9.0 and earlier, you can compile with
the"fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. Thefour 80x87 floating-point registers that form the stack are uninitialized.
2. Thefour 80x87 floating-point registers that form the 80x87 cache are initialized
with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 asin the above diagram. When afloating-point value was pushed on the stack
(asisthe case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

Therules for passing arguments are as follows.

1. If theargument is not floating-point, use the procedure described earlier in this chapter.

2. If theargument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

Auxiliary Pragmas 245

32-bit Topics

If the string "8087" appearsin aregister set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) isnow in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will bein ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragnma aux nyrtn parm [8087];

voi d main()

fl oat X;
doubl e y;
i nt i;
long int j;

X
[
y

7.7;
7,
77.77;

j =77,

nyrtn(x, i, vy, |);

nmyr t n isan assembly language function that requires four arguments. The first argument of type float (4
bytes), the second argument is of type int (4 bytes), the third argument is of type double (8 bytes) and the
fourth argument is of type long int (4 bytes). These arguments will be passed to nyr t n in the following

way.

1

4.

Since "8087" was specified in the register set, the first argument, being of type float, will be
passed in an 80x87 floating-point register.

The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

The third argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

The fourth argument will also be passed on the stack.

Let us change the auxiliary pragmain the above example as follows.

#pragma aux nmyrtn parm[eax 8087];

The arguments will now be passed to myr t n in the following way.

1

Since "8087" was specified in the register set, the first argument, being of type float will be
passed in an 80x87 floating-point register.

The second argument will be passed in register EAX, exhausting the set of available 80x86
registers for argument passing.

The third argument, being of type double, will also be passed in an 80x87 floating-point register.

246 Auxiliary Pragmas

32-bit Pragmas

4. Thefourth argument will be passed on the stack since no 80x86 registers remain in the register
Set.

11.27.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a floating-point
valuein ST(0).

#pragma aux sym val ue reg set [;]

where description:
sym isafunction name.
reg_set isaregister set containing the string "8087", i.e. [8087].

11.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
function unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as acache). The following form of the auxiliary pragma specifies that the
floating-point registers in the 80x87 cache may be modified by the specified function.

#pragma aux sym nodify reg set [;]

where description:
sym isafunction name.
reg_set isaregister set containing the string "8087", i.e. [8087].

Thisinstructs Open Watcom C/C++ to save any local variables that are located in the 80x87 cache before
calling the specified routine.

Auxiliary Pragmas 247

32-bit Topics

248 Auxiliary Pragmas

In-line Assembly Language

In-line Assembly Language

250

12 In-line Assembly Language

The chapters entitled "16-bit Pragmas" on page 135 and "32-bit Pragmas" on page 203 briefly describe the
use of the auxiliary pragmato create a sequence of assembly language instructions that can be placed
anywhere executable C/C++ statements can appear in your source code. This chapter is devoted to an
in-depth look at in-line assembly language programming.
The reasons for resorting to in-line assembly code are varied:

* Speed - You may be interested in optimizing a heavily-used section of code.

* Size - Y ou may wish to optimize amodule for size by replacing alibrary function call with a direct
system call.

* Architecture - Y ou may want to access certain features of the Intel x86 architecture that cannot be
done so with C/C++ statements.

There are also some reasons for not resorting to in-line assembly code.
« Portability - The code is not portable to different architectures.

* Optimization - Sometimes an optimizing compiler can do a better job of arranging the instruction
stream so that it is optimal for a particular processor (such as the 486 or Pentium).

12.1 In-line Assembly Language Default Environment

In next table is description of the default in-line assembler environment in dependency on C/C++ compilers
CPU switch for x86 target platform.

Conpiler CPU FPU CPU ext ensi on
directive directive directives
-0 8086 . 8087
-1 186 . 8087
-2 286p 287
-3 386p 387
-4 . 486p . 387
-5 . 586p . 387 . K3D+. MWX
-6 . 686p . 387 . K3D+. MWK+, XMW, XMVR+. XMVB

This environment can be simply changed by appropriate directives.
Note:

This changeisvalid only for the block of assembly source code. After thisblock, default setting is
restored.

In-line Assembly Language Default Environment 251

In-line Assembly Language

12.2 In-line Assembly Language Tutorial

Doing in-line assembly is reasonably straight-forward with Open Watcom C/C++ although care must be
exercised. You can generate a sequence of in-line assembly anywhere in your C/C++ code stream. The
first step isto define the sequence of instructions that you wish to place in-line. The auxiliary pragmais
used to do this. Hereisasimple example based on a DOS function call that returns afar pointer to the
Double-Byte Character Set (DBCS) encoding table.

Example:
extern unsi gned short far *dbcs_table(void);
#pragna aux dbcs_table =\
"nmov ax, 6300h" \
"int 21h" \
val ue [ds si] \
modi fy J[ax];

To set up the DOS call, the AH register must contain the hexadecimal value "63" (63h). A DOS function
call isinvoked by interrupt 21h. DOS returns afar pointer in DS:SI to atable of byte pairsin the form
(start of range, end of range). On anon-DBCS system, the first pair will be (0,0). On a Japanese DBCS
system, the first pair will be (81h,9Fh).

With each pragma, we define a corresponding function prototype that explains the behaviour of the
function in terms of C/C++. Essentially, it isafunction that does not take any arguments and that returns a
far pointer to aunsigned short item.

The pragma indicates that the result of this"function” isreturned in DS:SI (value[ds si]). The pragmaalso
indicates that the AX register is modified by the sequence of in-line assembly code (modify [ax]).

Having defined our in-line assembly code, let us see how it isused in actual C code.

Example:
#i ncl ude <stdio. h>

extern unsi gned short far *dbcs_table(void);
#pragma aux dbcs_table =\

"mov ax, 6300h" \

"int 21h" \

val ue [ds si] \

modi fy [ax];

voi d main()

if(*dbcs_table() '=0) {
/*
we are running on a DOS systemthat
supports doubl e-byte characters
*/
printf("DBCS supported\n");

}

Before you attempt to compile and run this example, consider this. The program will not work! At least, it
will not work in most 16-hit memory models. And it doesn't work at all in 32-bit protected mode using a
DOS extender. What iswrong with it?

252 In-line Assembly Language Tutorial

In-line Assembly Language

We can examine the disassembled code for this program in order to see why it does not alwayswork in
16-bit real-mode applications.

if(*dbcs_table() 1= 0) {

0007
000a
000c
000f

}
0011
0014
0015
0018

}

/*
we are running on a DOS systemt hat
supports doubl e-byte characters
*/
b8 00 63 nov
cd 21 int
83 3c 00 cnp
74 Oa je
printf("DBCS supported\n");
be 00 00 nmov
56 push
e8 00 00 cal
83 c4 02 add

ax, 6300H

21H

word ptr [si], 0000H
L1

si,of fset L2
S

printf_

sp, 0002H

After the DOS interrupt call, the DS register has been altered and the code generator does nothing to
recover the previous value. Inthe small memory model, the contents of the DS register never change (and
any code that causes a change to DS must save and restoreits value). It isthe programmer’ s responsibility
to be aware of the restrictions imposed by certain memory models especially with regards to the use of
segmentation registers. So we must make a small change to the pragma.

extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table =\

"push ds"

"mov ax, 6300h"
"int 21h"

"mov di, ds"
"pop ds"

val ue [di si]
modi fy [ax];

\
\
\
\
\
\

If we compile and run this example with a 16-bit compiler, it will work properly. We can examine the
disassembled code for this revised program.

if(*dbcs_table() '=0) {
/*

0008
0009
000c
000e
0010
0011
0013
0017

}
0019
001c
001d
0020

we are running on a DOS system t hat

supports doubl e-byte characters

*/
le
b8 00 63
cd 21
8c df
1f
8e c7
26 83 3c 00
74 Oa

printf("DBCS supported\n");

be 00 00
56

e8 00 00
83 c4 02

push
nov
int
nov
pop
nov
cnp
je

nmv
push
cal
add

ds

ax, 6300H

21H

di, ds

ds

es,d

word ptr es:[si], 0000H
L1

si,of fset L2
S

printf_

sp, 0002H

If you examine this code, you can see that the DS register is saved and restored by the in-line assembly
code. The code generator, having been informed that the far pointer isreturned in (DI:Sl), loads up the ES
register from DI in order to reference the far data correctly.

In-line Assembly Language Tutorial 253

In-line Assembly Language

That takes care of the 16-bit real-mode case. What about 32-bit protected mode? When using a DOS
extender, you must examine the accompanying documentation to see if the system call that you wish to
make is supported by the DOS extender. One of the reasons that this particular DOS call is not so clear-cut
isthat it returns a 16-bit real-mode segment:offset pointer. A real-mode pointer must be converted by the
DOS extender into a protected-mode pointer in order to make it useful. Asit turns out, neither the
Tenberry Software DOS/AG(W) nor Phar Lap DOS extenders support this particular DOS call (although
others may). The issues with each DOS extender are complex enough that the relative merits of using
in-line assembly code are not worth it. We present an excerpt from the final solution to this problem.

Example:
#i fndef __386__

extern unsigned short far *dbcs_table(void);

#pragma aux dbcs_table =\
"push ds"
"mov ax, 6300h"
"int 21h"
"mov di, ds"
"pop ds"
val ue [di si]
nmodi fy [ax];

\
\
\
\
\
\

#el se

unsi gned short far * dbcs_table(void)
{

uni on REGPACK regs;

static short dbcs_dunmmy = 0;

nmenset (& egs, 0, sizeof(regs));
if(_lsPharLap()) {
PHARLAP_bl ock pbl ock;

menset (&bl ock, 0, sizeof(pblock));

pbl ock. real _eax = 0x6300;

pbl ock. i nt _num = 0x21;

regs. x. eax = 0x2511,;

regs. x. edx = FP_OFF(&pbl ock);
regs.w.ds = FP_SEG &pbl ock);
intr(0x21, ®s);

/* get DBCS vector table */
/* DOS call */

/* issue real -node interrupt */
/* DS: EDX -> parameter block */

return(firstmeg(pblock.real _ds, regs.w.si));

} else if(_I1sDOs4E)) {
DPM _bl ock dbl ock;

nenset (&bl ock, 0, sizeof(dblock));

dbl ock. eax = 0x6300;

regs. w. ax 0x300;

regs. h. bl 0x21;

regs. h. bh 0;

regs. w. cx 0;

regs. x.edi = FP_OFF(&dbl ock);
regs.x.es = FP_SEQ &dbl ock);
intr(O0x31, ®s);

/* get DBCS vector table */
/* DPM Sinmulate RRMintr */
/* DOS call */

/* flags */

/* # bytes fromstack */

return(firstmeg(dblock.ds, dblock.esi));

} else {
return(&lbcs_dummy);
}

}

#endi f

The 16-bit version will use in-line assembly code but the 32-bit version will use a C function that has been
crafted to work with both Tenberry Software DOS/4G(W) and Phar Lap DOS extenders. The fi r st neg

function used in the example is shown below.

254 In-line Assembly Language Tutorial

In-line Assembly Language

#defi ne REAL_SEGVENT 0x34
void far *firstmeg(unsigned segnent, unsigned offset)
void far *megl;

if(_1sDos4Qd)) {

megl = MK_FP(FP_SEQ &negl), (segnent << 4) + offset);
} else {

megl = MK_FP(REAL_SEGMVENT, (segnent << 4) + offset);
}

return(negl);

}

We have taken a brief look at two features of the auxiliary pragma, the "modify" and "value" attributes.

The "modify" attribute describes those registers that are modified by the execution of the sequence of
in-line code. Y ou usually have two choices here; you can savelrestore registers that are affected by the
code sequence in which case they need not appear in the modify list or you can let the code generator
handle the fact that the registers are modified by the code sequence. When you invoke a system function
(suchasaDOS or BIOS call), you should be careful about any side effects that the call has on registers. If
aregister ismodified by a call and you have not listed it in the modify list or saved/restored it, this can have
adisastrous affect on the rest of the code in the function where you are including the in-line code.

The"value" attribute describes the register or registersin which avalueis returned (we use the term
"returned", not in the sense that a function returns a value, but in the sense that aresult is available after
execution of the code sequence).

This leads the discussion into the third feature of the auxiliary pragma, the feature that allows usto place
the results of C expressions into specific registers as part of the "setup” for the sequence of in-line code. To
illustrate this, let us look at another example.

Example:
extern voi d Bl OSSet Cur Pos(unsi gned short __ rowcol,
unsi gned char __page);

#pragma aux Bl OSSet Cur Pos =
"push bp"
"nmov ah, 2"
"int 10h"
" pop bp"
parm [dx] [bh]
nmodi fy [ah];

— e — —

The "parm" attribute specifies the list of registersinto which values are to be placed as part of the prologue
to the in-line code sequence. In the above example, the "set cursor position" function requires three pieces
of information. It requires that the cursor row value be placed in the DH register, that the cursor column
value be placed in the DL register, and that the screen page number be placed in the BH register. Inthis
example, we have decided to combine the row and column information into a single "argument"” to the
function. Note that the function prototype for Bl OSSet Cur Pos isimportant. It describes the types and
number of arguments to be set up for thein-line code. It also describes the type of the return value (in this
case thereis none).

Once again, having defined our in-line assembly code, |et us see how it is used in actual C code.

In-line Assembly Language Tutorial 255

In-line Assembly Language

Example:
#i ncl ude <stdio. h>

extern voi d Bl OSSet Cur Pos(unsi gned short

unsi gned char _

#pragma aux Bl OSSet Cur Pos =
"push bp"
"mov ah, 2"
"int 10h"
“pop bp"
parm [dx] [bh]
nmodi fy [ah];

— e — —

void main()

Bl OSSet Cur Pos((5 << 8) | 20, 0);
printf("Hello world\n");

__rowcol ,
_bage);

To see how the code generator set up the register values for the in-line code, let us take alook at the

disassembled code.

Bl OSSet Cur Pos((5 << 8) | 20, 0);

0008 ba 14 05 nov dx, 0514H
000b 30 ff xor bh, bh
000d 55 push bp

000e b4 02 nov ah, 02H
0010 «cd 10 int 10H

0012 5d pop bp

As we expected, the result of the expression for the row and column is placed in the DX register and the
page number is placed in the BH register. The remaining instructions are our in-line code sequence.

Although our examples have been simple, you should be able to generalize them to your situation.

To review, the "parm", "value" and "modify" attributes are used to:

1. convey information to the code generator about the way data values are to be placed in registers

in preparation for the code burst (parm),

2. convey information to the code generator about the result, if any, from the code burst (value),

and

3. convey information to the code generator about any side effects to the registers after the code
burst has executed (modify). It isimportant to let the code generator know all of the side effects
on registers when the in-line code is executed; otherwise it assumes that al registers, other than
those used for parameters, are preserved. In our examples, we chose to push/pop some of the

registers that are modified by the code burst.

256 In-line Assembly Language Tutorial

In-line Assembly Language

12.3 Labels in In-line Assembly Code

Labels can be used in in-line assembly code. Here isan example.

Example:
extern void _disable_video(unsigned);
#pragma aux _disable video = \
"again: in al,dx"

"test al,8"
"jz again"
"mov dx, 03cOh"
"mov al, 11h"
"out dx, al"
"nmov al, 0"
"out dx,al"
par m [dx]
nmodi fy [al dx];

P L L Y

12.4 Variables in In-line Assembly Code

To finish our discussion, we provide examples that illustrate the use of variablesin the in-line assembly
code. Thefollowing example illustrates the use of static variable referencesin the auxiliary pragma.

Example:
#i ncl ude <stdi o. h>

static short _rowcol ;
static unsigned char _page;

extern void Bl OSSet Cur Pos(void);
#pragm aux Bl OSSet Cur Pos = \
"mov dx, _rowcol" \
"nmov bh, _page” \
"push bp" \
"mov ah, 2" \
"int 10h" \
"pop bp" \

modi fy [ah bx dx];

voi d main()

_rowcol = (5 << 8) | 20;

_page = 0;

Bl OSSet Cur Pos() ;

printf("Hello world\n");
}

The only rule to follow hereisthat the auxiliary pragma must be defined after the variables are defined.
Thein-line assembler is passed information regarding the sizes of variables so they must be defined first.

If welook at afragment of the disassembled code, we can see the result.

Variables in In-line Assembly Code 257

In-line Assembly Language

_rowcol = (5 << 8) | 20

0008 c¢7 06 00 00 14 05 nov word ptr __rowcol, 0514H
_page = 0;

000e c¢6 06 00 00 00 nmv byte ptr __page, 00H
Bl OSSet Cur Pos() ;

0013 8b 16 00 00 nmov dx, __rowco

0017 8a 3e 00 00 nov bh, __page

001lb 55 push bp

001c b4 02 nov ah, 02H

00le cd 10 int 10H

0020 5d pop bp

The following example illustrates the use of automatic variable references in the auxiliary pragma. Again,
the auxiliary pragma must be defined after the variables are defined so the pragmais placed in-line with the
function.

Example:
#i ncl ude <stdio. h>

voi d main()

short _rowcol ;
unsi gned char _page;

extern void Bl OSSet Cur Pos(void);
pragma aux Bl OSSet CurPos =\

"mov dx, _rowcol "
mov bh, _page"
"push bp"

"nmov ah, 2"

"int 10h"

“pop bp”

nmodi fy [ah bx dx];

e e e e —

_rowcol = (5 << 8) | 20;
_page = O;

Bl OSSet Cur Pos() ;

printf("Hello world\n");

}

If we look at afragment of the disassembled code, we can see the resullt.

_rowcol = (5 << 8) | 20

000e <c7 46 fc 14 05 nmv word ptr -4H bp], 0514H
_page = 0;

0013 <c6 46 fe 00 nmov byte ptr -2H bp], O0H
Bl OSSet Cur Pos() ;

0017 8b 96 fc ff nov dx, - 4H bp]

001b 8a be fe ff nov bh, - 2H bp]

001f 55 push bp

0020 b4 02 nov ah, 02H

0022 «cd 10 int 10H

0024 5d pop bp

Y ou should try to avoid references to automatic variables asillustrated by this last example. Referencing
automatic variables in this manner causes them to be marked as volatile and the optimizer will not be able
to do agood job of optimizing referencesto these variables.

258 Variables in In-line Assembly Code

In-line Assembly Language

12.5 In-line Assembly Language using _asm

Thereis an aternative to Open Watcom’ s auxiliary pragma method for creating in-line assembly code.
You can use one of the _asm or __asm keywords to imbed assembly code into the generated code. The
following is arevised example of the cursor positioning example introduced above.

Example:
#i ncl ude <stdi o. h>

void main()

unsi gned short _rowcol;
unsi gned char _page;

_rowcol = (5 << 8) | 20;
_page = O;
_asm {
nmov dx, rowcol
nmov bh, page
push bp
nov ah, 2
i nt 10h
pop bp
s

printf("Hello world\n");
}

The assembly language sequence can reference program variablesto retrieve or store results. Therearea
few incompatibilities between Microsoft and Open Watcom implementation of this directive.

__ LOCAL_SIZE isnot supported by Open Watcom C/C++. Thisisillustrated in the following example.

Example:
void main()
int i;
int j;
_asm {
push bp
nmov bp, sp
sub sp, __LOCAL_SI ZE
H
}
structure references are not supported by Open Watcom C/C++. Thisisillustrated in the following
example.

In-line Assembly Language using _asm 259

In-line Assembly Language

Example:

#i ncl ude <stdi o. h>

struct

r owcol

{

unsi gned char col
unsi gned char row

b

voi d main()

str

__poS. r ow

uct rowcol _pos;
unsi gned char _page;

__pos. co
_page = 0;
_asm {

b

nov
nov
nov
push
nov
i nt
pop

5;
20;

dl, _pos. col
dh, _pos.row
bh, page

bp

ah, 2

10h

bp

printf("Hello world\n");

12.6 In-line Assembly Directives and Opcodes

It is not the intention of this chapter to describe assembly-language programming in any detail. Y ou should
consult a book that deals with thistopic. However, we present alist of the directives, opcodes and register
names that are recognized by the assembler built into the compiler’ s auxiliary pragma processor.

. 186

. 287

. 486

. 686
aaa
adc
addsd
ah
andnps
ax

bp

bt

bx
cal | f
c

cl
cnovae
cnove
cnovl e
cnovnbe
cnovnge
crmovnp

. 286
. 386
. 486p
. 686p
aad

add

addss

. 286¢C . 286p
. 386p . 387

. 586 . 586p
. 8086 . 8087
aam aas
addpd addps
addsubpd addsubps
and andnpd
andps arp

bl bound
bsr bswap
btr bts

c cal
cdq ch

cld clflush
cnc cnova
cnmovbe cnovc
cnovge cnovl
cnovnae crmovnb
cnovne cnovng
cnovnl e cnovno
crmovnz cnovo

260 In-line Assembly Directives and Opcodes

In-line Assembly Language

cnovp
cnovz
cnpeqgsd
cnpl esd
cnpl t sd
cnpnegsd
cnpnl esd
cnpnl tsd
cnpor dsd
cnps
cnpsw
cnpunor dss
com ss
cr3

cvt dq2ps
cvt pi 2pd
cVvt ps2pi
cvtsi 2ss
cvtt pd2pi
cvttss2s
daa

dec

di v

di vss
drO

dr6

dup

eax

ed

es

f abs
fbld

f cnovb

f cnovnbe
fcom

f compp
fdiv
femms
ficom
fild
fist
fisubr
fldcw
fldl2e
fldpi

f ncl ex

f nop

f nsave

f nst env
f pat an
frndi nt
fs
fscal e
fsqgrt
fstenvd
fsub
ftst
fuconp

f xam

cnovpe
cnp
cnpeqss
cnpl ess
cnpl tss
cnpneqgss
cnpnl ess
cnpnl tss
cnpor dss
cnpsb
cnpunor dpd
cnpxchg
cpuid

cr4

cvt pd2dq
cvt pi 2ps
cvt sd2si
cvt ss2sd
cvtt ps2dqg

f cnovne
fcom
fcos
fdivp

f eni
ficonp
fimul
fistp
flat

fl denv
fldl2t
fldz

f ndi si

f nrstor
f nsaved
f nst envd
fprem
frstor
fsave
fset pm
f st
fstenvw
f subp
fucom

f uconpp
fxch

cnovpo
cnpeqpd
cnpl epd
cnpl t pd
cnpnegpd
cnpnl epd
cnpnl t pd
cnpor dpd
cnppd
cnpsd
cnmpunor dps
cnpxchg8b
cr0

cs

cvt pd2pi
cvt ps2dq
cvtsd2ss
cvtss2s
cvtt ps2pi
cwde

db

dh

di vps

dp

dr2

ds

dwor d
ebx

enms

esp
faddp
fchs
fcnove
fcrmovnu
fcom p
fdecstp
fdivr
ffree
fidiv
fincstp
fisttp
fld

fl denvd
fldlg2

f mul

f neni
fnrstord
f nsavew
fnst envw
f prenl
frstord
f saved
fsin
fstcw
fstp

f subr
fucom
fwai t
fxrstor

cnovs
cnpeqps
cnpl eps
cnpl t ps
cnpnegps
cnpnl eps
cnpnl t ps
cnpor dps
cnpps
cnpss
cnpunor dsd
com sd
cr2

cvt dg2pd
cvt pd2ps
cvt ps2pd
cvt si 2sd
cvtt pd2dqg
cvttsd2s
cX

dd

d

di vsd

dq

dr3

dt

dx

ecx

ent er

f 2xmlL
far

fcl ex

f cnovnb
f cnovu
fcomp
fdis
fdivrp
fi add
fidivr
finit
fisub
fldl

fl denvw
fldln2
ful p
fninit
fnrstorw
fnstcw

f nst sw

f pt an
frstorw
f savew

f si ncos
fstenv
fstsw
fsubrp
fucon p
fword

f xsave

In-line Assembly Directives and Opcodes

261

In-line Assembly Language

fxtract
haddpd
hsubps
inc

i nsw

i nvl pg
iretf

j be

j ecxz
jle

j nae

j ne
jnle
jnz

] po

I ahf

I ds

| fence
lidt

| ods

| oop

| oopew
| oopnz
| oopz

I ss
maxpd
nf ence
m nss
mB

i/
novapd
novdqg2q
novhpd
novl ps
nmovnt
novq
novsd
novVsSw
novzx
mul sd
neg

of f set
out

out sw
packuswb
paddsb
paddw
pavgb
pcnpeqd
pcnpgt w
pfacc
pf cnpgt
pf nacc
pfrcpit2
pf subr
prmaddwd
pm nub
prmul hw
popa

fyl 2x
haddps
idiv

i ns

o Q O"gLQ

_"('DQJ(/JO:SSD
m_ﬂ

novaps
novdga
novhps
novneskpd
novnt pd
novqg2dq
novshdup
NOVSX
mul

mul ss

. no87

or

outs
owor d
paddb
paddsw
pand
pavgusb
pcnpeqw
pextrw
pf add

pf max

pf pnacc
pfrsqgitl
pi 2f d
pmaxsw
provirskb
prul | w
popad

fyl 2xpl
hi t

i mul

i nsb
into
iretd

j ae

j cxz
jge

j npf

j nbe

j nge
inp

Ip

jz

| ddqu

| eave

| gdt

| msw

| odsd

| oope

| oopned
| oopnzw
| oopzw
masknmovdqu
maxsd

m nps
il

nb
noni t or
novd
novdqu
nmovl hps
novnekps
novnt ps
novs
novsl dup
nmovupd
mul pd
mhai t
nop

or pd
out sb
packssdw
paddd
paddusb
pandn
pavgw
pcnpgt b
pf 2i d
pf cnpeq
pfm n
pfrcp
pfrsqgrt
pi 2f w
prmaxub
prrul hr w
prul udg

popf

262 In-line Assembly Directives and Opcodes

gs
hsubpd
in

i nsd

i nvd

i retdf
ib

je

jl

j na

j nc

j nl

j ns

| pe

. k3d

[dnmxcsr
I es

I gs

| ock

| odsw

| ooped

| oopnew
| oopw

| sl
masknovq
maxss

m nsd
nmR2

nm6

nov
novddup
novhl ps
novl| pd
novnt dq
novnt g
novsb
novss
novups
mul ps
near

not

or ps

out sd
packsswb
paddq
paddusw
pause
pcnpegb
pcnpgt d
pf 2i w
pf cnpge
pf mul
pfrcpitl
pf sub

pi nsrw
pm nsw
prmul huw
pop
popf d

In-line Assembly Language

por
prefetchtl
pshufd
pslld
psrad
psrlq
psubq
psubusw
punpckhbw
punpckl bw
push
pushf
pxor
rcpss
rdtsc
repnz
retd

rol
rsqrtss
sbb
scasw
setb
setg

set na
setnc
set nl
setns
set pe
sfence
short
shuf ps
SNMBW
sqrtsd
stc

st nxcsr
st osw
subps
sysenter
tr3

tr7
unpckhps
verw

W BT

xl atb

. Xxm
Xmi

xor

prefetch
prefetcht?2
pshuf hw
psl | dg
psraw
psrlw
psubsb
psubw
punpckhdq
punpckl dq
pusha
pushfd
gword
rcr

rep

r ept

retf

ror

sahf
scas

seg

set be
set ge
set nae
set ne
setnle
set nz
set po
sgdt

shr

S

sp
sqrtss
std

st os

str
subsd
sysexit
tr4

ucom sd
unpckl pd
wai t
xadd

. Xmm
xm
xmb

xor pd

prefetchnta
pr ef et chw
pshuf | w
psllq
psrld
psubb
psubsw
pswapd
punpckhqdq
punpckl qdq
pushad
pushw
rcl

rdnsr
repe
repz
retfd
rsm

sal
scasb
seta
setc
set |
setnb
set ng
set no
seto
sets

shl

shrd

si dt
sqrt pd
SS
stdcal |
st osh
sub
subss

t byte
tr5

ucom ss
unpckl ps
wbi nvd
xchg
xnmmD

. X8
xmb

XOr ps

prefetchtO
psadbw
pshuf w
psl | w
psrldg
psubd
psubusb
ptr
punpckhwd
punpckl wd
pushd
pwor d
rcpps
rdpnc
repne
ret
retn
rsqrtps
sar
scasd
set ae
sete
setle
set nbe
set nge
set np
setp
setz
shi d
shuf pd
sl dt
sqrtps
st

st

st osd
subpd
syscal |
t est
tr6
unpckhpd
verr
wor d

x| at
xmmi
xmmB
xmi/

A separate assembler is aso included with this product and is described in the Open Watcom C/C++ Tools

User’s Guide

In-line Assembly Directives and Opcodes 263

In-line Assembly Language

264 In-line Assembly Directives and Opcodes

Structured Exception Handling in C

Structured Exception Handling in C

266

13 Structured Exception Handling

Microsoft-style Structured Exception Handling (SEH) is supported by the Open Watcom C compiler only.
MS SEH is supported under the Win32, Win32s and OS/2 platforms. Y ou should not confuse SEH with
C++ exception handling. The Open Watcom C++ compiler supports the standard C++ syntax for exception
handling.

The following sections introduce some of the aspects of SEH. For a good description of SEH, please refer
to Advanced Windows NT by Jeffrey Richter (Microsoft Press, 1994). Y ou may also wish to read the
article "Clearer, More Comprehensive Error Processing with Win32 Structured Exception Handling" by
Kevin Goodman in the January, 1994 issue of Microsoft Systems Journal.

13.1 Termination Handlers

We begin our look at SEH with asimple model. In this model, there are two blocks of code — the
"guarded" block and the "termination” block. The termination code is guaranteed to be executed regardless
of how the "guarded" block of codeis exited (including execution of any "return” statement).

_try {
/* guarded code */

}
_finally {
/* term nation handler */

}

The _finally block of codeis guaranteed to be executed no matter how the guarded block is exited (break,
continue, return, goto, or longimp()). Exceptions to this are calls to abort(), exit() or _exit() which
terminate the execution of the process.

There can be no intervening code between try and finally blocks.
The following is a contrived example of the use of _try and _finally.
Example:

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <excpt. h>

i nt docopy(char *in, char *out)

FI LE *in_file = NULL;
FI LE *out _file = NULL;
char buf f er[256] ;

Termination Handlers 267

Structured Exception Handling in C

_try {
in_file = fopen(in, "r");
if(in_file == NULL) return(EXIT_FAILURE);
out file = fopen(out, "w');
if(out_file == NULL) return(EXH T_FAILURE);

whil e(fgets((char *)buffer, 255, in_file) !'= NULL) {
fputs((char *)buffer, out_file);

}
_finally {
if(in_file != NULL) {
printf("Cosing input file\n");
fclose(in_file);
}
if(out_file !'= NULL) {
printf("Cosing output file\n");
fclose(out _file);

printf("End of processing\n");

return(EXI T_SUCCESS);
}

void main(int argc, char **argv)

if(argc < 3) {
printf("Usage: nmv [in_filenane] [out_filename]\n");
exit(EXIT_FAILURE);

}
exit(docopy(argv[1l], argv[2]));
}

Thetry block ignores the messy details of what to do when either one of the input or output files cannot be
opened. It simply tests whether afile can be opened and quits if it cannot. The finally block ensures that
the files are closed if they were opened, releasing the resources associated with open files. Thissimple
example could have been written in C without the use of SEH.

There are two ways to enter the finally block. One way isto exit the try block using a statement like
return. The other way isto fall through the end of the try block and into the finally block (the normal
execution flow for this program). Any code following the finally block is only executed in the second case.
Y ou can think of the finally block as a specia function that isinvoked whenever an exit (other than falling
out the bottom) is attempted from a corresponding try block.

More formally stated, alocal unwind occurs when the system executes the contents of afinally block
because of the premature exit of code in atry block.

Note: Kevin Goodman describes "unwinds' in hisarticle. "There are two types of unwinds: globa and
local. A global unwind occurs when there are nested functions and an exception takes place. A local
unwind takes place when there are multiple handlers within one function. Unwinding means that the
stack is going to be clean by the time your handler’ s code gets executed."

The try/finally structure is a regj ection mechanism which is useful when a set of statementsisto be
conditionally chosen for execution, but not al of the conditions required to make the selection are available

268 Termination Handlers

Structured Exception Handling

beforehand. It isan extension to the C language. Y ou start out with the assumption that a certain task can
be accomplished. Y ou then introduce statements into the code that test your hypothesis. Thetry block
consists of the code that you assume, under normal conditions, will succeed. Statementslikeif ... return
can be used astests. Execution begins with the statementsin the try block. If a condition is detected which
indicates that the assumption of a normal state of affairsiswrong, areturn statement may be executed to
cause control to be passed to the statementsin the finally block. If the try block completes execution
without executing areturn statement (i.e., al statements are executed up to the final brace), then control is
passed to the first statement following the try block (i.e., the first statement in the finally block).

In the following example, two sets of codes and letters are read in and some simple sequence checking is
performed. If a sequence error is detected, an error message is printed and processing terminates; otherwise
the numbers are processed and another pair of numbersis read.

Example:
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <excpt. h>

void main(int argc, char **argv)

read file(fopen(argv[1], "r"));

}
void read_file(FILE *input)
{
i nt line = O;
char buf f er[256] ;
char i code;
char X, Y,
if(input == NULL) {
printf("Unable to open file\n");
return;
}
_try {
for(;;) {
i ne++;

if(fgets(buffer, 255, input) == NULL) break
i code = buffer[O0];

if(icode '="1") return;

x = buffer[1];

i ne++;

if(fgets(buffer, 255, input) == NULL) return
i code = buffer[O0];

if(icode '="2") return;

y = buffer[1];

process(X, Y);

printf("Processing conplete\n");

fclose(input);
i nput = NULL;

Termination Handlers 269

Structured Exception Handling in C

_finally {
if(input !'= NULL) {
printf("lnvalid sequence: line = %\n", line);
fclose(input);
}
}

}

voi d process(char x, char y)

printf("processing pair %, %\n", X, y);

The above example attempts to read a code and letter. If an end of file occurs then the loop is terminated
by the break statement.

If the codeis not 1 then we did not get what we expected and an error condition has arisen. Control is
passed to the first statement in the finally block by the return statement. An error message is printed and
the openfileis closed.

If the codeis 1 then a second code and number are read. If an end of file occurs then we are missing a
complete set of data and an error condition has arisen. Control is passed to the first statement in the finally
block by the return statement. An error message is printed and the open fileis closed.

Similarly if the expected codeis not 2 an error condition has arisen. The same error handling procedure
occurs.

If the second codeis 2, the values of variables x and y are processed (printed). The for loop is repeated
again.

The above exampleillustrates the point that all the information required to test an assumption (that the file
contains valid pairs of data) is not available from the start. We write our code with the assumption that the
data values are correct (our hypothesis) and then test the assumption at various pointsin the algorithm. If
any of the testsfail, we reject the hypothesis.

Consider the following example. What values are printed by the program?

Example:
#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <excpt. h>

void main(int argc, char **argv)

{

int ctr = O;

while(ctr <10) {
printf("%\ n", ctr);

_try {
if(ctr == 2) continue;
if(ctr == 3) break;

}

_finally {
ctr++;

}

270 Termination Handlers

Structured Exception Handling

ctr++;

}
printf("%l\n", ctr);

At the top of the loop, thevalue of ct r is0. The next time we reach the top of the loop, thevalueof ctr
is 2 (having been incremented twice, once by the finally block and once at the bottom of the loop). When

ct r hasthevalue 2, the continue statement will cause the finally block to be executed (resultingin ctr
being incremented to 3), after which execution continues at the top of the whileloop. When ct r hasthe
value 3, the break statement will cause the finally block to be executed (resulting in ct r being incremented
to 4), after which execution continues after the while loop. Thus the output is:

A WNO

The point of this exercise was that after the finally block is executed, the normal flow of execution is
resumed at the break, continue, return, etc. statement and the normal behaviour for that statement occurs.
Itisasif the compiler had inserted afunction call just before the statement that exits the try block.

_try {
if(ctr == 2) invoke_finally_block() continue;
if(ctr == 3) invoke finally_block() break;

}

There is some overhead associated with local unwinds such as that incurred by the use of break, continue,
return, etc. To avoid this overhead, a new transfer keyword called _|eave can be used. The use of this
keyword causes ajump to the end of thetry block. Consider the following modified version of an earlier
example.

Example:
#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <excpt. h>

void main(int argc, char **argv)

read file(fopen(argv[1], "r"));

}
void read_file(FILE *input)
{
i nt line = 0;
char buf f er[256] ;
char i code;
char X, Y,

if(input == NULL) {
printf("Unable to open file\n");
return;

}

Termination Handlers 271

Structured Exception Handling in C

_try |
for(;;) {
i ne++;
if(fgets(buffer, 255, input) == NULL) break
i code = buffer[O0];

if(icode '="1") _|eave;

X = buffer[1];

i ne++;

if(fgets(buffer, 255, input) == NULL) _I|eave;
i code = buffer[0];

if(icode '="2") _|eave;

y = buffer[1];
process(X, Yy);

printf("Processing conplete\n");
fclose(input);

i nput = NULL;
}
_finally {
if(input !'= NULL) {
printf("lnvalid sequence: line = %\n", line);
fclose(input);
}
}

}

voi d process(char x, char y)

printf("processing pair %, %\n", X, y);

There are two ways to enter the finally block. One way is caused by unwinds — either local (by the use of
break, continue, return, or goto) or global (more on global unwinds later). The other way is through the
normal flow of execution (i.e., simply by falling through the bottom of thetry block). Thereisafunction
called Abnormal Termination that can be used to determine which of these two methods was used to enter
thefinally block. If the function returns TRUE (1) then the finally block was entered using the first method;
if the function returns FALSE (0) then the finally block was entered using the second method. This
information may be useful in some circumstances. For example, you may wish to avoid executing any code
inafinally block if the block was entered through the normal flow of execution.

Example:
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <excpt. h>

void main(int argc, char **argv)

read_file(fopen(argv[1], "r"));
}

272 Termination Handlers

Structured Exception Handling

void read file(FILE *input)

{
i nt line = O;
char buf f er[256] ;
char i code;
char X, Y,
if(input == NULL) {
printf("Unable to open file\n");
return;
}
_try {
for(;;) {
i ne++;
if(fgets(buffer, 255, input) == NULL) break
i code = buffer[O0];
if(icode '="1") return;
X = buffer[1];
i ne++;
if(fgets(buffer, 255, input) == NULL) return
i code = buffer[O0];
if(icode I'="2") return;
y = buffer[1];
process(X, Yy);
printf("Processing conplete\n");
_finally {
i f(Abnormal Term nation())
printf("lInvalid sequence: line = %\n", line);
fclose(input);
}
}

voi d process(char x, char y)

printf("processing pair %,%\n", X, y);

}

In the above example, we reverted back to the use of the return statement since the execution of a_leave
statement is considered part of the normal flow of execution and is not considered an "abnormal
termination” of the try block. Note that sinceit is not possible to determine whether the finally block is
executing as the result of alocal or global unwind, it may not be appropriate to use the

Abnormal Termination function as away to determine what has gone on. However, in our simple example,
we expect that nothing could go wrong in the "processing" routine.

Termination Handlers 273

Structured Exception Handling in C

13.2 Exception Filters and Exception Handlers

We would al like to create flawless software but situations arise for which we did not plan. An event that
we did not expect which causes the software to cease to function properly is called an exception. The
computer can generate a hardware exception when the software attempts to execute an illegal instruction.
We can force this quite easily in C by dereferencing a NULL pointer as shown in the following sample
fragment of code.

Example:
char *nullp = NULL;

*nullp = "\1";

We can also generate software exceptions from software by calling a special function for this purpose. We
will look at software exceptions in more detail later on.

Given that exceptions are generally very difficult to avoid in large software projects, we can acknowledge
that they are afact of life and prepare for them. A mechanism similar to try/finally has been devised that
makes it possible to gain control when an exception occurs and to execute procedures to handle the
situation.

The exception handling mechanism involves the pairing up of a_try block with an _except block. Thisis
illustrated in the following example.

Example:
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <excpt. h>

void main(int argc, char **argv)

{
char *nullp = NULL;
printf("Attenpting illegal nenory reference.\n");
_try |
*nullp = "\1";
}
_except (EXCEPTI ON_EXECUTE_HANDLER) {
printf("Ch no! We had an exception!\n");
printf("W recovered fine...\n");
}

In this example, any exception that occurs while executing "inside” the try block will cause the except block
to execute. Unlike the finally block, execution of the except block occurs only when an exception is
generated and only when the expression after the _except keyword evaluatesto

EXCEPTI ON_EXECUTE_HANDLER. The expression can be quite complex and can involve the execution
of afunction that returns one of the permissible values. The expression is called the exception "filter" since
it determines whether or not the exception isto be handled by the except block. The permissible result
values for the exception filer are:

274 Exception Filters and Exception Handlers

Structured Exception Handling

EXCEPTION_EXECUTE_HANDLER
meaning "I will handle the exception™.

EXCEPTION_CONTINUE_EXECUTION
meaning "l want to resume execution at the point where the exception was generated".

EXCEPTION_CONTINUE_SEARCH

meaning "I do not want to handle the exception so continue |ooking down the try/except
chain until you find an exception handler that does want to handle the exception”.

13.3 Resuming Execution After an Exception

Why would you want to resume execution of the instruction that caused the exception? Since the exception
filter can involve afunction call, that function can attempt to correct the problem. For example, if itis
determined that the exception has occurred because of the NULL pointer dereference, the function could
modify the pointer so that it isno longer NULL.

Example:
#i ncl ude <stdi o. h>
#i nclude <stdlib. h>
#i ncl ude <excpt. h>

char *Nul | P = NULL;
int filter(void)
if(Null P == NULL) {
Nul P = malloc(20);
return(EXCEPTI ON_CONTI NUE_EXECUTI ON)

}
return(EXCEPTI ON_EXECUTE_HANDLER)

}
void main(int argc, char **argv)
{
printf("Attenpting illegal nenory reference.\n");
_try |
*Nul P ="\1";
}

_except (filter()) {
printf("OCh no! W had an exception!\n");

printf("We recovered fine...\n");

Unfortunately, this is does not solve the problem. Understanding why it does not involves looking at the
sequence of computer instructions that is generated for the expression in question.

*Nul lP ="\1";
nov eax,dword ptr _NullP
nmov byte ptr [eax], O1H

Resuming Execution After an Exception 275

Structured Exception Handling in C

The exception is caused by the second instruction which contains a pointer to the referenced memory
location (i.e., 0) in register EAX. Thisistheinstruction that will be repeated when the filter returns
EXCEPTI ON_CONTI NUE_EXECUTI ON. Since EAX did not get changed by our fix, the exception will
reoccur. Fortunately, Nul | P ischanged and this prevents our program from looping forever. The moral
here isthat there are very few instances where you can correct "on the fly" a problem that is causing an
exception to occur. Certainly, any attempt to do so must involve a careful inspection of the computer
instruction sequence that is generated by the compiler (and this sequence usually varies with the selection
of compiler optimization options). The best solution is to add some more code to detect the problem before
the exception occurs.

13.4 Mixing and Matching _try/ finally and _try/_except

Where things really get interesting isin the interaction between try/finally blocks and try/except blocks.
These blocks can be nested within each other. In an earlier part of the discussion, we talked about global
unwinds and how they can be caused by exceptions being generated in nested function calls. All of this
should become clear after studying the following example.

