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Repeat sales price estimators are designed to infer price indexes of infrequently
sold and unstandardized assets, such as houses, based only on changes n prices
of those individual assets that are observed to be sold twice. Repeat sales price
estimators that are arithmetic, and either value-weighted or equally weighted are
proposed here. Moreover, variants are proposed that are interval-weighted, Le.,
that correct for a form of heteroskedasticity, and that include additional regres-
SOrs representing changes in hedonic variables. Some of these methods are ap-
plied to data on house prices in Atlanta, Chicago, Dallas, and San Francisco 1970
1986. © 1991 Academic Press, Inc

Until now, repeat sales price estimators have provided estimates that
are essentially equally weighted geometric averages of individual prices.!
It is well known that the geometric average of any set of positive numbers
not all equal is less than the arithmetic average of them.? Portfolios of
assets (let us say, houses) have values that are related to arithmetic, not
geometric, averages of prices. Moreover, the geometric averages of house
prices do not give more weight to the more valuable houses; they are
equally weighted indexes rather than value-weighted indexes. The
weighting may make a difference to the estimated index if price changes in
more valuable houses are different from price changes in less valuable
houses.

* Presented at AREUEA session, Allied Social Science Association Meetings, Washing-
ton, DC, December 30, 1990. The author 1s indebted to Karl Case, John Clapp, Ray Fair,
Wilhiam Goetzman, Henry Pollakowski, Willlam Schauman, Christopher Sims, and Allan
Weiss for helpful discussions This research was supported by the National Science Founda-
tion under Grant SES-8921257.

! There has recently been a great deal of nterest 1n developing better price indexes for
housing and other nonstandardized assets For example, repeat sales price estimators have
been studied on connection with housing prices by Abraham and Schauman (1990), Case and
Quigley (1991), Case et al. (1990), Case and Shilter (1987, 1989), Mark and Goldberg (1984),
Palmquist (1982). and Pollakowski and Wachter (1990) and with art prices by Goetzman
(1990a).

2 The anthmetic average of a set of # numbers is therr sum divided by n; the geometric
average is the nth root of their product; see Ito (1987. p. 807) for a discussion of inequalities.
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Those who wish to study the covariances between housing prices and
prices of other assets for the purpose of constructing a well-diversified
portfolio would prefer to use an arithmetic index that represents the value
of a portfolio of housing, and may prefer to see a value-weighted index
that provides an index of the total value of real estate.

Goetzman (1990b) has proposed an estimated index of housing prices
that is produced by first forming a geometric repeat sales index and then
correcting this index by multiplying by a factor that depends on the cross-
sectional variance of asset prices. The correction factor may be motivated
eight by truncating a Taylor series expansion or by assuming cross-sec-
tional variation in log housing price changes is lognormal.

While Goetzman’s method appears to be serviceable, I propose here
arithmetic repeat sales estimators that are simpler and more direct than
his, and that do not rely on approximations or lognormality assumptions.
There are several variations on the arithmetic repeat sales estimators: the
value-weighted arithmetic repeat sales estimator (VW-ARS), the equally
weighted arithmetic repeat sales estimator (EW-ARS), and the interval-
weighted and hedonic-variable-augmented variations on these.

The different variants may serve different purposes. For example, the
value-weighted arithmetic repeat sales estimator gives an index of the
price of the aggregate stock of housing, an index of the value of an invest-
ment in a portfolio of all real estate, whose value is more influenced by the
appreciation of the more valuable houses in the portfolio. The equally
weighted repeat sales estimator gives an index of the value of a portfolio
that is more concentrated in smaller houses, holding equal dollar amounts
of houses in each value category.

The differences among these different estimators may often be small, if
the cross-sectional variation of prices is not too large, as we shall see in
some examples below. However, the differences are not negligible in our
examples, and in principle the differences between geometric and arith-
metic indexes could be enormous. If there were ever an observation of a
price equal to zero for one house, the geometric index, related as it is to
products rather than sums of numbers, would be zero for that period,
while the value of a portfolio of houses might hardly be affected by the
zero. If a single house is sold for one dollar (as sometimes happens) this
would, unless sample size is very large, have a devastating impact on a
geometric index, but not on an arithmetic index. The alternative indexes
proposed here are no more difficult to calculate than the geometric; in fact
they are more natural analogues to familiar indexes, such as stock price
indexes, than are the geometric indexes. It is thus worth getting the index
calculations right; practitioners should in most applications use one of the
methods proposed here rather than the geometric estimation methods.

I assume throughout that there are n observations of repeat sales of
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individual assets (let us say, houses), 2 sales in total. Each observation
consists of the first sale price, the time period of the first sale, the second
sale price of house i, and the time period of the second sale. I suppose that
the time period is sufficiently long (let us say, monthly) so that there is at
least one sale in each time period, where there are T + 1 periods in the
sample, numbered from ¢t = 0to ¢ = T.

