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Abstract. Bayesian networks are probabilistic graphical models widely
used to infer interactions between biological entities such as genes or
proteins. In general, learning Bayesian networks from experimental data
is NP-hard, leading to widespread use of heuristic search methods giving
suboptimal results. However, in a number of important special cases, it
is possible to find the optimal network in polynomial time. While our
method makes it possible to reconstruct optimal networks in polynomial
time, in cases where there is large amount of experimental data the
running times can rise up to days of computations on a single CPU.
In this work we present a new and improved version of BNFinder - our
tool for learning optimal Bayesian networks. The improvement consist of
parallelized inference algorithm providing significant speedup with good
efficiency. In this work we outline the parallel algorithm and show its
performance measured on simulated datasets as well as real biological
data regarding phosphorylation network inference.

Keywords: Bayesian networks reconstruction, parallel computing, python
multiprocessing.

1 Introduction

Bayesian networks (BNs) are a graphical representation of a multivariate joint
probability distribution that exploits the dependency structure of distributions
to provide a compact and natural repressentation of them. A BN is a directed
acyclic graph, in which the nodes correspond to the variables and the edges
correspond to direct probabilistic dependencies between them [1]. In general,
inferring BN is NP-hard [2], however it was showed by Dojer [3] that it is pos-
sible to find optimal network in polynomial time when datasets are finite and
there are external constraints ensuring network acyclicity. This algorithm was
implemented in BNFinder - a tool for BNs reconstruction from experimental
data [4].

One of the common use of BNs in bioinformatics is inference of interactions
between genes [5] and proteins [6]. However, flexibility of BNFinder allowed us to
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move further from original concept of inferring regulatory networks from expres-
sion data. BNFinder was successfully applied to linking expression data with
sequence motif information [7], identifying histone modifications connected to
enhancer activity [8] and to predicting gene expression profiles of tissue-specific
genes [9]. However, the widespread adoption of the algorithm is limited by its
long running times bound by the time it takes to find the optimal set of parents
for the most complex variable. Since the algorithm, as published by Dojer [3],
was amenable to parallelization , we have developed a new version that is able
to take advantage of multiple cores via the multiprocessing python module.

2 Implementation

The BNFinder algorithm is based on the following scheme: for each of the ran-
dom variables find the best possible set of parent variables by considering them
in a carefully chosen order of increasing cost function. Current version of BN-
Finder [10] includes a simple parallelization based on distributing the work done
on each variable to a different process. However, this approach has natural limi-
tations. Firstly, the number of parallelized tasks is bound by the number of ran-
dom variables in the problem, meaning that in cases where only a few variables
are considered (e.g. in classification by BNs) we get a very limited performance
boost. Secondly, this kind of parallelization is sensitive (in terms of performance)
to highly heterogeneous variables in the input data. If we consider an example
where the true optimal network has a few nodes with multiple parents and ma-
jority of nodes with few parents, the potential gain in algorithm performance is
not greater than in the case where all the nodes are of the most difficult cate-
gory. This is often the case in biological networks given their scale-free network
topology consisting of a few hub nodes with many parents and a large number
of nodes that have one or small number of connections [11].

The alternative approach to parallelization of the BNfinder algorithm is to
process variables sequentially, but consider different possible parent sets in par-
allel taking advantage of all available cores at the same time. This approach
leads to a slightly more complex algorithm, however it yields superior results in
terms of speedup and efficiency in virtually all realistic scenarios.

As the first approach to parallelization (each variable on a separate core) can
theoretically outperform the second approach (different parent sets on different
cores) due to slightly lower synchronization overhead, we have also implemented
a hybrid approach which first parallelizes the variables into different cores and
then subsequently the parent sets for each variable.

3 Results

In this work we compared two different implementations: hybrid algorithm with
2 layers of parallelization (between random variables and parents sets) and the
second approach (simple algorithm) distributing only the parents set scoring
and considering the variables sequentially. The original implementation serves
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as a baseline for computing the speedup and efficiency of the parallelization.
Note, that hybrid algorithm behaves exactly the same as original BNFinder
when the number of cores is less or equals the number of random variables. To
compare their performance we used synthetic benchmark data as well as real
datasets concerning protein phosphorylation network published by Sachs et al
[12]. The algorithms performance on synthetic data (20 genes network) were
almost identical, whether speedup of hybrid algorithm was better - 34x versus
29x (Fig. 1). Efficiency comparison showed that hybrid algorithm has unstable
behaviour, performing better when number of cores correlates with number of
genes (Fig. 1).
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Fig. 1. Hybrid and simple algorithms comparison on synthetic data
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When we took a real experimental dataset, it revealed more significant dif-
ference between two algorithms. Clearly, the simpler algorithm outperformes the
hybrid one: with the efficiency of 0.5 it showed 8x speedup on Phosphorylation
network data (11 genes network) while the alternative algorithm showed only
1.5x speedup (Fig. 2). Importantly, the sets of parents in this dataset are quite
diverse with respect to the number of parents needed for accurate representation
of its conditional probability distribution.
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Fig. 2. Hybrid and simple algorithms comparison on biological data

The reason for such drastic difference was stated above - sensitivity of the hy-
brid algorithm to highly heterogeneous variables in the input data, which in case
of Sachs data - one gene with 6 parents and other genes with 1-2 parents. Impor-
tantly, the better performing algorithm is also the one showing more consistent
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behaviour. As we can see in Fig 2, the simple algorithm’s results correlate well
with Amdahl’s Law in terms of performance and efficiency with approximately
10% of the algorithm being strictly serial [13].

All tests were performed on the same server with AMD Opteron(TM) Pro-
cessor 6272 (4 CPUs with total of 64 cores) and 512GB RAM. During the tests
server was loaded only by regular system processes, but to ensure statistical sig-
nificance we performed each test several times, so Fig. 1 and Fig. 2 represent
average results.

The latest source code is available from the following repository - https:

//code.launchpad.net/~fshodan/bnfinder/trunk.

4 Conlusions

In summary, the new version of BNFinder constitutes a major improvement over
original implementation for users who want to use the power of multiproces-
sor setups. As the new version of BNFinder is highly parallelized, it can reach
more than 30x faster running times on large datasets provided a sufficiently
large computer. Given the growing popularity of multi-core personal computers,
we think that it will be useful to majority of BNfinder users. Importantly, the
improved implementation is quite insensitive to heterogenous datasets, i.e. sit-
uations where complex variables with multiple parents are mixed with simple
variables. The results in our computational experiments show high correlation of
running times with those predicted by Amdahl’s Law and indicating the fraction
of non-parallelizable code to be on the order of 10 per cent of the total computa-
tional time. These features taken together make the new implementation much
more suitable for infering network topologies from biological data, as they tend
to contain many variables with heterogenous parent set sizes.
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