Example:
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <excpt. h>

voi d func_level 4(void)
{
char *nullp = NULL;
printf("Attenpting illegal nmenory reference\n");
_try {
*nullp = "\1";
}
_finally {
i f(Abnormal Term nation())
printf("Unwind in func_level 4\n");
printf("Normal return fromfunc_Ilevel 4\n");
voi d func_level 3(void)

_try {
func_l evel 4();

}
_finally {
i f(Abnornal Term nation())
printf("Unwind in func_level 3\ n");
printf("Normal return fromfunc_level 3\n");

voi d func_level 2(void)

_try {
_try {
func_Ilevel 3();

}
_except (EXCEPTI ON_CONTI NUE_SEARCH) {
printf("Exception never handled in func_Ilevel 2\n");

}
_finally {
i f(Abnornal Term nation())
printf("Unwind in func_level 2\n");

printf("Normal return fromfunc_level2\n");

276 Mixing and Matching _try/ finally and _try/_except

Structured Exception Handling

voi d func_level 1(void)

_try {
func_l evel 2();

b
_finally {
i f(Abnormal Term nation())
printf("Unwind in func_Ilevel 1\n");
printf("Normal return fromfunc_Ilevel 1\n");

void func_level O(void)

_try {
_try {
func_level 1();
}
_except (EXCEPTI ON_EXECUTE_HANDLER) {
printf("Exception handled in func_level O\n");

}
_finally {
i f(Abnormal Term nation())
printf("Unwind in func_Ilevel O\n");
printf("Normal return fromfunc_Ilevel 0\n");
void main(int argc, char **argv)
_try {
_try {
func_level 0();
}
_except (EXCEPTI ON_EXECUTE_HANDLER) {
printf("Exception handled in main\n");

}
_finally {
i f(Abnormal Term nation())
printf("Unwind in main\n");

printf(“"Normal return frommin\n");

In this example,
1. maincalsfunc_level 0
2. func_level Ocdlsfunc_Ilevel 1
3. func_level 1calsfunc_Ilevel 2
4. func_Ilevel 2 cdlsfunc_Ievel 3
5. func_Ilevel 3cdlsfunc_I| evel 4

Itisinfunc_| evel 4 wherethe exception occurs. The run-time system traps the exception and performs
a search of the active try blocks looking for one that is paired up with an except block.

When it finds one, the filter is executed and, if the result is EXCEPTI ON_EXECUTE_HANDLER, thenthe
except block is executed after performing a global unwind.

If the result is EXCEPTI ON_CONTI NUE_ EXECUTI ON, the run-time system resumes execution at the
instruction that caused the exception.

Mixing and Matching _try/ finally and _try/ except 277

Structured Exception Handling in C

If theresult is EXCEPTI ON_CONTI NUE_ SEARCH, the run-time system continues its search for an except
block with afilter that returns one of the other possible values. If it does not find any exception handler
that is prepared to handle the exception, the application will be terminated with the appropriate exception
notification.

Let uslook at the result of executing the example program. The following messages are printed.

Attenpting illegal nmenory reference
Unwi nd in func_level 4

Unwind in func_level 3

Unwi nd in func_Ilevel 2

Unwind in func_levell

Exception handled in func_level 0
Normal return fromfunc_I|evel O
Normal return from nmain

The run-time system searched down the try/except chain until it got to f unc_| evel 0 which had an
except filter that evaluated to EXCEPTI ON_ EXECUTE_HANDLER. It then performed aglobal unwind in
which the try/finally blocks of f unc_1 evel 4, func_Il evel 3, func_I evel 2, andfunc_| evel 1
were executed. After this, the exception handler in f unc_| evel 0 did itsthing and execution resumed in
func_I| evel 0 which returned back to mai n which returned to the run-time system for normal program
termination. Note the use of the built-in Abnormal Termination function in the finally blocks of each
function.

This sequence of events permits each function to do any cleaning up that it deems necessary beforeit is
wiped off the execution stack.

13.5 Refining Exception Handling

The decision to handle an exception must be weighed carefully. It is not necessarily a desirable thing for an
exception handler to handle all exceptions. In the previous example, the expression in the exception filter
infunc_|I evel 0 awaysevaluates to EXCEPTI ON_EXECUTE_HANDL ER which meansit will snag
every exception that comesitsway. There may be other exception handlers further on down the chain that
are better equipped to handle certain types of exceptions. Thereis away to determine the exact type of
exception using the built-in Get Except i onCode() function. It may be called only from within the
exception handler filter expression or within the exception handler block. Here isadescription of the
possible return values from the Get Except i onCode() function.

Value Meaning

EXCEPTION_ACCESS VIOLATION
The thread tried to read from or write to a virtual address for which it does not
have the appropriate access.

EXCEPTION_BREAKPOINT
A breakpoint was encountered.

EXCEPTION_DATATYPE_MISALIGNMENT
Thethread tried to read or write data that is misaligned on hardware that does
not provide alignment. For example, 16-bit values must be aligned on 2-byte
boundaries; 32-bit values on 4-byte boundaries, and so on.

278 Refining Exception Handling

Structured Exception Handling

EXCEPTION_SINGLE_STEP
A trace trap or other single-instruction mechanism signaled that one instruction
has been executed.

EXCEPTION_ARRAY_BOUNDS EXCEEDED
The thread tried to access an array element that is out of bounds and the
underlying hardware supports bounds checking.

EXCEPTION_FLT_DENORMAL_OPERAND
One of the operands in afloating-point operation is denormal. A denormal value
isonethat istoo small to represent as a standard floating-point value.

EXCEPTION_FLT_DIVIDE_BY_ZERO
The thread tried to divide afloating-point value by a floating-point divisor of
zero.

EXCEPTION_FLT_INEXACT _RESULT
Theresult of afloating-point operation cannot be represented exactly asa
decimal fraction.

EXCEPTION_FLT_INVALID_OPERATION
This exception represents any floating-point exception not included in thislist.

EXCEPTION_FLT_OVERFLOW
The exponent of afloating-point operation is greater than the magnitude allowed
by the corresponding type.

EXCEPTION_FLT_STACK_CHECK
The stack overflowed or underflowed as the result of a floating-point operation.

EXCEPTION_FLT_UNDERFLOW
The exponent of afloating-point operation is less than the magnitude allowed by
the corresponding type.

EXCEPTION_INT_DIVIDE_BY_ZERO
The thread tried to divide an integer value by an integer divisor of zero.

EXCEPTION_INT_OVERFLOW

Theresult of an integer operation caused a carry out of the most significant bit of
the result.

EXCEPTION_PRIV_INSTRUCTION
The thread tried to execute an instruction whose operation is not allowed in the
current machine mode.

EXCEPTION_NONCONTINUABLE_EXCEPTION
The thread tried to continue execution after a non-continuable exception
occurred.

These constants are defined by including W NDOWS. Hin the source code.

The following exampleis arefinement of the f unc_I evel 1() functionin our previous example.

Refining Exception Handling 279

Structured Exception Handling in C

Example:

#i ncl ude <wi ndows. h>

voi d func_level O(void)

_try {
_try {
func_l evel 1();

_except (
(Get Excepti onCode() == EXCEPTI ON_ACCESS_VI OLATI ON)
? EXCEPTI ON_EXECUTE_HANDLER
: EXCEPTI ON_CONTI NUE_ SEARCH

) |

printf("Exception handled in func_Ilevel O\n");

}
_finally {
i f(Abnormal Term nation())
printf("Unwind in func_Ievel O\n");

printf("Normal return fromfunc_Ilevel O\n");

}

In thisversion, only an "access violation" will be handled by the exception handler in the
func_I evel O() function. All other types of exceptionswill be passed on to nai n (which can also be
modified to be somewhat more selective about the types of exceptionsit should handle).

More information on the exception that has occurred can be obtained by the use of the

Get Excepti onl nf or mati on() function. The use of thisfunction isalso restricted. It can becalled
only from within the filter expression of an exception handler. However, the return value of

Get Excepti onl nf or mat i on() can be passed as a parameter to afilter function. Thisisillustrated in

the following example.

Example:
int Get Code(LPEXCEPTI ON_PO NTERS exceptptrs)

return (exceptptrs->ExceptionRecord->Excepti onCode);

}
voi d func_level O(void)
{
_try {
_try {

func_l evel 1();

_except (
(Get Code(GCet Exceptionlnformation())
== EXCEPTI ON_ACCESS_VI OLATI ON)
? EXCEPTI ON_EXECUTE_HANDLER
: EXCEPTI ON_CONTI NUE_ SEARCH

) A

printf("Exception handled in func_level O\n");

}
_finally {
i f(Abnormal Term nation())
printf("Unwind in func_levelO\n");

printf("Normal return fromfunc_Ilevel O\n");

}

Thereturn value of Get Excepti onl nf ormat i on() isapointer to an EXCEPTI ON_PQO NTERS
structure that contains pointers to two other structures: an EXCEPTI ON_ RECORD structure containing a
description of the exception, and a CONTEXT structure containing the machine-state information. The filter

280 Refining Exception Handling

Structured Exception Handling

function can make a copy of the structures if a more permanent copy is desired. Check your Win32 SDK
documentation for more information on these structures.

13.6 Throwing Your Own Exceptions

Y ou can use the same exception handling mechanisms to deal with software exceptions raised by your
application. The Rai seExcepti on() function can be used to throw your own application-defined
exceptions. The first argument to this function is the exception code. 1t would be wise to define your
exception codes so that they do not collide with system defined ones. The following example shows how to
throw an exception.

Example:
#defi ne MY_EXCEPTION ((DWORD) 123L)

Rai seExcepti on(MY_EXCEPTI ON,
EXCEPTI ON_NONCONTI NUABLE,
0, NULL);

In this example, the Get Except i onCode() function, when used in an exception handler filter
expression or in the body of an exception handler, would return the value 123.

See the Win32 SDK documentation for more information on the argumentsto the Rai seExcepti on()
function.

Throwing Your Own Exceptions 281

Structured Exception Handling in C

282 Throwing Your Own Exceptions

Embedded Systems

Embedded Systems

284

14 Creating ROM-based Applications

14.1 Introduction

This chapter provides information for devel opers who wish to write applications to be placed in read-only

memory (ROM)

14.2 ROMable Functions

The following functions in the Open Watcom C/C++ library are not dependent on any operating system.
Therefore they can be used for embedded applications. The math functions are listed here because they are
ROMable, however you must supply adifferent _mat her r function if you are not running in the DOS,
0S/2 or Windows NT environment.

abs
asctime
at an2

at oi

cabs

_cl ear87
cosh

di v

f abs
_frmenchr
_frmemcnp
f nod
_fpreset
_fstrchr
_fstrcspn
_fstriw
_fstrncpy
_fstrpbrk
_fstrset
_fstrtok
hypot
int86 (1)
i nt 386x (2)
i sal pha

i sdigit

i sprint

i supper
jo

| abs
[find

l 0ogl10
_lrotr
mat herr
nbt owc
nencnp

acos
asin

atexit

at ol

ceil
_control 87
difftinme
_enabl e
floor
_frenmcnp
_fmemmove
FP_OFF
frexp
_fstrcnp
_fstricnp
_fstrncat
_fstrnicnp
_fstrrchr
_fstrspn
_fstrupr

np

nt 86x (1)
ntr
sasci i
sgr aph
spunct
sxdi git
il

| dexp

| ocal econv
| ongj np

| search
bl en
nmenccpy
mencpy

al l oca

at an

at of

bsear ch
_chain_intr
cos
_disable
exp
_fmenccpy
_fmencpy
_frenset
FP_SEG
_fstrcat
_fstrcpy
_fstrlen
_fstrncnp
_fstrnset
_fstrrev
_fstrstr
gntime

i npw
int386 (2)
i sal num
iscntrl

i sl ower

i
i
i
i
i
i
i toa
J
I
I

nmbst owcs
nmenchr
mem cnp

ROMable Functions 285

Embedded Systems

menmmove nmenset MK FP
nodf novedat a of f set of
outp out pw pow
gsort rand _rotl
_rotr segr ead setjnp
set| ocal e sin si nh
sprintf sqrt srand
sscanf st ackavai | _status87
strcat strchr strecnp
st r cnpi strcoll strcpy
strcspn strdup strerror
stricnp strlen striw
strncat strncnp strncpy
strnicnp strnset strpbrk
strrchr strrev strset
strspn strstr strtod
strtok strtol strtoul
st rupr strxfrm swab

tan t anh t ol ower
t oupper ul t oa ut oa
va_arg va_end va_start
vsprintf vsscanf west onbs
wet onb y0 yl

yn

* (1) 16-bit libraries
* (2) 32-bit libraries

14.3 System-Dependent Functions

The following functions in the C/C++ library directly or indirectly make use of operating system functions.
They cannot be used on systems that are not running on one of the DOS, OS/2 or Windows NT operating

systems.

abort

bdos
_bios_equiplist
_bios_printer
call oc

chmod

cl ock

cprintf

cscanf

del ay
_dos_creat
_dos_fi ndnext
_dos_getdi skfree
_dos_getftine
_dos_keep
_dos_set bl ock
_dos_setfileattr
_dos_setvect
dup

eof

execlp (1)
execve (1)

access

__begi nt hr ead

_bios_keybrd
_bios_serial com
cgets

chsi ze

cl ose

cputs

ctime

_dos_al | ocnem

_dos_creat new
_dos_freenmem
_dos_getdrive
_dos_gettine
_dos_open
_dos_setdate
_dos_setftine
_dos_write
dup2

execl (1)
execl pe (1)
execvp (1)

286 System-Dependent Functions

assert
_bios_disk

__bi os_nensi ze
__bi os_tineof day
chdir

clearerr
closedir

creat

cwai t

_dos_cl ose
_dos_findfirst
_dos_getdate
_dos_getfileattr
_dos_getvect
_dos_read
_dos_setdrive
_dos_settinme
dosexterr
_endt hread
execle (1)
execv (1)
execvpe (1)

Creating ROM-based Applications

exit

fcl oseal |
ferror
_fheapchk
_fheapset
fgetc
filelength
_fmall oc
fputc
_frealloc
f scanf
fstat
getc

get che
getenv
hal | oc
_heapnin
_heapwal k
i nt dosx

| ocaltine
| seek
nkdi r
_nheapchk
_nheapset
_nmal | oc
open
printf

put char
rai se
real |l oc
rew nd
scanf

set node
sl eep
spawnl
spawnl pe
spawnvp
st at

tell

t npnam
unget c
unl ock

vf scanf
wai t

* (1) 16-bit libraries

_exit

f dopen
fflush
_fheapgrow (1)
_fheapshrink
f get pos
fileno

f open
fputs

free

f seek
ftell
getch

get cnd
get pi d
_heapchk
_heapset
hfree
isatty

| ock
_makepat h
mkti nme
_nheapgr ow
_nheapshri nk
_nrealloc
opendi r
put c

put env
read
renmove
rdi r
_searchenv
set vbuf
sopen
spawnl e
spawnv
spawnvpe
strftine
time

tzset

unget ch
utine
vprintf
wite

14.4 Modifying the Startup Code

Source files are included in the package for the Open Watcom C/C++ application start-up (or initialization)
sequence. Thesefiles are described in the section entitled " The Open Watcom C/C++ Run-time
Initialization Routines" on page 108. The startup code will have to be modified if you are creating a
ROMable application or you are not running in a DOS, OS/2, QNX, or Windows environment.

fclose

f eof
_ffree
_fheapnin
_fheapwal k
fgets
flushall
fprintf
fread
freopen

f set pos
fwite

get char
get cwd
gets
_heapgr ow
_heapshri nk
i ntdos
kbhi t

| ocki ng
mal | oc
_nfree
_nheapmnin
_nheapwal k
nosound
perror
put ch
puts
readdi r
renane
sbrk

set buf

si gnal
sound
spawnl p
spawnve
_splitpath
system
tnpfile
umask
unl i nk
viprintf
vscanf

Modifying the Startup Code 287

Embedded Systems

14.5 Choosing the Correct Floating-Point Option

If there will be amath coprocessor chip in your embedded system, then you should compile your
application with the "fpi87" option and one of "fp2", "fp3" or "fp5" depending on which math coprocessor
chip will be in your embedded system. If there will not be a math coprocessor chip in your embedded
system, then you should compile your application with the "fpc" option. Y ou should not use the "fpi"
option since that will cause extra code to be linked into your application to decode and emulate the 80x87

instructions contained in your application.

288 Choosing the Correct Floating-Point Option

Appendices

Appendices

290

Use of Environment Variables
'

A. Use of Environment Variables

In the Open Watcom C/C++ software devel opment package, a number of environment variables are used.
This appendix summarizes their use with a particular component of the package.

A.1 FORCE

The FORCE environment variable identifies afile that isto be included as part of the source input stream.
Thisvariable is used by Open Watcom C/C++.

SET FORCE=[d:][path]fil ename[. ext]

The specified fileisincluded asif a

#include "[d:][path]fil enane[.ext]"
directive were placed at the start of the sourcefile.

Example:
C>set force=\wat com h\ conmon. cnv
Cwece report

The FORCE environment variable can be overridden by use of the Open Watcom C/C++ "fi" option.

A.2 INCLUDE

The INCL UDE environment variable describes the location of the C and C++ header files (files with the
".h" filename extension). Thisvariable is used by Open Watcom C/C++.

SET include=[d:][path];[d:][path]...

The INCL UDE environment string is like the PATH string in that you can specify one or more directories
separated by semicolons (";").

A3LIB

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directiveis
recommended over the use of this environment variable.

The LIB environment variable is used to select the libraries that will be used when the application is linked.

Thisvariable is used by the Open Watcom Linker (WLINK.EXE). The LIB environment string is like the
PATH string in that you can specify one or more directories separated by semicolons (*;").

LIB 291

Appendices

If you have the 286 development system, 16-bit applications can be linked for DOS, Microsoft Windows,
0S/2, and QNX depending on which libraries are selected. If you have the 386 development system, 32-bit
applications can be linked for DOS Extender systems, Microsoft Windows and QNX.

A.4 LIBDOS

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM" directive is
recommended over the use of this environment variable.

If you are developing a DOS application, the L 1BDOS environment variable must include the location of
the 16-bit Open Watcom C/C++ DOS library files (fileswith the ".lib" filename extension). Thisvariable
is used by the Open Watcom Linker (WLINK.EXE). The default installation directory for the 16-bit Open
Watcom C/C++ DOS librariesis \ WATCOM LI B286\ DOS. The LI1BDOS environment variable must
also include the location of the 16-bit Open Watcom C/C++ math library files. The default installation
directory for the 16-hit Open Watcom C/C++ math librariesis \ WATCOM LI B286.

Example:
Csset |ibdos=c:\watcom i b286\dos;c:\watcom i b286

A.5 LIBWIN

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directiveis
recommended over the use of this environment variable.

If you are developing a 16-bit Microsoft Windows application, the LI BWIN environment variable must
include the location of the 16-bit Open Watcom C/C++ Windows library files (fileswith the ".lib" filename
extension). Thisvariableisused by the Open Watcom Linker (WLINK.EXE). If you are developing a
32-hit Microsoft Windows application, see the description of the LIBPHAR environment variable. The
default installation directory for the 16-bit Open Watcom C/C++ Windows librariesis

\ WATCOM LI B286\ W N. TheLIBWIN environment variable must also include the location of the
16-bit Open Watcom C/C++ math library files. The default installation directory for the 16-bit Open
Watcom C/C++ math librariesis \ WATCOM LI B286.

Example:
C>set |ibwi n=c:\watcom|lib286\wi n;c:\watcom|ib286

A.6 LIBOS2

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM" directive is
recommended over the use of this environment variable.

If you are developing an OS/2 application, the L1BOS2 environment variable must include the location of
the 16-bit Open Watcom C/C++ OS2 library files (fileswith the ".lib" filename extension). Thisvariable
is used by the Open Watcom Linker (WLINK.EXE). The default installation directory for the 16-bit Open
Watcom C/C++ OS2 librariesis \ WATCOM LI B286\ OS2. TheLIBOS2 environment variable must
also include the directory of the OS/2 DOSCALLS. LI Bfilewhichisusually \ OS2. TheLIBOS2
environment variable must a so include the location of the 16-bit Open Watcom C/C++ math library files.
The default installation directory for the 16-bit Open Watcom C/C++ math librariesis

\ WATCOM LI B286.

292 LIBOS2

Use of Environment Variables

Example:
C>set libos2=c:\watcom i b286\0s2; c:\watcom i b286;c:\os2

A.7 LIBPHAR

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directiveis
recommended over the use of this environment variable.

If you are developing a 32-bit Windows or DOS Extender application, the LIBPHAR environment variable
must include the location of the 32-bit Open Watcom C/C++ DOS Extender library files or the 32-bit Open
Watcom C/C++ Windows library files (files with the ".lib" filename extension). Thisvariable is used by
the Open Watcom Linker (WLINK.EXE). The default installation directory for the 32-bit Open Watcom
C/C++ DOS Extender librariesis \ WATCOM LI B386\ DOS. The default installation directory for the
32-bit Open Watcom C/C++ Windows librariesis \ WATCOM LI B386\ W N. TheLIBPHAR
environment variable must also include the location of the 32-bit Open Watcom C/C++ math library files.
The default installation directory for the 32-bit Open Watcom C/C++ math librariesis

\ WATCOM LI B386.

Example:
C>set | i bphar=c:\watconm |ib386\dos; c:\watcom|ib386
or
C>set | i bphar=c:\watcom|ib386\w n;c:\watcom|ib386

A.8 NO87

The NO87 environment variable is checked by the Open Watcom run-time math libraries that include
floating-point emulation support. Normally, these libraries will detect the presence of a numeric data
processor (80x87) and useit. |f you have a numeric data processor in your system but you wish to test a
version of your application that will use floating-point emulation, you can define the NO87 environment
variable. Using the"SET" command, define the environment variable as follows:

SET NO87=1

Now, when you run your application, the 80x87 will beignored. To undefine the environment variable,
enter the command:

SET NC87=

A.9 PATH

The PATH environment variable is used by DOS"COMMAND.COM" or OS/2 "CMD.EXE" to locate
programs.

PATH [d:][path];[d:][path]...

The PATH environment variable should include the disk and directory of the Open Watcom C/C++ binary
program files when using Open Watcom C/C++ and its related tools.

If your host systemis DOS

PATH 293

Appendices

The default installation directory for 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ DOS
binariesis called \ WATCOM Bl NW

Example:
C>pat h c:\wat com bi nw; c:\ dos; c: \ wi ndows

If your host systemis OS2

The default installation directories for 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ OS/2
binaries are called \ WATCOM BI NP and \ WATCOM BI NW

Example:
[C\]path c:\watcom bi np; c:\wat com bi nw

If your host systemisWindows NT:

The default installation directories for 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++
Windows NT binaries are called \ WATCOM BI NNT and \ WATCOM BI NW

Example:
C>pat h c:\wat conm bi nnt; c:\wat com bi nw

The PATH environment variable is also used by the following programs in the described manner.
1. Open Watcom Compile and Link to locate the 16-bit Open Watcom C/C++ and 32-bit Open

Watcom C/C++ compilers and the Open Watcom Linker.
2. "WD.EXE" to locate programs and debugger command files.

A.10 TMP

The TM P environment variable describes the location (disk and path) for temporary files created by the
16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ compilers and the Open Watcom Linker.

SET TMP=[d:][pat h]
Normally, Open Watcom C/C++ will create temporary spill filesin the current directory. However, by
defining the TM P environment variable to be a certain disk and directory, you can tell Open Watcom
C/C++ where to place its temporary files. The sameistrue of the Open Watcom Linker temporary file.

Consider the following definition of the TM P environment variable.

Example:
C>set tnp=d:\wat comt np

The Open Watcom C/C++ compiler and Open Watcom Linker will create its temporary filesin
d: \wat com t np.

294 TMP

Use of Environment Variables

A.11 WATCOM

In order for the Open Watcom Linker to locate the 16-bit Open Watcom C/C++ and 32-bit Open Watcom
C/C++ library files, the WATCOM environment variable should be defined. The WATCOM environment
variableis used to locate the libraries that will be used when the application islinked. The default directory
for 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ filesis"\WATCOM".

Example:
C>set wat comc: \ wat com

A.12 WCC

The WCC environment variable can be used to specify commonly-used options for the 16-bit C compiler.

SET WCC=/optionl /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
C>set wee=/d1 /ox

Once the WCC environment variable has been defined, those options listed become the default each time
the WCC command is used.

A.13 WCC386

The WCC386 environment variable can be used to specify commonly-used options for the 32-bit C
compiler.

SET WCC386=/optionl /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
C>set wee386=/d1 / ox

Once the WCC386 environment variable has been defined, those options listed become the default each
time the WCC386 command is used.

WCC386 295

Appendices

A.14 WCL

The WCL environment variable can be used to specify commonly-used WCL options.

SET WCL=/optionl /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "mm" (compile code for medium memory model), "d1" (include line number
debug information in the object file), and "ox" (compile for maximum number of code optimizations).

Example:
Csset wel=/mm/dl /ox

Once the WCL environment variable has been defined, those options listed become the default each time
the WCL command is used.

A.15 WCL386

The WCL 386 environment variable can be used to specify commonly-used WCL 386 options.

SET WCL386=/optionl /option2 ...
These options are processed before options specified on the command line. The following example defines
the default options to be "3s" (compile code for stack-based argument passing convention), "d1" (include
line number debug information in the object file), and "ox" (compile for maximum number of code
optimizations).

Example:
C>set wcl 386=/3s /d1l /ox

Once the WCL 386 environment variable has been defined, those options listed become the default each
time the WCL 386 command is used.

A.16 WCGMEMORY

The WCGMEMORY environment variable may be used to request areport of the amount of memory used
by the compiler’s code generator for its work area.

Example:
Cset WCGAVEMORY=?

When the memory amount is"?" then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’ s code generator to alocate a fixed amount of memory for a
work area.

296 WCGMEMORY

Use of Environment Variables

Example:
Cset WCGVEMORY=128

When the memory amount is"nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytesisrequested. If lessthan "nnnK" is available then the compiler will quit with afatal error message. If
more than "nnNnNK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same resullts (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers
with different memory configurations, you must ensure that the WCGMEM ORY environment variableis
set identically on both machines.

The second reason where this feature is useful is on virtual memory paging systems (e.g., 0S/2) where an
unlimited amount of memory can be used by the code generator. If avery large module is being compiled,
it may take avery long time to compileit. The code generator will continue to allocate more and more
memory and cause an excessive amount of paging. By restricting the amount of memory that the code
generator can use, you can reduce the amount of time required to compile aroutine.

A.17 WD

The WD environment variable can be used to specify commonly-used Open Watcom Debugger options.
This environment variable is not used by the Windows version of the debugger, WDW.

SET WD=/optionl /option2 ...
These options are processed before options specified on the command line. The following example defines
the default options to be "noinvoke" (do not execute the pr of i | e. dbg file) and "reg=10" (retain up to 10
register sets while tracing).

Example:
C>set wd=/ noi nvoke /reg#10

Once the WD environment variable has been defined, those options listed become the default each time the
WD command is used.

A.18 WDW

The WDW environment variable can be used to specify commonly-used Open Watcom Debugger options.
This environment variable is used by the Windows version of the debugger, WDW.

SET WDW£/ optionl /option2 ...
These options are processed before options specified in the WDW prompt dialogue box. The following

exampl e defines the default options to be "noinvoke" (do not execute the pr of i | e. dbg file) and
"reg=10" (retain up to 10 register sets while tracing).

WDW 297

Appendices

Example:
C>set wdw=/ noi nvoke /reg#10

Once the WDW environment variable has been defined, those options listed become the default each time
the WDW command is used.

A.19 WLANG

The WLANG environment variable can be used to control which language is used to display diagnostic
and program usage messages by various Open Watcom software tools. The two currently-supported values
for this variable are "English" or "Japanese”.

SET WLANG=Engl i sh
SET WLANG=Japanese

Alternatively, anumeric value of 0 (for English) or 1 (for Japanese) can be specified.

Example:
C>set w ang=0

By default, Japanese messages are displayed when the current codepage is 932 and English messages are
displayed otherwise. Normally, use of the WLANG environment variable should not be required.

A.20 WPP

The WPP environment variable can be used to specify commonly-used options for the 16-bit C++
compiler.

SET WPP=/optionl /option2 ...

These options are processed before options specified on the command line. The following example defines
the default optionsto be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
C>set wpp=/dl /ox

Once the WPP environment variable has been defined, those options listed become the default each time
the WPP command is used.

A.21 WPP386

The WPP386 environment variable can be used to specify commonly-used options for the 32-bit C++
compiler.

SET WPP386=/optionl /option2 ...
These options are processed before options specified on the command line. The following example defines

the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

298 WPP386

Use of Environment Variables

Example:
C>set wpp386=/dl /ox

Once the WPP386 environment variable has been defined, those options listed become the default each
time the WPP386 command is used.

WPP386 299

Appendices

300 WPP386

Open Watcom C Diagnostic Messages

B. Open Watcom C Diagnostic Messages

Thefollowingisalist of all warning and error messages produced by the Open Watcom C compilers.
Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain referencesto %, % and %u. They represent
strings that are substituted by the Open Watcom C compilers to make the error message more exact. %
and % represent a string of digits;, % astring, usually a symbolic name.

Consider the following program, named er r . ¢, which contains errors.

Example:
#i ncl ude <stdi o. h>

void main()

int i;

float i;

i = 383;

x = 13143.0;

printf("Integer value is %\n", i);
printf("Floating-point value is %\n", x);

}

If we compile the above program, the following messages will appear on the screen.

err.c(6): Error! E1034: Synmbol 'i’' already defined
err.c(9): Error! E1011: Synbol ’'x’ has not been decl ared
err.c: 12 lines, included 191, 0 warnings, 2 errors

The diagnostic messages consist of the following information:

the name of the file being compiled,

the line number of the line containing the error (in parentheses),
amessage humber, and

text explaining the nature of the error.

PwWbdE

In the above example, the first error occurred on line 6 of thefile err. ¢c. Error number 1034 (with the
appropriate substitutions) was diagnosed. The second error occurred on line 9 of thefile err. c. Error
number 1011 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed
during execution) do not have message numbers associated with them.

Open Watcom C Diagnostic Messages 301

Appendices

B.1 Warning Level 1 Messages

W100

W101

W102

W103

W104

W105

W106

W107

Parameter %d contains inconsistent levels of indirection

The function is expecting something like char ** anditisbeing passeda char * for
instance.

Non-portable pointer conversion
This message is issued whenever you convert a non-zero constant to a pointer.
Type mismatch (warning)

This message isissued for afunction return value or an assignment where both types are
pointers, but they are pointers to different kinds of objects.

Parameter count does not agree with previous definition (warning)

Y ou have either not enough parameters or too many parametersin acall to afunction. If
the function is supposed to have a variable number of parameters, then you can ignore this
warnhing, or you can change the function declaration and prototypesto use the”,..." to
indicate that the function indeed takes a variable number of parameters.

Inconsistent levels of indirection

This occursin an assignment or return statement when one of the operands has more levels
of indirection than the other operand. For example, a char ** isbeing assigned to a
char *.

Solution: Correct the levels of indirection or usea voi d *.

Assignment found in boolean expression

An assignment of a constant has been detected in aboolean expression. For example: "if(
var =0)". Itismost likely that you want to use "==" for testing for equality.

Constant out of range - truncated

This message isissued if a constant cannot be represented in 32 bits or if a constant is
outside the range of valid values that can be assigned to avariable.

Missing return value for function ' %s
A function has been declared with afunction return type, but no return statement was

found in the function. Either add areturn statement or change the function return typeto
void.

302 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W108

W109

W110

W11l

W112

W113

w114

W115

W116

Duplicate typedef already defined

A duplicate typedef isnot allowed in ISO C. Thiswarning isissued when compiling with
extensions enabled. Y ou should delete the duplicate typedef definition.

not used
unused message
"fortran’ pragma not defined

Y ou have used the fortran keyword in your program, but have not defined a #pragma for
fortran.

Meaningless use of an expression

The line contains an expression that does nothing useful. In the example"i = (1,5);", the
expression "1," is meaningless.

Pointer truncated

A far pointer is being passed to a function that is expecting a near pointer, or afar pointer is
being assigned to a near pointer.

Pointer type mismatch

Y ou have two pointers that either point to different objects, or the pointers are of different
size, or they have different modifiers.

Missing semicolon

Y ou are missing the semicolon ;" on the field definition just before the right curly brace

e
&array may not produce intended result

The type of the expression "&array" is different from the type of the expression "array".
Suppose we have the declaration char buf f er [80] Then the expression (&buf f er
+ 3) will beevaluated as (buf fer + 3 * sizeof (buffer)) whichis (buffer
+ 3 * 80) andnot (buffer + 3 * 1) whichiswhat most people expect to happen.
The address of operator "&" is not required for getting the address of an array.

Attempt to return address of auto variable

Thiswarning usually indicates a serious programming error. When afunction exits, the
storage allocated on the stack for auto variablesisreleased. This storage will be
overwritten by further function calls and/or hardware interrupt service routines. Therefore,
the data pointed to by the return value may be destroyed before your program has a chance
to reference it or make a copy of it.

Warning Level 1 Messages 303

Appendices

w117

W118

W119

W120

wiz1

W122

W123

"## tokens did not generate a single token (rest discarded)

When two tokens are pasted together using ##, they must form a string that can be parsed
asasingle token.

Label '%s' has been defined but not referenced

Y ou have defined alabel that is not referenced in agoto statement. It is possible that you
are missing the case keyword when using an enumerated type name as a casein aswitch
statement. If not, then the label can be deleted.

Address of static function '%s' has been taken

Thiswarning may indicate a potential problem when the program is overlayed.

Ivalue cast is not standard C

A cast operation does not yield an Ivaluein ISO C. However, to provide compatibility with
code written prior to the availability of SO compliant C compilers, if an expression was an
Ivalue prior to the cast operation, and the cast operation does not cause any conversions, the
compiler treats the result as an lvalue and issues this warning.

Text following pre-processor directivesis not standard C

Arbitrary text is not allowed following a pre-processor directive. Only comments are
allowed following a pre-processor directive.

Literal string too long for array - truncated

The supplied literal string contains more characters than the specified dimension of the
array. Either shorten thelitera string, or increase the dimension of the array to hold all of
the characters from the literal string.

'II' style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style
comment ("//"). The warning can be removed by switching to a C style comment ("/**/").
If you require the comment to be terminated at the end of the line, make sure that the
backslash character is not the last character in the line.

Example:
#define XX 23 // coment start \
conment \
end
int x = XX // comment start ...\

comment end

304 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

w124

W125

W126

w127

W128

W129

W130

W131

Comparison result always %d

The line contains a comparison that is always true (1) or false (0). For example comparing
an unsigned expression to see if itis>= 0 or < Oisredundant. Check to seeif the
expression should be signed instead of unsigned.

Nested include depth of %d exceeded

The number of nested include files has reached a preset limit, check for recursive include
statements.

Constant must be zero for pointer compare
A pointer is being compared using == or !=to a non-zero constant.
trigraph found in string

Trigraph expansion occursinside a string literal. Thiswarning can be disabled viathe
command line or #pragma warning directive.

Example:
/1 string expands to "(?]??2???"!
char *e = "(??7?)7?2??-2?2??";
/1 possi bl e work-arounds
char *f = "(" "?2?2?" ")" "2??" "M U277V,
char *g = "(\2A2A2)\2A2A2-\ A2\ 2",
%d padding byte(s) added

The compiler has added slack bytes to align a member to the correct offset.
#endif matches #if in different source file’%s

Thiswarning may indicate a #endif nesting problem since the traditional usage of #if
directives is confined to the same sourcefile. Thiswarning may often come before an error
and it is hoped will provide information to solve a preprocessing directive problem.

Possible loss of precision

This warning indicates that you may be converting a argument of one size to ancther,
different size. For instance, you may be losing precision by passing along argument to a
function that takes a short. Thiswarning isinitially disabled. It must be explicitly enabled
with #pragma enable_message(130) or option "-wce=130". It can be disabled later by
using #pragma disable_message(130).

No prototype found for function ' %s
A reference for afunction appears in your program, but you do not have a prototype for

that function defined. Implicit prototype will be used, but this will cause problemsif the
assumed prototype does not match actual function definition.

Warning Level 1 Messages 305

Appendices

W132

W133

W134

W135

No storage class or type specified

When declaring a data object, either storage class or data type must be given. If no typeis
specified, int isassumed. If no storage classis specified, the default depends on scope (see
the C Language Reference for details). For instance

Example:
auto i;

isavalid declaration, asis

Example:
short i;

However,

Example:
i

isnot a correctly formed declaration.
Symbol name truncated for ’ %s’

Symbol islonger than the object file format allows and has been truncated to fit. Maximum
length is 255 characters for OMF and 1024 characters for COFF or ELF object files.

Shift amount negative

Theright operand of aleft or right shift operator is a negative value. The result of the shift
operation is undefined.

Example:
int a=1 << -2;

The value of 'a in the above example is undefined.

Shift amount too large

Theright operand of aleft or right shift operator is avalue greater than or equal to the
width in bits of the type of the promoted left operand. The result of the shift operationis
undefined.

Example:
int a=1>> 123;

The value of ’a in the above example is undefined.

306 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W136

W137

W138

W139

Comparison equivalent to ’unsigned == 0’

Comparing an unsigned expression to see whether it is<= 0 is equivalent to testing for ==
0. Check to seeif the expression should be signed instead of unsigned.

Extern function '%s' redeclared as static

The specified function was either explicitly or implicitly declared as extern and later
redeclared as static. Thisisnot allowed in SO C and may produce unexpected results with
SO compliant compilers.

Example:
int bar(void);

void foo(void)

bar () ;
}

static int bar(void)

return(0);

}

No newline at end of file

ISO C requires that a non-empty source file must include a newline character at the end of
thelast line. If no newline was found, it will be automatically inserted.

Divisor for modulo or division operationis zero

Theright operand of adivision or modulo operation is zero. The result of this operationis
undefined and you should rewrite the offending code to avoid divisions by zero.

Example:
int foo(void)

{
}

return(7/ 0);

B.2 Warning Level 2 Messages

W200

"%s' has been referenced but never assigned a value

Y ou have used the variable in an expression without previously assigning a value to that
variable.

Warning Level 2 Messages 307

Appendices

W201

W202

W203

Unreachable code

The statement will never be executed, because there is no path through the program that
causes control to reach this statement.

Symbol *%s' has been defined, but not referenced

There are no references to the declared variable. The declaration for the variable can be
deleted.

In some cases, there may be avalid reason for retaining the variable. Y ou can prevent the
message from being issued through use of #pragma off(unreferenced).

Preprocessing symbol '%s' has not been declared
The symbol has been used in a preprocessor expression. The compiler assumes the symbol

has avalue of 0 and continues. A #def i ne may berequired for the symbol, or you may
have forgotten to include the file which contains a #def i ne for the symbol.

B.3 Warning Level 3 Messages

W300

W301

W302

W303

Nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected / * for the start of another
comment. Nested comments are not allowed in ISO C. You may be missing the */ for the
previous comment.

not used

unused message

Expression is only useful for its side effects

Y ou have an expression that would have generated the warning "Meaningless use of an
expression”, except that it also contains a side-effect, such as ++, —, or afunction call.

Parameter ' %s' has been defined, but not referenced

There are no references to the declared parameter. The declaration for the parameter can be
deleted. Sinceit isaparameter to afunction, all callsto the function must also have the
value for that parameter deleted.

In some cases, there may be avalid reason for retaining the parameter. Y ou can prevent the
message from being issued through use of #pragma off(unreferenced).

Thiswarning isinitially disabled. It must be specifically enabled with #pragma
enable_message(303) or option "-wce=303". It can be disabled later by using #pragma
disable_message(303).

308 Warning Level 3 Messages

Open Watcom C Diagnostic Messages

W304

W305

W306

W307

W308

W309

Return type’int’ assumed for function ’%s
If afunction is declared without specifying return type, such as

Example:
foo(void);

then its return type will be assumed to be int
Type'int' assumed in declaration of ' %s
If an object is declared without specifying its type, such as

Example:
regi ster count;

then its type will be assumed to be int
Assembler warning: ' %s

A problem has been detected by the in-line assembler. The message indicates the problem
detected.

Obsol ete non-prototype declarator

Function parameter declarations containing only empty parentheses, that is, non-prototype
declarations, are an obsolescent language feature. Their use is dangerous and discouraged.

Example:
int func();

Unprototyped function ' %s' called

A call to an unprototyped function was made, preventing the compiler from checking the
number of function arguments and their types. Use of unprototyped functionsis
obsolescent, dangerous and discouraged.

Example:
int func();

void bar(void)

func(4, "s"); /* possible argunent m snmatch */

}

Unprototyped function indirectly called
Anindirect call to an unprototyped function was made, preventing the compiler from

checking the number of function arguments and their types. Use of unprototyped functions
is obsolescent, dangerous and discouraged.

Warning Level 3 Messages 309

Appendices

Example:
int (*func)();

void bar(void)

{
}

func(4, "s"); /* possible argunent m smatch */

B.4 Warning Level 4 Messages

W400 Array subscript is of type plain char

Array subscript expression is of plain char type. Such expression may be interpreted as
either signed or unsigned, depending on compiler settings. A different type should be
chosen instead of char. A cast may be used in cases when the value of the expression is
known to never fall outside the 0-127 range.

Example:
int foo(int arr[], char c)

return(arrf[c]);

}
B.5 Error Messages
E1000 BREAK must appear in while, do, for or switch statement

A break statement has been found in anillegal place in the program. Y ou may be missing
an opening brace { for awhile, do, for or switch statement.

E1001 CASE must appear in switch statement
A case label has been found that is not inside a switch statement.
E1002 CONTINUE must appear in while, do or for statement

The continue statement must be inside awhile, do or for statement. Y ou may have too
many } between the while, do or for statement and the continue statement.

E1003 DEFAULT must appear in switch statement

A default label has been found that is not inside a switch statement. Y ou may have too
many } between the start of the switch and the default label.

310 Error Messages

Open Watcom C Diagnostic Messages

E1004

E1005

E1006

E1007

E1008

E1009

E1010

E1011

E1012

E1013

Misplaced '}’ or missing earlier '{’
Anextra} hasbeen found which cannot be matched up with an earlier {.
Misplaced #lif directive

The#el i f directive must beinside an #i f preprocessing group and before the #el se
directiveif present.

Misplaced #else directive

The #el se directive must beinside an #i f preprocessing group and follow all #el i f
directivesif present.

Misplaced #endif directive

A preprocessing directive has been found without amatching #i f directive. You either
have an extraor you are missing an #i f directive earlier in thefile.

Only 1 DEFAULT per switch allowed
Y ou cannot have more than one default |abel in a switch statement.
Expecting ' %s' but found ' %s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

Type mismatch

For pointer subtraction, both pointers must point to the same type. For other operators,
both expressions must be assignment compatible.

Symbol "%s’ has not been declared

The compiler has found a symbol which has not been previously declared. The symbol
may be spelled differently than the declaration, or you may need to #i ncl ude aheader
file that contains the declaration.

Expression is not a function

The compiler has found an expression that looks like a function call, but it is not defined as
afunction.

Constant variable cannot be modified

An expression or statement has been found which modifies a variable which has been
declared with the const keyword.

Error Messages 311

Appendices

E1014

E1015

E1016

E1017

E1018

E1019

E1020

E1021

E1022

E1023

E1024

Left operand must be an’lvalue’

The operand on the left side of an "=" sign must be a variable or memory location which
can have avalue assigned to it.

"%s isalready defined asa variable
Y ou are trying to declare a function with the same name as a previoudly declared variable.
Expecting identifier

The token following "->" and "." operators must be the name of an identifier which appears
in the struct or union identified by the operand preceding the "->" and "." operators.

Label '%s' already defined
All labels within a function must be unique.
Label '%s' not defined in function

A goto statement has referenced alabel that is not defined in the function. Add the
necessary label or check the spelling of the label(s) in the function.

Tag'%s already defined

All struct, union and enum tag names must be unique.
Dimension cannot be 0 or negative

The dimension of an array must be positive and non-zero.
Dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only exception isthe
first dimension which can declared as"[]".

Missing or misspelled data type near ’ %s

The compiler has found an identifier that is not a predefined type or the name of a
"typedef". Check the identifier for a spelling mistake.

Storage class of parameter must be register or unspecified
The only storage class alowed for a parameter declaration isregister.
Declared symbol "%s'’ is not in parameter list

Make sure that all the identifiersin the parameter list match those provided in the
declarations between the start of the function and the opening brace "{".

312 Error Messages

Open Watcom C Diagnostic Messages

E1025

E1026

E1027

E1028

E1029

E1030

E1031

E1032

E1033

E1034

E1035

Parameter '%s already declared

A declaration for the specified parameter has already been processed.
Invalid declarator

A syntax error has occurred while parsing a declaration.

Invalid storage class for function

If astorage classis given for afunction, it must be static or extern.
Variable’%s' cannot be void

Y ou cannot declare avoid variable.

Expression must be 'pointer to ...’

An attempt has been made to de-reference (*) avariable or expression which is not
declared to be a pointer.

Cannot take the address of an rvalue
Y ou can only take the address of a variable or memory location.
Name '%s' not found in struct/union %s

The specified identifier is not one of the fields declared in the struct or union. Check that
the field nameis spelled correctly, or that you are pointing to the correct struct or union.

Expression for . must be a’structure’ or "union’

The compiler has encountered the pattern "expression” "." "field_name" where the
expression is not a struct or union type.

Expression for '->" must be’ pointer to struct or union’

The compiler has encountered the pattern "expression” "->" "field_name" where the
expression is not a pointer to struct or union type.

Symbol '%s’ already defined
The specified symbol has already been defined.
static function’%s’ has not been defined

A prototype has been found for a static function, but a definition for the static function has
not been found in the file.

Error Messages 313

Appendices

E1036

E1037

E1038

E1039

E1040

E1041

E1042

E1043

E1044

E1045

E1046

E1047

Right operand of '%s is a pointer

Theright operand of "+=" and "—=" cannot be a pointer. The right operand of

be a pointer unless the |eft operand is also a pointer.
Type cast must be a scalar type

Y ou cannot type cast an expression to be a struct, union, array or function.
Expecting label for goto statement

The goto statement requires the name of alabel.
Duplicate case value’%s' found

Every case value in aswitch statement must be unique.
Field width too large

The maximum field width allowed is 16 bits.

Field width of 0 with symbol not allowed

A bit field must be at least one bit in size.

Field width must be positive

Y ou cannot have a negative field width.

Invalid type specified for hit field

cannot

The types allowed for bit fields are signed or unsigned varieties of char, short and int.

Variable’%s hasincomplete type

A full definition of astruct or union has not been given.
Subscript on non-array

One of the operands of "[]" must be an array.

Incompl ete comment started on line %u

The compiler did not find */ to mark the end of a comment.
Argument for # must be a macro parm

The argument for the stringize operator "#' must be a macro parameter.

314 Error Messages

Open Watcom C Diagnostic Messages

E1048

E1049

E1050

E1051

E1052

E1053

E1054

E1055

E1056

E1057

Unknown preprocessing directive ' #%s

An unrecognized preprocessing directive has been encountered. Check for correct spelling.
Invalid #include directive

A syntax error has been encountered in a #i ncl ude directive.

Not enough parameters given for macro ' %s

Y ou have not supplied enough parameters to the specified macro.

Not expecting a return value for function’ %s

The specified function is declared as a void function. Delete the return statement, or
change the type of the function.

Expression has void type

Y ou tried to use the value of avoid expression inside another expression.

Cannot take the address of a bit field

The smallest addressable unit is abyte. You cannot take the address of a bit field.
Expression must be constant

The compiler expects a constant expression. This message can occur during static
initialization if you are trying to initialize a non-pointer type with an address expression.

Unable to open’ %s

Thefile specified in an #i ncl ude directive could not be located. Make sure that the file
nameis spelled correctly, or that the appropriate path for the fileisincluded in the list of
paths specified in the | NCLUDE environment variable or the"-I" option on the command
line.

Too many parameters given for macro ' %s

Y ou have supplied too many parameters for the specified macro.

Modifiers disagree with previous definition of ' %s

Y ou have more than one definition or prototype for the variable or function which have
different type modifiers.

Error Messages 315

Appendices

E1058

E1059

E1060

E1061

E1062

E1063

E1064

E1065

E1066

E1067

Cannot use typedef '%s' asa variable

The name of atypedef has been found when an operand or operator is expected. If you are
trying to use atype cast, make sure there are parentheses around the type, otherwise check
for a spelling mistake.

Invalid storage class for non-local variable

A variable with module scope cannot be defined with the storage class of auto or register.

Invalid type

Aninvalid combination of the following keywords has been specified in atype declaration:
const, volatile, signed, unsigned, char, int, short, long, float and double.

Expecting data or function declaration, but found ’ %s

The compiler is expecting the start of a data or function declaration. If you are only part
way through afunction, then you have too many closing braces"}".

Inconsistent return type for function’ %s

Two prototypes for the same function disagree.

Missing operand

An operand is required in the expression being parsed.

Out of memory

The compiler has run out of memory to store information about the file being compiled.
Try reducing the number of data declarations and or the size of the file being compiled. Do

not #i ncl ude header filesthat are not required.

For the 16-bit C compiler, the "-d2" option causes the compiler to use more memory. Try
compiling with the "-d1" option instead.

Invalid character constant

This message isissued for an improperly formed character constant.

Cannot perform operation with pointer to void

Y ou cannot use a "pointer to void" with the operators +, —, ++, ——, += and —=.
Cannot take address of variable with storage class 'register’

If you want to take the address of alocal variable, change the storage class from register to
auto.

316 Error Messages

Open Watcom C Diagnostic Messages

E1068

E1069

E1070

E1071

E1072

Variable’%s already initialized

The specified variable has already been statically initialized.
String literal not terminated before end of line

A string literal is enclosed by double quote " characters.

The compiler did not find a closing double quote " or line continuation character \ before
the end of aline or before the end of the source file.

Data for aggregate type must be enclosed in curly braces

When an array, struct or union is statically initialized, the data must be enclosed in curly
braces{}.

Type of parameter %d does not agree with previous definition

The type of the specified parameter is incompatible with the prototype for that function.
The following example illustrates a problem that can arise when the sequence of
declarationsisin the wrong order.

Example:

/* Uncommenting the following line will
elimnate the error */

/* struct foo; */

void fnl(struct foo *);

struct foo {
i nt a, b;

1

void fnl(struct foo *bar)

fn2(bar);
}

The problem can be corrected by reordering the sequence in which items are declared (by
moving the description of the structure f 0o ahead of itsfirst reference or by adding the
indicated statement). Thiswill assure that the first instance of structure f 0o is defined at
the proper outer scope.

Sorage class disagrees with previous definition of ' %s

The previous definition of the specified variable has a storage class of static. The current
definition must have a storage class of static or extern.

Alternatively, avariable was previously declared as extern and later defined as static.

Error Messages 317

Appendices

E1073

E1074

E1075

E1076

E1077

E1078

E1079

E1080

E1081

E1082

E1083

Invalid option’ %s

The specified option is not recognized by the compiler.
Invalid optimization option ' %s’

The specified option is an unrecognized optimization option.
Invalid memory model ’ %s’

Memory model option must be one of "ms’, "mm", "mc", "ml", "mh" or "mf" which selects
the Small, Medium, Compact, Large, Huge or Flat memory model.

Missing semicolon at end of declaration
You are missing asemicolon ;" on the declaration just before the left curly brace "{".
Missing '}’

The compiler detected end of file before finding aright curly brace "} " to end the current
function.

Invalid type for switch expression

The type of a switch expression must be integral.
Expression must be integral

Anintegral expressionisrequired.

Expression must be arithmetic

Both operands of the "*", "/" and "%" operators must be arithmetic. The operand of the
unary minus must also be arithmetic.

Expression must be scalar type
A scalar expression is required.
Satement required after label

The C language definition requires a statement following alabel. You can use anull
statement which consists of just a semicolon (*;").

Satement required after ' do’

A statement is required between the do and while keywords.

318 Error Messages

Open Watcom C Diagnostic Messages

E1084

E1085

E1086

E1087

E1088

E1089

E1090

E1091

E1092

E1093

Satement required after ’case’

The C language definition requires a statement following a case label. Y ou can use anull
statement which consists of just a semicolon (*;").

Satement required after ’ default’

The C language definition requires a statement following a default label. You can use a
null statement which consists of just asemicolon (*;").

Expression too complicated, split it up and try again

The expression contains too many levels of nested parentheses. Divide the expression up
into two or more sub-expressions.

Missing matching #endif directive

You aremissing ato terminatea #i f, #i f def or #i f ndef preprocessing directive.
Invalid macro definition, missing)

Theright parenthesis")" isrequired for afunction-like macro definition.

Missing) for expansion of '%s macro

The compiler encountered end-of-file while collecting up the argument for afunction-like
macro. A right parenthesis")" isrequired to mark the end of the argument(s) for a
function-like macro.

Invalid conversion

A struct or union cannot be converted to anything. A float or double cannot be converted
to apointer and a pointer cannot be converted to afloat or double.

%s

Thisis auser message generated with the #er r or preprocessing directive.
Cannot define an array of functions

Y ou can have an array of pointers to functions, but not an array of functions.
Function cannot return an array

A function cannot return an array. Y ou can return a pointer to an array.

Error Messages 319

Appendices

E1094

E1095

E1096

E1097

E1098

E1099

E1100

E1101

E1102

Function cannot return a function

Y ou cannot return afunction. Y ou can return a pointer to afunction.

Cannot take address of local variable in static initialization

Y ou cannot take the address of an auto variable at compile time.

Inconsistent use of return statements

The compiler has found areturn statement which returns avalue and areturn statement
that does not return a value both in the same function. The return statement which does
not return a value needs to have a value specified to be consistent with the other return
statement in the function.

Missing ? or misplaced :

The compiler has detected a syntax error related to the "?" and ":" operators. Y ou may
need parenthesis around the expressions involved so that it can be parsed correctly.

Maximum struct or union sizeis 64K

The size of astruct or union islimited to 64K so that the compiler can represent the offset
of amember in a 16-bit register.

Satement must be inside function. Probable cause: missing {

The compiler has detected a statement such as for, while, switch, etc., which must be inside
afunction. You either have too many closing braces"}" or you are missing an opening
brace"{" earlier in the function.

Definition of macro’%s' not identical to previous definition

If amacro is defined more than once, the definitions must beidentical. If you want to
redefine a macro to have a different definition, you must #undef it before you can define
it with a new definition.

Cannot #undef ’ %s

Thespecialmacros_ LINE , FILE , DATE , TIME _,
__STDC__, _ _FUNCTION__and_ func__, andtheidentifier "defined", cannot be
deleted by the #undef directive.

Cannot #define the name’ defined’

Y ou cannot define amacro caled def i ned.

320 Error Messages

Open Watcom C Diagnostic Messages

E1103

E1104

E1105

E1106

E1107

E1108

E1109

E1110

E1111

E1112

E1113

must not be at start or end of replacement tokens

There must be atoken on each side of the "##" (token pasting) operator.

Type cast not allowed in #if or #elif expression

A type cast is not allowed in a preprocessor expression.

'sizeof’ not allowed in #if or #elif expression

The sizeof operator is not allowed in a preprocessor expression.

Cannot compare a struct or union

A struct or union cannot be compared with "==" or "!=". Y ou must compare each member
of astruct or union to determine equality or inequality. If the struct or union is packed
(has no holesinit for alignment purposes) then you can compare two structs using
mencnp.

Enumerator list cannot be empty

Y ou must have at least one identifier in an enum list.

Invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

Cannot take sizeof a bit field

The smallest object that you can ask for the size of isachar.

Cannot initialize variable with storage class of extern

A storage class of extern is used to associate the variable with its actual definition
somewhere else in the program.

Invalid storage class for parameter

The only storage class alowed for a parameter is register.
Initializer list cannot be empty

Aninitializer list must have at least one item specified.
Expression has incompl ete type

An attempt has been made to access a struct or union whose definition is not known, or an
array whose dimensions are not known.

Error Messages 321

Appendices

E1114

E1115

E1116

E1117

E1118

E1119

E1120

E1121

E1122

322 Error Messages

Struct or union cannot contain itself

Y ou cannot have a struct or union contain itself. Y ou can have a pointer in the struct
which points to an instance of itself. Check for amissing "*" in the declaration.

Incomplete enum declaration

The enumeration tag has not been previously defined.

Anid list not allowed except for function definition

A function prototype must contain type information.

Must use 'va_start’ macro inside function with variable parameters

Theva_start macroisused to setup access to the parametersin afunction that takes a
variable number of parameters. A function is defined with a variable number of parameters

by declaring the last parameter in the function as™...".
EATAL O%s

A fatal error has been detected during code generation time. The type of error is displayed
in the message.

Internal compiler error %d

A bug has been encountered in the C compiler. Please report the specified internal
compiler error number and any other helpful details about the program being compiled to
compiler developers so that we can fix the problem.

Parameter number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

Procedure’%s' hasinvalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.
Illegal register modified by '%s' #pragma

For the 16-bit C compiler: The BP, CS, DS, and SS registers cannot be modified in small
datamodels. The BP, CS, and SS registers cannot be modified in large data models.

For the 32-bit C compiler: The EBP, CS, DS, ES, and SS registers cannot be modified in
flat memory models. The EBP, CS, DS, and SS registers cannot be modified in small data
models. The EBP, CS, and SS registers cannot be modified in large data models.

Open Watcom C Diagnostic Messages

E1123

E1124

E1125

E1126

E1127

E1128

E1129

E1130

E1131

E1132

E1133

File must contain at least one external definition

Every file must contain at least one global object, (either adata variable or afunction).

This messageisonly issued in strict ANSI mode (-za).

Out of macro space

The compiler ran out of memory for storing macro definitions.
Keyboard interrupt detected

The compile has been aborted with Ctrl/C or Ctrl/Break.
Array, struct or union cannot be placed in a register

Only scalar objects can be specified with the register class.

Typerequired in parameter list

If the first parameter in a function definition or prototype is defined with atype, then all of

the parameters must have a type specified.
Enum constant is out of range %s
All of the constants must fit into appropriate value range.

Type does not agree with previous definition of ' %s

Y ou have more than one definition of avariable or function that do not agree.

Duplicate name’%s not allowed in struct or union

All thefield namesin a struct or union must be unique.
Duplicate macro parameter ’%s

The parameters specified in a macro definition must be unique.

Unable to open work file: error code = %d

The compiler tries to open a new work file by the name”__wrkN__.tmp" where N isthe
digit 0t0 9. This message will beissued if all of those files already exist.

Write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be

full.

Error Messages 323

Appendices

E1134

E1135

E1136

E1137

E1138

E1139

E1140

E1141

E1142

E1143

Read error on work file: error code = %d

An error was encountered trying to read information from the work file.
Seek error onwork file: error code = %d

An error was encountered trying to seek to a position in the work file.
not used

unused message

Out of enum space

The compiler has run out of space allocated to store information on &l of the enum
constants defined in your program.

Filename required on command line

The name of afile to be compiled must be specified on the command line.

Command line contains more than one file to compile

Y ou have more than one file name specified on the command line to be compiled. The
compiler can only compile onefile at atime. Y ou can use the Open Watcom Compile and
Link utility to compile multiple files with a single command.

_leave must appear ina _try statement

The _leave keyword must beinsidea_try statement. The _|leave keyword causes the
program to jump to the start of the _finally block.

Expecting end of line but found ’ %s’

A syntax error has been detected. The token displayed in the message should help you
determine the problem.

Too many bytes specified in #pragma

Thereisan internal limit on the number of bytesfor in-line code that can be specified with
apragma. Try splitting the function into two or more smaller functions.

Cannot resolve linkage conventions for routine’ %s' #pragma

The compiler cannot generate correct code for the specified routine because of register
conflicts. Change the registers used by the parameters of the pragma.

324 Error Messages

Open Watcom C Diagnostic Messages

E1144

E1145

E1146

E1147

E1148

E1149

E1150

E1151

E1152

Symbol '%s’ in pragma must be global

Thein-line code for a pragma can only reference a global variable or function. Y ou can
only reference a parameter or local variable by passing it as a parameter to the in-line code

pragma.
Internal compiler limit exceeded, break module into smaller pieces

The compiler can handle 65535 quadruples, 65535 |leaves, and 65535 symbol table entries
and literal strings. If you exceed one of these limits, the program must be broken into
smaller pieces until it is capable of being processed by the compiler.

Invalid initializer for integer data type

Integer data types (int and long) can be initialized with numeric expressions or address
expressions that are the same size as the integer data type being initialized.

Too many errors. compilation aborted

The compiler stops compiling when the number of errors generated exceeds the error limit.
The error limit can be set with the "-€" option. The default error limit is 20.

Expecting identifier but found ’ %s

A syntax error has been detected. The token displayed in the message should help you
determine the problem.

Expecting constant but found ’ %s’

The #line directive must be followed by a constant indicating the desired line number.
Expecting \"filename\" but found ’ %s’

The second argument of the #line directive must be a filename enclosed in quotes.
Parameter count does not agree with previous definition

Y ou have either not enough parameters or too many parametersin acall to afunction. If
the function is supposed to have a variable number of parameters, then you are missing the
", ..." inthe function prototype.

Segment name required

A segment name must be supplied in the form of aliteral string to the __segname()
directive.

Error Messages 325

Appendices

E1153

E1154

E1155

E1156

E1157

E1158

E1159

E1160

El161

E1162

Invalid __based declaration

The compiler could not recognize one of the allowable forms of __based declarations. See
the C Language Reference document for description of all the allowable forms of __based
declarations.

Variablefor __based declaration must be of type segment or pointer

A based pointer declaration must be based on asimple variable of type _ segment or
pointer.

Duplicate external symbol %s

Duplicate external symbolswill exist when the specified symbol nameis truncated to 8
characters.

Assembler error: '%s

An error has been detected by the in-line assembler. The message indicates the error
detected.

Variable must be’ huge

A variable or an array that requires more than 64K of storage in the 16-bit compiler must be
declared as huge.

Too many parm sets
Too many parameter register sets have been specified in the pragma.
I/O error reading ' %s': %s

An 1/O error has been detected by the compiler while reading the sourcefile. The system
dependent reason is also displayed in the message.

Attempt to access far memory with all segment registersdisabled in’%s

The compiler does not have any segment registers available to access the desired far
memory location.

No identifier provided for *-D’ option
The command line option "-D" must be followed by the name of the macro to be defined.
Invalid register pegged to a segment in’ %s

Theregister specified in a#pragma data_seg, or a__segname expression must be avalid
segment register.

326 Error Messages

Open Watcom C Diagnostic Messages

E1163

El164

E1165

E1166

E1167

E1168

E1169

E1170

El1171

E1172

Invalid octal constant

An octal constant cannot contain the digits 8 or 9.

Invalid hexadecimal constant

The token sequence "0x" must be followed by a hexadecimal character (0-9, af, or A-F).
Unexpected ’)’. Probable cause: missing'(’

A closing parenthesis was found in an expression without a corresponding opening
parenthesis.

Symbol '%s' is unreachable from #pragma

Thein-line assembler found ajump instruction to alabel that istoo far away.
Division or remainder by zero in a constant expression

The compiler found a constant expression containing adivision or remainder by zero.
Cannot end string literal with backslash

The argument to amacro that uses the stringize operator *# on that argument must not end
in a backslash character.

Example:
#define str(x) #x
str(@\)

Invalid __declspec declaration

Theonly valid __declspec declarations are"__ declspec(thread)”, " declspec(dllexport)”,
and"__declspec(dllimport)".

Too many storage class specifiers
Y ou can only specify one storage class specifier in adeclaration.
Expecting ' %s' but found end of file

A syntax error has been detected. The compiler is still expecting more input when it
reached the end of the source program.

Expecting struct/union tag but found * %s

The compiler expected to find an identifier following the struct or union keyword.

Error Messages 327

Appendices

E1173

E1174

E1175

E1176

E1177

E1178

E1179

E1180

E1181

E1182

E1183

Operand of __builtin_isfloat() must be a type

The __builtin_isfloat() function is used by the va_arg macro to determineif atypeisa
floating-point type.

Invalid constant
The token sequence does not represent a valid numeric constant.
Too many initializers

There are more initializers than objectsto initialize. For exampleint X[2] ={ 0,1,2}; The
variable " X" requires two initializers not three.

Parameter %d, pointer type mismatch

Y ou have two pointers that either point to different objects, or the pointers are of different
size, or they have different modifiers.

Modifier repeated in declaration

Y ou have repeated the use of a modifier like "const" (an error) or "far" (awarning) in a
declaration.

Type qualifier mismatch

Y ou have two pointers that have different "const” or "volatile" qualifiers.
Parameter %d, type qualifier mismatch

Y ou have two pointers that have different const or "volatile" qualifiers.
Sgn specifier mismatch

Y ou have two pointers that point to types that have different sign specifiers.
Parameter %d, sign specifier mismatch

Y ou have two pointers that point to types that have different sign specifiers.
Missing \\ for string literal

Youneed a’\' to continue a string literal across aline.

Expecting ' %s' after '%s' but found *%s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

328 Error Messages

Open Watcom C Diagnostic Messages

E1184

E1185

E1186

E1187

E1188

E1189

Expecting '%s' after '%s' but found end of file

A syntax error has been detected. The compiler is still expecting more input when it
reached the end of the source program.

Invalid register name’%s' in #pragma
The register name isinvalid/unknown.
Sorage class of 'for’ statement declaration not register or auto

The only storage class alowed for the optional declaration part of afor statement is auto or
register.

No type specified in declaration
A declaration specifier must include a type specifier.

Example:
auto i;

Symbol '%s’ declared in’for’ statement must be object

Any identifier declared in the optional declaration part of afor statement must denote an
object. Functions, structures, or enumerations may not be declared in this context.

Example:
for(int i =0, j(void); i <5; ++i) {
}

Unexpected declaration

Within afunction body, in C99 mode a declaration is only allowed in a compound
statement and in the opening clause of afor loop. Declarations are not allowed after if,
while, or switch statement, etc.

Example:
void foo(int a)

if(a>0)
int j = 3;

}

In C89 mode, declarations within afunction body are only allowed at the beginning of a
compound statement.

Error Messages 329

Appendices

Example:
void foo(int a)
{
++a;
int j = 3;
}

B.6 Informational Messages

12000

12001

12002

12003

Not enough memory to fully optimize procedure’ %s

The compiler did not have enough memory to fully optimize the specified procedure. The
code generated will still be correct and execute properly. This messageis purely
informational.

Not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during
optimization. All functions will be individually optimized but the optimizer will not be
able to share code between functions if this message appears. The code generated will still
be correct and execute properly. This messageis purely informational. It isonly printed if
the warning level is greater than or equal to 4.

The main reason for this message is for those people who are concerned about reproducing
the exact same object code when the same source file is compiled on a different machine.
Y ou may not be able to reproduce the exact same object code from one compile to the next
unless the available memory is exactly the same.

"%s' defined in: %s(%u)

This informational message indicates where the symbol in question was defined. The
message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;
int b = 89;

Thevariable’a’ isnot referenced in the preceding example and so will cause awarning to
be generated. Following the warning, the informational message indicates the line at which
'a was declared.

source conversion typeis’%s

This informational message indicates the type of the source operand, for the preceding
conversion diagnostic.

330 Informational Messages

Open Watcom C Diagnostic Messages

12004 target conversion type is’ %s

This informational message indicates the target type of the conversion, for the preceding
conversion diagnostic.

12005 Including file’ %s

This informational message indicates that the specified file was opened as aresult of
#i ncl ude directive processing.

B.7 Pre-compiled Header Messages
H3000 Error reading PCH file
The pre-compiled header file does not follow the correct format.
H3001 PCH file header is out of date

The pre-compiled header file is out of date with the compiler. The current version of the
compiler is expecting a different format.

H3002 Compile options differ with PCH file

The command line options are not the same as used when making the pre-compiled header
file. This can effect the values of the pre-compiled information.

H3003 Current working directory differs with PCH file
The pre-compiled header file was compiled in a different directory.
H3004 Includefile’%s has been modified since PCH file was made
Theinclude files have been modified since the pre-compiled header file was made.
H3005 PCH file was made from a different include file
The pre-compiled header file was made using a different include file.
H3006 Include path differswith PCH file
Theinclude paths have changed.
H3007 Preprocessor macro definition differs with PCH file

The definition of a preprocessor macro has changed.

Pre-compiled Header Messages 331

Appendices

H3008 PCH cannot have data or code definitions.

Theinclude files used to build the pre-compiled header contain function or data definitions.
Thisisnot currently supported.

B.8 Miscellaneous Messages and Phrases
M4000 Codesize
String used in message construction.
M4001 Error!
String used in message construction.
M4002 Warning!
String used in message construction.
M4003 Note!
String used in message construction.
M4004 (Pressreturn to continue)

String used in message construction.

332 Miscellaneous Messages and Phrases

Open Watcom C++ Diagnostic Messages

C. Open Watcom C++ Diagnostic Messages

Thefollowingisalist of all warning and error messages produced by the Open Watcom C++ compilers.
Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain referencesto %N, %8, %I, %, % and %w. They
represent strings that are substituted by the Open Watcom C++ compilers to make the error message more
exact. %@ and % represent astring of digits; 9N, %8, %I and % astring, usually a symbolic name.

Consider the following program, named er r . cpp, which contains errors.

Example:
#i ncl ude <stdi o. h>

void main()

int i;

float i;

i = 383;

x = 13143.0;

printf("Integer value is %\n", i);
printf("Floating-point value is %\n", x);

}

If we compile the above program, the following messages will appear on the screen.

File: err.cpp
(6,12): Error! EO042: synbol 'i’ already defined
i’ declared at: (5,9)
(9,5): Error! E029: synmbol ’'x' has not been decl ared
err.cpp: 12 lines, included 174, no warnings, 2 errors

The diagnostic messages consist of the following information:

the name of the file being compiled,

the line number and column of the line containing the error (in parentheses),
amessage number, and

text explaining the nature of the error.

PwWdE

In the above example, the first error occurred on line 6 of thefile err. cpp. Error number 042 (with the
appropriate substitutions) was diagnosed. The second error occurred on line 9 of thefile err. cpp. Error
number 029 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed
during execution) do not have message numbers associated with them.

Open Watcom C++ Diagnostic Messages 333

Appendices

A number of messages contain areference to the ARM. Thisisthe"Annotated C++ Reference Manual™
written by Margaret A. Ellis and Bjarne Stroustrup and published by Addison-Wesley (ISBN
0-201-51459-1).

C.1 Diagnostic Messages

000 internal compiler error

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

001 assignment of constant found in boolean expression

An assignment of a constant has been detected in aboolean expression. For example: "if(
var =0)". Itismost likely that you want to use "==" for testing for equality.

002 constant out of range; truncated

Thismessageisissued if a constant cannot be represented in 32 bits or if a constant is
outside the range of valid values that can be assigned to avariable.

Example:
int a = 12345678901234567890;

003 missing return value

A function has been declared with a non-void return type, but no return statement was
found in the function. Either add areturn statement or change the function return typeto

void.
Example:
int foo(int a)
{
int b =a+ a;
}

The message will be issued at the end of the function.
004 base class’%T' does not have a virtual destructor
A virtual destructor has been declared in a class with base classes. However, one of those

base classes does not have avirtual destructor. A delete of a pointer cast to such abase
classwill not function properly in al circumstances.

Example:
struct Base {
~Base() ;
1

struct Derived : Base {
virtual ~Derived();
b

334 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

005

006

007

008

It is considered good programming practice to declare virtual destructorsin all classes used
as base classes of classes having virtual destructors.

pointer or reference truncated

The expression contains atransfer of a pointer value to another pointer value of smaller
size. Thiscanbecausedby near or __ far qualifiers(i.e., assigning afar pointer to a
near pointer). Function pointers can also have a different size than data pointersin certain
memory models. This message indicates that some information is being lost so check the
code carefully.

Example:
extern int _ far *foo();
int far *p_far = foo();
int __near *p_near = p_far; // truncated

syntax error; probable cause: missing’;’

The compiler has found a compl ete expression (or declaration) during parsing but could not
continue. The compiler has detected that it could have continued if a semicolon was
present so there may be a semicolon missing.

Example:
enum S {
} /!l mssing ';’

class X {

1
'&array’ may not produce intended result

The type of the expression’&array’ is different from the type of the expression ' array’.
Suppose we have the declaration char buf fer[80]. Thenthe expression (&uf f er
+ 3) will beevaluated as (buf fer + 3 * sizeof (buffer)) whichis (buffer
+ 3 * 80) andnot (buffer + 3 * 1) whichiswhat one may have expected. The
address-of operator '&’ is not required for getting the address of an array.

returning address of function argument or of auto or register variable

Thiswarning usually indicates a serious programming error. When afunction exits, the
storage allocated on the stack for auto variablesisreleased. This storage will be
overwritten by further function calls and/or hardware interrupt service routines. Therefore,
the data pointed to by the return value may be destroyed before your program has a chance
to reference it or make a copy of it.

Example:
int *foo()
int k = 123;
return &Kk; // k is autonatic variable
}

Diagnostic Messages 335

Appendices

009 option requires a file name

The specified option is not recognized by the compiler since there was no file name after it
(i.e, "-fo=my.obj").

010 asmdirective ignored

The asm directive (e.g., asm("mov r0,1");) is anon-portable construct. The Open
Watcom C++ compiler treats all asm directives like comments.

011 all members are private

This message warns the programmer that there will be no way to use the contents of the
class because all accesses will be flagged as erroneous (i.e., accessing a private member).

Example:

class Private {
int a;
Private();
~Private();
Private(const Private&);

1

012 template argument cannot be type’ %T

A template argument can be either agenerictype (e.g., tenpl ate < class T >),a
pointer, or anintegral type. These types are required for expressions that can be checked at
compile time.

013 unreachable code

Theindicated statement will never be executed because there is no path through the
program that causes control to reach that statement.

Example:
void foo(int *p)
{
*p = 4’
return;
*p = 6,
}

The statement following the return statement cannot be reached.

014 no reference to symbol ' %S
There are no references to the declared variable. The declaration for the variable can be
deleted. If the variable isa parameter to afunction, all callsto the function must also have
the value for that parameter deleted.
In some cases, there may be avalid reason for retaining the variable. Y ou can prevent the

message from being issued through use of #pragma off(unreferenced), or adding a
statement that assigns the variable to itself.

336 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

015

016

017

018

019

020

nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected / * for the start of another
comment. Nested comments are not allowed in ISO/ANSI C. You may be missing the */
for the previous comment.

template argument list cannot be empty

An empty template argument list would result in atemplate that could only define asingle
class or function.

label '%s' has not been referenced by a goto

Theindicated label has not been referenced and, as such, isuseless. Thiswarning can be
safely ignored.

Example:
int foo(int a, int b)

un_ref ed:
return a + b;
}
no reference to anonymous union member ' %S
The declaration for the anonymous member can be safely deleted without any effect.
"break’ may only appear in a for, do, while, or switch statement

A break statement has been found in anillegal place in the program. Y ou may be missing
an opening brace { for awhile, do, for or switch statement.

Example:
int foo(int a, int b)

break; [// illegal
return atb;

}

"case’ may only appear in a switch statement

A case |abel has been found that is not inside a switch statement.

Example:
int foo(int a, int b)
{
case 4. /1 illegal
return a+b;
}

Diagnostic Messages 337

Appendices

021 "continue’ may only appear in afor, do, or while statement

The continue statement must be inside awhile, do or for statement. Y ou may have too
many } between the while, do or for statement and the continue statement.

Example:
int foo(int a, int b)
{
conti nue; /1 illegal
return atb;
}
022 "default’ may only appear in a switch statement

A default label has been found that is not inside a switch statement. Y ou may have too
many } between the start of the switch and the default |abel.

Example:
int foo(int a, int b)

default: // illegal
return atb;
}
023 misplaced '}’ or missing earlier '{’

Anextra} hasbeen found which cannot be matched up with an earlier {.

024 misplaced #elif directive
The #€lif directive must be inside an #if preprocessing group and before the #else directive
if present.
Example:
int a;
#el se
int c;
#elif IN_IF
int b;
#endi f
The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.
025 misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all #elif directives
if present.

338 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int a;
#el se
int c;
#elif IN_IF
int b;
#endi f

The #else, #elif, and #endif statements are al illegal because there is no #if that
corresponds to them.

026 misplaced #endif directive

A #endif preprocessing directive has been found without a matching #if directive. You
either have an extra #endif or you are missing an #if directive earlier in the file.

Example:
int a;
t#el se
int c;
#elif IN_IF
int b;
#endi f

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

027 only one’default’ per switch statement is allowed
Y ou cannot have more than one default label in aswitch statement.

Example:
int translate(int a)
{
switch(a) {
case 1:
a = 8;
br eak;
defaul t:
a=29;
br eak;
default: // illegal
a = 10;
br eak;

}

return a;

Diagnostic Messages 339

Appendices

028

029

030

031

032

expecting ' %s' but found ’ %s

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

symbol %N’ has not been declared
The compiler has found a symbol which has not been previously declared. The symbol
may be spelled differently than the declaration, or you may need to #include a header file

that contains the declaration.

Example:
int a="Db; [// b has not been decl ared

left expression must be a function or a function pointer

The compiler has found an expression that looks like a function call, but it is not defined as
afunction.

Example:
int a;
int b =a(12);

operand must be an Ivalue

The operand on the left side of an "=" sign must be a variable or memory location which
can have avaue assigned to it.

Example:
void foo(int a)
{
(a+1) =17
int b=++(a+6);
}

Both statements within the function are erroneous, since Ivalues are expected where the
additions are shown.

label '%s' already defined
All labels within a function must be unique.

Example:
void bar(int *p)

| abel :
*p = 0'
| abel :
return;
}

The second label isillegal.

340 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

033

034

035

036

037

038

label '%s' is not defined in function

A goto statement has referenced a label that is not defined in the function. Add the
necessary label or check the spelling of the label(s) in the function.

Example:
void bar(int *p)
{
| abl :
*p = 0’
goto | abel;
}

Thelabel referenced in the goto is not defined.
dimension cannot be zero
The dimension of an array must be non-zero.

Example:
int array[O0]; /1 not allowed

dimension cannot be negative
The dimension of an array must be positive.

Example:
int array[-1]; [// not allowed

dimensions of multi-dimension array must be specified

All dimensions of amultiple dimension array must be specified. The only exception isthe
first dimension which can declared as"[]".

Example:
int array[][]; /1 not all owed

invalid storage class for function
If astorage classis given for afunction, it must be static or extern.

Example:
auto void foo()

{
}

expression must have pointer type

An attempt has been made to de-reference a variable or expression which is not declared to
be apointer.

Diagnostic Messages 341

Appendices

Example:
int a;
int b = *a;
039 cannot take address of an rvalue

Y ou can only take the address of a variable or memory location.

Example:
char c;
char *pl = & & c; /1 not all owed
char *p2 = & (c+1); // not allowed
040 expression for '.” must be a class, struct or union
The compiler has encountered the pattern "expression” "." "field_name" where the

expression is not a class, struct or union type.

Example:
struct S

{

b
int & un();
int a =fun().a;

int a;

041 expression for ->" must be pointer to class, struct or union

The compiler has encountered the pattern "expression” "->" "field_name" where the
expression is not a pointer to class, struct or union type.

Example:
struct S
{

int a;

int *fun();
int a = fun()->a;

042 symbol ' %S already defined

The specified symbol has already been defined.

Example:
char a = 2;
char a = 2; // not allowed
043 static function ’%S has not been defined

A prototype has been found for a static function, but a definition for the static function has
not been found in the file.

342 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

044

045

046

047

Example:
static int fun(void);
int k = fun();

/1 fun not defined by end of program
expecting label for goto statement
The goto statement requires the name of alabel.
Example:

int fun(void)

{
}

got o;

duplicate case value ' %s' found
Every case value in aswitch statement must be unique.

Example:
int fun(int a)
{
switch(a) {
case 1:
return 7;
case 2.
return 9;
case 1: // duplicate not allowed
return 7;

return 79;

}

bit-field width istoo large

The maximum field width allowed is 16 bitsin the 16-bit compiler and 32 bits in the 32-hit
compiler.

Example:
struct S

{
s

width of a named bit-field must not be zero

unsigned bitfield :48; // too w de

A bit field must be at |east one bit in size.

Diagnostic Messages 343

Appendices

048

049

050

051

052

053

Example:
struct S {
int bitfield :10;
int :0; /1 okay, aligns to int
int h:0; // error, field is naned
1

bit-field width must be positive
Y ou cannot have a negative field width.

Example:
struct S

{
}s

unsigned bitfield :-10; // cannot be negative

bit-field base type must be an integral type

The types alowed for bit fields are signed or unsigned varieties of char, short and int.

Example:
struct S
float bitfield : 10; /1l must be integral
1

subscript on non-array

One of the operands of '[]' must be an array or a pointer.

Example:
int array[10];
int il =array[0]; [/ ok
int i2 = 0[array]; [/ same as above
int i3 =0[1]; /1 illegal

incompl ete comment

The compiler did not find */ to mark the end of a comment.

argument for # must be a macro parm

The argument for the stringize operator '# must be amacro parameter.
unknown preprocessing directive ' #%s

An unrecognized preprocessing directive has been encountered. Check for correct spelling.

344 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

054

055

056

057

058

Example:
#i _goofed /1 not valid

invalid #include directive
A syntax error has been encountered in a#include directive.

Example:
#i ncl ude /1 no header file
#i ncl ude stdio. h

Both examples areiillegal.
not enough parameters given for macro ’ %s

Y ou have not supplied enough parameters to the specified macro.

Example:
#define mac(a, b) a+b
int i = mac(123); /1l needs 2 paraneters

not expecting a return value

The specified function is declared as avoid function. Delete thereturn value, or change
the type of the function.

Example:
voi d fun()
return 14; // not expecting return val ue
}

cannot take address of a bit-field
The smallest addressable unit is abyte. You cannot take the address of a bit field.

Example:
struct S
{ int bits :6;
int bitfield :10;

¥
S var;
void* p = &ar.bitfield; /1 illegal

expression must be a constant

The compiler expects a constant expression. This message can occur during static
initialization if you are trying to initialize a non-pointer type with an address expression.

Diagnostic Messages 345

Appendices

059

060

061

062

unable to open’ %s

Thefile specified in an #include directive could not be located. Make sure that the file
nameis spelled correctly, or that the appropriate path for the fileisincluded in the list of
paths specified in the INCLUDE or INCLUDE environment variables or in the "i=" option
on the command line.

too many parameters given for macro ' %s

Y ou have supplied too many parameters for the specified macro. The extra parameters are
ignored.

Example:
#defi ne nmac(a, b) a+b
int i = mc(1,2,3); // needs 2 paraneters

cannot use__based or __far16 pointersin this context

Theuseof _ based and _ far16 pointersis prohibited in throw expressions and catch
statements.

Example:
extern int __ based(__segnane("nyseg")) *pi;

voi d bad()
{
try {
throw pi;
} catch(int __farl6 *pl6) {
*pl6é = 87;
}
}

Both the throw expression and catch statements cause this error to be diagnosed.
only one typeis allowed in declaration specifiers

Only onetypeisallowed for the first part of adeclaration. A common cause of this
message is that there may be amissing semi-colon (';") after a class definition.

Example:
class C

{
public:
()

/'l needs "

int foo() { return 7; }

346 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

063

064

065

066

067

068

out of memory

The compiler has run out of memory to store information about the file being compiled.
Try reducing the number of data declarations and or the size of the file being compiled. Do
not #include header files that are not required.

invalid character constant
This message isissued for an improperly formed character constant.

Example:
char ¢ = '12345;
char d = """;

taking address of variable with storage class 'register’

Y ou can take the address of aregister variablein C++ (but not in ISO/ANSI C). If thereis
a chance that the source will be compiled using a C compiler, change the storage class from
register to auto.

Example:

extern int foo(char*);
i nt bar()

3

regi ster char ¢ = '¢’;
return foo(&c);

}

"delete’ expression size is not allowed

The C++ language has evolved to the point where the delete expression sizeis no longer
required for a correct deletion of an array.

Example:
void fn(unsigned n, char *p) {
delete [n] p;
}

ending " missing for string literal
The compiler did not find a second double quote to end the string literal.

Example:
char *a = "no_endi ng_quot €;

invalid option

The specified option is not recognized by the compiler.

Diagnostic Messages 347

Appendices

069 invalid optimization option
The specified option is an unrecognized optimization option.
070 invalid memory model

Memory model option must be one of "ms"*, "mm", "mc", "ml", "mh" or "mf" which selects
the Small, Medium, Compact, Large, Huge or Flat memory model.

071 expression must beintegral
Anintegral expressionisrequired.

Example:
int foo(int a, float b, int *p)
{
switch(a) {
case 1.3: /1l nust be integral
return p[b]; /1 index not integer
case 2:
b <<= 2; /1 can only shift integers
defaul t:
return b;

}
}

072 expression must be arithmetic

Arithmetic operations, such as"/" and "*", require arithmetic operands unless the operation
has been overloaded or unless the operands can be converted to arithmetic operands.

Example:
class C

{
public:
int c;
s
C cv;
int i =cv / 2

073 statement required after label

The C language definition requires a statement following alabel. You can use anull
statement which consists of just a semicolon (*;").

Example:
extern int bar(int);
void foo(int a)

if(a) goto ending;

bar(a);
endi ng:

/'l needs statenent follow ng
}

348 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

074

075

076

077

078

statement required after 'do’
A statement is required between the do and while keywords.
statement required after ' case’

The C language definition requires a statement following a case label. Y ou can use anull
statement which consists of just a semicolon (*;").

Example:
int foo(int a)
{
switch(a) {
defaul t:
return 7;
case 1: // needs statenent follow ng
return 18;
}

statement required after ’ default’

The C language definition requires a statement following a default label. You can usea
null statement which consists of just asemicolon (";").

Example:
int foo(int a)
{
switch(a) {
case 7:
return 7;
defaul t:
/'l needs statenment follow ng

}

return 18;

}
missing matching #endif directive
You are missing a#endif to terminate a #if, #ifdef or #ifndef preprocessing directive.
Example:
#if 1
int a;
/1 needs #endif
invalid macro definition, missing ')’

Theright parenthesis")" isrequired for a function-like macro definition.

Diagnostic Messages 349

Appendices

Example:
#define bad _mac(a, b

079 missing ')’ for expansion of '%s macro
The compiler encountered end-of-file while collecting up the argument for afunction-like
macro. A right parenthesis")" isrequired to mark the end of the argument(s) for a
function-like macro.
Example:
#defi ne mac(a, b) a+b
int d=mc(1, 2
080 %s

Thisis auser message generated with the #error preprocessing directive.

Example:
#error my very own error nessage

081 cannot define an array of functions
Y ou can have an array of pointers to functions, but not an array of functions.

Example:
typedef int TD(fl oat);
TD array[12];

082 function cannot return an array
A function cannot return an array. Y ou can return a pointer to an array.
Example:
typedef int ARR[10];
ARR fun(float);
083 function cannot return a function

Y ou cannot return afunction. Y ou can return a pointer to afunction.

Example:
typedef int TD();
TD fun(float);

084 function templates can only have type arguments
A function template argument can only be agenerictype (e.g., tenpl ate < class T >

). Thisisarestriction in the C++ language that allows compilers to automatically
instantiate functions purely from the argument types of calls.

350 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

085 maximum class size has been exceeded

The 16-bit compiler limits the size of a struct or union to 64K so that the compiler can
represent the offset of amember in a 16-bit register. This error also occursif the size of a
structure overflows the size of an unsigned integer.

Example:
struct S

{
char arrl] Oxfffe

]
char arr2[Oxfffe];
char arr3[Oxfffe];

char arrd4[Oxfffffffe];

1
086 definition of macro’%s' not identical to previous definition
If amacro is defined more than once, the definitions must beidentical. If you want to

redefine a macro to have a different definition, you must #undef it before you can define it
with anew definition.

Example:
#defi ne CON 123
#defi ne CON 124 /1 not same as previous
087 initialization of '%S must bein file scope

A file scope variable must beinitialized in file scope.

Example:
void fn()
externint v = 1;
}
088 default argument for '%S declared outside of class definition

Problems can occur with member functions that do not declare all of their default
arguments during the class definition. For instance, a copy constructor is declared if aclass
does not define a copy constructor. If adefault argument is added later on to a constructor
that makes it a copy constructor, an ambiguity results.

Example:
struct S {
S(Sconst & int);
/[l S(S const &); <-- declared by compiler
1

/1 ambiguity with compiler

/1l generated copy constructor
/1 S(S const &);

S::S(Sconst & int =0)

Diagnostic Messages 351

Appendices

089

090

091

092

093

094

must not be at start or end of replacement tokens
There must be atoken on each side of the "##" (token pasting) operator.

Example:
#define badmac(a, b) ## a ## b

invalid floating-point constant
The exponent part of the floating-point constant is not formed correctly.

Example:
float f = 123. 9E+Q

'sizeof’ is not allowed for a bit-field

The smallest object that you can ask for the size of isachar.

Example:
struct S
{ int a;
int b :10;
LK

int kK =sizeof(v.b);
option requires a path

The specified option is not recognized by the compiler since there was no path after it (i.e.,
"-i=d:\include;d:\path").

must use 'va_start’ macro inside function with variable arguments

Theva_start macroisused to setup access to the parametersin afunction that takes a
variable number of parameters. A function is defined with a variable number of parameters
by declaring the last parameter in the function as™...".

Example:
#i ncl ude <stdarg. h>
int foo(int a, int b)

{
va_list args;
va_start(args, a);
va_end(args);
return b;

}

*** EATAL*** 963

A fatal error has been detected during code generation time. The type of error is displayed
in the message.

352 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

095

096

097

098

099

100

101

102

internal compiler error %d

A bug has been encountered in the compiler. Please report the specified internal compiler
error number and any other helpful details about the program being compiled to the Open
Watcom development team so that we can fix the problem. See
http://www.openwatcom.org/.

argument number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

procedure’%s' hasinvalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.
illegal register modified by '%s #pragma

For the 16-bit Open Watcom C/C++ compiler: The BP, CS, DS, and SS registers cannot
be modified in small datamodels. The BP, CS, and SS registers cannot be modified in
large data models.

For the 32-bit Open Watcom C/C++ compiler: The EBP, CS, DS, ES, and SSregisters
cannot be modified in flat memory models. The EBP, CS, DS, and SS registers cannot be
modified in small datamodels. The EBP, CS, and SS registers cannot be modified in large
data models.

file must contain at least one external definition

Every file must contain at least one global object, (either adata variable or afunction).

Note: This message has been disabled starting with Open Watcom v1.4. The 1SO 1998
C++ standard allows empty translation units.

out of macro space

The compiler ran out of memory for storing macro definitions.
keyboard interrupt detected

The compilation has been aborted with Ctrl/C or Ctrl/Break.
duplicate macro parameter ' %s

The parameters specified in a macro definition must be unique.

Example:
#define badmac(a, b, a) a ## b

Diagnostic Messages 353

Appendices

103

104

105

106

107

108

109

110

unable to open work file: error code = %d

The compiler tries to open a new work file by thename"__wrkN__.tmp" where N isthe
digit 0to 9. This message will beissued if all of those files already exist.

write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be
full.

read error on work file: error code = %d

An error was encountered trying to read information from the work file.

token too long; truncated

The token must be less than 510 bytesin length.

filename required on command line

The name of afile to be compiled must be specified on the command line.

command line contains more than one file to compile

Y ou have more than one file name specified on the command line to be compiled. The
compiler can only compile onefile at atime. Y ou can use the Open Watcom Compile and
Link utility to compile multiple files with a single command.

virtual member functions are not allowed in a union

A union can only be used to overlay the storage of data. The storage of virtual function
information (in a safe manner) cannot be doneif storage is overlaid.

Example:
struct S1{ int f(int); };
struct S2{ int f(int); };

union un { S1 s1;
S2 s2;
virtual int vf(int);

};

union cannot be used as a base class

Thisrestriction prevents C++ programmers from viewing a union as an encapsulation unit.
If it is necessary, one can encapsulate the union into a class and achieve the same effect.

354 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

111

112

113

114

Example:
union U{ int a; int b; };
class S: public U{ int s; };

union cannot have a base class

Thisrestriction prevents C++ programmers from viewing a union as an encapsulation unit.
If it is necessary, one can encapsulate the union into a class and inherit the base classes
normally.

Example:
class S { public: int s; };
union U: public S{ int a; int b; };

cannot inherit an undefined base class ' %T

The storage requirements for a class type must be known when inheritance isinvolved
because the layout of the final class depends on knowing the complete contents of all base
classes.

Example:
cl ass Undefi ned,;
class C: public Undefined {
int c;
1

repeated direct base classwill cause ambiguities

Almost all accesses will be ambiguous. Thisrestriction is useful in catching programming
errors. The repeated base class can be encapsulated in another class if the repetitionis
required.

Example:
cl ass Dup

int d;

I
class C: public Dup, public Dup
{

}s

int c;
templates may only be declared in hamespace scope

Currently, templates can only be declared in namespace scope. This simple restriction was
chosen in favour of more freedom with possibly subtle restrictions.

Diagnostic Messages 355

Appendices

115

116

117

118

119

120

linkages may only be declared in file scope

A common source of errorsfor C and C++ result from the use of prototypes inside of
functions. Thisrestriction attempts to prevent such errors.

unknown linkage’ %s
Only the linkages "C" and "C++" are supported by Open Watcom C++,

Example:
extern "APL" void Apl Func(int*);

too many storage class specifiers
Thismessage is aresult of duplicating a previous storage class or having a different storage
class. You can only have one of the following storage classes, extern, static, auto, register,

or typedef.

Example:
extern typedef int (*fn)(void);

nameless declaration is not allowed
A type was used in a declaration but no name was given.

Example:
static int;

illegal combination of type specifiers

An incorrect scalar type was found. Either a scalar keyword was repeated or the
combinationisillegal.

Example:
short short x;
short |ong v;

illegal combination of type qualifiers

A repetition of atype qualifier has been detected. Some compilers may ignore repetitions
but strictly speaking it isincorrect code.

Example:
const const x;
struct S {
int virtual virtual fn();
1

356 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

121

122

123

124

125

126

127

syntax error

The C++ compiler was unable to interpret the text starting at the location of the message.
The C++ language is sufficiently complicated that it is difficult for acompiler to correct the
error itself.

parser stack corrupted

The C++ parser has detected an internal problem that usually indicates a compiler problem.
Please report this directly to the Open Watcom development team. See
http://www.openwatcom.org/.

template declarations cannot be nested within each other

Currently, templates can only be declared in namespace scope. Furthermore, atemplate
declaration must be finished before another template can be declared.

expression istoo complicated

The expression contains too many levels of nested parentheses. Divide the expression up
into two or more sub-expressions.

invalid redefinition of the typedef name’ %S

Redefinition of typedef namesis only allowed if you are redefining a typedef nameto
itself. Any other redefinitionisillegal. You should delete the duplicate typedef definition.

Example:

typedef int TD;

typedef float TD; /1 illegal
class’%T’ has already been defined

This message usually results from the definition of two classes in the same scope. Thisis
illegal regardless of whether the class definitions are identical.

Example:
class C {

ciass C{

1
'sizeof’ is not allowed for an undefined type

If atype has not been defined, the compiler cannot know how largeit is.

Diagnostic Messages 357

Appendices

128

129

130

Example:
class C
int x = sizeof(C);

initializer for variable’ %S cannot be bypassed

The variable may not be initialized when code is executing at the position indicated in the

message. The C++ language places these restrictions to prevent the use of uninitialized
variables.

Example:
int foo(int a)
{
switch(a) {
case 1:
int b =2;
return b;
default: // b bypassed
return b + 5;
}
}

division by zero in a constant expression

Division by zero is not allowed in a constant expression. The value of the expression
cannot be used with this error.

Example:
int foo(int a)
{
switch(a) {
case 4/ 0. [/ illegal
return a;

}

return a + 2;

}

arithmetic overflow in a constant expression

The multiplication of two integral values cannot be represented. The value of the
expression cannot be used with this error.

Example:
int foo(int a)
{
switch(a) {
case Ox7FFF * Ox7FFF * Ox7FFF. [/ overfl ow
return a;

}

return a + 2;

358 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

131

132

133

134

135

136

137

138

not enough memory to fully optimize procedure’ %s

Theindicated procedure cannot be fully optimized with the amount of memory available.
The code generated will till be correct and execute properly. This messageis purely
informational (i.e., buy more memory).

not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during
optimization. All functionswill be individually optimized but the optimizer will not be
able to share code between functions if this message appears. The code generated will still
be correct and execute properly. This message is purely informational (i.e., buy more
memory).

too many errors. compilation aborted

The Open Watcom C++ compiler sets alimit to the number of error messages it will issue.
Once the number of messages reaches the limit the above message isissued. Thislimit can
be changed viathe "/€" command line option.

too many parm sets

An extra parameter passing description has been found in the aux pragmatext. Only one
parameter passing description is allowed.

"friend’, "virtual’ or 'inline’ modifiers may only be used on functions

This message indicates that you are trying to declare a strange entity like an inline variable.
These qualifiers can only be used on function declarations and definitions.

mor e than one calling convention has been specified

A function cannot have more than one #pragma modifier applied to it. Combine the
pragmas into one pragmaand apply it once.

pure member function constant must be 'O’

The constant must be changed to 'O’ in order for the Open Watcom C++ compiler to accept
the pure virtual member function declaration.

Example:
struct S {
virtual int wong(void) = 91;
1

based modifier has been repeated

A repeated based modifier has been detected. There are no semantics for combining base
modifiers so thisis not allowed.

Diagnostic Messages 359

Appendices

Example:
char *ptr;
char __based(void) __ based(ptr) *a;

139 enumeration variable is not assigned a constant from its enumeration

In C++ (as opposed to C), enums represent values of distinct types. Thus, the compiler will
not automatically convert an integer value to an enum type if you are compiling your
source in strict ISO/ANSI C++ mode. If you have extensions enabled, this message is
treated as awarning.

Example:
enum Days { sun, nod, tues, wed, thur, fri, sat };
enum Days day = 2;

140 bit-field declaration cannot have a storage class specifier

Bit-fields (along with most members) cannot have storage class specifiersin their
declaration. Remove the storage class specifier to correct the code.

Example:
class C
L
public:
extern unsigned bitf :10;
1
141 bit-field declaration must have a base type specified
A bit-field cannot make use of a default integer type. Specify the type int to correct the
code.
Example:
class C
.
publi c:
bitf :10;
1
142 illegal qualification of a bit-field declaration
A bit-field can only be declared const or volatile. Qualifications like friend are not
allowed.
Example:
struct S {
friend int bitl :10;
inline int bit2 :10;
virtual int bit3 :10;
1

All three declarations of bit-fields areillegal.

360 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

143 duplicate base qualifier
The compiler has found a repetition of base qualifiers like protected or virtual.

Example:
struct Base { int b; };
struct Derived : public public Base { int d; };

144 only one access specifier is allowed

The compiler has found more than one access specifier for abase class. Since the compiler
cannot choose one over the other, remove the unwanted access specifier to correct the code.

Example:
struct Base { int b; };
struct Derived : public protected Base { int d; };

145 unexpected type qualifier found

Type specifiers cannot have const or volatile qualifiers. This shows up in new expressions
because one cannot allocate a const object.

146 unexpected storage class specifier found

Type specifiers cannot have auto or static storage class specifiers. This shows up in new
expressions because one cannot all ocate a static object.

147 accessto %S is not allowed because it is ambiguous

There are two ways that this error can show up in C++ code. The first way a member can
be ambiguous is that the same name can be used in two different classes. If these classes
are combined with multiple inheritance, accesses of the name will be ambiguous.

Example:
struct S1 { int s; };
struct S2 { int s; };
struct Der : public S1, public S2

void foo() { s =2; }; [/ s is anbiguous
3

The second way a member can be ambiguous involves multiple inheritance. If aclassis
inherited non-virtually by two different classes which then get combined with multiple
inheritance, an access of the member is faced with deciding which copy of the member is
intended. Usethe’::’" operator to clarify what member is being accessed or access the
member with a different class pointer or reference.

Diagnostic Messages 361

Appendices

148

149

150

Example:
struct Top { int t; };
struct Md : public Top { int m };
struct Bot : public Top, public Md

void foo() { t =2; }; [/ t is anbiguous
b

access to private member ' %S is not allowed

Theindicated member is being accessed by an expression that does not have permission to
access private members of the class.

Example:
struct Top { int t; };
class Bot : private Top

int foo() { returnt; }; [// t is private

Bbt b;
int k = b.foo(); [/l foo is private

access to protected member ' %S is not allowed

Theindicated member is being accessed by an expression that does not have permission to
access protected members of the class. The compiler also requires that protected members
be accessed through a derived class to ensure that an unrelated base class cannot be quietly
modified. Thisisafairly recent change to the C++ language that may cause Open Watcom
C++ to not accept older C++ code. See Section 11.5 in the ARM for a discussion of
protected access.

Example:
struct Top { int t; };
struct Md : public Top { int n };
class Bot : protected Md

pr ot ect ed:
/1l t cannot be accessed
int foo() { returnt; };

1
Bot b;
int k =b.foo(); // foo is protected

operation does not allow both operands to be pointers

There may be amissing indirection in the code exhibiting this error. An example of this
error is adding two pointers.

362 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

151

152

153

154

Example:
void fn()
{
char *p, *q;
p += q;

operand is neither a pointer nor an arithmetic type

An example of this error isincrementing a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()

{
}

+4X;

left operand is neither a pointer nor an arithmetic type

An example of thiserror istrying to add 1 to a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()

X = X + 1;

}

right operand is neither a pointer nor an arithmetic type

An example of thiserror istrying to add 1 to a class that does not have any overloaded
operators.

Example:
struct S { } x;
voi d fn()

{
}

X =1 + X;

cannot subtract a pointer from an arithmetic operand

The subtract operands are probably in the wrong order.

Diagnostic Messages 363

Appendices

Example:
int fn(char *p)

return(10 - p);
}

155 left expression must be arithmetic
Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;
void fn()

X = x * 1;

}

156 right expression must be arithmetic
Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;
void fn()

X =1%* X;

}

157 left expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral
types.

Example:
struct S{ } x;
voi d fn()

{
}

X = x N 1;

158 right expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral
types.
Example:

struct S{ } x;

voi d fn()

X = 1" X;

364 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

159

160

161

162

cannot assign a pointer value to an arithmetic item

The pointer value must be cast to the desired type before the assignment takes place.

Example:
void fn(char *p)
-
int a;
a=p;
}

attempt to destroy a far object when data model is near

Destructors cannot be applied to objects which are stored in far memory when the default
memory model for datais near.

Example:
struct Qbj
{ char *p;
~Qoj () ;

Qoj far obj;

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for datais near.

attempt to call member function for far object when the data model is near

Member functions cannot be called for objects which are stored in far memory when the
default memory model for datais near.

Example:
struct o]
{ char *p;
int foo();
1

Cbj far obj;
int integer = obj.foo();

Thelast line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for datais near.

template type argument cannot have a default argument
This message was produced by earlier versions of the Open Watcom C++ compiler.

Support for default template arguments was added in version 1.3 and this message was
removed at that time.

Diagnostic Messages 365

Appendices

163

164

165

166

attempt to delete a far object when the data model is near

delete cannot be used to deallocate objects which are stored in far memory when the default
memory model for datais near.

Example:
struct Qbj
{ char *p;
b
void foo(Cbj far *p)
{
del ete p;
}

The second last line causes this error to be displayed when the memory model is small
(switch -ms), since the memory model for datais near.

first operand is not a class, struct or union

The offsetof operation can only be performed on atype that can have members. It is
meaningless for any other type.

Example:
#i ncl ude <stddef. h>

int fn(void)
{

}

return offsetof(double, sign);

syntax error: class template cannot be processed

The class template contains unbalanced braces. The class definition cannot be processed in
thisform.

cannot convert right pointer to type of left operand

The C++ language will not allow the implicit conversion of unrelated class pointers. An
explicit cast is required.

Example:
cl ass Ci;
cl ass C2;

void fun(Cl* pcl, C2* pc2)
{

}

pc2 = pcl;

366 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

167 left operand must be an Ivalue

The left operand must be an expression that is valid on the |eft side of an assignment.
Examples of incorrect lvalues include constants and the results of most operators.

Example:
int i, j;
voi d fn()
{
(i -1)=1i;
1=,
}

168 static data members are not allowed in an union

A union should only be used to organize memory in C++. Enclose the unionin aclassif
you need a static data member associated with the union.

Example:

uni on U

{ o
static int a;
int b;
int c;

b

169 invalid storage class for a member

A class member cannot be declared with auto, register, or extern storage class.

Example:
class C
{
auto int a; /] cannot specify auto
b
170 declaration is too complicated

The declaration contains too many declarators (i.e., pointer, array, and function types).
Break up the declaration into a series of typedefs ending in afinal declaration.

Example:

i *kkhkkkhkhkkhkkkhkkkkkx .
i nt p;

Example:
/1 transformthis to ...
typedef int ****PpPDl;
typedef PD1 ****PD2;
Pm ****p;

Diagnostic Messages 367

Appendices

171

172

173

174

175

176

177

exception declaration istoo complicated

The exception declaration contains too many declarators (i.e., pointer, array, and function
types). Break up the declaration into a series of typedefs ending in afinal declaration.

floating-point constant too large to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the
magnitude of the positive exponent istoo large.

Example:
float f = 1.2e78965;

floating-point constant too small to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the
magnitude of the negative exponent istoo large.

Example:
float f = 1.2e-78965;

classtemplate ' %S cannot be overloaded

A class template name must be unique across the entire C++ program. Furthermore, a class
template cannot coexist with another class template of the same name.

range of enum constants cannot be represented
If oneintegral type cannot be chosen to represent all values of an enumeration, the values

cannot be used reliably in the generated code. Shrink the range of enumerator values used
in the enum declaration.

Example:
enum E
{ el = OxFFFFFFFF
, e2 = -1
b

%S cannot be in the same scope as a class template

A class template name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the class template.

invalid storage classin file scope

A declaration in file scope cannot have a storage class of auto or register.

368 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

178

179

180

181

182

183

Example:
auto int a;

const object must be initialized
Constant objects cannot be modified so they must be initialized before use.

Example:
const int a;

declaration cannot be in the same scope as class template ' %S

A class template name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the class template.

template arguments must be named

A member function of atemplate class cannot be defined outside the class declaration
unless all template arguments have been named.

classtemplate’ %S is already defined

A class template cannot have its definition repeated regardless of whether it isidentical to
the previous definition.

invalid storage class for an argument
An argument declaration cannot have a storage class of extern, static, or typedef.

Example:
int foo(externint a)

{
}

return a;

unions cannot have members with constructors

A union should only be used to organize memory in C++. Allowing union membersto
have constructors would mean that the same piece of memory could be constructed twice.

Example:
class C
{
)
uni on U
{
int a;
Cc; /1 has constructor
}s

Diagnostic Messages 369

Appendices

184 statement is too complicated

The statement contains too many nested constructs. Break up the statement into multiple
statements.

185 "%s' is not the name of a class or namespace
Theright hand operand of a’::" operator turned out not to reference a class type or
namespace. Because the nameisfollowed by another *::’, it must name a class or
namespace.

186 attempt to modify a constant value

Modification of a constant value is not allowed. If you must force this to work, take the
address and cast away the constant nature of the type.

Example:
static int const con = 12;
voi d foo()
con = 13; !/l error
(int)&con = 13; /1 ok
187 "offsetof’ is not allowed for a bit-field

A bit-field cannot have asimple offset so it cannot be referenced in an offsetof expression.

Example:

#i ncl ude <stddef. h>

struct S

{
unsi gned bl :10;
unsi gned b2 :15;
unsi gned b3 :11;

1

int kK = offsetof(S, b2);
188 base classisinherited with private access
Thiswarning indicates that the base class was originally declared as a class as opposed to a
struct. Furthermore, no access was specified so the base class defaults to private
inheritance. Add the private or public access specifier to prevent this message depending
on the intended access.

189 overloaded function cannot be selected for arguments used in call

Either conversions were not possible for an argument to the function or a function with the
right number of arguments was not available.

370 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

190

191

192

193

Example:
class Ci;
class C2;
int foo(Cl1*);
int foo(C2*);
int k = foo(5);

base operator operands must be" _ segment ;> pointer "

The base operator (:>) requires the |eft operand to be of type segment and the right
operand to be a pointer.

Example:
char _based(void) *pcb;
char __far *pcf = pcb; /1 needs :> operator

Examples of typical uses are asfollows:

Example:
const __segment mySegAbs = 0x4000;
char __based(void) *c_bv = 24;
nySegAbs : > c_bv;

char __far *c_fp_1
char __far *c_fp_2 __seghane("_DATA") :> c_bv;

expression must be a pointer or a zero constant

In aconditional expression, if one side of the’:’” isa pointer then the other side must also be
apointer or azero constant.

Example:
extern int a;
int *p=(a>7) ? & : 12;

left expression pointer type cannot be incremented or decremented
The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.
Example:
void *p;
void *q = p + 2;
right expression pointer type cannot be incremented or decremented
The expression requires that the scaling size of the pointer be known. Pointersto functions,

arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.

Diagnostic Messages 371

Appendices

194

195

196

197

Example:
void *p;
void *q = 2 + p;
expression pointer type cannot be incremented or decremented
The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.
Example:
void *p;
void *q = ++p;
'sizeof’ isnot allowed for a function
A function has no size defined for it by the C++ language specification.

Example:
typedef int FT(int);

unsi gned y = sizeof (FT);
'sizeof’ is not allowed for type void
The type void has no size defined for it by the C++ language specification.
Example:

void *p;

unsi gned size = sizeof(*p);

type cannot be defined in this context

A type cannot be defined in certain contexts. For example, a new type cannot be defined in
an argument list, a new expression, a conversion function identifier, or a catch handler.

Example:

extern int goop();

int foo()

{
try {
return goop();
} catch(struct S{ int s; }) {
return 2;
}

}

372 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

198

199

200

201

202

expression cannot be used as a class template parameter

The compiler has to be able to compare expressions during compilation so this limits the
complexity of expressions that can be used for template parameters. The only types of
expressions that can be used for template parameters are constant integral expressions and
addresses. Any symbols must have external linkage or must be static class members.

prematur e end-of-file encountered during compilation

The compiler expects more source code at this point. This can be due to missing
parentheses (")) or missing closing braces ('}").

duplicate case value'%s' after conversion to type of switch expression

A duplicate case value has been found. Keep in mind that all case values must be
converted to the type of the switch expression. Constants that may be different initially
may convert to the same value.

Example:
enumE { el, e2 };
void foo(short a)

switch(a) {

case 1:

case 0x10001: /] converts to 1 as short
br eak;

}
}

declaration statement follows an if statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

Example:
void foo(int a)
{
if(a)
int b =14
}

declaration statement follows an el se statement
There areimplicit scopes created for most control structures. Because of this, ho code can

access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

Diagnostic Messages 373

Appendices

203

204

205

206

Example:
void foo(int a)
{
if(a)
int ¢ = 15;
el se
int b = 14;
}

declaration statement follows a switch statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

Example:
void foo(int a)
{
switch(a)
int b = 14;
}

"this’ pointer is not defined

The this value can only be used from within non-static member functions.

Example:
void *fn()
return this;
}

declaration statement cannot follow a while statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

Example:
void foo(int a)

while(a)
int b = 14;
}

declaration statement cannot follow a do statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

374 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

207

208

209

Example:
void foo(int a)
{
do
int b = 14;
while(a);
}

declaration statement cannot follow a for statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended. A for loop with an initial declaration is allowed to be
used within another for loop, so this codeislegal C++:

Example:
void fn(int **a)

for(int i 0; I < 10; ++i)
for(i_nt J 0;] < 10; ++)
a[i]J[j] =1 +j;

The following example, however, illustrates a potentially erroneous situation.

Example:
void foo(int a)
{
for(; a<10;)
int b = 14;
}

pointer to virtual base class converted to pointer to derived class

Since the relative position of avirtual base can change through repeated derivations, this
conversion isvery dangerous. All C++ tranglators must report an error for this type of
conversion.

Example:
struct VBase { int v; };
struct Der : virtual public VBase { int d; };
extern VBase *pv;
Der *pd = (Der *)pv;

cannot use far pointer in this context

Only near pointers can be thrown when the data memory model is near.

Diagnostic Messages 375

Appendices

Example:
extern int __ far *p;
void foo()

t hrow p;

}

When the small memory model (-ms switch) is selected, the throw expression is diagnosed
as erroneous. Similarly, only near pointers can be specified in catch statements when the
data memory model is near.

210 returning reference to function argument or to auto or register variable

The storage for the automatic variable will be destroyed immediately upon function return.
Returning areference effectively allows the caller to modify storage which does not exist.

Example:
class C

{

char *p;

C& foo()
{

C auto_var;
return auto_var; /1 not all owed

}

211 #pragma attributes for '%S may be inconsistent

A pragma attribute was changed to a value which matches neither the current default not
the previous value for that attribute. A warning isissued since this usually indicates an
attribute is being set twice (or more) in an inconsistent way. The warning can also occur
when the default attribute is changed between two pragmas for the same object.

212 function arguments cannot be of type void

Having more than one void argument is not allowed. The special case of one void
argument indicates that the function accepts no parameters.

Example:
void fnl(void) [l K

{

void fn2(void, void, void) /1 Error!
{
}

376 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

213 class template requires more parameters for instantiation

The class template instantiation has too few parameters supplied so the class cannot be
instantiated properly.

214 class template requires fewer parameters for instantiation

The class template instantiation has too many parameters supplied so the class cannot be
instantiated properly.

215 no declared ' operator new’ has arguments that match

An operator new could not be found to match the new expression. Supply the correct
arguments for special operator new functions that are defined with the placement syntax.

Example:
#i ncl ude <stddef. h>

struct S {
void *operator new size_t, char);
b
void fn()
{

S*p=new('a) S
}

216 wide character string concatenated with a simple character string
There are no semantics defined for combining a wide character string with asimple
character string. To correct the problem, make the simple character string a wide character
string by prefixing it with aL.

Example:
char *p = "1234" L"5678";

217 "offsetof’ is not allowed for a static member

A static member does not have an offset like simple data members. If thisisrequired, use
the address of the static member.

Example:
#i ncl ude <stddef. h>
class C
{
public:
static int stat;
int menb;
b
int size_1 = offsetof(C, stat); /1 not allowed
int size 2 = offsetof (C, nenb); /1 ok

Diagnostic Messages 377

Appendices

218 cannot define an array of void

Since the void type has no size and there are no values of void type, one cannot declare an
array of void.

Example:
voi d array[24];

219 cannot define an array of references

References are not objects, they are smply away of creating an efficient alias to another
name. Creating an array of referencesis currently not allowed in the C++ language.

Example:
i nt& array[24];

220 cannot define a reference to void

One cannot create a reference to a void because there can be no void variables to supply for
initializing the reference.

Example:
voi d& ref;

221 cannot define a reference to another reference
References are not objects, they are smply away of creating an efficient alias to another
name. Creating areference to another referenceis currently not allowed in the C++

language.

Example:
int & & ref;

222 cannot define a pointer to a reference

References are not objects, they are smply away of creating an efficient alias to another
name. Creating a pointer to areferenceis currently not allowed in the C++ language.

Example:
char & *ptr;

223 cannot initialize array with ’ operator new’
The initialization of arrays created with operator new can only be done with default

constructors. The capability of using another constructor with argumentsis currently not
allowed in the C++ language.

378 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

224

225

226

227

Example:
struct S

S(int);
S *p = new S[10] (12):
"%N'’ is a variable of type void

A variable cannot be of type void. The void type can only be used in restricted
circumstances because it has no size. For instance, a function returning void means that it
does not return any value. A pointer to void is used as a generic pointer but it cannot be
dereferenced.

cannot define a member pointer to a reference

References are not objects, they are smply away of creating an efficient alias to another
name. Creating a member pointer to areferenceis currently not allowed in the C++
language.

Example:
struct S

S();
int &ref;

b
int& S::* p;
function '%S is not distinct

The function being declared is not distinct enough from the other functions of the same
name. This meansthat all function overloads involving the function’s argument types will
be ambiguous.

Example:
struct S {
int s;
1

extern int foo(S*);
extern int foo(S* const); // not distinct enough

overloaded function is ambiguous for arguments used in call
The compiler could not find an unambiguous choice for the function being called.

Example:
extern int foo(char);
extern int foo(short);
int kK =foo(4);

Diagnostic Messages 379

Appendices

228

229

230

231

232

declared ’ operator new’ is ambiguous for arguments used

The compiler could not find an unambiguous choice for operator new.

Example:
#i ncl ude <stdlib. h>
struct Der
int s[2];
voi d* operator new size t, char);
voi d* operator new size t, short);
1

Der *p = new(10) Der;
function ' %S has already been defined

The function being defined has already been defined elsewhere. Even if the two function
bodies are identical, there must be only one definition for a particular function.

Example:
int foo(int s) { returns; }
int foo(int s) { returns; } [/ illegal

expression on left isan array
The array expression is being used in a context where only pointers are allowed.

Example:
void fn(void *p)

int a[10];

o
4 non
°

user-defined conversion has a return type

A user-defined conversion cannot be declared with areturn type. The "return type" of the
user-defined conversion isimplicit in the name of the user-defined conversion.

Example:
struct S {
int operator int(); // cannot have return type
1

user-defined conversion must be a function

The operator name describing a user-defined conversion can only be used to designate
functions.

380 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

233

234

235

236

237

Example:
/1 operator char can only be a function
int operator char = 9;

user-defined conversion has an argument list

A user-defined conversion cannot have an argument list. Since user-defined conversions
can only be non-static member functions, they have an implicit this argument.

Example:
struct S {
operator int(S&); // cannot have arguments
1

destructor cannot have a return type

A destructor cannot have areturn type (even void). The destructor is a special member
function that is not required to be identical in form to all other member functions. This
allows different implementations to have different uses for any return values.

Example:
struct S {
voi d* ~S();
1

destructor must be a function

Thetilde ("~') style of name is reserved for declaring destructor functions. Variable names
cannot make use of the destructor style of names.

Example:
struct S {
int ~S; // illegal
b

destructor has an argument list

A destructor cannot have an argument list. Since destructors can only be non-static
member functions, they have an implicit this argument.

Example:
struct S {
~S(S&);
1

%N’ must be a function

The operator style of nameis reserved for declaring operator functions. Variable names
cannot make use of the operator style of names.

Diagnostic Messages 381

Appendices

238

239

240

Example:
struct S {
int operator+; [/ illegal
1

%N’ is not a function

The compiler has detected what looks like afunction body. The message is aresult of not
finding afunction being declared. This can happen in many ways, such as dropping the’:’
before defining base classes, or dropping the’=’ before initializing a structure via a braced
initializer.

Example:
struct DB{ int i; };

nested type class’ %s' has not been declared

A nested class has not been found but is required by the use of repeated '::" operators. The
construct "A::B::C" requiresthat ' A’ be aclasstype, and 'B’ be a nested class within the
scopeof 'A’.

Example:
struct B {
static int b;
}s
struct A : public B {
s
int A:B::b = 2; // B not nested in A

The preceding exampleisillegal; the following is legal

Example:
struct A {
struct B {
static int b;
b
}s
int A:B::b = 2; // B nested in A

enum’%s' has not been declared

An elaborated reference to an enum could not be satisfied. All enclosing scopes have been
searched for an enum name. Visible variable declarations do not affect the search.

Example:
struct D {
int i;
enum E { el, e2, e3 };
1
enum E enum var; /1 E not visible

382 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

241

242

243

244

245

class or namespace’%s' has not been declared

The construct "A::B::C" requiresthat ' A’ be a class type or anamespace, and'B’ bea
nested class or namespace within the scope of 'A’. Thereferenceto’A’ could not be
satisfied. All enclosing scopes have been searched for a class or namespace name. Visible
variable declarations do not affect the search.

Example:
struct A{ int a; };

int b;
int ¢c = B::A:Db;

only one initializer argument allowed

Thecomma (’,’) in afunction like cast is treated like an argument list comma (’,’). If a
comma expression is desired, use parentheses to enclose the comma expression.

Example:
void fn()
o
int a;
a=int(1, 2); /1 Error!
a=int((1, 2)); Il K
}

default arguments are not part of a function’stype
This message indicates that a declaration has been found that requires default argumentsto
be part of afunction’stype. Either declaring afunction typedef or a pointer to afunction
with default arguments are exampl es of incorrect declarations.
Example:

typedef int TD(int, int a = 14);

int (*p)(int, int a=14) = 0;
missing default arguments

Gaps in asuccession of default arguments are not allowed in the C++ language.

Example:
void fn(int =1, int, int = 3);

overloaded operator cannot have default arguments
Preventing overloaded operators from having default arguments enforces the property that

binary operators will only be called from a use of abinary operator. Allowing default
arguments would allow abinary operator + to function as a unary operator +.

Diagnostic Messages 383

Appendices

246

247

248

249

Example:
class C

L
public:

C operator +(int a = 10);
1

left expression is not a pointer to a constant object

One cannot assign a pointer to a constant type to a pointer to a non-constant type. This
would allow a constant object to be modified via the non-constant pointer. Use acast if
thisis absolutely necessary.

Example:
char* fun(const char* p)

{
char* q;
q=0p;
return q;

}

cannot redefine default argument for ' %S

Default arguments can only be defined once in a program regardless of whether the value
of the default argument isidentical.

Example:
static int foo(int a = 10);
static int foo(int a = 10)
{
return a+a;
}

using default arguments would be overload ambiguous with ’ %S

The declaration declares enough default arguments that the function is indistinguishable
from another function of the same name.

Example:
void fn(int);
void fn(int, int =1);

Calling the function 'fn’ with one argument is ambiguous because it could match either the
first 'fn’ without any default arguments or the second 'fn’ with a default argument applied.

using default arguments would be overload ambiguous with ' %S using default arguments

The declaration declares enough default arguments that the function is indistinguishable
from another function of the same name with default arguments.

384 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

250

251

252

253

Example:
void fn(int, int =1);
void fn(int, char = 'a);

Calling the function ’fn’ with one argument is ambiguous because it could match either the
first'fn’ with adefault argument or the second 'fn’ with a default argument applied.

missing default argument for * %S
In C++, oneisalowed to add default arguments to the right hand arguments of a function

declaration in successive declarations. The message indicates that the declaration is only
valid if there was a default argument previously declared for the next argument.

Example:
void fnl(int , int);
void fnl(int , int =3);
void fnl(int = 2, int); /1 K
void fn2(int , int);
void fn2(int = 2, int) /1 Error!

enum references must have an identifier

There is no way to reference an anonymous enum. If all enums are named, the cause of
this message is most likely a missing identifier.

Example:
enum { X Y, Z}; /! anonynbus enum
void fn()
{

enum *p;

}

class declaration has not been seen for *~%s'
A destructor has been used in a context where its classis not visible.

Example:
class C,

void fun(C p)

p->~3();

"::" qualifier cannot be used in this context
Qualified identifiersin a class context are allowed for declaring friend member functions.

The Open Watcom C++ compiler also allows code that is qualified with its own class so
that declarations can be moved in and out of class definitions easily.

Diagnostic Messages 385

Appendices

254

255

256

Example:

struct N {
void bar();

i

struct S {
void S::foo() { /] XK
void N.:bar() { // error
}

b

"%S has not been declared as a member

In a definition of a class member, the indicated declaration must already have been declared
when the class was defined.

Example:
class C
{
public:
int c;
int goop();
int C:x = 1;

C. :not_decled() { }
default argument expression cannot use function argument ’ %S

Default arguments must be evaluated at each call. Since the order of evaluation for
arguments is undefined, a compiler must diagnose all default arguments that depend on
other arguments.

Example:
void goop(int d)
{

struct S {
/!l cannot access "d"
int foo(int ¢, int b =4d)

return b + c;
b
}s
}

default argument expression cannot use local variable’ %S

Default arguments must be evaluated at each call. Since alocal variableis not always
availablein all contexts (e.g., file scope initializers), a compiler must diagnose all default
arguments that depend on local variables.

386 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

257

258

259

Example:
voi d goop(void)
{
int a;
struct S {

/!l cannot access "a"
int foo(int ¢, int b =a)
{
return b + c;
b
}

access declarations may only be’public’ or ’protected’

Access declarations are used to increase access. A private access declaration is useless
because there is no access level for which private is an increase in access.

Example:
cl ass Base
L |
int pri;
pr ot ect ed:
int pro;
publi c:
i nt pub;
b
class Derived : public Base
{
private: Base::pri;
b

cannot declare both a function and variable of the same name (" %N’)

Functions can be overloaded in C++ but they cannot be overloaded in the presence of a
variable of the same name. Likewise, one cannot declare avariable in the same scope as a
set of overloaded functions of the same name.

Example:
int foo();
int foo;
struct S {
int bad();
int bad;
1

classin access declaration ('%T’) must be a direct base class

Access declarations can only be applied to direct (immediate) base classes.

Diagnostic Messages 387

Appendices

260

261

Example:
struct B {
int f;
b

struct C: B {
int g;
i

struct D: private C {
B::f;
b
In the above example, "C" isadirect base class of "D" and "B" is adirect base class of "C",
but "B" is not a direct base class of "D".

overloaded functions (" %N’) do not have the same access

If an access declaration is referencing a set of overloaded functions, then they all must have
the same access. Thisisdueto the lack of atype in an access declaration.

Example:
class C
{
static int foo(int); [l private
public:
static int foo(float); /1 public
1

class B: private C

{
public: C :foo;
b

cannot grant accessto ' %N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed by
inheritance.

Example:
cl ass Base
{
public:
i nt pub;
pr ot ect ed:
int pro;

class Der : private Base

{
public: Base:: pub; /1 ok
public: Base::pro; /1 changes access

b

388 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

262

263

264

cannot reduce accessto ' %N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed by
inheritance.

Example:
cl ass Base

{
public:
i nt pub;
pr ot ect ed:
int pro;
b

class Der : public Base

{

protected: Base:: pub; /1l changes access
protected: Base::pro; /1 ok

b
nested class’ %N’ has not been defined

The current state of the C++ language supports nested types. Unfortunately, this means
that some working C code will not work unchanged.

Example:
struct S {
struct T;
T *link;
1

In the above example, the class"T" will be reported as not being defined by the end of the
classdeclaration. The code can be corrected in the following manner.

Example:
struct S {
struct T;
T *1ink;
struct T {
b
1

user-defined conversion must be a non-static member function
A user-defined conversion is a special member function that allows the class to be

converted implicitly (or explicitly) to an arbitrary type. In order to do this, it must have
access to an instance of the class so it is restricted to being a non-static member function.

Diagnostic Messages 389

Appendices

265

266

267

268

Example:
struct S

{
b

static operator int();

destructor must be a non-static member function

A destructor is a special member function that will perform cleanup on a class before the
storage for the class will bereleased. In order to do this, it must have access to an instance
of the class so it is restricted to being a non-static member function.

Example:
struct S

{
}s

static ~S();

%N’ must be a non-static member function

The operator function in the message is restricted to being a non-static member function.
This usually means that the operator function is treated in a special manner by the compiler.

Example:
class C

L
publi c:

static operator =(C& int);
1

"%N’ must have one argument

The operator function in the message is only allowed to have one argument. An operator
like operator ~ is one such example because it represents a unary operator.

Example:
class C

public: int c;

1

C& operator~(const C& int);
"%N’ must have two arguments

The operator function in the message must have two arguments. An operator like operator
+= is one such example because it represents a binary operator.

390 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

269

270

271

Example:
class C

public: int c;
1
C& operator += (const C&);

"%N’ must have either one argument or two arguments

The operator function in the message must have either one argument or two arguments. An
operator like operator + is one such example because it represents either aunary or a
binary operator.

Example:
class C

public: int c;
1

C& operator+(const C& int, float);
%N’ must have at least one argument
The operator new and operator new [] member functions must have at |east one argument
for the size of the allocation. After that, any arguments are up to the programmer. The

extra arguments can be supplied in a new expression via the placement syntax.

Example:
#i ncl ude <stddef. h>

struct S {
void * operator new(size_t, char);
b
void fn()
{
S*p=new('a) S
}

"%N’ must have a return type of void

The C++ language requires that operator delete and operator delete [] have areturn type of
void.

Example:
class C
publi c:
int c;
C* operator delete(void*);
C* operator delete [](void*);
1

Diagnostic Messages 391

Appendices

272

273

274

275

"%N’ must have a return type of pointer to void

The C++ language requires that both operator new and operator new [] have areturn type
ofvoid *.

Example:
#i ncl ude <stddef. h>
class C
{
publi c:
int c;
C* operator new(size t size);
C* operator new [](size_t size);
1

the first argument of '%N’ must be of type size t

The C++ language requires that the first argument for operator new and operator new [] be
of thetype "size t". Thedefinition for "size t" can be included by using the standard
header file <stddef.h>.

Example:
void *operator new int size);
voi d *operator new double size, char c);
void *operator new []J(int size);
void *operator new [](double size, char c);

the first argument of *%N’ must be of type pointer to void

The C++ language requires that the first argument for operator delete and operator delete
[[beavoid *.

Example:
class C
voi d operator delete(C);
voi d operator delete [](C);

the second argument of '%N' must be of type size t

The C++ language requires that the second argument for operator delete and operator
delete [] be of type "size t". The two argument form of operator delete and operator delete
[] isoptional and it can only be present inside of a class declaration. The definition for
"size t" can beincluded by using the standard header file <stddef.h>.

Example:
struct S {
voi d operator delete(void *, char);
voi d operator delete [](void *, char);
b

392 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

276 the second argument of ’operator ++’ or 'operator --" must be int

The C++ language requires that the second argument for operator ++ beint. The two
argument form of operator ++ is used to overload the postfix operator "++". The postfix
operator "--" can be overloaded similarly.

Example:
class C{
public:
 ong cv;
1

C& operator ++(C& unsigned);
277 return type of ' %S must allow the’->" operator to be applied
Thisrestriction is aresult of the transformation that the compiler performs when the

operator -> isoverloaded. The transformation involves transforming the expression to
invoke the operator with "->" applied to the result of operator ->.

Example:

struct S {
int a;
S *operator ->();

b

void fn(S &q)

{
g->a = 1, // becones (q.operator ->())->a = 1,

}

278 "%N’" must take at least one argument of a class’enum or a reference to a class’enum

Overloaded operators can only be defined for classes and enumerations. At least one
argument, must be a class or an enum type in order for the C++ compiler to distinguish the
operator from the built-in operators.

Example:
class C{
public:
| ong cv;
1

C& operator ++(unsigned, int);
279 too many initializers
The compiler has detected extrainitializers.

Example:
int a[3] ={ 1, 2, 3, 41};

Diagnostic Messages 393

Appendices

280

281

282

283

284

285

too many initializers for character string

A string literal used in an initialization of a character array is viewed as providing the
terminating null character. If the number of array elementsisn’t enough to accept the
terminating character, this message is output.

Example:
char ac[3] = "abc";

expecting '%s' but found expression

This message is output when some bracing or punctuation is expected but an expression
was encountered.

Example:
int b[3] = 3;

anonymous struct/union member %N’ cannot be declared in this class
An anonymous member cannot be declared with the same name as its containing class.

Example:
struct S {
uni on {
int S /1 Error!
char b;

b
s

unexpected '%s’ during initialization

This message is output when some unexpected bracing or punctuation is encountered
during initialization.

Example:
int e={{1};

nested type ' %N’ cannot be declared in this class
A nested type cannot be declared with the same name as its containing class.

Example:
struct S {
typedef int S; // Error!

enumerator ‘%N’ cannot be declared in this class

An enumerator cannot be declared with the same name as its containing class.

394 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

286

287

288

289

Example:
struct S {
enum E {
S, [/l Error!
T
b
b

static member '%N’ cannot be declared in this class
A static member cannot be declared with the same name as its containing class.

Example:
struct S {
static int S; /1l Error!
b

constructor cannot have a return type

A constructor cannot have areturn type (even void). The constructor is a special member
function that is not required to be identical in form to all other member functions. This
allows different implementations to have different uses for any return values.

Example:
class C{
publi c:
C& C(int);
1

constructor cannot be a static member

A constructor is a special member function that takes raw storage and changesit into an
instance of aclass. In order to do this, it must have access to storage for the instance of the
class so it isrestricted to being a non-static member function.

Example:
class C{
public:
static C(int);
1

invalid copy constructor argument list (causes infinite recursion)
A copy constructor’s first argument must be areference argument. Furthermore, any
default arguments must also be reference arguments. Without the reference, a copy

constructor would require a copy constructor to execute in order to prepare its arguments.
Unfortunately, thiswould be calling itself sinceit is the copy constructor.

Diagnostic Messages 395

Appendices

290

291

292

293

Example:
struct S {
S(S const &); /1l copy constructor
1

constructor cannot be declared const or volatile

A constructor must be able to operate on all instances of classes regardless of whether they
are const or volatile.

Example:
class C{
publi c:
C(int) const;
C(float) volatile;
1

constructor cannot be virtual

Virtual functions cannot be called for an object before it is constructed. For thisreason, a
virtual constructor is not allowed in the C++ language. Techniques for simulating a virtual
constructor are known, one such technique is described in the ARM p.263.

Example:
class C{
public:
virtual C(int);
1

types do not match in simple type destructor

A simple type destructor is available for "destructing" simple types. The destructor has no
effect. Both of the types must be identical, for the destructor to have meaning.

Example:
void foo(int *p)
{
p->int::~doubl e();
}

overloaded operator is ambiguous for operands used

The Open Watcom C++ compiler performs exhaustive analysis using formalized
techniquesin order to decide what implicit conversions should be applied for overloading
operators. Because of this, Open Watcom C++ detects ambiguities that may escape other
C++ compilers. The most common ambiguity that Open Watcom C++ detects involves
classes having constructors with single arguments and a user-defined conversion.

396 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

294

295

296

297

Example:
struct S {
S(int);
operator int();
int a;
1
int fn(int b, int i, Ss)
{
/1 [: s.operator int()
/1 OR S(i) S
return b ? i : s;
}

In the above example, "i" and "s" must be brought to a common type. Unfortunately, there
are two common types so the compiler cannot decide which one it should choose, hence an
ambiguity.

feature not implemented

The compiler does not support the indicated feature.

invalid friend declaration

This message indicates that the compiler found extra declaration specifiers like auto, float,
or const in the friend declaration.

Example:
class C

friend float;

1
friend declarations may only be declared in a class

This message indicates that afriend declaration was found outside a class scope (i.e., a
class definition). Friends are only meaningful for class types.

Example:
extern void foo();
friend void foo();

class friend declaration needs’class’ or 'struct’ keyword
The C++ language has evolved to require that all friend class declarations be of the form

"class S' or "struct S'. The Open Watcom C++ compiler accepts the older syntax with a
warning but rejects the syntax in pure ISO/ANSI C++ mode.

Diagnostic Messages 397

Appendices

298

299

300

301

Example:
struct S;
struct T {
friend S /!l should be "friend class S;"
b

class friend declarations cannot contain a class definition

A class friend declaration cannot define anew class. Thisisarestriction required in the
C++ language.

Example:
struct S {
friend struct X {
int f;
b
1

"%T" has already been declared as a friend

The class in the message has already been declared asafriend. Remove the extrafriend
declaration.

Example:
class S;
class T {
friend class S
int tv;
friend class S

1
function’ %S has already been declared as a friend

The function in the message has aready been declared as afriend. Remove the extrafriend
declaration.

Example:
extern void foo();
class T {
friend void foo();
int tv;
friend void foo();

b
"friend’, "virtual’ or 'inline’ modifiers are not part of a function’s type
This message indicates that the modifiers may be incorrectly placed in the declaration. If

the declaration is intended, it cannot be accepted because the modifiers can only be applied
to functions that have code associated with them.

398 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

302

303

304

305

Example:
typedef friend (*PF)(void);

cannot assign right expression to element on left

This message indicates that the assignment cannot be performed. It usually arisesin
assignments of a class type to an arithmetic type.

Example:
struct S
{ int sv;
b
S s;
int foo()
int k;
k = s;
return k;

}

constructor is ambiguous for operands used
The operands provided for the constructor did not select a unique constructor.
Example:
struct S {
S(int);
S(char);
1
S x = §(1.0);

class’%s' has not been defined

The name beforea’::’ scope resolution operator must be defined unless a member pointer
is being declared.

Example:
struct S

int S:* p; /] K
int S::a = 1; /1l Error!

all bit-fields in a union must be named

Thisisarestriction in the C++ language. The same effect can be achieved with a named
bitfield.

Diagnostic Messages 399

Appendices

306

307

308

309

Example:
uni on u
{ unsi gned bitl :10;
unsi gned : 6;
1

cannot convert expression to type of cast

The cast istrying to convert an expression to a completely unrelated type. There isno way
the compiler can provide any meaning for the intended cast.

Example:
struct T {

b
void fn()

Ty =(T) 0

conversion ambiguity: [expression] to [cast type]

The cast caused a constructor overload to occur. The operands provided for the constructor
did not select a unique constructor.

Example:
struct S {
S(int);
S(char);
1

void fn()
{

Sx =(S 1.0;

an anonymous class without a declarator is useless

There is no way to reference the type in this kind of declaration. A name must be provided
for either the class or avariable using the class asits type.

Example:
struct ({
int a;
int b;
1

global anonymous union must be declared static

Thisisarestriction in the C++ language. Since there is no unique name for the anonymous
union, it isdifficult for C++ trandlators to provide a correct implementation of external
linkage anonymous unions.

400 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

310

311

312

313

Example:
static union {
int a;
int b;
1

anonymous struct/union cannot have storage class in this context

Anonymous unions (or structs) declared in class scopes cannot be static. Any other storage
classis also disallowed.

Example:
struct S {
static union {
int iv;
unsi gned us;
b
1

union contains a protected member
A union cannot have a protected member because a union cannot be a base class.

Example:
static union {
int iv;
pr ot ect ed:
unsi gned sv;

}ou;
anonymous struct/union contains a private member ' %S

An anonymous union (or struct) cannot have member functions or friends so it cannot have
private members since no code could access them.

Example:
static union {
int iv;
private:
unsi gned sv;
b

anonymous struct/union contains a function member * %S

An anonymous union (or struct) cannot have any function members. Thisisarestriction in
the C++ language.

Example:
static union {
int iv;
void foo(); [l error
unsi gned sv;

b

Diagnostic Messages 401

Appendices

314

315

316

317

anonymous struct/union contains a typedef member ' %S

An anonymous union (or struct) cannot have any nested types. Thisisarestriction in the
C++ language.

Example:
static union {
int iv;
unsi gned sv;
typedef float F;
F fv;
1

anonymous struct/union contains an enumeration member * %S

An anonymous union (or struct) cannot have any enumeration members. Thisisa
restriction in the C++ language.

Example:
static union {
int iv;
enum choi ce { good, bad, indifferent };
choi ce c;
unsi gned sv;

b
anonymous struct/union member *%s’ is not distinct in enclosing scope

Since an anonymous union (or struct) provides its member names to the enclosing scope,
the names must not collide with other names in the enclosing scope.

Example:
int iv;
unsi gned sv;
static union {
int iv;
unsi gned sv;

s
unions cannot have members with destructors

A union should only be used to organize memory in C++. Allowing union membersto
have destructors would mean that the same piece of memory could be destructed twice.

Example:
struct S {
int svl, sv2, sv3;
1

struct T {
. ~T();

static union
{

S su;

T tu;
}s

402 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

318

319

320

unions cannot have members with user-defined assignment operators

A union should only be used to organize memory in C++. Allowing union membersto
have assignment operators would mean that the same piece of memory could be assigned
twice.

Example:
struct S {
int svl, sv2, sv3;
1

struct T {
int tv;
oper at or
oper at or

}s
static union

{
S su;
T tu;

by
anonymous struct/union cannot have any friends

An anonymous union (or struct) cannot have any friends. Thisisarestrictionin the C++
language.

Example:
struct S {
int svl, sv2, sv3;
s

static union {
S sul;

S suz2;
friend class S

b

specific versions of template classes can only be defined in file scope

Currently, specific versions of class templates can only be declared at file scope. This
simple restriction was chosen in favour of more freedom with possibly subtle restrictions.

Example:

Diagnostic Messages 403

Appendices

tenplate <class G class S {

G x;

1

struct Q {
struct S<int> {
int Xx;
};

1

void foo()
struct S<doubl e> {
doubl e x;
s

}

321 anonymous union in a function may only be static or auto

The current C++ language definition only allows auto anonymous unions. The Open
Watcom C++ compiler allows static anonymous unions. Any other storage classis not
allowed.

322 static data members are not allowed in a local class

Static data members are not allowed in alocal class because there is no way to define the
static member in file scope.

Example:

int foo()
struct local {
static int s;
}
[ocal 1v;
lv.s = 3;
return |v.s;

}

323 conversion ambiguity: [return value] to [return type of function]

The cast caused a constructor overload to occur. The operands provided for the constructor
did not select a unique constructor.

Example:
struct S {
S(int);
S(char);
1

S fn()
{

}

return 1.0;

404 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

324

325

326

327

328

329

conversion of return value is impossible

Thereturnistrying to convert an expression to a completely unrelated type. Thereisno
way the compiler can provide any meaning for the intended return type.

Example:
struct T {

b
T fn()

return O;

}

function cannot return a pointer based on __self
A function cannot return a pointer that is based on __self.

Example:
void __based(__self) *fn(unsigned);

defining ' %S is not possible because its type has unknown size

In order to define avariable, the size must be known so that the correct amount of storage
can be reserved.

Example:
class S;
S sv;

typedef cannot be initialized
Initializing a typedef is meaningless in the C++ language.

Example:
typedef int INT = 15;

storage class of '%S conflicts with previous declaration

The symbol declaration conflicts with a previous declaration with regard to storage class.
A symbol cannot be both static and extern.

modifiers of %S conflict with previous declaration

The symbol declaration conflicts with a previous declaration with regard to modifiers.
Correct the program by using the same modifiers for both declarations.

Diagnostic Messages 405

Appendices

330 function cannot be initialized

A function cannot be initialized with an initializer syntax intended for variables. A
function body is the only way to provide a definition for a function.

331 access permission of nested class’%T’ conflicts with previous declaration
Example:
struct S {
struct N; /1 public
private:
struct N{ // private
}
b
332 *** FATAL *** internal error in front end

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

333 cannot convert argument to type specified in function prototype
It isimpossible to convert the indicated argument in the function.

Example:
extern int foo(int&);

extern int m
extern int n;

int k =foo(m+ n);

In the example, the value of "m+n" cannot be converted to areference (it could be
converted to a constant reference), as shown in the following example.

Example:
extern int foo(const int&);

extern int m
extern int n;

int k =foo(m+ n);
334 conversion ambiguity: [argument] to [argument type in prototype]

An argument in the function call could not be converted since there is more than one
constructor or user-defined conversion which could be used to convert the argument.

406 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

335

336

337

Example:
struct S;

struct T

T(S&);

struct S

{
}s
S s;

extern int foo(T);
int kK =foo(s); /1 ambi guous

operator T();

In the example, the argument "'s" could be converted by both the constructor in class"T"
and by the user-conversionin class"S".

cannot be based on based pointer ' %S
A based pointer cannot be based on another based pointer.
Example:

__segnent s;

void __based(s) *p;

void __based(p) *q;
declaration specifiers are required to declare ' %N’
The compiler has detected that the name does not represent a function. Only function
declarations can leave out declaration specifiers. This error also shows up when atypedef
name declaration is missing.
Example:

X,

typedef int;
static function declared in block scope
The C++ language does not allow static functions to be declared in block scope. This error
can be triggered when the intent is to define a static variable. Due to the complexities of
parsing C++, statements that appear to be variable definitions may actually parse as
function prototypes. A work-around for this problem is contained in the example.

Example:

Diagnostic Messages 407

Appendices

338

339

340

341

342

struct C {

i

struct S {
S(C);

voi d foo()

{
static S a(C()); [// function prototype!
(

static S b((C()));// variable definition
}

cannot definea __based reference

A C++ reference cannot be based on anything. Based modifiers can only be used with
pointers.

Example:
__segnment s;
void fn(int __based(s) & x);
conversion ambiguity: conversion to common pointer type
A conversion to acommon base class of two different pointers has been attempted. The
pointer conversion could not be performed because the destination type pointsto an
ambiguous base class of one of the source types.
cannot construct object from argument(s)
Thereis not an appropriate constructor for the set of arguments provided.

number of arguments for function’ %S isincorrect

The number of arguments in the function call does not match the number declared for the
indicated non-overloaded function.

Example:
extern int foo(int, int);
int k =foo(1, 2, 3);

In the example, the function was declared to have two arguments. Three arguments were
used in the call.

private base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

408 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

345

Example:
struct Priv
(I
int p;
b

struct Der : private Priv

int d;
b

extern Der *pd;
Priv *pp = (Priv*)pd;

private base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Priv
L
int p;
siruct Der : private Priv
o
int d;
1
Priv *foo(Der *p)
{
return p;
}

cannot subtract pointersto different objects
Pointer subtraction can be performed only for objects of the same type.

Example:
#i ncl ude <stddef. h>
ptrdiff_t diff(float *fp, int *ip)
{

}

In the example, a diagnostic results from the attempt to subtract a pointer to an int object
from a pointer to afloat object.

return fp - ip;

private base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Diagnostic Messages 409

Appendices

Example:
struct Priv

{
b

struct Der : private Priv

int p;

int d;
b

int foo(Der *pd, Priv *pp)
{

}

346 protected base class accessed to convert cast expression

return pd == pp;

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
L
int p;
}s

struct Der : protected Prot

int d;
b

extern Der *pd;
Prot *pp = (Prot*)pd;

347 protected base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:

struct Prot

o
int p;

s

struct Der : protected Prot
int d;

b

Prot *foo(Der *p)

{
return p;

}

410 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

348

349

350

351

352

cannot define a member pointer with a memory model modifier

A member pointer describes how to access afield from aclass. Because of thisa member
pointer must be independent of any memory model considerations.

Example:
struct S;

int near S::*np;
protected base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
L
Int p;
b
struct Der : protected Prot
{
int d;
1
int foo(Der *pd, Prot *pp)
{
return pd == pp;
}

non-type parameter supplied for a type argument

A non-type parameter (e.g., an address or a constant expression) has been supplied for a
template type argument. A type should be used instead.

type parameter supplied for a non-type argument

A type parameter (e.g., int) has been supplied for atemplate non-type argument. An
address or a constant expression should be used instead.

cannot access enclosing function’s auto variable’ %S

A local class member function cannot access its enclosing function’ s automatic variables.

Example:
voi d goop(void)
o
int a;
struct S

int foo(int ¢, int b)

return b + ¢ + a;

b

Diagnostic Messages 411

Appendices

353

354

355

356

357

cannot initialize pointer to non-constant with a pointer to constant

A pointer to a non-constant type cannot be initialized with a pointer to a constant type
because this would allow constant data to be modified via the non-constant pointer to it.

Example:
extern const int *pic;
extern int *pi = pic;

pointer expression isalways>= 0

Theindicated pointer expression will always be true because the pointer value is aways
treated as an unsigned quantity, which will be greater or equal to zero.

Example:
extern char *p;
unsigned k = (0 <= p); /1 always 1

pointer expression is never < 0

Theindicated pointer expression will always be fal se because the pointer valueis always
treated as an unsigned quantity, which will be greater or equal zero.

Example:
extern char *p;
unsigned k = (0 >=p); /1 always 0O

type cannot be used in this context

This message isissued when atype nameis being used in a context where a non-type name
should be used.

Example:
struct S {
typedef int T,

void fn(S *p)
{

}

p->T = 1;

virtual function may only be declared in a class

Virtual functions can only be declared inside of aclass. Thiserror may be aresult of
forgetting the "C::" qualification of avirtual function's name.

412 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
virtual void foo();
struct S
int f;
virtual void bar();
b
virtual void bar()
{
f =09;
}
358 "%T’ referenced as a union

A classtype defined as a class or struct has been referenced asaunion (i.e., union S).

Example:
struct S
{
int sl1, s2;
b

uni on S var;
359 union’'%T referenced as a class

A classtype defined as a union has been referenced as a struct or aclass (i.e., class S).

Example:
union S
int sl, s2;
b

struct S var;
360 typedef '%N' defined without an explicit type

The typedef declaration was found to not have an explicit type in the declaration. If intis
the desired type, use an explicit int keyword to specify the type.

Example:
typedef T,;

361 member function was not defined in its class

Member functions of local classes must be defined in their classif they will be defined at
all. Thisisaresult of the C++ language not allowing nested function definitions.

Example:
voi d fn()
struct S {
int bar();
}

Diagnostic Messages 413

Appendices

362 local class can only have its containing function as a friend

A local class can only be referenced from within its containing function. It isimpossible to
define an external function that can reference the type of the local class.

Example:

extern void ext();

voi d foo()

{
class S
{
int s;
public:
friend void ext();
int q;
b

}

363 local class cannot have’ %S as a friend

The only classes that alocal class can have as afriend are classes within its own containing

scope.
Example:
struct ext
{
goop() ;
voi d foo()
{
class S
{
int s;
public:
friend class ext;
int q;
b
}
364 adjacent >=, <=, >, < operators

This message is warning about the possibility that the code may not do what was intended.
An expression like"a> b > c¢" evaluates one relational operator to a1 or a0 and then
compares it against the other variable.

Example:
extern int a;
extern int b;
extern int c;
int k=a>b > c;

414 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

365 cannot access enclosing function’s argument ’ %S
A local class member function cannot access its enclosing function’ s arguments.

Example:
voi d goop(int d)
{

struct S

int foo(int c, int b)
return b + ¢ + d;
b

b
}

366 support for switch '%s' is not implemented

Actions for the indicated switch have not been implemented. The switch is supported for
compatibility with the Open Watcom C compiler.

367 conditional expression in if statement is always true

The compiler has detected that the expression will always be true. If thisis not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially true expressions.

Example:
#define TEST 143
int foo(int a, int b)

if(TEST) return a;

return b;
}
368 conditional expression in if statement is always false

The compiler has detected that the expression will always be false. If thisis not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

Example:
#define TEST 14-14
int foo(int a, int b)

if(TEST) return a;
return b;

Diagnostic Messages 415

Appendices

369

370

371

372

373

selection expression in switch statement is a constant value

The expression in the switch statement is a constant. This means that only one case label
will be executed. If thisis not the expected behaviour, check the switch expression.

Example:
#define TEST O
int foo(int a, int b)

{
switch (TEST) {
case O:
return a;
def aul t :
return b;
}
}

constructor isrequired for a class with a const member
If aclass has a constant member, a constructor is required in order to initialize it.

Example:
struct S

{

const int s;
int i;
b

constructor isrequired for a class with a reference member

If aclass has areference member, a constructor is required in order to initialize it.

Example:
struct S
L
int& r;
int i;
b

inline member friend function’ %S is not allowed

A friend that is amember function of another class cannot be defined. Inline friend rules
are currently in flux so it is best to avoid inline friends.

invalid modifier for auto variable
An automatic variable cannot have a memory model adjustment because they are always

located on the stack (or in aregister). There are also other types of modifiers that are not
allowed for auto variables such as thread-specific data modifiers.

416 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int fn(int far x)

int far y = x + 1;
return vy;

}

374 object (or object pointer) required to access non-static data member

A reference to amember in aclass has occurred. The member is non-static so in order to
accessit, an object of the classis required.

Example:
struct S {
int m
static void fn()
m=1, [// Error!
}
1

375 user-defined conversion has not been declared

The named user-defined conversion has not been declared in the class of any of its base

classes.
Example:
struct S {
operator int();
int a;
}s
double fn(S *p)
{
return p->operator double();
}
376 virtual function must be a non-static member function

A member function cannot be both a static function and avirtual function. A static
member function does not have a this argument whereas a virtual function must have athis
argument so that the virtual function table can be accessed in order to call it.

Example:
struct S
{
static virtual int foo(); /'l error
virtual int bar(); /1 ok
static int stat(); /1 ok
1

Diagnostic Messages 417

Appendices

377 protected base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
class C

{

pr ot ect ed:
Clint);
publi c:
int c;
1

int cfun(C);
int i =cfun(14);
Thelast lineis erroneous since the constructor is protected.

378 private base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Example:
class C

C int);
public:

int c;
}s

int cfun(C);
int i =cfun(14);
Thelast lineis erroneous since the constructor is private.
379 delete expression will invoke a non-virtual destructor

In C++, it is possible to assign a base class pointer the value of aderived class pointer so
that code that makes use of base class virtual functions can be used. A problem that occurs
isthat a delete has to know the correct size of the type in some instances (i.e., when atwo
argument version of operator delete is defined for aclass). This problem is solved by
requiring that a destructor be defined as virtual if polymorphic deletes must work. The
delete expression will virtually call the correct destructor, which knows the correct size of
the complete object. This message informs you that the class you are deleting has virtual
functions but it has anon-virtual destructor. This means that the delete will not work
correctly in all circumstances.

418 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#i ncl ude <stddef. h>

struct B {
int b;
voi d operator delete(void *, size_ t);
virtual void fn();
~B():

1
struct D: B {
int d;
voi d operator delete(void *, size t);
virtual void fn();
~D();
1

void dfn(B *p)
{

}

380 "offsetof’ is not allowed for a function

del ete p; /1 could be a pointer to D!

A member function does not have an offset like simple data members. If thisis required,
use a member pointer.

Example:
#i ncl ude <stddef. h>

struct S

int fun();
i

int s = offsetof(S, fun);
381 "offsetof’ is not allowed for an enumeration

An enumeration does not have an offset like simple data members.

Example:
#i ncl ude <stddef. h>

struct S

enum SE { S1, S2, S3, $4 };
SE var;
1

int s = offsetof(S, SE);

Diagnostic Messages 419

Appendices

382

383

384

385

could not initialize for code generation

The source code has been parsed and fully analysed when this error is emitted. The
compiler attempted to start generating object code but due to some problem (e.g., out of
memory, no file handles) could not initialize itself. Try changing the compilation
environment to eliminate this error.

'offsetof’ is not allowed for an undefined type

The class type used in offsetof must be completely defined, otherwise data member offsets
will not be known.

Example:
#i ncl ude <stddef. h>

struct S {

int a;

int b;

int ¢c[offsetof(S, b)];
1

attempt to override virtual function’ %S with a different return type

A function cannot be overloaded with identical argument types and a different return type.
Thisis dueto the fact that the C++ language does not consider the function’s return type
when overloading. The exception to this rulein the C++ language involves restricted
changes in the return type of virtual functions. The derived virtual function’s return type
can be derived from the return type of the base virtual function.

Example:
struct B {
virtual B *fn();
b

struct D: B {
virtual D *fn();
3

attempt to overload function ' %S with a different return type

A function cannot be overloaded with identical argument types and a different return type.
Thisisdueto the fact that the C++ language does not consider the function’ s return type
when overloading.

Example:
int foo(char);
unsi gned foo(char);

420 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

386

387

388

389

attempt to use pointer to undefined class

An attempt was made to indirect or increment a pointer to an undefined class. Since the
classis undefined, the size is not known so the compiler cannot compile the expression

properly.

Example:
class C
extern C* pcl,;
C* pc2 = ++pcl; /1 C not defined

int foo(Cp)
{

}

return p->x; /1 C not defined

expression is useful only for its side effects

Theindicated expression is not meaningful. The expression, however, does contain one or
more side effects.

Example:
extern int* i;
voi d func()

(i +4);

In the example, the expression is areference to an integer which is meaninglessin itself.
The incrementation of the pointer in the expression is a side effect.

integral constant will be truncated during assignment or initialization

This message indicates that the compiler knows that a constant value will not be preserved
after the assignment. If thisis acceptable, cast the constant value to the appropriate typein
the assignment.

Example:
unsi gned char ¢ = 567,

integral value may be truncated during assignment or initialization
This message indicates that the compiler knows that all values will not be preserved after
the assignment. If thisis acceptable, cast the value to the appropriate type in the

assignment.

Example:
extern unsi gned s;
unsi gned char ¢ = s;

Diagnostic Messages 421

Appendices

390

391

392

393

cannot generate default constructor to initialize’ %T’ since constructors were declared

A default constructor will not be generated by the compiler if there are already constructors
declared. Try using default arguments to change one of the constructors to a default
constructor or define a default constructor explicitly.

Example:
class C{
C(const C&);
public :
int c;
1

Ccv;
assignment found in boolean expression

Thisisaconstruct that can lead to errorsif it was intended to be an equality (using "==")
test.

Example:
int foo(int a, int b)
{
if(a=Db) {
return b;
}
return a; /1 always return 1 ?
}

definition: ' %F’

This informational message indicates where the symbol in question was defined. The
message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;
int b = 89;

Thevariable’a’ isnot referenced in the preceding example and so will cause awarning to
be generated. Following the warning, the informational message indicates the line at which
'a was declared.

included from %s(%ou)
Thisinformational message indicates the line number of the file including the file in which

an error or warning was diagnosed. A number of such messages will allow you to trace
back through the #include directives which are currently being processed.

422 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

394

395

396

397

398

399

reference object must be initialized

A reference cannot be set except through initialization. Also references cannot be 0 so they
must always be initialized.

Example:
int & ref;

option requires an identifier

The specified option is not recognized by the compiler since there was no identifier after it
(i.e., "-nt=module").

"main’ cannot be overloaded

There can only be one entry point for a C++ program. The "main" function cannot be
overloaded.

Example:
int main();
int main(int);

"new’ expression cannot allocate a void

Since the void type has no size and there are no values of void type, one cannot allocate an
instance of void.

Example:
void *p = new void;

"new’ expression cannot allocate a function

A function type cannot be allocated since there is no meaningful size that can be used. The
new expression can allocate a pointer to afunction.

Example:
typedef int tdfun(int);
tdfun *tdv = new tdfun;

"new’ expression allocates a const or volatile object

The pool of raw memory cannot be guaranteed to support const or volatile semantics.
Usually const and volatile are used for statically allocated objects.

Example:
typedef const int con_int;
con_int* p = new con_int;

Diagnostic Messages 423

Appendices

400 cannot convert right expression for initialization

Theinitiaization istrying to convert an argument expression to a completely unrelated
type. Thereisno way the compiler can provide any meaning for the intended conversion.

Example:
struct T {
i
T x = 0;
401 conversion ambiguity: [initialization expression] to [type of object]

Theinitiaization caused a constructor overload to occur. The operands provided for the
constructor did not select a unique constructor.

Example:
struct S {
S(int);
S(char);

402 classtemplate ' %S has already been declared as a friend

The class template in the message has already been declared asafriend. Remove the extra
friend declaration.

Example:
tenpl ate <class T>
class S

class X {
friend class S
int f;
friend class S
s

403 private base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

404 protected base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

424 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

405 cannot return a pointer or reference to a constant object

A pointer or reference to a constant object cannot be returned.

Example:
int *foo(const int *p)
{
return p;
}
406 cannot pass a pointer or reference to a constant object

A pointer or reference to a constant object could not be passed as an argument.

Example:
int *bar(int *);
int *foo(const int *p)

{
return bar(p);
}
407 class templates must be named

Thereis no syntax in the C++ language to reference an unnamed class template.

Example:
tenpl ate <class T>
class {

s
408 function templates can only name functions

Variables cannot be overloaded in C++ so it is not possible to have many different
instances of avariable with different types.

Example:
tenmpl ate <class T>
T x[1];

409 template argument ' %S is not used in the function argument list

This restriction ensures that function templates can be bound to types during overload
resolution. Functions currently can only be overloaded based on argument types.

Example:
tenpl ate <class T>
int foo(int *);
tenpl ate <class T>
T bar(int *);

Diagnostic Messages 425

Appendices

410

411

412

413

414

415

destructor cannot be declared const or volatile

A destructor must be able to operate on al instances of classes regardless of whether they
are const or volatile.

static member function cannot be declared const or volatile

A static member function does not have an implicit this argument so the const and volatile
function qualifiers cannot be used.

only member functions can be declared const or volatile

A non-member function does not have an implicit this argument so the const and volatile
function qualifiers cannot be used.

"const’ or 'volatile’ modifiers are not part of a function’s type

The const and volatile qualifiers for afunction cannot be used in typedefs or pointers to
functions. Thetrailing qualifiers are used to change the type of the implicit this argument
so that member functions that do not modify the object can be declared accurately.

Example:
/1l const is illegal
t ypedef void (*baddcl)() const;

struct S {
void fun() const;
int a;

1

/1 "this" has type "S const *"
void S::fun() const

this->a = 1; /1l Error!

}

type cannot be defined in an argument

A new type cannot be defined in an argument because the type will only be visible within
the function. This amountsto defining afunction that can never be called because C++
uses name equivalence for type checking.

Example:
extern foo(struct S{ int s; });

type cannot be defined in return type

Thisisarestriction in the current C++ language. A function prototype should only use
previously declared typesin order to guarantee that it can be called from other functions.
Therestriction is required for templates because the compiler would have to wait until the
end of aclass definition before it could decide whether a class template or function
template is being defined.

426 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
tenpl ate <class T>

class C{
T val ue;
PEnC T x) |
Cy;
y.x = 0;
return vy;
};

A common problem that results in this error isto forget to terminate a class or enum
definition with a semicolon.

Example:
struct S {
int x,y;
S(int, int);
} // mssing sem col on

S::S(int x, inty) : x(x), y(y) {
}

416 data members cannot be initialized inside a class definition

This message appears when an initialization is attempted inside of a class definition. Inthe
case of static data members, initialization must be done outside the class definition.
Ordinary data members can beinitialized in a constructor.

Example:
struct S {
static const int size = 1;
b
417 only virtual functions may be declared pure

The C++ language requires that all pure functions be declared virtual. A pure function
establishes an interface that must consist of virtual functions because the functions are
required to be defined in the derived class.

Example:
struct S {
void foo() = 0O;
1
418 destructor is not declared in its proper class

The destructor name is not declared in its own class or qualified by itsown class. Thisis
required in the C++ language.

Diagnostic Messages 427

Appendices

419

420

421

422

423

424

425

426

cannot call non-const function for a constant object

A function that does not promise to not modify an object cannot be called for a constant
object. A function can declare its intention to not modify an object by using the const
qualifier.

Example:
struct S {
void fn();

void cfn(const S *p)

p->fn(); /1 Error!

memory initializer list may only appear in a constructor definition

A memory initializer list should be declared along with the body of the constructor
function.

cannot initialize member ' %N’ twice

A member cannot be initialized twice in amember initialization list.
cannot initialize base class’ %T’ twice

A base class cannot be constructed twice in amember initialization list.
"%T isnot adirect base class

A base classinitializer in amember initialization list must either be a direct base class or a
virtual base class.

%N’ cannot be initialized because it is not a member
The name used in the member initialization list does not name a member in the class.
%N’ cannot beinitialized because it is a member function

The name used in the member initialization list does not name a non-static data member in
the class.

%N’ cannot be initialized because it is a static member

The name used in the member initialization list does not name a non-static data member in
the class.

428 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

427

428

429

430

431

432

433

434

435

"%N’ has not been declared as a member

This message indicates that the member does not exist in the qualified class. This usually
occurs in the context of access declarations.

const/reference member ' %S must have an initializer

The const or reference member does not have an initializer so the constructor is not
completely defined. The member initialization list isthe only way to initialize these types
of members.

abstract class’%T’ cannot be used as an argument type

An abstract class can only exist as abase class of another class. The C++ language does
not allow an abstract class to be used as an argument type.

abstract class'%T’ cannot be used as a function return type

An abstract class can only exist as abase class of another class. The C++ language does
not allow an abstract class to be used as areturn type.

defining ' %S is not possible because’ %T’ is an abstract class

An abstract class can only exist as abase class of another class. The C++ language does
not allow an abstract class to be used as either amember or avariable.

cannot convert to an abstract class’ %T’

An abstract class can only exist as abase class of another class. The C++ language does
not allow an abstract class to be used as the destination type in a conversion.

mangled name for ' %S has been truncated

The name used in the object file that encodes the name and full type of the symbol is often
called amangled name. The warning indicates that the mangled name had to be truncated
dueto limitationsin the object file format.

cannot convert to a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.
The behaviour of the conversion would be undefined also.

cannot convert a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.
The behaviour of the conversion would be undefined also.

Diagnostic Messages 429

Appendices

436

437

438

439

440

441

442

cannot construct an abstract class

An instance of an abstract class cannot be created because an abstract class can only be
used as a base class.

cannot construct an undefined class
An instance of an undefined class cannot be created because the size is not known.
string literal concatenated during array initialization

This message indicates that a missing comma (’,") could have made a quiet change in the
program. Otherwise, ignore this message.

maximum size of segment '%s’ has been exceeded for * %S

The indicated symbol has grown in size to a point where it has caused the segment it is
defined inside of to be exhausted.

maximum data item size has been exceeded for ' %S

A non-huge dataitem is larger than 64k bytesin size. This message only occurs during
16-bit compilation of C++ code.

function attribute has been repeated

A function attribute (like the __export attribute) has been repeated. Remove the extra
attribute to correct the declaration.

modifier has been repeated

A modifier (like the far modifier) has been repeated. Remove the extra modifier to correct
the declaration.

illegal combination of memory model modifiers

Memory model modifiers must be used individually because they cannot be combined
meaningfully.

argument name ' %N’ has already been used

Theindicated argument name has already been used in the same argument list. Thisis not
allowed in the C++ language.

function definition for ' %S must be declared with an explicit argument list

A function cannot be defined with atypedef. The argument list must be explicit.

430 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

446

447

449

450

451

452

453

user-defined conversion cannot convert to its own class or base class

A user-defined conversion cannot be declared as a conversion either to its own class or to a
base class of itself.

Example:
struct B {
i
struct D: private B {
operator B();
b

user-defined conversion cannot convert to void
A user-defined conversion cannot be declared as a conversion to void.

Example:
struct S {
operator void();
1

expecting identifier
An identifier was expected during processing.
symbol '%S does not have a segment associated with it

A pointer cannot be based on amember because it has no segment associated with it. A
member describes alayout of storage that can occur in any segment.

symbol %S must have integral or pointer type

If asymbol is based on another symbol, it must be integral or a pointer type. An integral
type indicates the segment value that will be used. A pointer type means that al accesses
will be added to the pointer value to construct a full pointer.

symbol '%S cannot be accessed in all contexts

The symbol that the pointer is based onisin another class so it cannot be accessed in all
contexts that the based pointer can be accessed.

cannot convert class expression to be copied
A convert class expression could not be copied.
conversion ambiguity: multiple copy constructors

More than one constructor could be used to copy a class object.

Diagnostic Messages 431

Appendices

454

455

456

457

function template ' %S already has a definition

The function template has already been defined with afunction body. A function template
cannot be defined twice even if the function body isidentical.

Example:
tenpl ate <class T>
void f(T *p)
{

templ ate <class T>
void f(T *p)
{
}

function templates cannot have default arguments

A function template must not have default arguments because there are certain types of
default arguments that do not force the function argument to be a specific type.

Example:
tenpl ate <class T>
void f2(T *p =0)
{
}

"main’ cannot be a function template

Thisisarestriction in the C++ language because "main" cannot be overloaded. A function
template provides the possibility of having more than one "main" function.

"%S was previously declared as a typedef

The C++ language only allows function and variable names to coexist with names of
classes or enumerations. Thisis due to the fact that the class and enumeration names can
till be referenced in their elaborated form after the non-type name has been declared.

Example:
typedef int T;
int T(int) /1 error!

}

enumE{ A B, C};
void E()
{

}

class C{ };
void ()
{

class C x; /!l use "class C

enum E x = A /] use "enum E"

432 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

458

459

460

461

462

%S was previously declared as a variable/function

The C++ language only allows function and variable names to coexist with names of
classes or enumerations. Thisis due to the fact that the class and enumeration names can
till be referenced in their elaborated form after the non-type name has been declared.

Example:
int T(int)
} |
typedef int T,; /1 error!
void E()

}
enumE{ A B, C},;

enum E x = A // use "enum E"
void ()

{

}

class C{ };

class C x; /!l use "class C

private base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

protected base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

maximum size of DGROUP has been exceeded for * %S in segment ' %s

Theindicated symbol’s size has caused the DGROUP contribution of this module to exceed
64k. Changing memory models or declaring some data as far data are two ways of fixing
this problem.

type of return value is not the enumeration type of function

The return value does not have the proper enumeration type. Keep in mind that integral
values are not automatically converted to enum types like the C language.

Diagnostic Messages 433

Appendices

463

464

465

466

467

468

469

linkage must be first in a declaration; probable cause: missing’;’

This message usually indicates amissing semicolon (*;’). The linkage specification must
be thefirst part of a declaration if it is used.

‘main’ cannot be a static function

Thisisarestriction in the C++ language because "main" must have external linkage.
"main’ cannot be an inline function

Thisisarestriction in the C++ language because "main” must have external linkage.
"main’ cannot be referenced

Thisisarestriction in the C++ language to prevent implementations from having to work
around multiple invocations of "main". This can occur if an implementation has to
generate special codein "main" to construct all of the statically allocated classes.

cannot call a non-volatile function for a volatile object

A function that does not promise to not modify an object using volatile semantics cannot be
called for avolatile object. A function can declare its intention to modify an object only

through volatile semantics by using the volatile qualifier.

Example:
struct S {
void fn();
i

void cfn(volatile S *p)

p->fn(); /1 Error!

cannot convert pointer to constant or volatile objects to pointer to void
Y ou cannot convert a pointer to constant or volatile objectsto 'void*’.

Example:
extern const int* pci;
extern void *vp;
int kK =(pci ==vp);
cannot convert pointer to constant or non-volatile objects to pointer to volatile void

Y ou cannot convert a pointer to constant or non-volatile objectsto 'volatile void*'.

434 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

470

471

472

473

474

Example:
extern const int* pci;
extern volatile void *vp;
int k = (pci ==vp);
address of function istoo large to be converted to pointer to void

The address of afunction can be converted to 'void*’ only when the size of a’void*’
object is large enough to contain the function pointer.

Example:
void __far foo();
void __near *v = &foo;

address of data object istoo large to be converted to pointer to void

The address of an object can be converted to 'void*’ only when the size of a’void*’ object
islarge enough to contain the pointer.

Example:
int __far *ip;
void __near *v = ip;

expression with side effect in sizeof discarded

Theindicated expression will be discarded; consequently, any side effects in that
expression will not be executed.

Example:
int a = 14;
int b = sizeof(at++);

In the example, the variable a will still have avalue 14 after b has been initialized.
function argument(s) do not match those in prototype

The C++ language requires great precision in specifying arguments for afunction. For
instance, a pointer to char isconsidered different than a pointer to unsi gned char
regardless of whether char isan unsigned quantity. This message occurs when a
non-overloaded function isinvoked and one or more of the arguments cannot be converted.
It also occurs when the number of arguments differs from the number specified in the
prototype.

conversion ambiguity: [expression] to [class object]

The conversion of the expression to a class object is ambiguous.

Diagnostic Messages 435

Appendices

475

476

477

478

479

480

481

482

cannot assign right expression to class object

The expression on the right cannot be assigned to the indicated class object.

argument count is %d since thereis an implicit 'this” argument

Thisinformational message indicates the number of arguments for the function mentioned
in the error message. The function is a member function with athis argument so it may
have one more argument than expected.

argument count is %d since thereis no implicit 'this” argument

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is amember function without a this argument so it may
have one |ess argument than expected.

argument count is %d for a non-member function

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is not a member function but it could be declared as a
friend function.

conversion ambiguity: multiple copy constructorsto copy array ' %S

More than one constructor to copy the indicated array exists.

variable/function has the same name as the class/enum’ %S

In C++, aclass or enum name can coexist with avariable or function of the same namein a
scope. Thiswarning isindicating that the current declaration is making use of this feature
but the typedef name was declared in another file. This usually means that there are two
unrelated uses of the same name.

class/enum has the same name as the function/variable ' %S

In C++, aclass or enum name can coexist with avariable or function of the same namein a
scope. Thiswarning isindicating that the current declaration is making use of this feature
but the function/variable name was declared in another file. Thisusually means that there
are two unrelated uses of the same name. Furthermore, al references to the class or enum
must be elaborated (i.e., use’class C' instead of 'C’) in order for subsequent referencesto
compile properly.

cannot create a default constructor

A default constructor could not be created, because other constructors were declared for the
classin question.

436 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

483

484

485

486

Example:
struct X {
X(X&) ;

siruct Y {
X a[10];

Y yvar;
In the example, the variable "yvar" causes a default constructor for the class"Y" to be
generated. The default constructor for "Y" attempts to call the default constructor for " X"
inorder to initializethe array "a" in class"Y". The default constructor for "X" cannot be
defined because another constructor has been declared.
attempting to access default constructor for %T

This informational message indicates that a default constructor was referenced but could
not be generated.

cannot align symbol ' %S to segment boundary

Theindicated symbol requires more than one segment of storage and the symbol’s
components cannot be aligned to the segment boundary.

friend declaration does not specify a class or function

A class or function must be declared as a friend.

Example:
struct T {
/] should be class or function declaration
friend int;
}s

cannot take address of overloaded function

This message indicates that an overloaded function’s name was used in a context where a
final type could not be found. Because afinal type was not specified, the compiler cannot
select one function to use in the expression. Initialize a properly-typed temporary with the
appropriate function and use the temporary in the expression.

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);
int kKk=(p == & o0); /[l fails

Thefirst f 00 can be passed as follows:

Diagnostic Messages 437

Appendices

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);

/1 introduce tenporary

static int (*temp)(char) = &foo;
/1 ok
int k=(p==tem);
487 cannot use address of overloaded function as a variable argument

This message indicates that an overloaded function’s name was used as a argument for a
"..." stylefunction. Because afinal function typeis not present, the compiler cannot select
one function to use in the expression. Initialize a properly-typed temporary with the

appropriate function and use the temporary in the call.

Example:
int foo(char);
int foo(unsigned);
int ellip fun(int, ...);
int k =ellip_fun(14, &f oo);

Thefirst f 00 can be passed as follows:

Example:
int foo(char);
int foo(unsigned);
int ellip fun(int, ...);
static int = &f oo;
t enporary

(*temp) (char)

int k =ellip_fun(14, temp);

488 "%N’' cannot be overloaded

/] fails

/1 introduce

/1 ok

Theindicated function cannot be overloaded. Functions that fall into this category include

operator delete.

489 symbol '%S has already been initialized

Theindicated symbol has already been initialized. It cannot be initialized twice even if the

initialization value isidentical.

490 delete expression is a pointer to a function

A pointer to afunction cannot be alocated so it cannot be deleted.

438 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

491

492

493

494

495

delete of a pointer to const data

Since deleting a pointer may involve modification of data, it is not always safe to delete a
pointer to const data.

Example:
struct S { };
void fn(S const *p, S const *q) {
del ete p;
delete [] q;

}

delete expression is not a pointer to data

A delete expression can only delete pointers. For example, trying to delete an int is not
allowed in the C++ language.

Example:
void fn(int a)

del ete a; !/l Error!

}

template argument is not a constant expression

The compiler has found an incorrect expression provided as the value for a constant value
template argument. The only expressions allowed for scalar template arguments are
integral constant expressions.

template argument is not an external linkage symbol

The compiler has found an incorrect expression provided as the value for a pointer value
template argument. The only expressions allowed for pointer template arguments are
addresses of symbols. Any symbols must have external linkage or must be static class
members.

conversion of const reference to volatile reference

The constant value can be modified by assigning into the volatile reference. Thiswould
allow constant data to be modified quietly.

Example:
void fn(const int &ci)
{
int volatile & =rci; [/ Error!
}

Diagnostic Messages 439

Appendices

496

497

498

499

500

conversion of volatile reference to const reference

The volatile value can be read incorrectly by accessing the const reference. Thiswould
allow volatile data to be accessed without correct volatile semantics.

Example:
void fn(volatile int &vi)
{
int const & = rvi; // Error!
}

conversion of const or volatile reference to plain reference

The constant value can be modified by assigning into the plain reference. Thiswould allow
constant data to be modified quietly. In the case of volatile data, any access to the plain
reference will not respect the volatility of the data and thus would be incorrectly accessing
the data.

Example:
void fn(const int &ci, volatile int &vi)

(I
int &1 =
=

i; [/l Error!
int &2 i

Cy
vi; [/ Error!
}

syntax error before’ %s'; probable cause: incorrectly spelled type name

Theidentifier in the error message has not been declared as atype name in any scope at this
point in the code. This may be the cause of the syntax error.

object (or object pointer) required to access non-static member function

A reference to amember function in aclass has occurred. The member is non-static soin
order to accessit, an object of the classis required.

Example:
struct S {
int m();
static void fn()
{
m); /1 Error!
1

object (or object pointer) cannot be used to access function

Theindicated object (or object pointer) cannot be used to access function.

440 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

501

502

503

504

505

object (or object pointer) cannot be used to access data
Theindicated object (or object pointer) cannot be used to access data.
cannot access member function in enclosing class

A member function in enclosing class cannot be accessed.

cannot access data member in enclosing class

A datamember in enclosing class cannot be accessed.

syntax error before type name ' %s

Theidentifier in the error message has been declared as a type name at this point in the
code. Thismay be the cause of the syntax error.

implementation restriction: cannot generate thunk from’ %S

Thisimplementation restriction is due to the use of a shared code generator between Open
Watcom compilers. The virtual this adjustment thunks are generated as functions linked
into the virtual function table. The functions rely on knowing the correct number of
arguments to pass on to the overriding virtual function but in the case of elipsis(...)
functions, the number of arguments cannot be known when the thunk function is being
generated by the compiler. The target symbol islisted in adiagnostic message. The work
around for this problem is to recode the source so that the virtual functions make use of the
va list type found in the stdarg header file.

Example:

Diagnostic Messages 441

Appendices

#i ncl ude <i ostream h>
#i ncl ude <stdarg. h>

struct B {
vi rtual
b

struct D :
vi rt ual

void fun(char *,

B {
void fun(char *,

void B :fun(char *f, ...)
{

va_list args;

va_start(args, f);
while(*f) {

cout << va_arg(args,
++f ;

va_end(args);

}
void D::fun(char *f, ...)
{

va_list args;

va_start(args, f);
while(*f) {

cout << va_arg(args,
++f ;

va_end(args);

}

char) << endl;

int) << endl;

The previous example can be changed to the following code with corresponding changes to

the contents of the virtual functions.

Example:
#i ncl ude <i ostream h>
#i ncl ude <stdarg. h>

struct B {
void fun(char *f, ...)

va_list args;
va_start(args,

_fun(f, args);
va_end(args);

f);

virtual void _fun(char *,

442 Diagnostic Messages

va_list);

Open Watcom C++ Diagnostic Messages

~b
struct D: B {
/1 this can be renoved since using B::fun

/1 will result in the sane behavi our
/1 since fun is a virtual function
void fun(char *f, ...)

va_list args;

va_start(args, f);
_fun(f, args);
va_end(args);

}

virtual void _fun(char *, va_list);

b
~b
void B:: _fun(char *f, va_list args)
{
while(*f) {
cout << va_arg(args, char) << endl;
++f ;
}
}
~b
void D::_fun(char *f, va_list args)
{
while(*f) {
cout << va_arg(args, int) << endl;
++f ;
}
}
~b

/1 no changes are required for users of the class
B x;
Dy;

void dump(B *p)
{

p->fun("1234", 'a', 'b’, ‘¢, 'd);
p->fun("12", 'a’, 'b);

}

~b

voi d main()
dunp(&);
dunp(&);

Diagnostic Messages 443

Appendices

506

507

508

509

510

511

512

513

conversion of __based(void) pointer to virtual base class

An __based(void) pointer to a class object cannot be converted to a pointer to virtual base
class, since this conversion applies only to specific objects.

Example:
struct Base {};
struct Derived : virtual Base {};
Derived __based(void) *p_derived,
Base __based(void) *p_base = p_derived; // error

The conversion would be allowed if the base class were not virtual.
class for target operand is not derived from class for source operand

A member pointer conversion can only be performed safely when converting a base class
member pointer to a derived class member pointer.

conversion ambiguity: [pointer to class member] to [assignment object]
The base classin the original member pointer is not a unique base class of the derived class.
conversion of pointer to class member involves a private base class

The member pointer conversion required access to a private base class. The access check
did not succeed so the conversion is not alowed.

conversion of pointer to class member involves a protected base class

The member pointer conversion required access to a protected base class. The access check
did not succeed so the conversion is not allowed.

itemis neither a non-static member function nor data member

A member pointer can only be created for non-static member functions and non-static data
members. Static members can have their address taken just like their file scope
counterparts.

function address cannot be converted to pointer to class member

Theindicated function address cannot be converted to pointer to class member.

conversion ambiguity: [address of function] to [pointer to class member]

Theindicated conversion is ambiguous.

444 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

514

515

516

517

518

519

520

521

522

addressed function isin a private base class

The addressed function isin a private base class.
addressed function isin a protected base class
The addressed function isin a protected base class.
class for object is not defined

The left hand operand for the"." or ".*" operator must be of a classtype that is completely
defined.

Example:
class C,

int fun(C& x)
{

}

return x.y; /1 class C not defined

left expression is not a class object

The left hand operand for the ".*" operator must be of a class type since member pointers
can only be used with classes.

right expression is not a pointer to class member
Theright hand operand for the ".*" operator must be a member pointer type.
cannot convert pointer to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer
becauseit is not a derived class.

conversion ambiguity: [pointer] to[class of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.
conversion of pointer to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.
conversion of pointer to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.

Diagnostic Messages 445

Appendices

523

524

525

526

527

528

529

530

531

532

cannot convert object to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer
becauseit is not aderived class.

conversion ambiguity: [object] to [class object of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.
conversion of object to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.
conversion of object to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.
conversion of pointer to class member from a derived to a base class

A member pointer can only be converted from a base class to aderived class. Thisisthe
opposite of the conversion rule for pointers.

formis’#pragmainline_recursion en’ where’en’ is’on’ or ’off’

This pragma indicates whether inline expansion will occur for an inline function which is
called (possibly indirectly) a subsequent time during an inline expansion. Either 'on’ or
"off’ must be specified.

expression for number of array elements must be integral

The expression for the number of elementsin anew expression must be integral because it
is used to calculate the size of the allocation (which isan integral quantity). The compiler
will not automatically convert to an integer because of rounding and truncation issues with
floating-point values.

function accessed with ’.** or "->*" can only be called

Theresult of the".*" and "->*" operators can only be called because it is often specific to
the instance used for the left hand operand.

left operand must be a pointer, pointer to class member, or arithmetic
The left operand must be a pointer, pointer to class member, or arithmetic.
right operand must be a pointer, pointer to class member, or arithmetic

The right operand must be a pointer, pointer to class member, or arithmetic.

446 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

533

534

535

536

537

538

neither pointer to class member can be converted to the other

The two member pointers being compared are from two unrelated classes. They cannot be
compared since their members can never be related.

left operand is not a valid pointer to class member

The specified operator requires a pointer to member as the left operand.

Example:
struct S;
void fn(int S::* np, int *p)
{
if(p==np)
p[0] = 1;

right operand is not a valid pointer to class member

The specified operator requires a pointer to member as the right operand.

Example:
struct S;
void fn(int S::* np, int *p)
{
if(np ==p)
p[0] = 1;

cannot use’.*’ nor '->*’ with pointer to class member with zero value

The compiler has detected a NULL pointer use with amember pointer dereference.
operand is not a valid pointer to class member

The operand cannot be converted to avalid pointer to class member.

Example:
struct S;
int S:* fn()

int a;
return a;

}

destructor can be invoked only with’." or *->’

Thisisarestriction in the C++ language. An explicit invocation of a destructor is not
recommended for objects that have their destructor called automatically.

Diagnostic Messages 447

Appendices

539

540

541

542

546

class of destructor must be class of object being destructed

Destructors can only be called for the exact static type of the object being destroyed.
destructor is not properly qualified

An explicit destructor invocation can only be qualified with its own class.

pointers to class members reference different object types

Conversion of member pointers can only occur if the object types are identical. Thisis
necessary to ensure type safety.

operand must be pointer to class or struct

The left hand operand of a’->*" operator must be a pointer to aclass. Thisisarestriction
in the C++ language.

expression must have void type

If one operand of the’:’ operator has void type, then the other operand must also have void
type.

expression types do not match for *:’ operator

The compiler could not bring both operands to a common type. Thisis necessary because
the result of the conditional operator must be a unique type.

cannot create an undefined type with ' operator new'

A new expression cannot allocate an undefined type because it must know how large an
allocation isrequired and it must also know whether there are any constructors to execute.

delete of a pointer to an undefined type

A delete expression cannot safely deallocate an undefined type because it must know
whether there are any destructors to execute. In spite of this, the ISO/ANSI C++ Working
Paper requires that an implementation support this usage.

Example:
struct U,

void foo(U*p, U*qg) {
del ete p;
delete [] q;

448 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

547

549

550

551

552

553

554

555

cannot access’ %S through a private base class
Theindicated symbol cannot be accessed because it requires access to a private base class.
cannot access’ %S through a protected base class

Theindicated symbol cannot be accessed because it requires access to a protected base
class.

'sizeof’ operand contains compiler generated information

The type used in the ’sizeof’ operand contains compiler generated information. Clearing a
struct with a call to memset() would invalidate all of this information.

cannot convert ’:’ operands to a common reference type

The two reference types cannot be converted to a common reference type. This can happen
when the types are not related through base class inheritance.

conversion ambiguity: [referenceto object] to [type of opposite’:’ operand]

One of the reference types is an ambiguous base class of the other. This prevents the
compiler from converting the operand to a unique common type.

conversion of referenceto ':’ object involves a private base class

The conversion of the reference operands requires a conversion through a private base
class.

conversion of referenceto ':’ object involves a protected base class

The conversion of the reference operands requires a conversion through a protected base
class.

expression must have type arithmetic, pointer, or pointer to class member

This message means that the type cannot be converted to any of these types, also. All of
the mentioned types can be compared against zero ('0") to produce atrue or false value.

expression for 'while' isalways false
The compiler has detected that the expression will always befalse. If thisisnot the
expected behaviour, the code may contain a comparison of an unsigned value against zero

(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

Diagnostic Messages 449

Appendices

556

557

558

559

560

561

562

563

testing expression for *for’ is always false

The compiler has detected that the expression will always befalse. If thisisnot the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

message humber '%d’ isinvalid

The message number used in the #pragma does not match the message number for any
warning message. This message can also indicate that a number or "*’ (meaning all
warnings) was not found when it was expected.

warning level must be an integer inrange0to 9

The new warning level that can be used for the warning can bein therange0to 9. The
level 0 means that the warning will be treated as an error (compilation will not succeed).
Levels 1 up to 9 are used to classify warnings. The -w option sets an upper limit on the
level for warnings. By setting the level above the command line limit, you effectively
ignore all cases where the warning shows up.

function’ %S cannot be defined because it is generated by the compiler

The indicated function cannot be defined because it is generated by the compiler. The
compiler will automatically generate default constructors, copy constructors, assignment
operators, and destructors according to the rules of the C++ language. This message
indicates that you did not declare the function in the class definition.

neither environment variable nor file found for ' @' name

Theindirection operator for the command line will first check for an environment variable
of the name and use the contents for the command line. If an environment variableis not
found, a check for afile with the same name will occur.

more than 5 indirections during command line processing

The Open Watcom C++ compiler only alows a fixed number nested indirections using files
or environment variables, to prevent runaway chains of indirections.

cannot take address of non-static member function

The only way to create a value that described the non-static member functionisto use a
member pointer.

cannot generate default ' %S because class contains either a constant or a reference
member

An assignment operator cannot be generated because the class contains members that
cannot be assigned into.

450 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

564

565

566

567

568

569

570

571

572

cannot convert pointer to non-constant or volatile objects to pointer to const void
A pointer to hon-constant or volatile objects cannot be converted to ' const void*’.

cannot convert pointer to non-constant or non-volatile objects to pointer to const volatile
void

A pointer to non-constant or non-volatile objects cannot be converted to ' const volatile
void*’.

cannot initialize pointer to non-volatile with a pointer to volatile

A pointer to anon-volatile type cannot be initialized with a pointer to avolatile type
because this would allow voléatile data to be modified without volatile semantics viathe
non-volatile pointer to it.

cannot pass a pointer or reference to a volatile object

A pointer or reference to avolatile object cannot be passed in this context.

cannot return a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be returned.

left expression is not a pointer to a volatile object

One cannot assign a pointer to avolatile type to a pointer to anon-volatile type. This
would allow avolatile object to be modified viathe non-volatile pointer. Use acast if this
is absolutely necessary.

virtual function override for %S is ambiguous

This message indicates that there are at |east two overrides for the function in the base
class. The compiler cannot arbitrarily choose one so it is up to the programmer to make
sure there is an unambiguous choice. Two of the overriding functions are listed as
informational messages.

initialization priority must be number 0-255, ’library’, or ’ progran’

An incorrect module initialization priority has been provided. Check the User’s Guide for
the correct format of the priority directive.

previous case label defined %L

This informational message indicates where a preceding case label is defined.

Diagnostic Messages 451

Appendices

573

574

575

576

577

578

579

previous default label defined %L

This informational message indicates where a preceding default label is defined.

label defined %L

Thisinformational message indicates where alabel is defined.

label referenced %L

Thisinformational message indicates where alabel is referenced.

object thrown hastype: %T

This informational message indicates the type of the object being thrown.

object thrown has an ambiguous base class %T

Itisillegal to throw an object with a base class to which a conversion would be ambiguous.

Example:
struct amnbi guous{ };
struct basel : public anbiguous { };
struct base2 : public anbiguous { };
struct derived : public basel, publi

c base2 { };

foo(derived &object)
{

}

The throw will cause an error to be displayed because an object of type "derived" cannot be
converted to an object of type "ambiguous’.

t hrow obj ect ;

formis’#pragmainline_depth level’ where’'level’ is 0 to 255

This pragma sets the number of times inline expansion will occur for an inline function
which contains callsto inline functions. The level must be a number from zero to 255.
When the level is zero, no inline expansion occurs.

pointer or reference truncated by cast

The cast expression causes a conversion of apointer value to another pointer value of
smaller size. Thiscanbecausedby _near or __far qualifiers(i.e., casting afar pointer to
anear pointer). Function pointers can also have a different size than data pointersin
certain memory models. Because this message indicates that some information is being
lost, check the code carefully.

452 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

580

581

582

583

584

585

586

587

cannot find a constructor for given initializer argument list

Theinitializer list provided for the new expression does not uniquely identify asingle
constructor.

variable’ %N’ can only be based on a string in this context

All of the based modifiers can only be applied to pointer types. The only based modifier
that can be applied to non-pointer typesisthe’ based(_segname("WATCOM"))' style.

memory model modifiers are not allowed for class members

Class members describe the arrangement and interpretation of memory and, as such,
assume the memory model of the address used to access the member.

redefinition of the typedef name’ %S ignored

The compiler has detected that a slightly different type has been assigned to a typedef
name. Thetypeisfunctionally equivalent but typedef redefinitions should be precisely
identical.

constructor for variable’ %S cannot be bypassed

The variable may not be constructed when code is executing at the position the message
indicated. The C++ language places these restrictions to prevent the use of unconstructed
variables.

syntax error; missing start of function body after constructor initializer

Member initializers can only be used in a constructor’s definition.

Example:
struct S {
int a;
S(int x =1) : a(x)
{
}
1

conversion ambiguity: [expression] to [type of default argument]
A conversion to an ambiguous base class was detected in the default argument expression.
conversion of expression for default argument isimpossible

A conversion to aunrelated class was detected in the default argument expression.

Diagnostic Messages 453

Appendices

588

589

590

591

592

593

594

595

syntax error before template name’ %s

Theidentifier in the error message has been declared as a template name at this point in the
code. Thismay be the cause of the syntax error.

private base class accessed to convert default argument

A conversion to a private base class was detected in the default argument expression.
protected base class accessed to convert default argument

A conversion to a protected base class was detected in the default argument expression.
operand must be an Ivalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assighing anew valueto a
temporary is a meaningless operation.

left operand must be an Ivalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assighing anew valueto a
temporary is a meaningless operation.

right operand must be an Ivalue (cast produces rvalue)

The compiler is expecting avalue which can be assigned into. The result of acast cannot
be assigned into because a brand new value is always created. Assigning anew valueto a
temporary is a meaningless operation.

construct resolved as a declaration/type

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that an ambiguous construct has been resolved in a certain direction. In this
case, the construct has been determined to be part of atype. Thefinal resolution varies
between compilers so it is wise to change the source code so that the construct is not
ambiguous. Thisisespecialy important in cases where the resolution is more than three
tokens away from the start of the ambiguity.

construct resolved as an expression

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the sourcefile.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that an ambiguous construct has been resolved in a certain direction. In this
case, the construct has been determined to be part of an expression (afunction-like cast).
Thefinal resolution varies between compilers so it is wise to change the source code so that

454 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

596

597

598

599

the construct is not ambiguous. Thisis especially important in cases where the resolution is
more than three tokens away from the start of the ambiguity.

construct cannot be resolved

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that an ambiguous construct could not be resolved by the compiler. Please
report this to the Open Watcom devel opement team so that the problem can be analysed.
See http://www.openwatcom.org/.

encountered another ambiguous construct during disambiguation

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that another ambiguous construct was found inside an ambiguous construct.
The compiler will correctly disambiguate the construct. The programmer is advised to
change code that exhibits this warning because thisis definitely uncharted territory in the
C++ language.

ellipsis (...) argument contains compiler generated information
A classwith virtual functions or virtual bases is being passed to a function that will not

know the type of the argument. Since thisinformation can be encoded in a variety of ways,
the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
b

static S sv;
extern int bar(S, ...);
static int test = bar(sv, 14, 64);

The call to "bar" causes awarning, since the structure S contains information associated
with the virtual function for that class.

cannot convert argument for ellipsis(...) argument

This argument cannot be used as an ellipsis (...) argument to a function.

Diagnostic Messages 455

Appendices

600

601

602

603

604

605

606

607

conversion ambiguity: [argument] to[ellipsis(...) argument]

A conversion ambiguity was detected while converting an argument to an ellipsis (...)
argument.

converted function type has different #pragma from original function type

Since a #pragma can affect calling conventions, one must be very careful performing casts
involving different calling conventions.

class value used as return value or argument in converted function type

The compiler has detected a cast between "C" and "C++" linkage function types. The
calling conventions are different because of the different language rules for copying
structures.

class value used as return value or argument in original function type

The compiler has detected a cast between "C" and "C++" linkage function types. The
calling conventions are different because of the different language rules for copying
structures.

must ook ahead to deter mine whether construct is a declaration/type or an expression

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that an ambiguous construct has been used. The final resolution varies
between compilers so it is wise to change the source code so that the construct is not
ambiguous.

assembler: ' %s

An error has been detected by the #pragma inline assembler.

default argument expression cannot reference 'this

The order of evaluation for function arguments is unspecified in the C++ language
document. Thus, adefault argument must be able to be evaluated before the 'this
argument (or any other argument) is evaluated.

#pragma aux must reference a"C" linkage function ' %S

The method of assigning pragma information via the #pragma syntax is provided for
compatibility with Open Watcom C. Because C only allows one function per name, this

was adequate for the C language. Since C++ allows functionsto be overloaded, a new
method of referencing pragmas has been introduced.

456 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

608

609

610

611

Example:
#pragma aux this_in_SI parmcaller [si] [ax];

struct S {
void __pragma("this_in_SI") foo(int);
void __pragma("this_in_SI") foo(char);

b
assignment is ambiguous for operands used

An ambiguity was detected while attempting to convert the right operand to the type of the
left operand.

Example:
struct S1 {
int a;

1

struct S2 @ S1 {
int b;
b

struct S3 : S2, S1 {
int c;
b

S1* fn(S3 *p)
{
}

In the example, class S1 occurs ambiguously for an object or pointer to an object of type
S3. A pointer to an S3 object cannot be converted to apointer to an S1 object.

return p;

pragma name’ %s’ is not defined

Pragmas are defined with the #pragma aux syntax. See the User’s Guide for the details of
defining a pragmaname. If the pragma has been defined then check the spelling between
the definition and the reference of the pragma name.

"%S could not be generated by the compiler

An error occurred while the compiler tried to generate the specified function. The error
prevented the compiler from generating the function properly so the compilation cannot
continue.

"catch’ does not immediately follow a’try’ or ’catch’

The catch handler syntax must be used in conjunction with atry block.

Diagnostic Messages 457

Appendices

612

613

614

615

616

Example:
void f()
{
try {
/1 code that may throw an exception
} catch(int x) {
/1 handle "int’ exceptions
} catch(...) {
/1 handl e all other exceptions
}
}
preceding catch specified ...’

Since an dlipsis"..." catch handler will handle any type of exception, no further catch
handlers can exist afterwards because they will never execute. Reorder the catch handlers
so that the"..." catch handler isthe last handler.

argument to extern " C" function contains compiler generated information
A classwith virtual functions or virtual bases is being passed to a function that will not

know the type of the argument. Since thisinformation can be encoded in a variety of ways,
the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
b

static S sv;
extern "C" int bar(S);

static int test = bar(sv);

The call to "bar" causes awarning, since the structure S contains information associated
with the virtual function for that class.

previous try block defined %L

This informational message indicates where a preceding try block is defined.

previous catch block defined %L

This informational message indicates where a preceding catch block is defined.

catch handler can never be invoked

Because the handlers for atry block are tried in order of appearance, the type specified in a
preceding catch can ensure that the current handler will never beinvoked. This occurs
when a base class (or reference) precedes a derived class (or reference); when a pointer to a

base class (or reference to the pointer) precedes a pointer to a derived class (or reference to
the pointer); or, when "void*" or "void*&" precedes a pointer or areference to the pointer.

458 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

617

618

Example:
struct BASE {};
struct DERIVED : public BASE {};

foo()

{

try {
/1 code for try

} catch(BASE b) { 11 [1]
/1 code
} catch(DERIVED) { /1 warning: [1]
/1 code
} catch(BASE* pb) { 1 [2]
/1 code
} catch(DERIVED* pd) {// warning: [2]
/1 code
} catch(void* pv) { 1 [3]
/1 code
} catch(int* pi) { /1 warning: [3]
/1 code
} catch(BASE& br) { /1 warning: [1]
/1 code
} catch(float*& pfr) {// warning: [3]
/1 code
}
}

Each erroneous catch specification indicates the preceding catch block which caused the
error.

cannot overload extern "C" functions (the other functionis’%S)

The C++ language only allows you to overload functions that are strictly C++ functions.
The compiler will automatically generate the correct code to distinguish each particular
function based on its argument types. The extern "C" linkage mechanism only allows you
to define one "C" function of a particular name because the C language does not support
function overloading.

function will be overload ambiguous with ' %S using default arguments

The declaration declares a function that is indistinguishable from another function of the
same name with default arguments.

Example:
void fn(int, int =1);
void fn(int);

Calling the function ' fn’ with one argument is ambiguous because it could match either the
first 'fn’ with adefault argument applied or the second ' fn’ without any default arguments.

Diagnostic Messages 459

Appendices

619 linkage specification is different than previous declaration’ %S

The linkage specification affects the binding of names throughout a program. It is
important to maintain consistency because subtle problems could arise when the incorrect
functioniscaled. Usually this error prevents an unresolved symbol error during linking
because the name of a declaration is affected by its linkage specification.

Example:
extern "C'" void fn(void);
void fn(void)
{
}

620 not enough segment registers available to generate ' %s

Through a combination of options, the number of available segment registersistoo small.
This can occur when too many segment registers are pegged. This can be fixed by
changing the command line options to only peg the segment registers that must absolutely

be pegged.

621 pure virtual destructors must have a definition

Thisisan anomaly for pure virtual functions. A destructor is the only special function that
isinherited and allowed to be virtual. A derived class must be able to call the base class
destructor so a pure virtual destructor must be defined in a C++ program.

622 jump into try block
Jumps cannot enter try blocks.

Example:
foo(int a)

if(a) goto tr_Iab;

try {
tr_|ab:
throw 1234;
} catch(int) {
if(a) goto tr_Iab;

if(a) goto tr_lab;

All the preceding goto’s areillegal. The error is detected at the label for forward jumps and
at the goto’ s for backward jumps.

460 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

623

624

625

626

627

jump into catch handler
Jumps cannot enter catch handlers.

Example:
foo(int a)

if(a)goto ca_l ab;
try {
if(a)goto ca_l ab;

} catch(int) {
ca_l ab:

}

if(a)goto ca_l ab;
}

All the preceding goto’'s areillegal. The error is detected at the label for forward jumps and
at the goto’ s for backward jumps.

catch block does not immediately follow try block

At least one catch handler must immediately follow the"}" of atry block.

Example:
extern void goop();
void foo()
{
try {
goop() ;
} // a catch bl ock should foll ow
}

In the example, there were no catch blocks after the try block.

exceptions must be enabled to use feature (use ' xs' option)

Exceptions are enabled by specifying the 'xs option when the compiler isinvoked. The
error message indicates that a feature such astry, catch, throw, or function exception
specification has been used without enabling exceptions.

/O error reading ' %s': %s'

When attempting to read data from a source or header file, the indicated system error
occurred. Likely thereisahardware problem, or the file system has become corrupt.

text following pre-processor directive
A #else or #endif directive was found which had tokens following it rather than an end of

line. Some UNIX style preprocessors alowed this, but it is not legal under standard C or
C++. Make the tokens into a comment.

Diagnostic Messages 461

Appendices

628

629

630

631

632

expression is not meaningful

This message indicates that the indicated expression is not meaningful. An expressionis
meaningful when afunction isinvoked, when an assignment or initialization is performed,
or when the expression is casted to void.

Example:
void foo(int i, int j)
{
i+, [/ not neaningful
}

expression has no side effect

The indicated expression does not cause aside effect. A side effect is caused by invoking a
function, by an assignment or an initialization, or by reading a volatile variable.

Example:
int k;
void foo(int i, int j)
{
i +j, [/ no side effect (note comm)
k = 3;
}

source conversion typeis’ %T’

This informational message indicates the type of the source operand, for the preceding
conversion diagnostic.

target conversion typeis’%T’

This informational message indicates the target type of the conversion, for the preceding
conversion diagnostic.

redeclaration of %S has different attributes

A function cannot be made virtual or pure virtual in a subsequent declaration. All
properties of afunction should be described in the first declaration of afunction. Thisis
especialy important for member functions because the properties of a class are affected by
its member functions.

Example:
struct S {
void fun();
3
virtual void S::fun()
{
}

462 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

633

634

635

636

637

638

template class instantiation for ' %T was %L

This informational message indicates that the error or warning was detected during the
instantiation of a class template. The final type of the template classis shown aswell asthe
location in the source where the instantiation was initiated.

template function instantiation for ' %S was %L

This informational message indicates that the error or warning was detected during the
instantiation of afunction template. The final type of the template function is shown as
well as the location in the source where the instantiation was initiated.

template class member instantiation was %L

This informational message indicates that the error or warning was detected during the
instantiation of amember of a classtemplate. The location in the source where the
instantiation was initiated is shown.

function template binding for * %S was %L

Thisinformational message indicates that the error or warning was detected during the
binding process of afunction template. The binding process occurs at the point where
arguments are analysed in order to infer what types should be used in a function template
instantiation. The function template in question is shown along with the location in the
source code that initiated the binding process.

function template binding of ' %S was %L

This informational message indicates that the error or warning was detected during the
binding process of a function template. The binding process occurs at the point where a
function prototype is analysed in order to seeif the prototype matches any function
template of the same name. The function template in question is shown along with the
location in the source code that initiated the binding process.

"%s’ defined %L

Thisinformational message indicates where the classin question was defined. The
message is displayed following an error or warning diagnostic for the classin question.

Example:
class S
int foo(S*p)
{

}

return p->x;

The variable p is apointer to an undefined class and so will cause an error to be generated.
Following the error, the informational message indicates the line at which the class S was
declared.

Diagnostic Messages 463

Appendices

639

640

641

642

formis’#pragma template _depth level’ where’level’ is a non-zero number

This pragma sets the number of times templates will be instantiated for nested
instantiations. The depth check prevents infinite compile times for incorrect programs.

possible non-terminating template instantiation (use "#pragma template_depth %d" to
increase depth)

This message indicates that alarge number of expansions were required to complete a
template class or template function instantiation. This may indicate that thereis an
erroneous use of atemplate. If the program will complete given more depth, try using the
suggested #pragma.in the error message to increase the depth. The number provided is
double the previous value.

cannot inherit a partially defined base class ' %T’

This message indicates that the base class was in the midst of being defined when it was
inherited. The storage requirements for a class type must be known when inheritance is
involved because the layout of the final class depends on knowing the complete contents of
all base classes.

Example:
struct Partial {
struct Nested : Partial {
int n;
b
1

ambiguous function: %F defined %L

Thisinformational message shows the functions that were detected to be ambiguous.

Example:
int anb(char); /1 will be ambi guous
i nt anb(unsigned char); /1 will be ambi guous

int anb(char, char);
int k = anmb(14);

The constant value 14 has an int type and so the attempt to invoke the function anb is
ambiguous. The first two functions are ambiguous (and will be displayed); the third is not
considered (nor displayed) sinceit is declared to have a different number of arguments.

cannot convert argument %d defined %L
Thisinformational message indicates the first argument which could not be converted to

the corresponding type for the declared function. It is displayed when there is exactly one
function declared with the indicated name.

464 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

644

646

647

"this’ cannot be converted

This informational message indicates the this pointer for the function which could not be
converted to the type of the this pointer for the declared function. It is displayed when
there is exactly one function declared with the indicated name.

rejected function: %F defined %L

This informational message shows the overloaded functions which were rejected from
consideration during function-overload resolution. These functions are displayed when
there is more than one function with the indicated name.

"%T’ operator can be used

Following a diagnosis of operator ambiguity, this information message indicates that the
operator can be applied with operands of the type indicated in the message.

Example:
struct S {
S(int);
operator int();
S operator+(int);
1
S s(15);
int k =s + 123; /1 "+" is anbi guous

In the example, the "+" operation is ambiguous because it can implemented as by the
addition of two integers (with S: : oper at or i nt applied to the second operand) or by a
cal to S: : oper at or +. Thisinformational message indicates that the first is possible.

cannot #undef ' %s’

Thepredefined macros __cplusplus, _ DATE , _ FILE , _ LINE _,
__STDC__, _ _TIME__, _ FUNCTION_ _ and func__ cannot be undefined using
the #undef directive.
Example:

#undef __cpl uspl us

#undef _ DATE _

#undef _ FILE _
#undef _ LINE_ _

#undef _ STDC

#undef __TIME__

#undef __ FUNCTI ON__
#undef _ func_ _

All of the preceding directives are not permitted.

Diagnostic Messages 465

Appendices

648 cannot #define ' %s’

Thepredefined macros __cplusplus, _ DATE _, _ FILE , _ LINE _,
__STDC__, and__TI ME__ cannot be defined using the #define directive.

Example:
#define __cplusplus
#define __ DATE _

#define __ FILE _

#define __ LINE _
#define ___STDC _

#define _ TIME _

ounhbhwnbE

All of the preceding directives are not permitted.
649 template function ' %F’ defined %L

This informational message indicates where the function template in question was defined.
The message is displayed following an error or warning diagnostic for the function
template in question.

Example:
tenpl ate <class T>
void foo(T, T *)
{
}

voi d bar ()
foo(1l); /1 could not instantiate
The function template for f 00 cannot be instantiated for a single argument causing an error
to be generated. Following the error, the informational message indicates the line at which
f 00 was declared.

650 ambiguous function template: %F defined %L

This informational message shows the function templates that were detected to be
ambiguous for the arguments at the call point.

651 cannot instantiate %S
This message indicates that the function template could not be instantiated for the

arguments supplied. It is displayed when there is exactly one function template declared
with the indicated name.

466 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

652

653

654

655

656

rejected function template: %F defined %L

This informational message shows the overloaded function template which was rejected
from consideration during function-overload resolution. These functions are displayed
when there is more than one function or function template with the indicated name.

operand cannot be a function

Theindicated operation cannot be applied to afunction.

Example:
int Fun();
int j = ++Fun; // illegal

In the example, the attempt to increment afunctionisillegal.
left operand cannot be a function
Theindicated operation cannot be applied to the left operand which is afunction.

Example:
extern int Fun();
voi d foo()

Fun = 0; /1 illegal
}

In the example, the attempt to assign zero to afunction isillegal.
right operand cannot be a function

Theindicated operation cannot be applied to the right operand which is afunction.

Example:
extern int Fun();
void foo()
voi d* p = 3[Fun]; [l illegal
}

In the example, the attempt to subscript afunctionisillegal.

define this function inside its class definition (may improve code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty
function body. An empty function body can usually provide optimization opportunities so

the compiler isindicating that by defining the function inside its class definition, the
compiler may be able to perform some important optimizations.

Diagnostic Messages 467

Appendices

Example:
struct S {
~S();

S ~s() {
}

657 define this function inside its class definition (could have improved code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty
function body. An empty function body can usually provide optimization opportunities so
the compiler isindicating that by defining the function inside its class definition, the
compiler may be able to perform some important optimizations. This particular warning
indicates that the compiler has already found an opportunity in previous code but it found
out too late that the constructor or destructor had an empty function body.

Example:
struct S {
~S();

1
struct T : S{
~T() {}

S ~S() {
}

658 cannot convert address of overloaded function ’ %S

Thisinformation message indicates that an address of an overloaded function cannot be
converted to the indicated type.

Example:
i nt ovload(char);
int ovload(float);
int routine(int (*)(int);
int K =routine(ovload);

Thefirst argument for the function r out i ne cannot be converted, resulting in the
informational message.

659 expression cannot have void type

Theindicated expression cannot have a void type.

Example:
main(int argc, char* argv)
{
if((void)argc) {
return 5;
} else {
return 9;
}
}

468 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Conditional expressions, such asthe oneillustrated in the if statement cannot have a void
type.

660 cannot reference a hit field
The smallest addressable unit isabyte. You cannot reference a bit field.

Example:
struct S
{ int bits :6;
int bitfield :10;

1

S var;

int& ref = var.bitfield; /1 illegal
661 cannot assign to object having an undefined class

An assignment cannot be be made to an object whose class has not been defined.

Example:
class X /1 decl ared, but not defined
extern X& foo(); /1 returns reference (ok)

extern X obj;
voi d goop()
{

obj = foo(); [l error

}

662 cannot create member pointer to constructor

A member pointer value cannot reference a constructor.

Example:
class C{
)
int foo()
return 0 == &C: : C,
}
663 cannot create member pointer to destructor

A member pointer value cannot reference a destructor.

Example:
class C{

. ~X();
int foo()

return 0 == &C. : ~C,

Diagnostic Messages 469

Appendices

664 attempt to initialize a non-constant reference with a temporary object
A temporary value cannot be converted to a non-constant reference type.

Example:
struct C {
A C&);
Cint);

& cC
c2

1,

oo 7
e
N

Theinitiaizations of ¢c1 and c2 are erroneous, since temporaries are being bound to
non-const references. Inthe caseof c1, animplicit constructor call isrequired to convert
the integer to the correct object type. Thisresultsin atemporary object being created to
initialize the reference. Subseguent code can modify this temporary’s state. The
initialization of c2, iserroneous for asimilar reason. In this case, the temporary is being
bound to the non-const reference argument of the copy constructor.

665 temporary object used to initialize a non-constant reference

Ordinarily, atemporary value cannot be bound to a non-constant reference. Thereis
enough legacy code present that the Open Watcom C++ compiler issues awarning in cases
that should be errors. This may changein the future so it is advisable to correct the code as
soon as possible.

666 assuming unary 'operator &' not overloaded for type’%T’

An explicit address operator can be applied to areference to an undefined class. The Open
Watcom C++ compiler will assume that the addressis required but it does not know
whether this was the programmer’ s intention because the class definition has not been seen.

Example:
struct S;

S* fn(S&) {
/1 assuming no operator '& defined
return &y;

}

667 'va_start’ macro will not work without an argument before ...’

The warning indicates that it isimpossible to access the arguments passed to the function
without declaring an argument beforethe "..." argument. The"..." style of argument list
(without any other arguments) is only useful as a prototype or if the function is designed to
ignore al of its arguments.

470 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

668

669

Example:
void fn(...)
{
}

'va_start’ macro will not work with a reference argument before ...’

The warning indicates that taking the address of the argument before the "..." argument,
which’va_start’ doesin order to access the variable list of arguments, will not give the
expected result. The arguments will have to be rearranged so that an acceptable argument
is declared before the"..." argument or adummy int argument can be inserted after the
reference argument with the corresponding adjustments made to the callers of the function.

Example:
#i ncl ude <stdarg. h>

void fn(int &, ...)
{

va_list args;

/] address of 'r’ is address of

/1 object 'r’ references so

/1 "va_start’ will not work properly
va_start(args, r);

va_end(args);

}

'va_start’ macro will not work with a class argument before’...’

Thiswarning is specific to C++ compilers that quietly convert class argumentsto class
reference arguments. The warning indicates that taking the address of the argument before
the"..." argument, which ’va_start’ doesin order to access the variable list of arguments,
will not give the expected result. The arguments will have to be rearranged so that an
acceptable argument is declared before the "..." argument or a dummy int argument can be
inserted after the class argument with the corresponding adjustments made to the callers of
the function.

Example:
#i ncl ude <stdarg. h>

struct S {
. S();

void fn(Sc, ...)
{

va_list args;

/1 Open Watcom C++ passes a pointer to
/1 the tenporary created for passing
[l ¢’ rather than pushing "¢’ on the
/1l stack so 'va_start’ will not work
[l properly

va_start(args, c);

va_end(args);

3

Diagnostic Messages 471

Appendices

670 function modifier conflicts with previous declaration’ %S

The symbol declaration conflicts with a previous declaration with regard to function
modifiers. Either the previous declaration did not have a function modifier or it had a
different one.

Example:
#pragnma aux never_returns aborts;

void fn(int, int);
void __pragma("never_returns") fn(int, int);

671 function modifier cannot be used on a variable

The symbol declaration has afunction modifier being applied to a variable or non-function.
The cause of this may be a declaration with a missing function argument list.

Example:
int (* __ pascal ok)();
int (* __pascal not_ok);

672 "%T’ contains the following pure virtual functions

This informational message indicates that the class contains pure virtual function
declarations. The classis definitely abstract as aresult and cannot be used to declare
variables. The pure virtual functions declared in the class are displayed immediately
following this message.

Example:
struct A {
void virtual fn(int) = 0;
A X;
673 "%T" has no implementation for the following pure virtual functions

Thisinformational message indicates that the classis derived from an abstract class but the
class did not override enough virtual function declarations. The pure virtual functions
declared in the class are displayed immediately following this message.

Example:
struct A {
void virtual fn(int) = 0;
s

struct D: A {
b

D x;

472 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

674

675

676

677

678

pure virtual function’%F’ defined %L

This informational message indicates that the pure virtual function has not been overridden.
This means that the classis abstract.

Example:
struct A {
void virtual fn(int) = 0;
b

struct D: A {
1

D x;
restriction: standard calling convention required for ’ %S
Theindicated function may be called by the C++ run-time system using the standard
calling convention. The calling convention specified for the function isincompatible with
the standard convention. This message may result when __pascal isspecified for a
default constructor, a copy constructor, or a destructor. It may also result when par m
rever se isspecified in a#pragma for the function.

number of argumentsin function call isincorrect

The number of argumentsin the function call does not match the number declared for the
function type.

Example:
extern int (*pfn)(int, int);
int kK =pfn(1, 2, 3);

In the example, the function pointer was declared to have two arguments. Three arguments
were used in the call.

function has type ' %T

This informational message indicates the type of the function being called.

invalid octal constant

The constant started with a’0’ digit which makesit look like an octal constant but the
constant contained the digits’8 and’9’. The problem could be an incorrect octal constant

or amissing’.’ for afloating constant.

Example:
int i = 0123456789; // invalid octal constant
doubl e d = 0123456789; // missing '.'?

Diagnostic Messages 473

Appendices

679 class template definition started %L

This informational message indicates where the class template definition started so that any
problems with missing braces can be fixed quickly and easily.

Example:
tenpl ate <class T>
struct S {
void f1() {
/1 error mssing '}’

b

tenpl ate <class T>
struct X {
void f2() {
}
s

680 constructor initializer started %L

This informational message indicates where the constructor initializer started so that any
problems with missing parenthesis can be fixed quickly and easily.

Example:
struct S {
S(int x) : a(x), b(x // mssing parenthesis
{
}
1
681 zero size array must be the last data member

The language extension that allows a zero size array to be declared in a class definition
requires that the array be the last data member in the class.

Example:
struct S {
char a[];
int b;
1

682 cannot inherit a class that contains a zero size array

The language extension that allows a zero size array to be declared in a class definition
disallows the use of the class asa base class. This prevents the programmer from
corrupting storage in derived classes through the use of the zero size array.

Example:
struct B {
int b;
char a[];

siruct D: B{
int d,
b

474 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

683 zerosizearray ' %S cannot be used in a class with base classes

The language extension that allows a zero size array to be declared in a class definition
requires that the class not have any base classes. Thisisrequired because the C++ compiler
must be free to organize base classes in any manner for optimization purposes.

Example:
struct B {
int b;
i

struct D: B {
int d,
char a[];

684 cannot catch abstract class object

C++ does not allow abstract classes to be instantiated and so an abstract class object cannot
be specified in acatch clause. It ispermissible to catch areference to an abstract class.

Example:
cl ass Abstract {
public:
virtual int foo() = O;
1

class Derived : Abstract {
public:
int foo();

int xyz;

void func(void) {

try {
throw Derived();

} catch(Abstract abstract) { /'l object
xXyz = 1,
}

}

The catch clause in the preceding example would be diagnosed as improper, since an
abstract classis specified. The example could be coded as follows.

Example:

Diagnostic Messages 475

Appendices

cl ass Abstract {
publi c:

virtual int foo() = 0;
1

class Derived : Abstract {
publi c:
int foo();

int xyz;

void func(void) {
try {
throw Derived();
} catch(Abstract & abstract) { // reference

xyz = 1,
}
}
685 non-static member function’ %S cannot be specified

Theindicated non-static member function cannot be used in this context. For example,
such afunction cannot be used as the second or third operand of the conditional operator.

Example:
struct S {
int foo();
int bar();
int fun();
1

int S::fun(int i) {
return (i ? foo : bar)();
}

Neither f 0o nor bar can be specified as shown in the example. The example can be
properly coded as follows:

Example:
struct S {
int foo();
int bar();
int fun();
1

int S;:fun(int i) {
return i ? foo() : bar();
}

476 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

686

687

688

689

690

attempt to convert pointer or reference from a base to a derived class

A pointer or reference to a base class cannot be converted to a pointer or reference,
respectively, of aderived class, unlessthereisan explicit cast. The r et ur n statementsin
the following example will be diagnosed.

Example:
struct Base {};
struct Derived : Base {};
Base b;

Derived* ReturnPtr() { return &b; }
Derived& ReturnRef() { return b; }

The following program would be acceptable:

Example:
struct Base {};
struct Derived : Base {};
Base b;

Derived* ReturnPtr() { return (Derived*)&b; }
Derived& ReturnRef() { return (Derived&)b; }

expression for 'while' isalwaystrue

The compiler has detected that the expression will always be true. Consequently, the loop
will execute infinitely unlessthere is a break statement within the loop or athrow
statement is executed while executing within the loop. If such an infinite loop is required,
it can becoded asf or (;) without causing warnings.

testing expression for 'for’ isalwaystrue

The compiler has detected that the expression will always be true. Consequently, the loop
will execute infinitely unless there is abreak statement within the loop or athrow
statement is executed while executing within the loop. If such an infinite loop is required,
it can becoded asf or (;) without causing warnings.

conditional expression is always true (hon-zero)

The indicated expression is a non-zero constant and so will always be true.

conditional expression is always false (zero)

Theindicated expression is a zero constant and so will always be false.

Diagnostic Messages 477

Appendices

691 expecting a member of *%T’ to be defined in this context

A class template member definition must define a member of the associated class template.
The complexity of the C++ declaration syntax can make this error hard to identify visually.

Example:
tenpl ate <class T>
struct S {
typedef int X
static X fn(int);
static X qg;

tenpl ate <class T>
S<T>::X fn(int) {// should be 'S<T>:.:fn’

return fn(2);

}

tenmpl ate <class T>
S<T>::X qq = 1; // should be 'S<T>::q

S<i nt> x;
692 cannot throw an abstract class

An abstract class cannot be thrown since copies of that object may have to be made (which
isimpossible);
Example:
struct abstract _class {
abstract _class(int);
virtual int foo() = 0;
b
voi d goop()
{

throw abstract _class(17);

}

Thethrow expressionisillegal since it specifies an abstract class.
693 cannot create pre-compiled header file’%s

The compiler has detected a problem while trying to open the pre-compiled header file for
write access.

694 error occurred while writing pre-compiled header file

The compiler has detected a problem while trying to write some data to the pre-compiled
header file.

478 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

695

696

697

698

699

700

701

702

error occurred while reading pre-compiled header file

The compiler has detected a problem while trying to read some data from the pre-compiled
header file.

pre-compiled header file being recreated

The existing pre-compiled header file may either be corrupted or is aversion that the
compiler cannot use due to updates to the compiler. A new version of the pre-compiled
header file will be created.

pre-compiled header file being recreated (different compile options)

The compiler has detected that the command line options have changed enough so the
contents of the pre-compiled header file cannot be used. A new version of the
pre-compiled header file will be created.

pre-compiled header file being recreated (different #include file)

The compiler has detected that the first #include file name is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

pre-compiled header file being recreated (different current directory)

The compiler has detected that the working directory is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

pre-compiled header file being recreated (different INCLUDE path)

The compiler has detected that the INCLUDE path is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

pre-compiled header file being recreated (' %s has been modified)

The compiler has detected that an include file has changed so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

pre-compiled header file being recreated (macro ' %s' is different)

The compiler has detected that a macro definition is different so the contents of the
pre-compiled header file cannot be used. The macro was referenced during processing of

the header file that created the pre-compiled header file so the contents of the pre-compiled
header may be affected. A new version of the pre-compiled header file will be created.

Diagnostic Messages 479

Appendices

703

704

705

706

707

708

pre-compiled header file being recreated (macro '%s' is not defined)

The compiler has detected that a macro has not been defined so the contents of the
pre-compiled header file cannot be used. The macro was referenced during processing of
the header file that created the pre-compiled header file so the contents of the pre-compiled
header may be affected. A new version of the pre-compiled header file will be created.
command line specifies smart windows callbacks and DS not equal to SS

Anillegal combination of switches has been detected. The windows smart callbacks option
cannot be combined with either of the build DLL or DS not equal to SS options.

class’ %N’ cannot be used with #pragma dump_object_model

Theindicated name has not yet been declared or has been declared but not yet been defined
asaclass. Conseguently, the object model cannot be dumped.

repeated modifier is’ %s

This informational message indicates what modifier was repeated in the declaration.

Example:
typedef int __far FARINT;
FARINT _ far *p; /1 repeated __far nodifier

semicolon (*;") may be missing after class/enum definition

This informational message indicates that amissing semicolon (*;’) may be the cause of the
error.

Example:
struct S {
int x,y;
S(C int, int);
} // mssing sem col on

S::S(int x, inty) : x(x), y(y) {
}

cannot return a type of unknown size
A value of an unknown type cannot be returned.

Example:
class S;
S foo();

i nt goo()

foo();
}

In the example, foo cannot be invoked because the class which it returns has not been
defined.

480 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

709

710

711

712

cannot initialize array member ' %S
An array class member cannot be specified as a constructor initializer.

Example:
class S {
publi c:
int arr[3];
S();

}s
S::S() :oarr(1, 2, 3) {}

In the example, ar r cannot be specified as a constructor initiaizer. Instead, the array may
beinitialized within the body of the constructor.

Example:

class S {

publi c:
int arr[3];
S();

i

S S()
arr[0] = 1,
arr[1] = 2;
arr[2] = 3

}

file'%s will #include itself forever

The compiler has detected that the file in the message has been #include from within itself
without protecting against infinite inclusion. This can happen if #ifndef and #define header
file protection has not been used properly.

Example:
#include __ FILE _

"mutable’ may only be used for non-static class members
A declaration in file scope or block scope cannot have a storage class of mutable.

Example:
mut able int a;

"mutable’ member cannot also be const
A mutable member can be modified even if its class object is const. Due to the semantics

of mutable, the programmer must decide whether a member will be const or mutable
because it cannot be both at the same time.

Diagnostic Messages 481

Appendices

Example:
struct S {
nmutable const int * p; // K
nmutable int * const q; // error
1
713 left operand cannot be of type bool

The left hand side of an assignment operator cannot be of type bool except for ssimple
assignment. Thisisarestriction required in the C++ language.

Example:
bool q;

void fn()

q += 1
}

714 operand cannot be of type bool

The operand of both postfix and prefix "--" operators cannot be of type bool. Thisisa
restriction required in the C++ language.

Example:
bool q;
void fn()
--q; /'l error
g--; /1 error
}
715 member '%N' has not been declared in’ %T’

The compiler has found a member which has not been previously declared. The symbol
may be spelled differently than the declaration, or the declaration may simply not be
present.

Example:
struct X { int m };

void fn(X *p)

{
p->x = 1,
}
716 integral value may be truncated

This message indicates that the compiler knows that all values will not be preserved after
the assignment or initialization. If thisis acceptable, cast the value to the appropriate type
in the assignment or initialization.

482 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

717

718

719

720

721

722

Example:
char inc(char c)
{
return c + 1,
}

left operand typeis’ %T’

This informational message indicates the type of the left hand side of the expression.
right operand typeis’%T’

This informational message indicates the type of the right hand side of the expression.
operand typeis’%T’

This informational message indicates the type of the operand.

expression typeis’ %T’

This informational message indicates the type of the expression.

virtual function’%S cannot have its return type changed

Thisrestriction is due to the relatively new feature in the C++ language that allows return
values to be changed when a virtual function has been overridden. It isnot possible to
support both features because in order to support changing the return value of a function,
the compiler must construct a "wrapper” function that will call the virtual function first and
then change the return value and return. It isnot possible to do thiswith "..." style

functions because the number of parametersis not known.

Example:
struct B {

struct D : virtual B {

}s

struct X {
virtual B *fn(int, ...);
i

struct Y : X {
virtual D *fn(int, ...);
1
__declspec(’%N') is not supported

Theidentifier used inthe _declspec declaration modifier is not supported by Open
Watcom C++.

Diagnostic Messages 483

Appendices

723

724

725

726

727

attempt to construct a far object when data model is near

Constructors cannot be applied to objects which are stored in far memory when the default
memory model for datais near.

Example:
struct Qbj
{ char *p;
oj () ;

Qoj far obj;

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for datais near.

-20 is an obsolete switch (has no effect)

The -zo option was required in an earlier version of the compiler but is no longer used.
ey

Thisis auser message generated with the #pragma message preprocessing directive.

Example:
#pragnma nessage("my very own warning");

no reference to formal parameter ' %S

There are no references to the declared formal parameter. The simplest way to remove this
warning in C++ isto remove the name from the argument declaration.

Example:
int fnl(int a, int b, int ¢c)

/1 b not referenced
return a + c;

int fn2(int a, int /* b */, int c)
{

}

return a + c;

cannot dereference a pointer to void

A pointer to void is used as a generic pointer but it cannot be dereferenced.

484 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

728

729

730

Example:
void fn(void *p)
{
return *p;
}

class modifiersfor *%T’ conflict with class modifiers for ' %T’

A conflict between class modifiers for classes related through inheritance has been
detected. A conflict will occur if two base classes have class modifiers that are different.
The conflict can be resolved by ensuring that all classes related through inheritance have
the same class modifiers. The default resolution is to have no class modifier for the derived
base.

Example:
struct __ cdecl Bl {
void fn(int);

I

struct __stdcall B2 {
void fn(int);

1

struct D: Bl, B2 {

b

invalid hexadecimal constant

The constant started with a’0x’ prefix which makesit look like a hexadecimal constant but
the constant was not followed by any hexadecimal digits.

Example:
unsigned i = 0x; /1 invalid hex constant

return type of 'operator ->" will not allow’->" to be applied

Thisrestriction is aresult of the transformation that the compiler performs when the
operator -> isoverloaded. The transformation involves transforming the expression to
invoke the operator with "->" applied to the result of operator ->. Thiswarning indicates
that the operator -> can never be used as an overloaded operator. The only way the
operator can be used isto explicitly cal it by name.

Example:
struct S {
int a;
void *operator ->();
1
void *fn(S &q)
{
return g.operator ->();
}

Diagnostic Messages 485

Appendices

731

732

733

734

735

class should have a name since it needs a constructor or a destructor

The class definition does not have a class name but it includes members that have
constructors or destructors. Since the class has C++ semantics, it should be have anamein
case the constructor or destructor needs to be referenced.

Example:
struct P {
int x,y;
P();
1

typedef struct {
P c;
int v;

} T

class should have a name since it inherits a class

The class definition does not have a class name but it inheritsaclass. Since the class has
C++ semantics, it should be have aname in case the constructor or destructor needs to be
referenced.

Example:
struct P {
int x,y;

P();

typedef struct : P {
int v;
P T

cannot open pre-compiled header file’ %s

The compiler has detected a problem while trying to open the pre-compiled header file for
read/write access.

invalid second argument to va_start

The second argument to the va_start macro should be the name of the argument just before
the"..." in the argument list.

'II' style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style
comment ("//"). The warning can be removed by switching to a C style comment ("/**/").
If you require the comment to be terminated at the end of the line, make sure that the
backslash character is not the last character in the line.

486 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

736

737

738

739

740

741

Example:
#define XX 23 // coment start \
conment \
end
int x = XX [// comment start ...\

comment end
cannot open file’%s' for write access

The compiler has detected a problem while trying to open the indicated file for write
access.

implicit conversion of pointersto integral types of same size

The compiler allows, when extensions are enabled, implicit conversions between pointers
to integral types when the size of the integral types are the same. Thus, conversions from
unsigned char to either char or signed char would be allowed. Thisisan extension as the
ISO/ANSI Draft Working Paper permitsimplicit conversions only when the types pointed
at areidentical.

According to the ISO/ANSI Draft Working Paper, astring literal is an array of char.
Consequently, it isillegal to initialize or assign the pointer resulting from that literal to a
pointer of either unsigned char or signed char, since these pointers point at objects of a
different type. When extensions are enabled, this condition is diagnosed as a warning;
otherwise, it isan error.

option requires a number

The specified option is not recognized by the compiler since there was no number after it
(i.e., "-w=1"). Numbers must be non-negative decimal numbers.

option -fc specified more than once
The -fc option can be specified at most once on a command line.
option -fc specified in batch file of commands

The -fc option cannot be specified on aline in the batch file of command lines specified by
the -fc option on the command line used to invoke the compiler.

file specified by -fc is empty or cannot be read

Thefile specified using the -fc option is either empty or an input/output error was
diagnosed for thefile.

Diagnostic Messages 487

Appendices

742

743

744

745

746

747

748

cannot open file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An
input/output error is also possible.

input/output error reading the file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An
input/output error is also possible.

%N’ does not have a return type specified (int assumed)
In C++, operator functions should have an explicit return type specified. In future revisions

of the ISO/ANSI C++ standard, the use of default int type specifiers may be prohibited so
removing any dependencies on default int early will prevent problemsin the future.

Example:
struct S {
operator = (S const &);
operator += (S const &);
1

cannot initialize reference to non-constant with a constant object

A reference to a non-constant object cannot be initialized with a reference to a constant
type because this would allow constant data to be modified via the non-constant pointer to
it.

Example:
extern const int *pic;
extern int & ref = pic;

processing %s

This informational message indicates where an error or warning was detected while
processing the switches specified on the command line, in environment variables, in
command files (using the’ @' notation), or in the batch command file (specified using the
-fc option).

class’%T’ has not been defined

This informational message indicates a class which was not defined. Thisis noted
following an error or warning message because it often helps to a user to determine the
cause of that diagnostic.

cannot catch undefined class object

C++ does not allow abstract classes to be copied and so an undefined class object cannot be
specified in a catch clause. It is permissible to catch areference to an undefined class.

488 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

749

750

751

752

class’%T’ cannot be used since its definition has errors

The analysis of the expression could not continue due to previous errors diagnosed in the
class definition.

function prototype in block scope missing ' extern’

Thiswarning can be triggered when the intent is to define a variable with a constructor.
Due to the complexities of parsing C++, statements that appear to be variable definitions
may actually parse as afunction prototype. A work-around for this problem is contained in
the example. If aprototypeis desired, add the extern storage class to remove this warning.

Example:
struct C {
b
struct S {
S(C);
voi d foo()
{
Sa(¢)); /! function prototype!
b((C()));// variable definition
int bar(int);// warning
extern int sam(int); // no warning
}

function prototypeis’ %T’

Thisinformational message indicates what the type of the function prototypeisfor the
message in question.

class’%T’ containsa zero size array

Thiswarning is triggered when a class with a zero sized array isused in an array or asa
class member. Thisisaquestionable practice since a zero sized array at the end of aclass
often indicates a class that is dynamically sized when it is constructed.

Example:
struct C {
C *next;
char nane[];

1

struct X {
Ca;

b

C a[10];

Diagnostic Messages 489

Appendices

753 invalid 'new’ modifier

The Open Watcom C++ compiler does not support new expression modifiers but allows
them to match the ambient memory model for compatibility. Invalid memory model
modifiers are al so rejected by the compiler.

Example:
int *fn(unsigned x)
{
return new __interrupt int[x];
}
754 ' declspec(thread)’ data’%S must be link-time initialized

This error message indicates that the dataitem in question either requires a constructor,
destructor, or run-timeinitialization. This cannot be supported for thread-specific data at
thistime.

Example:
#i ncl ude <stdlib. h>

struct C {
) ;

i
struct D {
~D();

1

C __decl spec(thread) c;

D __decl spec(thread) d;

int __declspec(thread) e = rand();

755 code may not work properly if this module is split across a code segment

The"zm" option alows the compiler to generate functions into separate segments that have
different names so that more than 64k of code can be generated in one object file.
Unfortunately, if an explicit near function is coded in alarge code model, the possibility
exists that the linker can place the near function in a separate code segment than afunction
that callsit. Thiswould cause alinker error followed by an execution error if the
executable is executed. The"zmf" option can be used if you require explicit near functions
in your code.

Example:

490 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

756

757

758

759

760

761

/1 These functions may not end up in the
/1 sanme code segnent if the -zmoption

/1 is used. If this is the case, the near
/1 call will not work since near functions
/1 nmust be in the same code segnent to

/1 execute properly.

static int near near_fn(int x)

{
return x + 1,
}
int far_fn(int y)
{
return near_fn(y * 2);
}

#pragma extref: symbol '%N’ not declared

This error message indicates that the symbol referenced by #pragma extref has not been
declared in the context where the pragma was encountered.

#pragma extref: overloaded function’ %S cannot be used

An external reference can be emitted only for external functions which are not overloaded.
#pragma extref: '%N’ isnot a function or data

This error message indicates that the symbol referenced by #pragma extref cannot have an
external reference emitted for it because the referenced symbol is neither afunction nor a
dataitem. An external reference can be emitted only for external functions which are not
overloaded and for external dataitems.

#pragma extref: '%S is not external

This error message indicates that the symbol referenced by #pragma extref cannot have an
externa reference emitted for it because the symbol is not external. An external reference
can be emitted only for external functions which are not overloaded and for external data
items.

pre-compiled header file being recreated (debugging info may change)

The compiler has detected that the module being compiled was used to create debugging
information for use by other modules. In order to maintain correctness, the pre-compiled
header file must be recreated along with the object file.

octal escape sequence out of range; truncated

This message indicates that the octal escape sequence produces an integer that cannot fit
into the required character type.

Diagnostic Messages 491

Appendices

762

763

764

765

766

767

768

769

770

771

772

Example:
char *p = "\406";

binary operator *%s' missing right operand

There is no expression to the right of the indicated binary operator.

binary operator '%s missing left operand

Thereis no expression to the |eft of the indicated binary operator.

expression contains extra operand(s)

The expression contains operand(s) without an operator

expression contains consecutive operand(s)

More than one operand found in arow.

unmatched right parenthesis’)’

The expression contains aright parenthesis)" without a matching left parenthesis.
unmatched left parenthesis’ ('

The expression contains a left parenthesis (" without a matching right parenthesis.
no expression between parentheses ()’

There isamatching set of parenthesis"()" which do not contain an expression.
expecting ’:’ operator in conditional expression

A conditional expression exists without the’:’ operator.

expecting’?’ operator in conditional expression

A conditional expression exists without the’? operator.

expecting first operand in conditional expression

A conditional expression exists without the first operand.

expecting second operand in conditional expression

A conditional expression exists without the second operand.

492 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

773

774

775

776

77

778

779

expecting third operand in conditional expression

A conditional expression exists without the third operand.
expecting operand after unary operator ' %s

A unary operator without being followed by an operand.
%S’ unexpected in constant expression

"%s' not alowed in constant expression

assembler: '%s

A warning has been issued by the #pragma inline assembler.
expecting 'id’ after "::" but found ' %s

The'::" operator has an invalid token following it.

Example:
#define fn(x) ((x)+1)

struct S {
int inc(int y) {
return ::fn(y);

}
b

only constructors can be declared explicit
Currently, only constructors can be declared with the explicit keyword.
Example:
int explicit fn(int x) {
return x + 1,
}

const_cast type must be pointer, member pointer, or reference

The type specified in aconst_cast operator must be a pointer, a pointer to a member of a
class, or areference.

Example:
extern int const *p;
long I p = const_cast<long>(p);

Diagnostic Messages 493

Appendices

780

781

782

783

784

const_cast expression must be pointer to same kind of object

Ignoring const and volatile qualification, the expression must be a pointer to the same type
of object asthat specified in the const_cast operator.

Example:
extern int const * ip;
long* I p = const_cast<long*>(ip);

const_cast expression must be lvalue of the same kind of object

Ignoring const and volatile qualification, the expression must be an Ivalue or reference to
the same type of object as that specified in the const_cast operator.

Example:
extern int const i;
long& Ir = const_cast<long&(i);

expression must be pointer to member from same class in const_cast

The expression must be a pointer to member from the same class as that specified in the
const_cast operator.

Example:
struct B {
int ib;
b

struct D : public B {

b

extern int const B::* inb;

int D:* ind const_cast<int D::*>(inb);

expression must be member pointer to same type as specified in const_cast

Ignoring const and volatile qualification, the expression must be a pointer to member of the
sametype as that specified in the const_cast operator.

Example:
struct B {
int ib;
[ong | b;
i

int D:* inmd const_cast<int D.:*>(&::1b);
reinterpret_cast expression must be pointer or integral object

When a pointer typeis specified in the reinterpret_cast operator, the expression must be a
pointer or an integer.

494 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

785

786

787

Example:
extern float fval;
long* I p = const_cast<long*>(fval);

The expression hasfloat type and soisillegal.
reinterpret_cast expression cannot be casted to reference type

When areference type is specified in the reinterpret_cast operator, the expression must be
an Ivalue (or have reference type). Additionally, constness cannot be casted away.

Example:
extern long f;
extern const |long f2;
long& Irl = const_cast<long&(f + 2);
ong& Ir2 = const_cast<long&(f2);

Both initializations areillegal. Thefirst cast expressionisnot an lvalue. The second cast
expression attempts to cast away constness.

reinterpret_cast expression cannot be casted to pointer to member

When a pointer to member type is specified in the reinterpret_cast operator, the expression
must be a pointer to member. Additionally, constness cannot be casted away.

Example:
extern long f;
struct S {
const long f2;
S();
1

long S::* npl = const_cast<long S:: *>(f);
long S::* np2 = const_cast<long S:: *>(&S::f2);

Both initidizations areillegal. Thefirst cast expression does not involve a member pointer.
The second cast expression attempts to cast away constness.

only integral arithmetic types can be used with reinterpret_cast
Pointers can only be casted to sufficiently large integral types.
Example:

voi d* p;

float f = reinterpret_cast<float>(p);

The cast isillegal because float type is specified.

Diagnostic Messages 495

Appendices

788

789

790

791

only integral arithmetic types can be used with reinterpret_cast
Only integral arithmetic types can be casted to pointer types.

Example:
float flt;
void* p = reinterpret_cast<void*>(flt);

The castisillegal because f | t hasfloat type which isnot integral.
cannot cast away constness

A cast or implicit conversion isillegal because a conversion to the target type would
remove constness from a pointer, reference, or pointer to member.

Example:
struct S {
int s;
1

extern S const * ps;
extern int const S::* nps;
S* psl ps;

S& rsl *ps;

int S::* mpl = nps;

Thethreeinitidizations areillegal since they are attempts to remove constness.
size of integral type in cast less than size of pointer

An object of the indicated integral type istoo small to contain the value of the indicated
pointer.

Example:
int x;
char p = reinterpret_cast<char>(&);
char g = (char)(&);

Both casts are illegal since achar issmaller than a pointer.
type cannot be used in reinterpret_cast

The type specified with reinterpret_cast must be an integral type, a pointer type, a pointer to
amember of aclass, or areference type.

Example:
voi d* p;
float f = reinterpret_cast<float>(p);
void* g = (reinterpret_cast<void>(p), p);

The casts specify illegal types.

496 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

792 only pointers can be casted to integral types with reinterpret_cast
The expression must be a pointer type.
Example:
voi d* p;
float f = reinterpret_cast<float>(p);
void* q = (reinterpret_cast<void>(p), p);
The casts specify illegal types.
793 only integers and pointers can be casted to pointer types with reinterpret_cast
The expression must be a pointer or integral type.
Example:
voi d* x;
void* p = reinterpret_cast<void*>(16);
void* q = (reinterpret_cast<void*>(x), p);
The casts specify illegal types.

794 static_cast cannot convert the expression

Theindicated expression cannot be converted to the type specified with the static_cast
operator. Perhapsreinterpret_cast or dynamic_cast should be used instead;

795 static_cast cannot be used with the type specified
A static cast cannot be used with afunction type or array type.
Example:
typedef int fun(int);
extern int poo(long);
int i = (static_cast<fun)(poo))(22);
Perhaps reinterpret_cast or dynamic_cast should be used instead;
796 static_cast cannot be used with the reference type specified
The expression could not be converted to the specified type using static_cast.
Example:
[ong I ng;
int& ref = static_cast<int&(Ing);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

Diagnostic Messages 497

Appendices

797

798

799

800

801

static_cast cannot be used with the pointer type specified
The expression could not be converted to the specified type using static_cast.
Example:
[ong I ng;
int* ref = static_cast<int*>(Ing);
Perhaps reinterpret_cast or dynamic_cast should be used instead;
static_cast cannot be used with the member pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
struct S {
| ong | ng;
1

int S::* nmp = static_cast<int S::*>(&S::1ng);
Perhaps reinterpret_cast or dynamic_cast should be used instead;
static_cast type is ambiguous

More than one constructor and/or used-defined conversion function can be used to convert
the expression to the indicated type.

cannot cast from ambiguous base class

When more than one base class of a given type exists, with respect to a derived class, itis
impossible to cast from the base class to the derived class.

Example:
struct Base { int bl; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Derived* foo(Base* p)

{
}

return static_cast<Derived*>(p);

The cast fails since Base isan ambiguous base class for Der i ved.
cannot cast to ambiguous base class

When more than one base class of a given type exists, with respect to aderived class, itis
impossible to cast from the derived class to the base class.

498 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct Base { int bl; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Base* foo(Derived* p)

return (Base*)p;

}

The cast fails since Base isan ambiguous base class for Der i ved.
802 can only static_cast integers to enumeration type
When an enumeration type is specified with static_cast, the expression must be an integer.

Example:
enumsex { male, female };
sex father = static_cast<sex>(1.0);

The cast isillegal because the expression is not an integer.

803 dynamic_cast cannot be used with the type specified
A dynamic cast can only specify areference to a class or apointer to aclass or void. When
aclassisreferenced, it must have virtual functions defined within that class or a base class
of that class.

804 dynamic_cast cannot convert the expression
Theindicated expression cannot be converted to the type specified with the dynamic_cast
operator. Only apointer or reference to a class object can be converted. When aclass
object isreferenced, it must have virtual functions defined within that class or a base class
of that class.

805 dynamic_cast requires class’%T’ to have virtual functions

Theindicated class must have virtual functions defined within that class or a base class of
that class.

806 base class for type in dynamic_cast is ambiguous (will fail)

Thetypein the dynamic_cast is a pointer or reference to an ambiguous base class.

Example:
struct A { virtual void f(){}; };
struct D1 : A{ };
struct D2 : A{ };
struct D: D1, D2 { };

A *foo(D*p) {
[l will always return NULL
return(dynamic_cast< A* >(p));

Diagnostic Messages 499

Appendices

807 base class for type in dynamic_cast is private (may fail)
Thetypein the dynamic_cast is a pointer or reference to a private base class.

Example:
struct V { virtual void f(){}; };
struct A : private virtual V { };
struct D : public virtual V, A{ };

V *foo(A*p) {
/1 returns NULL if '"p’ points to an "A
/1 returns non-NULL if 'p’ points toa'D
return(dynamic_cast< V* >(p));

}
808 base class for typein dynamic_cast is protected (may fail)
Thetypein the dynamic_cast is a pointer or reference to a protected base class.
Example:
struct V { virtual void f(){};

1
struct A : protected virtual V { }
struct D: public virtual VvV, A{ }

V *foo(A*p) {
/1 returns NULL if 'p’ points to an 'A
/1 returns non-NULL if "p’ points to a’'D
return(dynamic_cast< V* >(p));

}

809 type cannot be used with an explicit cast

Theindicated type cannot be specified as the type of an explicit cast. For example, itis
illegal to cast to an array or function type.

810 cannot cast to an array type
It is not permitted to cast to an array type.
Example:
typedef int array_type[5];
int array[5];
int* p = (array_type)array;

811 cannot cast to a function type

It is not permitted to cast to afunction type.

500 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

812

813

814

815

Example:
typedef int fun_type(void);
void* p = (fun_type)O;

implementation restriction: cannot generate RTTI info for *%T’ (%d classes)
Theinformation for one class must fit into one segment. |If the segment size isrestricted to
64k, the compiler may not be able to emit the correct information properly if it requires
more than 64k of memory to represent the class hierarchy.

mor e than one default constructor for *%T

The compiler found more than one default constructor signature in the class definition.
There must be only one constructor declared that accepts no arguments.

Example:
struct C {
) ;
Cl int =0);
1
C cv;

user-defined conversion is ambiguous

The compiler found more than one user-defined conversion which could be performed.
The indicated functions that could be used are shown.

Example:
struct T {
T(S const&);
1
struct S {
operator T const& ();
1

extern S sv;
T const & tref = sv;

Either the constructor or the conversion function could be used; consequently, the
conversion is ambiguous.

range of possible values for type ' %T’ is %u to %u

This informational message indicates the range of values possible for the indicated
unsigned type.

Example:
unsi gned char uc;
if(uc >=0);

Being unsigned, the char is always >= 0, so awarning will beissued. Following the
warning, this informational message indicates the possible range of values for the unsigned
type involved.

Diagnostic Messages 501

Appendices

816

817

818

819

range of possible values for type ' %T’ is %d to %d

This informational message indicates the range of values possible for the indicated signed
type.

Example:
si gned char c;
if(c <= 127);

Because the value of signed char is aways <= 127, awarning will beissued. Following the
warning, this informational message indicates the possible range of values for the signed
type involved.

constant expression in comparison has value %d

This informational message indicates the value of the constant expression involved in a
comparison which caused awarning to be issued.

Example:
unsi gned char uc;
if(uc >=0);

Being unsigned, the char is always >= 0, so awarning will beissued. Following the
warning, thisinformational message indicates the constant value (0 in this case) involved in
the comparison.

constant expression in comparison has value %u

This informational message indicates the value of the constant expression involved in a
comparison which caused awarning to be issued.

Example:
si gned char c;
if(c <= 127);

Because the value of char is always <= 127, awarning will beissued. Following the
warning, thisinformational message indicates the constant value (127 in this case) involved
in the comparison.

conversion of const reference to non-const reference

A reference to a constant object is being converted to a reference to a non-constant object.
This can only be accomplished by using an explicit or const _cast cast.

Example:
extern int const & const_ref;
int & non_const_ref = const_ref;

502 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

820

821

822

823

824

conversion of volatile reference to non-volatile reference

A reference to avolatile object is being converted to areference to a non-volatile object.
This can only be accomplished by using an explicit or const _cast cast.

Example:
extern int volatile & volatile_ref;
int & non_volatile_ref = volatile_ref;

conversion of const volatile reference to plain reference
A reference to a constant and volatile object is being converted to areference to a
non-volatile and non-constant object. This can only be accomplished by using an explicit

or const _cast cast.

Example:
extern int const volatile & const_volatile_ref;
int & non_const_volatile ref = const_volatile_ref;

current declaration has type ' %T’

Thisinformational message indicates the type of the current declaration that caused the
message to be issued.

Example:
extern int _ _near foo(int);
extern int _ far foo(int);

only a non-volatile const reference can be bound to temporary

The expression being bound to a reference will need to be converted to atemporary of the
type referenced. This means that the reference will be bound to that temporary and so the
reference must be a non-volatile const reference.

Example:
extern int * pi;
void * & rl = pi; [l error
void * const & r2 = pi; /1 ok
void * volatile & r3 = pi; [/ error
void * const volatile &r4 = pi;// error

conversion of pointer to member across a virtual base

In November 1995, the Draft Working Paper was amended to disallow pointer to member
conversions when the source classis avirtual base of the target class. Thissituationis
treated as awarning (unless -zais specified to require strict conformance), as atemporary
measure. In the future, an error will be diagnosed for this situation.

Diagnostic Messages 503

Appendices

825

826

827

828

Example:
struct B {
int b;
b
struct D: virtual B {
int d;
1
int B.:* np_b = &B::b;
int Di:* np_d = np_b; /1 conversion across a

virtual base
declaration cannot be in the same scope as namespace ' %S

A namespace hame must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the namespace.

Example:
nanespace X {
int q;

"%S cannot be in the same scope as a namespace

A namespace name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the namespace.

Example:
int x;
nanespace X {
int q;
1

File: %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the name of the file in which an error or warning was detected. The message
precedes a group of one or more messages written for the file in question. Within each
group, references within the file have the format (I i ne[, col umm]).

%s
This informative message is written when the -ew switch is specified on a command line.

It indicates the location of an error when the error was detected either before or after the
source file was read during the compilation process.

504 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

829

830

831

832

833

834

835

%s. %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the location of an error when the error was detected while processing the
switches specified in acommand file or by the contents of an environment variable. The
switch that was being processed is displayed following the name of the file or the
environment variable.

%s. %S

This informative message is written when the -ew switch is specified on a command line.

It indicates the location of an error when the error was detected while generating a function,
such as a constructor, destructor, or assignment operator or while generating the machine
instructions for a function which has been analysed. The name of the function is given
following text indicating the context from which the message originated.

possible overrideis’ %S

Theindicated function is ambiguous since that name was defined in more than one base
class and one or more of these functionsisvirtual. Consequently, it cannot be decided
which isthe virtual function to be used in a class derived from these base classes.

function being overriddenis’ %S

Thisinformational message indicates a function which cannot be overridden by a virtual
function which has ellipsis parameters.

name does not reference a namespace
A namespace alias definition must reference a namespace definition.

Example:
typedef int T,
nanespace a = T,

namespace alias cannot be changed
A namespace alias definition cannot change which namespace it is referencing.

Example:
namespace nsl { int x; }
nanmespace ns2 { int x; }
namespace a nsi;
namespace a ns2;

cannot throw undefined class object

C++ does not allow undefined classes to be copied and so an undefined class object cannot
be specified in athrow expression.

Diagnostic Messages 505

Appendices

836

837

838

839

840

841

symbol has different type than previous symbol in same declaration

This warning indicates that two symbols in the same declaration have different types. This
may be intended but it is often due to a misunderstanding of the C++ declaration syntax.

Example:
/1 change to:
/1 char *p;
/1 char q;
/1l or:
/1 char *p, *q;
char* p, q;

companion definition is’ %S

Thisinformational message indicates the other symbol that shares a common base typein
the same declaration.

syntax error; default argument cannot be processed

The default argument contains unbalanced braces or parenthesis. The default argument
cannot be processed in this form.

default argument started %L

This informational message indicates where the default argument started so that any
problems with missing braces or parenthesis can be fixed quickly and easily.

Example:
struct S {
int f(int t= (4+(3-7), // missing parenthesis
)
i

"%N’ cannot be declared in a namespace

A namespace cannot contain declarations or definitions of operator new or operator delete
since they will never be called implicitly in anew or delete expression.

Example:
nanespace N {
voi d *operator new unsigned);
voi d operator delete(void *);

b

namespace cannot be defined in a non-namespace scope

A namespace can only be defined in either the global namespace scope (file scope) or a
namespace SCope.

506 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

842

Example:
struct S {
nanespace N {
int x;
s
}

namespace'::’ qualifier cannot be used in this context

Qualified identifiersin a class context are allowed for declaring friend functions. A
namespace qualified name can only be declared in a namespace scope that encloses the
qualified name’ s namespace.

Example:
nanespace M {
nanespace N {
void f();
void g();
nanespace O {
void N :f() {

/1l error
}
}
void N :g() {
/] K
}

}

cannot cast away volatility

A cast or implicit conversion isillegal because a conversion to the target type would
remove volatility from a pointer, reference, or pointer to member.

Example:
struct S {
int s;
1

extern S volatile * ps;
extern int volatile S::* nps;

S* psl = ps;
S& rsl = *ps;
int S::* mpl = nps;

Thethreeinitializations areillegal since they are attempts to remove volatility.
cannot cast away constness and volatility

A cast or implicit conversion isillegal because a conversion to the target type would
remove constness and volatility from a pointer, reference, or pointer to member.

Diagnostic Messages 507

Appendices

846

847

Example:
struct S {
int s;
b

extern S const volatile * ps;
extern int const volatile S:.:* nps;

S* psl = ps;
S& rsl = *ps;
int S::* mpl = nps;

Thethreeinitiaizations areillegal since they are attempts to remove constness and
volatility.

cannot cast away unaligned

A cast or implicit conversion isillegal because a conversion to the target type would add
alignment to a pointer, reference, or pointer to member.

Example:
struct S {
int s;
1

extern S _unaligned * ps;
extern int _unaligned S::* nps;

S* psl = ps;
S& rsl = *ps;
int S::* mpl = nps;

Thethreeinitiaizations areillegal since they are attemptsto add alignment.
subscript expression must be integral

Both of the operands of the indicated index expression are pointers. There may bea
missing indirection or function call.

Example:
int f();
int *p;
int g()
return p[f];
}

extension: non-standard user-defined conversion

An extended conversion was allowed. The latest draft of the C++ working paper does not
allow auser-defined conversion to be used in this context. Asan extension, the WATCOM
compiler supports the conversion since substantial legacy code would not compile without
the extension.

508 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

849

850

851

852

useless using directive ignored

Thiswarning indicates that for most purposes, the using namespace directive can be
removed.

Example:
nanespace A {
usi ng namespace A; // useless
i

base class virtual function has not been overridden

Thiswarning indicates that a virtual function name has been overridden but in an
incomplete manner, namely, avirtual function signature has been omitted in the overriding
class.

Example:
struct B {
virtual void f() const;
b

struct D: B {
virtual void f();
b

virtual functionis’%S
This message indicates which virtual function has not been overridden.
macro '%s' defined %L

This informational message indicates where the macro in question was defined. The
message is displayed following an error or warning diagnostic for the macro in question.

Example:
#defi ne nmac(a, b,c) at+b+c

int i = mac(6,7,8,9,10);

The expansion of macro nac is erroneous because it contains too many arguments. The
informational message will indicate where the macro was defined.

expanding macro ' %s' defined %L
These informational messages indicate the macros that are currently being expanded, along

with the location at which they were defined. The message(s) are displayed following a
diagnostic which isissued during macro expansion.

Diagnostic Messages 509

Appendices

853 conversion to common class type is impossible

The conversion to acommon classisimpossible. One or more of the left and right
operands are class types. The informational messages indicate these types.

Example:
class A{ A(); };
class B { B(); };
extern A a;
extern B b;
int i =(a=">b);

The last statement is erroneous since a conversion to acommon class type isimpossible.
854 conversion to common class type is ambiguous

The conversion to acommon classis ambiguous. One or more of the left and right
operands are class types. The informational messages indicate these types.

Example:
class A{ A(); };
class B: public A{ B(); };
class C: public A{ C(); };
class D: public B, public C{ I); };
extern A a;
extern D d;
int i =(a=4d),;

The last statement is erroneous since a conversion to a common class type is ambiguous.
855 conversion to common class type requires private access

The conversion to a common class violates the access permission which was private. One
or more of the left and right operands are class types. The informational messages indicate
these types.

Example:
class A { A(); };
class B: private A { B(); };
extern A a;
extern B b;
int i =(a=5b);

The last statement is erroneous since a conversion to a common class type violates the
(private) access permission.

856 conversion to common class type requires protected access
The conversion to a common class violates the access permission which was protected.

One or more of the left and right operands are class types. The informational messages
indicate these types.

510 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

857

858

859

Example:
class A{ A(); };
class B: protected A{ B(); };
extern A a;
extern B b;
int i =(a=="Db);

Thelast statement is erroneous since a conversion to a common class type violates the
(protected) access permission.

namespace lookup is ambiguous

A lookup for a name resulted in two or more non-function names being found. Thisis not
allowed according to the C++ working paper.

Example:
nanespace M {
int i;
}
nanespace N {
int i;
usi ng nanespace M
}
void f() {
usi ng namespace N,
i =7, [l error
}

ambiguous hamespace symbol is’ %S

This informational message shows a symbol that conflicted with another symbol during a
lookup.

attempt to static_cast from a private base class

An attempt was made to static_cast a pointer or reference to a private base classto a
derived class.

Example:
struct PrivateBase {
b
struct Derived : private PrivateBase {
b

extern Privat eBase* pb;
extern PrivateBase& rb;
Derived* pd = static_cast<Derived*>(pb);
Derived& rd = static_cast<Derived&(rb);

The last two statements are erroneous since they would involve astatic_cast from a private
base class.

Diagnostic Messages 511

Appendices

860 attempt to static_cast from a protected base class

An attempt was made to static_cast a pointer or reference to a protected base classto a
derived class.

Example:
struct ProtectedBase {

b

struct Derived : protected ProtectedBase {

}s

extern ProtectedBase* pb;
extern ProtectedBase& rb;
Derived* pd = static_cast<Derived*>(pb);
Derived& rd = static_cast<Derived&(rb);

The last two statements are erroneous since they would involve astatic_cast from a
protected base class.

861 gualified symbol cannot be defined in this scope

This message indicates that the scope of the symboal is not nested in the current scope. This
isarestriction in the C++ language.

Example:

nanespace A {
struct S {
void ok();
voi d bad();
}
void ok();
voi d bad();

1

void A :S::ok() {
}
void A :ok() {
nanmespace B {
void A :S: :bad() {
/Il error!

}
void A :bad() {

/1 error!
}
1
862 using declaration references non-member

This message indicates that the entity referenced by the using declaration is not a class
member even though the using declaration isin class scope.

512 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
nanespace B {
int x;
i
struct D {
usi ng B::x;
b

863 using declaration references class member

This message indicates that the entity referenced by the using declaration is a class member
even though the using declaration is not in class scope.

Example:
struct B {
int m

b
using B::m

864 invalid suffix for a constant

Aninvalid suffix was coded for a constant.

Example:

__int64 a[] = {
0i7, I/ error
0i 8,
0i 15, // error
0i 16,
0i31, // error
0i 32,
0i 63, // error
0i 64,

1

865 classin using declaration (' %T’) must be a base class

A using declaration declared in a class scope can only reference entities in a base class.

Example:
struct B {
int f;
s

struct C {
int g;
b

struct D: private C {
B::f;
b

Diagnostic Messages 513

Appendices

866

867

868

869

870

871

name in using declaration is already in scope

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
nanespace B {
int f;
using B::f;
b

conflict with a previous using-decl ' %S

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
nanespace B {
int f;
using B::f;
1

conflict with current using-decl ' %S

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
nanespace B {
int f;
using B::f;
b
use of %N’ requires build target to be multi-threaded
The compiler has detected a use of a run-time function that will create a new thread but the
current build target indicates only single-threaded C++ source code is expected.
Depending on the user’ s environment, enabling multi-threaded applications can involve
using the "-bm" option or selecting multi-threaded applications through a dialogue.
implementation restriction: cannot use 64-bit value in switch statement
The use of 64-hit values in switch statements has not been implemented.

implementation restriction: cannot use 64-bit value in case statement

The use of 64-bit values in case statements has not been implemented.

514 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

872

873

874

875

876

877

implementation restriction: cannot use__int64 as bit-field base type
Theuse of __int64 for the base type of a bit-field has not been implemented.
based function object cannot be placed in non-code segment "%s".

Use _segname with the default code segment " CODE", or a code segment with the
appropriate suffix (indicated by informational message).

Example:
int __ based(__segnane("foo")) f() {return 1;}

Example:
int __ based(__segnane("_CODE")) f() {return 1;}

Use a segment name ending in "%s", or the default code segment *_CODE".
This informational message explains how to use ___segname to hame a code segment.
RTTI must be enabled to use feature (use’xr’ option)

RTTI must be enabled by specifying the'xr’ option when the compiler isinvoked. The
error message indicates that a feature such as dynamic_cast, or typeid has been used
without enabling RTTI.

"typeid’ class type must be defined

The compile-time type of the expression or type must be completely defined if it isaclass
type.

Example:
struct S;
void foo(S *p) {
typeid(*p);
typeid(S);

cast involves unrelated member pointers

Thiswarning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using areinterpret_cast. These casts were
illegal, but became legal when the new-style casts were added to the draft working paper.

Example:
struct Cl {
int foo();

struct D1 {
int poo();

typedef int (CL::* Clnp)();

Clnp frmp = (Clnp) &D1: : poo;

Diagnostic Messages 515

Appendices

878

879

880

881

882

The cast on the last line of the example would be diagnosed.
unexpected type modifier found

A __ declspec modifier was found that could not be applied to an object or could not be
used in this context.

Example:
__decl spec(thread) struct S {

}1
invalid bit-field name ' %N’

A bit-field can only have asimple identifier asitsname. A qualified nameis also not
allowed for a bit-field.

Example:
struct S {
int operator + : 1;
1

%u padding byte(s) added

This warning indicates that some extra bytes have been added to a classin order to align
member data to its natural alignment.

Example:
#pragma pack(push, 8)
struct S {
char c;
doubl e d;
b
#pragma pack(pop);

cannot be called with a’%T *’

This message indicates that the virtual function cannot be called with a pointer or reference
to the current class.

cast involves an undefined member pointer

Thiswarning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using areinterpret_cast. In this case, the host
class of at least one member pointer was not afully defined class and, as such, it is
unknown whether the host classes are related through derivation. These casts were illegal,
but became legal when the new-style casts were added to the draft working paper.

516 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

883

884

Example:
struct Cl {
int foo();

struct D1,

typedef int (CL::* Clnp)();
typedef int (Dl::* Dinp)();

Clnp fn(Dlmp x) {
return (Clnp) x;
}

/1 D1 may derive fromCl
The cast on the last line of the example would be diagnosed.
cast changes both member pointer object and class type

Thiswarning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using areinterpret_cast. In this case, the host
classes of the member pointers are related through derivation and the object typeisalso
being changed. The cast can be broken up into two casts, one that changes the host class
without changing the object type, and another that changes the object type without
changing the host class.

Example:
struct Cl1 {
int fnl();

siruct D1 : C1 {
int fn2();

typedef int (CL::* Clnp)();
typedef void (Dl::* Dinp)();

Clnp fn(Dlmp x) {
return (Clnp) x;
}

The cast on the last line of the example would be diagnosed.

virtual function’ %S has a different calling convention

This error indicates that the calling conventions specified in the virtual function prototypes
are different. This meansthat virtua function calswill not function properly since the

caller and callee may not agree on how parameters should be passed. Correct the problem
by deciding on one calling convention and change the erroneous declaration.

Diagnostic Messages 517

Appendices

885

886

887

888

Example:
struct B {
virtual void __ cdecl foo(int, int);
b

struct D: B {
void foo(int, int);
b

#endif matches #if in different sourcefile

Thiswarning may indicate a#endif nesting problem since the traditional usage of #if
directivesis confined to the same sourcefile. Thiswarning may often come before an error
and it is hoped will provide information to solve a preprocessing directive problem.

preprocessing directive found %L

This informational message indicates the location of a preprocessing directive associated
with the error or warning message.

unary '-’ of unsigned operand produces unsigned result

When aunary minus ('-') operator is applied to an unsigned operand, the result has an
unsigned type rather than asigned type. Thiswarning often occurs because of the
misconception that '~ is part of a numeric token rather than as a unary operator. The
work-around for the warning is to cast the unary minus operand to the appropriate signed

type.

Example:
extern void u(int);
extern void u(unsigned);
void fn(unsigned x) {
u(-x);
u(-2147483648);
}

trigraph expansion produced ' %c’
Trigraph expansion occurs at avery low-level so it can affect string literals that contain

question marks. Thiswarning can be disabled via the command line or #pragma warning
directive.

Example:
/1 string expands to "(?]?~???2?"!
char *e = "(?7?7?)?27?2?-2?2?2??";
/1 possi bl e work-arounds
Char *f - n (n n ???II n) n n ???II n - n n ????II ;
char *g = "(\2A2A2)\2A 2\ 2-\ 2\ 2\ 2\ 2",

518 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

889

890

891

892

893

hexadecimal escape sequence out of range; truncated

This message indicates that the hexadecimal escape sequence produces an integer that
cannot fit into the required character type.

Example:
char *p = "\x0aCache Ti m ngs\x0a";

undefined macro '%s' evaluatesto 0

The SO C/C++ standard requires that undefined macros evaluate to zero during
preprocessor expression evaluation. This default behaviour can often mask incorrectly
spelled macro references. The warning is useful when used in critical environments where
all macros will be defined.

Example:
#i f _PRODUCTION // shoul d be _PRODUCTI ON
#endi f

char constant has value %u (more than 8 bits)

The SO C/C++ standard requires that multi-char character constants be accepted with an
implementation defined value. This default behaviour can often mask incorrectly specified
character constants.

Example:
int x ='\0x1a'; // warning
int y ="\xla;

promotion of unadorned char typeto int

This message is enabled by the hidden -jw option. The warning may be used to locate all
places where an unadorned char type (i.e., atype that is specified as char and neither
signed char nor unsigned char). This may cause portability problems since compilers
have freedom to specify whether the unadorned char type isto be signed or unsigned. The
promotion to int will have different values, depending on the choice being made.

switch statement has no case labels

The switch statement referenced in the warning did not have any case labels. Without case
labels, a switch statement will always jump to the default case code.

Example:
void fn(int x)
{
switch(x) {
defaul t:
+4X;
}
}

Diagnostic Messages 519

Appendices

894

895

896

897

898

unexpected character (%u) in sourcefile

The compiler has encountered a character in the source file that is not in the allowable set
of input characters. The decimal representation of the character byte is output for
diagnostic purposes.

Example:
/1 invalid char "\ 0O’

ignoring whitespace after line splice

The compiler isignoring some whitespace characters that occur after the line splice. This
warning is useful when the source code must be compiled with other compilers that do not
allow this extension.

Example:
#defi ne XXXX int \
X,

XXXX
empty member declaration

The compiler iswarning about an extra semicolon found in a class definition. The extra
semicolon isvalid C++ but some C++ compilers do not accept this as valid syntax.

Example:
struct S{ ; };

"%S makes use of a non-portable feature (zero-sized array)

The compiler is warning about the use of a non-portable feature in a declaration or
definition. Thiswarning is available for environments where diagnosing the use of
non-portable features is useful in improving the portability of the code.

Example:
struct D {
int d,
char a[];

in-classinitialization is only allowed for const static integral members

Example:
struct A {
static int i = 0;
b

520 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

899

900

901

902

cannot convert expression to target type

Theimplicit cast istrying to convert an expression to a completely unrelated type. Thereis
no way the compiler can provide any meaning for the intended cast.

Example:
struct T {

1
void fn()

bool b = T;
}

unknown template specialization of ' %S

Example:
t enpl at e<cl ass T>
struct A{ };

t enpl at e<cl ass T>
void A<T *>::f() {
}

wrong number of template arguments for * %S

Example:
t enpl at e<cl ass T>
struct A{ };

tenpl ate<class T, class U>
struct A<T, U { };

}

cannot explicitly specialize member of ' %S

Example:
t enpl at e<cl ass T>
struct A{ };

t enpl at e<>
struct A<int> {
void f();

t enpl at e<>
void A<int>::f() {
}

Diagnostic Messages 521

Appendices

903

904

905

906

907

908

909

specialization arguments for '%S match primary template
Example:

t enpl at e<cl ass T>

struct A{ };

t enpl at e<cl ass T>
struct A<T> { };

partial template specialization for '%S ambiguous

Example:
tenmpl ate<class T, class U>
struct A{ };

tenpl ate<class T, class U>
struct A<T *, U> { };

tenpl ate<class T, class U>
struct A<T, U*>{ };

A<int *, int *> a;
static assertion failed ' %s'

Example:
static_assert(false, "false");

Exported templates are not supported by Open Watcom C++

Example:
export tenplate< class T >
struct A {

b
redeclaration of member function’%S not allowed

Example:

candidate defined %L
Invalid register name’%s' in #pragma

The register name isinvalid/unknown.

522 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

910 Archaic syntax: class/struct missing in explicit template instantiation
Archaic syntax has been used. The standard requires a class or struct keyword to be used.
Example:
tenplate< class T >
class MyTemplate { };
tenmpl ate MyTenpl ate< int >;

Example:
tenpl ate class MyTenpl ate< int >;

Diagnostic Messages 523

Appendices

524 Diagnostic Messages

Open Watcom C/C++ Run-Time Messages

D. Open Watcom C/C++ Run-Time Messages

Thefollowingisalist of error messages produced by the Open Watcom C/C++ run-time library. These
messages can only appear during the execution of an application built with one of the C run-time libraries.

D.1 Run-Time Error Messages
Assertion failed: %s, file %s, line %d

This message is displayed whenever an assertion that you have made in your program is not
true.

Stack Overflow!

Your program is trying to use more stack space than isavailable. If you believe that your
program is correct, you can increase the size of the stack by using the "option stack=nnnn"
when you link the program. The stack size can also be specified with the "k" option if you
areusing WCL or WCL 386.

Floating-point support not loaded

Y ou have called one of the printf functions with aformat of "%e", "%f", or "%g", but have
not passed a floating-point value. The compiler generates areference to the variable

" fltused " whenever you pass afloating-point value to afunction. During the linking
phase, the extra floating-point formatting routines will also be brought into your application
when"_fltused " isreferenced. Otherwise, you only get the non floating-point formatting
routines.

*** NULL assignment detected

Thismessageis displayed if any of the first 32 bytes of your program'’s data segment has
been modified. The check is performed just before your program exits to the operating
system. All this message means is that sometime during the execution of your program,
this memory was modified.

To find the problem, you must link your application with debugging information and use
Open Watcom Debugger to monitor its execution. First, run the application with Open
Watcom Debugger until it completes. Examine the first 16 bytes of the data segment
("examine __ nullarea") and press the space bar to see the next 16 bytes. Any values that
are not equal to’ 01" have been modified. Reload the application, set watch points on the
modified locations, and start execution. Open Watcom Debugger will stop when the
specified location(s) change in value.

Run-Time Error Messages 525

Appendices

D.2 errno Values and Their Meanings

The following errors can be generated by the C run-time library. These error codes correspond to the error
types defined in er r no. h.

ENOENT

E2BIG

ENOEXEC

EBADF

ENOMEM

EACCES

EEXIST

EXDEV

EINVAL

ENFILE

EMFILE

No such file or directory
The specified file or directory cannot be found.
Argument list too big

The argument list passed to the spawn. . ., exec. .. orsyst emfunctionsrequires
more than 128 bytes, or the environment information exceeds 32K.

Exec format error

The executablefile has an invalid format.

Bad file number

Thefile handleis not avalid file handle value or it does not correspond to an open file.
Not enough memory

There was not enough memory available to perform the specified request.

Permission denied

Y ou do not have the required (or correct) permissions to access afile.

File exists

An attempt was made to create afile with the O_EXCL (exclusive) flag when thefile
aready exists.

Cross-device link

An attempt was made to rename afile to a different device.

Invalid argument

Aninvalid value was specified for one of the arguments to afunction.

File table overflow

All the FILE structures are in use, so no more files can be opened.

Too many open files

There are no more file handles available, so no more files can be opened. The maximum

number of file handles availableis controlled by the "FILES=" option in the
"CONFIG.SYS" file.

526 errno Values and Their Meanings

Open Watcom C/C++ Run-Time Messages

ENOSPC No space left on device

No more space is left for writing on the device, which usually means that the disk isfull.

EDOM Argument too large

An argument to a math function is not in the domain of the function.

ERANGE

Result too large

Theresult of amath function could not be represented (too small, or too large).

EDEADLK

Resour ce deadlock would occur

A resource deadlock would occur with regards to locked files.

D.3 Math Run-Time Error Messages

The following errors can be generated by the math functionsin the C run-time library. These error codes
correspond to the exception types defined in mat h. h and returned by the mat her r function when a math

€rror occurs.

DOMAIN

OVERFLOW

PLOSS

SING

TLOSS

UNDERFLOW

Domain error

An argument to the function is outside the domain of the function.
Overflow range error

The function result istoo large.

Partial loss of significance

A partia loss of significance occurred.

Argument singularity

An argument to the function has a bad value (e.g., |0g(0.0)).

Total loss of significance

A total loss of significance occurred. An argument to afunction
was too large to produce a meaningful result.

Underflow range error

Theresult istoo small to be represented.

Math Run-Time Error Messages 527

Index

#define 466, 481

#elif 338-339

#else 338-339, 461

#endif 305, 338-339, 349, 461, 518
#error 143, 211, 350

#f 305, 338-339, 349, 518

#ifdef 349

#ifndef 349, 481

#include 71, 340, 345-347, 422, 479, 481
#line 26

#pragma 81, 85, 473, 484

#pragma extref 491
#pragmawarning 305, 518

#undef 351, 465

-0 484

i

.186 260
.286 260
.286¢ 260
.286p 260
.287 260
.386 260
.386p 260
.387 260
486 260
.486p 260
.586 260
.586p 260
.686 260
.686p 260
.8086 260
.8087 260
.apha 260
.break 260
.code 260
.const 260

.continue 260
.cref 260
.data 260
.data? 260
.dosseg 260
.endw 260
.err 260
.errb 260
.errdef 260
.errdif 260
errdifi 260
.erre 260
.erridn 260
.erridni 260
.errnb 260
.errndef 260
.errnz 260
.exit 260
fardata 260
fardata? 260
fcond 260
Jist 260
Jistall 260
Jistif 260
Jlistmacro 260
listmacroall 260
.model 260
.nocref 260
.nolist 260
radix 260
.repeat 260
.sal 260
.seq 260
.sfcond 260
.stack 260
Startup 260
tfcond 260
.until 260
.while 260
xcref 260
Xlist 260

38675

529

Index

dloc _text 49
aloc_text pragma 139, 207
8 _alloca() 61
argument list (pragma) 160, 230
arguments
8087CW.C 108 removing from the stack 165, 234
80x87 emulator 105 arguments on the stack 163, 232
_asm 93, 259
__asm 259
assembly language
< automatic variables 258
directives 260
in-line 251
labels 257
<0s>_INCLUDE environment variable 17, 71 opcodes 260

variables 257

auto 316, 320, 329, 347, 356, 361, 367-368, 397,

404
|I| AUTODEPEND 150, 218

AUTOEXEC.BAT 65
auxiliary pragma 151, 219

\H directory 72

B
A
base operator 89
o _based macro 30
AbnormalTermination 272-273, 278 based pointers 87
abort() 267 segment constant 88
aborts (pragma) 169, 238 segment object 89
accessviolation 280 self 90
addressing arguments 127, 193, 196 void 89
alias name (pragma) 152, 220 based 80
alias names __based 80, 87-88, 346
cdecl 154, 222 benchmarking 68
__cdecl 154, 222 bheapseg 89
fastcall 154, 222 big code model 113, 181
_ fastcall 154, 222 big datamodel 113, 181
fortran 154, 222 BINNT directory 294
__fortran 154, 222 BINP directory 294
pascal 154, 222 BINW directory 294
__pascal 154, 222 BIOScall 164, 233
stdcall 154, 222 bool 482
__stdcall 154, 222 break 267, 270-272, 310, 337, 477
syscall 222 BSSclass 46
__syscall 222 _BSS segment 46
system 222
__System 222
watcall 154, 222
_ watcal 154, 222
alias pragma 138, 206
aliasing 54

530

Index

C directory 64
Clibraries
compact 102, 106
flat 106-107, 183
huge 102, 106
large 102, 106
medium 102, 106
small 102, 106-107, 183
C/C++ libraries
flat 102
small 102
callback functions 160
calling convention
MetaWare High C 221, 243
Microsoft C 153, 174
calling conventions 119, 185
calling functions
far 157, 227
near 157, 227
calling information (pragma) 157, 227
case 304, 310, 319, 337, 349, 373, 451
catch 58, 346, 376, 458, 461, 475, 488
cdecl 81, 154, 222
cdecl alias name 154, 222
__cdecl aliasname 154, 222
cdecl macro 30
_cdecl macro 30
_Cdecl 81
__cdecl 81-82, 154, 221-222

char 38, 84-85, 314, 316, 344, 487, 496, 519

sizeof 124,190
char type 119, 185
__CHAR_SIGNED__ 38,76
check_stack option 136, 204

class 342, 354-355, 370, 383, 413, 457, 464, 523

BSS 46

CODE 46, 116, 123, 184, 189

DATA 46

FAR _DATA 116, 123, 184, 189
classinformation 142, 210
CLIB3R.LIB 103-104
CLIB3S.LIB 103-104
CLIBC.LIB 103
CLIBDLL.LIB 103
CLIBH.LIB 103
CLIBL.LIB 103
CLIBM.LIB 103
CLIBMTL.LIB 103
CLIBS.LIB 103

CMAINO086.C 108
CMAIN386.C 109
CODE class 46, 116, 123, 184, 189
code generation 95

memory reguirements 96, 296
code models

big 113, 181

small 113, 181
code segment 38
code seg pragma 139, 207
command line format 63
command line options

compiler 64

environment variable 64

optionsfile 64
command name

compiler 5, 63
comment pragma 140, 208
compact memory model 114, 182
compact model

libraries 102, 106
__COMPACT__ 52
compiletime 96, 297
compiler

features 63
compiling

command line format 63

using DLL compilers 64
compiling options 5, 9, 15
CONFIG.SYS 65
console application 15-16
const 311, 316, 360-361, 396-397, 423, 426,

428-429, 481, 494

CONST segment 46
CONST2 segment 46
const_cast 493-494
CONTEXT 280
continue 267, 271-272, 310, 338
conventions

80x87 132-133, 201-202

non-80x87 123, 189
__cplusplus 77
CPLX3R.LIB 104
CPLX3S.LIB 104
CPLX73R.LIB 104
CPLX73S.LIB 104
CPLX7C.LIB 104
CPLX7H.LIB 104
CPLX7L.LIB 104
CPLX7M.LIB 104
CPLX7S.LIB 104
CPLXC.LIB 104
CPLXH.LIB 104
CPLXL.LIB 104

531

Index

CPLXM.LIB 104
CPLXSLIB 104
__CPPRTTI 77

_ CPPUNWIND 77
CSTRTO086.ASM 108
CSTRT386.ASM 109
CSTRTO16.ASM 108
CSTRTW16.ASM 108
CSTRTW32.ASM 109
CSTRTX32.ASM 109
CVPACK 24

DATA class 46
data models

big 113, 181

huge 114

small 113, 181
data representation 119, 185
_DATA segment 46
datatypes 119, 185
data_seg pragma 141, 209
Debugging Information Compactor 24
debugging information format 24
__declspec(dilexport) 93
__declspec(dllimport) 93
__declspec 82,91, 483, 516
default 310-311, 319, 338-339, 349, 452
default filename extension 64
default libraries

using pragmas 137, 205
delete 334, 347, 366, 418, 439, 448, 506
DGROUP group 46
diagnostic messages

language 298
diagnostics

errno 526

error 70

matherr 527

Open Watcom C/C++ 69

run-time 526-527

warning 70
directives

assembly language 260
directories

C 64

OCC 64
disable_message pragma 141, 209
disabling error file 34

532

DLL 16, 46, 54, 83

exporting functions 82
DLL compilers 64
_DLL 16
dllexport 82, 93
dilimport 82
_ DLLstart_ 16
do 310, 318, 337-338, 349
DOS

initialization 108
DOS Extender

286 108

Tenberry Software 108

DOS subdirectory 101
DOS-dependent functions 286
DOS/16M 108

initialization 108
DOS/4GW example 254
DOS16M.ASM 108
_DOs 17, 75-76
_DOs 17,7576
DOSCALLS.LIB 292
DOSPMC.LIB 103
DOSPMH.LIB 103
DOSPML.LIB 103
DOSPMM.LIB 103
DOSPMS.LIB 103
double 316, 319

sizeof 124, 190
doubletype 121, 187
DPMI example 254
DS segment register 82-83

dump_object_model pragma 142, 210

dynamic link library 16, 46, 54, 83
exporting functions 82
dynamic_cast 499-500, 515

ELIMINATE linker option 48-49
emu387.lib 105
emu87.lib 105, 107
emulator

80x87 105

floating-point 105
enable_message pragma 142, 210
English diagnostic messages 298
enum 312, 321, 324, 368, 382, 385
enum pragma 142, 210
enumerated types

Index

sizeof 125,191
enumeration

information 142, 210

values 142, 210
environment string

65

= substitute 65
environment variable

command line options 64
environment variables 64

<os> INCLUDE 17,71

FORCE 291

INCLUDE 72-73, 291, 346

LIB 291

LIBDOS 292

LIBOS2 292

LIBPHAR 292-293

LIBWIN 292

NO87 106-107, 293

OS2 INCLUDE 72

PATH 60, 72, 291, 293-294

TMP 294

use 291

WATCOM 106, 291-293, 295

WCC 65, 295

WCC386 65, 295

WCGMEMORY 96, 296-297

WCL 296

WCL386 296

WD 297

WDW 297-298

WINDOWS INCLUDE 17

WLANG 298

WPP 65, 298

WPP386 65, 298-299
_EPI 23
errno 526

E2BIG 526

EACCES 526

EBADF 526

EDEADLK 527

EDOM 527

EEXIST 526

EINVAL 526

EMFILE 526

ENFILE 526

ENOENT 526

ENOEXEC 526

ENOMEM 526

ENOSPC 526

ERANGE 527

EXDEV 526
error codes

ERRNO.H 526

MATH.H 527
error file 34
.err 69
disabling 34
error messages 301
error pragma 143, 211
_except 274
exception handling 14, 58
EXCEPTION_ACCESS VIOLATION 278
EXCEPTION_BREAKPOINT 278
EXCEPTION_CONTINUE_EXECUTION
275-277
EXCEPTION_CONTINUE_SEARCH 275, 278
EXCEPTION_EXECUTE_HANDLER 274-275,
277-278
EXCEPTION_FLT_DENORMAL_OPERAND
279
EXCEPTION_FLT_DIVIDE _BY_ZERO 279
EXCEPTION_FLT_INEXACT_RESULT 279
EXCEPTION_FLT_INVALID_OPERATION
279
EXCEPTION_FLT_OVERFLOW 279
EXCEPTION_FLT _STACK_CHECK 279
EXCEPTION_FLT _UNDERFLOW 279
EXCEPTION_INT_OVERFLOW 279
EXCEPTION_NONCONTINUABLE_EXCEPTI
ON 279
EXCEPTION_POINTERS 280
EXCEPTION_PRIV_INSTRUCTION 279
EXCEPTION_RECORD 280
EXCEPTION_SINGLE_STEP 279
execution
fastest 58
exit() 267
_exit() 267
EXITWMSG.H 108
explicit 493
export (pragma) 159-160, 229
_export functions 18-21
_export macro 30
_export 82
__export 82,93, 430
exporting symbolsin dynamic link libraries 159,
229
extension
default 64
extern 91, 307, 313, 317, 321, 341, 356, 367, 369,
405, 489
external references 143, 211
extref pragma 143, 211

Index

_fortran 81

__ fortran 81-82, 94, 154, 222
F __FPl__ 44,76

frame (pragma) 160, 229
friend 360, 385, 397, 436, 507

far 40-41, 46-47, 67, 80, 114-115, 182, 335, 430, function pragma 144, 212
433, 452 function prototypes
far (pragma) 157, 227 eff_ect on arguments 125, 191
far call 113, 181 functions
far macro 30 DOS-dependent 286
far macro 30 in ROM 285
far pointer OS/2-dependent 286
sizeof 124,190 returning values 129, 198
farle 221 Windows NT-dependent 286
_farl6 macro 30
_Farl6 84
_ farl6 84-85, 346 G
_far 80
__far 80, 82, 335, 452
FAR_DATA class 116, 123, 184, 189
fasteall 1.54’ 222 GetExceptionCode 278
fastcall ahas_name 154, 222 GetExceptionInformation 280
—fedtcall dias name 154, 222 goto 267, 272, 304, 312, 314, 341, 343
festeall macro 30 GRAPH.LIB 103
__fastcall 154, 222 GRO

fastest 16-bit code 68

) stack growing 19
fastest 32-bit code 68

group

fastest code 58 DGROUP 46
F_DIV bug 45 _ guard page 19
filename extension 64
_finally 267, 324
flat memory model 182
flat model H
libraries 102, 106-107, 183
__FLAT__ 52
float 157, 316, 319, 397, 409, 495-496
sizeof 124, 190 header file
float type 120, 186 including 71
floating-point searching 71
consistency of options 43-44 High C calling convention 243
fltused 105 huge 80, 114, 182, 326
__init_387_emulator 105 huge datamodel 114
__init_87_emulator 105 huge macro 30
option 44 _huge macro 30
floating-point emulator 105 huge memory model 114
floating-point in ROM 288 huge model
fltused 105 libraries 102, 106
for 270, 310, 320, 329, 337-338, 375 _huge 80
FORCE environment variable 291 __huge 80
fortran 81, 154, 222, 303 __HUGE__ 53

fortran alias name 154, 222
__fortran alias name 154, 222
fortran macro 30

_fortran macro 30

534

Index

!

_ 186 75
if 329, 469
in-line 80x87 floating-point instructions 158
in-line assembly
in pragmas 157, 227
in-line assembly language 251
automatic variables 258
directives 260
labels 257
opcodes 260
variables 257
in-line assembly language instructions
using mnemonics 158, 228
in-line functions 158, 227
in-line functions (pragma) 164, 233
include
directive 71
header file 71
sourcefile 71
INCLUDE environment variable 72-73, 291, 346
include file
searching 71
include alias pragma 145, 213
__init_387_emulator 105
__init_87_emulator 105
INITFINI.H 108
initialization
DOS 108
DOS/16M 108
0S/2 108
Windows 108
initialize pragma 145, 213
inline 359
_inline macro 30
inline_depth pragma 146, 214
__INLINE_FUNCTIONS __ 56, 76
inline_recursion pragma 147, 215
int 70, 84-85, 306, 309, 314, 316, 344, 360, 393,
4009, 411, 413, 439, 464, 471, 519
sizeof 124,190
int type 120, 186
__int64 86-87, 515
_INTEGRAL_MAX_BITS 77
interrupt 82
interrupt macro 30
_interrupt macro 30
interrupt routine 82
_interrupt 82
__interrupt 82

intrinsic pragma 147, 215
invoking Open Watcom C/C++ 63
ISO/ANSI compatibility 28

Japanese diagnostic messages 298

keywords
__based 80
__cdecl 81
__declspec 82,91
__export 82
_ farl6 84
__far 80
__fortran 81
__huge 80
__int64 77, 86
__interrupt 82
__loadds 83
__near 80
_Packed 81
__pasca 81
__pragma 86
__restrict 81
__saveregs 83
_Segl6 85
__segment 80
__segname 80
_sdf 81
__stdcall 83
__syscall 83

L 377
language 298
large memory model 114, 182
large model
libraries 102, 106
_ LARGE__ 53

535

Index

_leave 271, 273, 324
LIB environment variable 291
LIB286 105
LIB386 105
LIBDOS environment variable 292
LIBENTRY.ASM 108
LIBOS2 environment variable 292
LIBPHAR environment variable 292-293
libraries 101
80x87 math 106
aternate math 107
class 104
directory structure 101
math 105
library path 295
LIBWIN environment variable 292
line directive 26
__LINUX__ 17,75-76
loadds (pragma) 159, 228
_loadds macro 30
_loadds 83
__loadds 83
loading DS before calling afunction 159, 228
loading DS in prologue sequence of afunction
159, 229
__LOCAL_SIZE 259
long 316
long double
sizeof 124, 190
long float
sizeof 124, 190
long int
sizeof 124,190
long int type 120, 186
longimp() 267

M

M_386FM 52
_M_386FM 52
M_386SM 52
_M_386SM 52
M_1386 75
_M_1386 75
M_I86 75
_M_I86 75
M_186CM 52
_M_I86CM 52
M_186HM 53
M_I186LM 53

536

M_186MM 52
M_186SM 52
_M_186SM 52
_M_IX86 75
macros
_ 38675
_based 30
cdecl 30
_cdecl 30
__CHAR_SIGNED___ 38,76
__COMPACT__ 52,76
__cplusplus 77
__CPPRTTI 77
__CPPUNWIND 77
_DLL 16
_DOS 75
_DOs 75
_export 30
far 30
_farl6 30
_far 30
_fastcall 30
__FLAT__ 52,76
fortran 30
_fortran 30
_FPI__ 44,76
huge 30
_huge 30
__HUGE__ 53,76
_ 186 75
_inline 30
__INLINE_FUNCTIONS _ 56, 76
_INTEGRAL_MAX_BITS 77
interrupt 30
_interrupt 30
__LARGE__ 52,76
__LINUX__ 75
_loadds 30
M_386CM 76
_M_386CM 76
M_386FM 52, 76
_M_386FM 52, 76
M_386LM 76
_M_386LM 76
M_386MM 76
_M_386MM 76
M_386SM 76
_M_386SM 76
M_1386 75
_M_1386 75
M_186 75
_M_186 75
M_186CM 52, 76
_M_I86CM 76

Index

M_186HM 53, 76
_M_I86HM 76
M_186LM 52, 76
_M_186LM 76
M_I86MM 52, 76
_M_186MM 76
M_186SM 52, 76
_M_186SM 76
_M_1IX86 75
__MEDIUM___ 52,76
MSDOS 75

_MT 16

near 30

_hear 30

__ NETWARE 386 75
__ NETWARE__ 75
NO_EXT KEYS 28, 76
_NT__ 75

_ 08275

pascal 30

_pascal 30
_PUSHPOP_SUPPORTED 77
_QONX__ 75
_saveregs 30

_segment 30

_self 30

__SMALL__ 52,76
SOMDLINK 30
SOMLINK 30

_stdcall 30
_STDCALL_SUPPORTED 77

MM T TommimMmimimim
YN T
£ N

9uosag0ssss

T
3
D
w

22
e
% O
ﬁ@

_UNIX__ 75

_ WATCOM_CPLUSPLUS

__WATCOMC__ 77

_WINDOWS 75

__ WINDOWS 386__ 20,75

__WINDOWS__ 20-21, 75

_X86__ 75
MAINO16.C 108
math coprocessor 106-107

option 44
math functions 285
MATH387R.LIB 106
MATH387S.LIB 106
MATH3R.LIB 107
MATH3S.LIB 107
MATHS87C.LIB 106
MATHS87H.LIB 106
MATHS87L.LIB 106
MATHS87M.LIB 106
MATHS87S.LIB 106
MATHC.LIB 107
matherr 527

DOMAIN 527

OVERFLOW 527

PLOSS 527

SING 527

TLOSS 527

UNDERFLOW 527
MATHH.LIB 107
MATHL.LIB 107
MATHM.LIB 107
MATHSLIB 107

7

537

Index

MDEF.INC 108
medium memory model 114, 182
medium model

libraries 102, 106
_ MEDIUM__ 52
memory

first megabyte 254
memory layout 116, 122, 183, 188
memory model 66
memory models

16-bit 113

32-bit 181

compact 114, 182

creating tiny applications 115

flat 182

huge 114

large 114, 182

libraries 115, 183

medium 114, 182

mixed 114, 182

small 114, 182

tiny 114
message 484
message pragma 148, 216
messages

errno 526

matherr 527

run-time 526-527
MetaWare

High C calling convention 51, 221, 243
Microsoft

C calling convention 153, 174
mixed memory model 114, 182
modify exact (pragma) 173-174, 242-243
modify nomemory (pragma) 169, 172, 239, 241
modify reg_set (pragma) 178, 247
MSDOS 17, 75-76
_MT 16
mutable 481

naked 82, 93

namespace 383, 505-507
near 80, 114, 182, 335, 452
near (pragma) 157, 227
near call 113, 181

near macro 30

_near macro 30

near pointer

538

sizeof 124, 190
_near 80
__near 80, 82, 335, 452
NETWARE subdirectory 101
__ NETWARE 386 17, 75-76
__NETWARE__ 75-76
new 361, 372, 377, 391, 423, 446, 448, 453, 506
no8087 (pragma) 165, 235
NO87 environment variable 106-107, 293
NO_EXT_KEYS 28, 76
noemu387.lib 105
noemu87.lib 105
NT subdirectory 101
__NT__ 17,7576
NULL 88
_NULLOFF 88
_NULLSEG 88
numeric data processor 106-107
option 44

object model 142, 210
OCC directory 64
occ file extension 64
offsetof 366, 370, 420
once pragma 148, 216
opcodes

assembly language 260
operator 381

> 89
operator + 383, 391
operator ++ 393
operator += 390
operator -> 393, 485
operator delete 391-392, 418, 438, 506
operator delete[] 391-392
operator new 377-378, 380, 391-392, 506
operator new [] 391-392
operator ~ 390
optimization 148, 216
options 5

050

150

250

350

3r, 3s 50

4 50

4r, 4s 51

550

Index

5r, 5s 52

6 50

6r, 6s 52

ad 31

adbs 31

add 31

adfs 32

adhp 31

adt 32

bc 15

bd 16

bg 16

bm 16

br 16

bt 16, 71

bw 17

C++ exception handling 14
check stack 136, 204
code generation 12
compatibility with older versions 15
compatibility with Visual C++ 15, 61
d 25

d+ 25

do 22

di 22

di+ 22

d2 22

d2i 23

d2s 23

d2t 23

d3 23

d3i 23

d3s 23

db 33
debugging/profiling 10
diagnostics 11
double-byte characters 14
e 27

ecc 37

ecd 37

ecf 37

ecp 37

ecr 37

ecs 37

ecw 38

ee 23

ef 27

e 38

em 38

en 23

ep 24

eq 27

er 27

et 24

ew 27

ez 33

fc 33

fh 33

fhd 33

fhq 33

fhr 33

fhw 34

fhwe 34

fi 34

floating point 12
floating-point in ROM 288
fo 25,34

fp2 44, 106, 288
fp3 44, 106, 288
fp5 45, 106, 288
fp6 45

fpc 43, 107, 200, 288
fpd 45

fpi 43, 106-107, 288
fpi87 44, 106, 288
fpr 61

fr 34

ft 35

fti 35

fx 35

fzh 35

fzs 35

g 46

hc 24

hd 24

hw 24

i 35 71,73

j 38

k 35

mc 52

mf 52

mh 53

ml 52

mm 52

ms 52

nc 46

nm 47

nt 46-47

oa 54

ob 55

oc 55

od 55

oe 56

of 17

of+ 18

oh 56

oi 56

oi+ 56

539

Index

ok 56 zc 38

ol 56 zdf 53

ol+ 57 zdl 53

on 57 zdp 53

0o 57 ze 28

op 57 zev 53
optimizations 14 zf 36

or 57 zff 53

os 57 zfp 53

ot 57 zfw 53

ou 58 zg 36

ox 58 zgf 54

oz 58 zgp 54

p 26 zk 60

pc 26 zkOu 60

pe 26 zku 60

pil 26 zl 36

pl 26 zld 37
preprocessor 10 zf 37

pw 26 zls 37

q 27 zm 48

r 61, 128, 133, 194, 197, 202 zmf 49
reuse_duplicate strings 137, 205 zp 38

ri 38 zpw 40

RTTI 38 zq 30

run-time conventions 13 zri 54

s24 zro 54
segmentsmodules 13 zs 30

sg 19 zt 40

source/output control 11 zu 54

st 20 zv 41

t 27 ZW 20

target specific 9 ZWs 21

u 26 zz 61

unreferenced 136, 204 optionsfile

using pragmas 136, 204 command line options 64
v 35 0s/2

vc 61 DOSCALLS.LIB 292
vcap 61 initialization 108
w 28 OS/2-dependent functions 286
wcd 28 OS2 subdirectory 101
wce 28 __0Ss2_ 17,7576
we 28 OS2 _INCLUDE environment variable 72
wo 28 overview of contents 3
wx 28

xd 59

xds 59

xdt 59 P

xr 38

xs 59

xss 59

xst 59 pack pragma 149, 217
za 28 _Packed 81

zat 36 parm (pragma) 161, 230

540

Index

parm caller (pragma) 164, 234
parm nomemory (pragma) 172, 241
parm reg_set (pragma) 175, 244
parm reverse (pragma) 165, 234
parm routine (pragma) 164, 234
pascal 81, 154, 222
pascal alias name 154, 222
__pascal diasname 154, 222
pascal functions 20-21
pascal macro 30
_pascal macro 30
_Pascal 81
__pascal 81-82, 154, 221-222
passing arguments 123, 189

1 byte 123, 189

2 bytes 123-124, 189

4 bytes 190

8 bytes 124, 190

far pointers 124, 190

in 80x87 registers 176, 244

in 80x87-based applications 132, 200

inregisters 123, 189

of type double 124, 190

PATH environment variable 60, 72, 291, 293-294

Pentium bug 45
Phar Lap example 254
PLIB3R.LIB 104
PLIB3S.LIB 104
PLIBC.LIB 104
PLIBDLL.LIB 104
PLIBH.LIB 104
PLIBL.LIB 104
PLIBM.LIB 104
PLIBMTL.LIB 104
PLIBSLIB 104
pragma 135, 203, 446, 452, 464
aloc text 49
pragma options 136, 204
__pragma("string") 82
__pragma 82, 86, 94
pragmas
=const 157, 227
aborts 169, 238
alias 138, 206
diasname 153, 221
aloc_text 139, 207
aternate name 156, 225
auxiliary 151, 219
caling information 157, 227
code seg 139, 207
comment 140, 208
data seg 141, 209
describing argument lists 160, 230
describing return value 165, 235

disable_message 141, 209
dump_object_model 142, 210
enable_message 142, 210
enum 142, 210
error 143, 211
export 159-160, 229
extref 143, 211
far 157, 227
frame 160, 229
function 144, 212
in-line assembly 157, 227
in-line functions 164, 233
include alias 145, 213
initialize 145, 213
inline_depth 146, 214
inline_recursion 147, 215
intrinsic 147, 215
loadds 159, 228
message 148, 216
modify exact 173-174, 242-243
modify nomemory 169, 172, 239, 241
modify reg_set 178, 247
near 157, 227
no8087 165, 235
notation used to describe 135, 203
once 148, 216
pack 149, 217
parm 161, 230
parm caller 164, 234
parm nomemory 172, 241
parm reg_set 175, 244
parm reverse 165, 234
parm routine 164, 234
read only file 150, 218
specifying default libraries 137, 205
struct caller 165, 167, 235-236
struct float 165, 168, 235, 237
struct routine 165, 167, 235-236
template_depth 150, 218
value 165-168, 235-237
value [8087] 168, 238
value no8087 168, 238
valuereg_set 178, 247
warning 151, 219
precompiled headers 97
compiler options 98
rules 98
uses 97
using 97
predefined macros
seemacros 16
predefined types
sizeof 124,190
predictable code size 96, 296

541

Index

preprocessor 25-27, 73 _Ssaveregs 83
#line directives 26 __saveregs 83
encryption 26 _Segl6 85
source comments 26 segment
primary thread 19 _BSS 46
printf 86 CONST 46
private 370, 387, 401 CONST2 46
__PRO 24 _DATA 46
protected 361-362, 401 _TEXT 46-47, 116, 123, 184, 189
public 370 _segment macro 30
_PUSHPOP_SUPPORTED 77 segment ordering 116, 122, 183, 188
segment references 80-81
_segment 80
__segment 80, 87-90
Q segname references 80
_segnhame 80
__segname 80, 87, 326, 515
_self macro 30
_ONX__ 17,7576 self references 81
_sef 81
__self 81,87, 405
SET 64, 291
R INCLUDE environment variable 72-73
NO87 environment variable 107

short 314, 316, 344

RaiseException 281 short int

read_only_file pragma 150, 218 sizeof 124,190

real-mode memory 254 Short int type 120, _186

register 312, 316, 321, 323, 329, 347, 356, side effects of functions 169, 239
367-368 signed 314, 316, 344

signed char 487, 519

reinterpret_cast 494-495 :
sizeof 124,190

restrict 81] .
__restrict 81 signed int
return 267-273, 302, 315, 320, 334, 336, 345 sizeof 124,190

signed long int
sizeof 124,190
signed short int

return value (pragma) 165, 235
returning values from functions 129, 198
reuse_duplicate_strings option 137, 205

ROM-based functions 285 ~ sizeof 124,190

ROMable code 285 size of
startup 287 char 124, 190

RTTI 38 double 124, 190

run-time enumerated types 125, 191
error messages 301, 333, 525-526 far pointer 124, 190
messages 525 float 124, 190

int 124, 190

long double 124, 190
long float 124, 190
longint 124, 190

S near pointer 124, 190
predefined types 124, 190
shortint 124, 190

signed char 124, 190
save/restore segment registers 61 signed int 124, 190
_saveregs macro 30 signed long int 124, 190

run-timeinitialization 108

542

Index

signed short int 124, 190
unsigned char 124, 190
unsigned int 124, 190
unsigned long int 124, 190
unsigned short int 124, 190
sizeof 93,321
small code model 113, 181
small datamodel 113, 181
small memory model 114, 182

small model
libraries 102, 106-107, 183
__SMALL__ 52

software quality assurance 96, 297
SOMDLINK 80, 84
SOMDLINK macro 30
SOMLINK 81, 84
SOMLINK macro 30
sourcefile
including 71
searching 71
SS segment register 54
stack frame 160, 229
stack frame (pragma) 160, 229
stack growing 19
stack overflow 24, 46
stack touching 20
stack-based calling convention 195
80x87 considerations 201
returning values from functions 200
stacking arguments 163, 232
startup code 287
static 91, 307, 313, 317, 341-342, 356, 361, 369,
377, 401, 404-405, 407, 417
static_cast 497, 499, 511-512
stdcall 154, 222
stdcall alias name 154, 222
__stdcall alias name 154, 222
_stdcall macro 30
__stdcall 82-83, 154, 222
_STDCALL_SUPPORTED 77
__STK
stack overflow 46
struct 81, 312-314, 319-323, 327, 342, 351, 370,
413, 523
struct caller (pragma) 165, 167, 235-236
struct float (pragma) 165, 168, 235, 237
struct routine (pragma) 165, 167, 235-236
structured exception handling 267
_SW 050
_SW 150
_SW 250
__SW_3 5051
__SW_3R 51-52
__ SW_3S 51-52

0z 58

b%oooboogooooooo
(6)]
\‘

20000 0s0s 0030
94

NINININ

543

Index

__SW_ZRI 54

__SW_ZRO 54

__SW_ZU 54 u

switch 304, 310-311, 314, 320, 329, 337-339,
343, 416

symbol attributes 151, 219

union 312-314, 319-323, 327, 342, 351, 354-355,

symbolic referencesin in-line code sequences 413

158, 228
syscall 222
syscall alias name 222
__syscall diasnhame 222
_syscall macro 30
_syscall 84
__syscall 82-84, 95, 222
system 222
system alias name 222
__system alias name 222
systeminitialization
Windows NT 65
systeminitialization file
AUTOEXEC.BAT 65
CONFIG.SYS 65
_System 84
__System 222

template_depth pragma 150, 218
Tenberry Software

DOS/16M 108
_TEXT segment 46-47, 116, 123, 184, 189
this 374, 381, 417, 426, 436, 441, 465
thread 82, 91-92
threads

growing the stack 19
throw 58, 346, 376, 452, 461, 477-478, 505
tiny memory model 114
tiny memory model applications 115
TMP environment variable 294
try 58, 458, 460-461
_try 267,274, 324
typedef 356-357, 369, 383, 405
typeid 515
types

char 119, 185

double 121, 187

float 120, 186

int 120, 186

longint 120, 186

short int 120, 186

544

__UNIX__ 17, 75-76
unreferenced option 136, 204
unsigned 314, 316, 344, 351
unsigned char 487, 519

sizeof 124,190
unsigned int

sizeof 124,190
unsigned long int

sizeof 124,190
unsigned short int

sizeof 124, 190
USE16 segments 183, 188
using 512-514
using namespace 509

va arg 328

value (pragma) 165-168, 235-237
value [8087] (pragma) 168, 238
value no8087 (pragma) 168, 238
value reg_set (pragma) 178, 247
variable argument lists 129, 198
virtual 361, 417-418, 462

void 70, 302, 313, 315, 334, 345, 371-372, 376,
378-379, 381, 391, 395, 423, 431, 448,

468-469, 484, 499

volatile 316, 360-361, 396, 423, 426, 434, 462,

494

w

warning messages 301
warning pragma 151, 219
watcall 154, 222

watcall alias name 154, 222
__watcall aliasname 154, 222
_ watcall 154, 222

Index

WATCOM environment variable 106, 291-293,
295
__ WATCOM_CPLUSPLUS 77
__WATCOMC__ 77
WCC 295
WCC environment variable 65, 295
WCC options
nm 117, 123, 184, 189
nt 117, 123, 184, 189
WCC386 295
WCC386 environment variable 65, 295
WCC386 options
nm 117, 123, 184, 189
nt 117, 123, 184, 189
WCGMEMORY environment variable 96,
296-297
WCL environment variable 296
WCL 386 environment variable 296
WD environment variable 297
WDW environment variable 297-298
while 271, 310, 318, 320, 329, 337-338, 349
WILDARGV.C 108
WIN subdirectory 101
WIN386.LIB 103
Windows
initialization 108
Windows NT
systeminitialization 65
Windows NT-dependent functions 286
Windows SDK
Microsoft 103
WINDOWS.LIB 103
_WINDOWS 17, 75-76
__ WINDOWS 386 17, 20, 75-76
__ WINDOWS _ 20-21, 75-76
WINDOWS_INCLUDE environment variable 17
WLANG environment variable 298
WOS2.H 108
WPP 298
WPP environment variable 65, 298
WPP options
nm 117, 123, 184, 189
nt 117, 123, 184, 189
WPP386 299
WPP386 environment variable 65, 298-299
WPP386 options
nm 117, 123, 184, 189
nt 117, 123, 184, 189

_ X86__

75

545