I. THE SIMPLE GEOMETRIC REPEAT SALES (GRS)
PRICE ESTIMATOR

I begin with a review of the geometric repeat sales estimators in use
today. The Bailey—Muth—Nourse procedure, here called the geometric
repeat sales or GRS procedure, estimates an index of log prices by re-
gressing log price changes on a matrix of dummy variables. The matrix of
independent variables is the n X T matrix Z whose ijth element is —1 if the
first sale of house i occurred in period j, is 1 if the second sale of house i
occurred in period j, and is zero otherwise.? The first column of Z corre-
sponds to ¢ = 1; there is no column for ¢ = 0 since the estimated (log)
index will be zero at 1 = 0 (the base year) by construction, so that its
antilog will be one at + = 0. The dependent variable vector y has ith
element equal to the change in log price for the ith house, using p, =
In(P,), where P, is the price of the ith house at time j. The model to be
estimated asserts that y = Zy + e, where the ith element of vy is the log
price index for time ¢, and for the purpose of computing standard errors it
is assumed that the elements of the vector of error terms e are indepen-
dent of each other, reflecting the notion that individual house price varia-
tions unrelated to the city-wide variations are due to idiosyncratic value
changes. Then the estimated log price index for time ¢ is the rth element of
the ordinary least-squares regression coefficient vector y = (Z'Z)~'Z’y.

If the change in log price of a house is given by the change in a true city-
wide price index vy plus a zero-mean error term that is uncorrelated with
the error terms associated other houses, and if the variance of this error
term is the same for all houses, then the standard error matrix of ¥ has the
usual form s¥(Z'Z)~!. The assumption that the error term has zero mean
implies that the true y to be estimated is a geometric, not arithmetic,
index. Moreover, the Gauss—Markov theorem applies and the estimator ¥

3 The same GRS estimator can be written in another way, so that the estimate 1s a vector §
of estimated changes in the log price index, 1t is produced by regressing the same vector y on
a matrix Z, whose ijth element is 1 1f house 1 was between sales at timej; 1. , time j was after
the first sale but not after the second sale. The vector of estimated coefficients 1s S7 where §
isa T X T lower triangular matrix with ones along the main diagonal and —1 along the first
off-diagonal.
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is best linear unbiased. In practice, it is likely that the variance of the
error term depends on the interval between sales, implying that a more
efficient estimator is a weighted regression, to be discussed below. But
one might still desire to use the simple GRS estimator if one does not
accept this model, of if one values simplicity and ease of understandabil-
ity. Other published price indexes are also simple indexes that do not
involve weighting of observations.

For an example of the estimator, let us consider, for simplicity, an
extremely small data set consisting of only five houses, and only three
time periods, i.e., two index values to estimate. Suppose houses 1 and 2
were each sold in periods 1 and 2, houses 3 and 5 were each sold in
periods 0 and 1, and house 4 was sold in periods 0 and 2; then we have

-1 1 P — Pu
-1 1 Pn — P2
Z=1 1 0|, y=|ps—pn]| (1)
01 Pa — P
10 51 Dso

The normal equations Z'Z% = Z'y for the GRS estimator are easily
interpreted: the ith equation gives the estimated log index for the ith
period as the average log price of all houses sold in that period minus the
average of their base-period log price inferred from their other sale price
using the estimated index. In this example the GRS normal equations are

. _Putputpy+tps (piz— P2+ (P — $) + pa + pso

. _Potputpe (pu—9) + (pu—9)+ pa
Y2 = 3 - 3 . 3)

The first normal equation, the equation for ¥,, the index for period 1, is
based on the four houses sold in that period, two of which (houses 3 and 5)
had their other sales in the base period, and two of which (houses 1 and 2)
had their other sales in period 2, which had to be corrected by subtracting
9, to infer a base-period price. The second normal equation, the equation
for ,, is an average of the log prices of the three houses that were sold in
period 2 minus the average inferred log price of these three houses in
period 0.

Note that the estimated log price index is based on averages of log price
changes of individual houses, so that if we take exp(y) as an index of the
level of housing prices, then this index is based on geometric averages of
individual house price relatives.
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II. THE VALUE-WEIGHTED ARITHMETIC REPEAT
SALES (VW-ARS) ESTIMATOR

An arithmetic estimator that is entirely analogous to the GRS* can be
obtained by defining a matrix of independent variables X by X, equals
minus the price of the first sale of house / if the time of the first sale was j,
equals the price of the second sale of house i if the time of the second sale
was j, and zero otherwise. The vector Y of observations on the dependent
variable is given by Y, equals the price of the first sale of house i if the first
sale was in period 0, and is zero otherwise. Moreover, let us define a
vector B whose ith element is a reciprocal price index for time i, equal to
the estimated price at time zero divided by the estimated price at time i.
By estimating reciprocal price indexes, rather than price indexes them-
selves, we have that the elements of X 8 are all based on prices expressed
in base-year units.” Here, the base period, as with the GRS index, will
again be period 0, but now the index at time 0 is 1, not zero. In the
example here, one may write the X and ¥ matrices as

-Py Py 0
—Py Py 0
X = P31 0 5 Y= P30 . (4)
0 Py Py
P 0 Ps,

Note that this X matrix has zeros in the same places as did Z, replaces —1
with minus a price, and replaces +1 with a price.

Let us call the error term u, the price of a house on its second sale date j
times a true city-wide reciprocal price index S, on that date minus the
price of that house on its first sale date times the reciprocal of price index
B, on that sale date. The vector of error terms is then u = ¥ — X 3. We will
suppose, as before, that these error terms are uncorrelated across houses,
reflecting individual house price variation alone. Now, one could con-

4 The simpler expedient of replacmg logs of prices with therr levels in the GRS estimator
would not be desirable, simce we expect that it 1s more likely that the percentage change in
house prices, rather than the absolute change, may be constant across houses of different
values. The resulting estimator would not effectively control for the change in mix of houses
through time; if larger or better houses are sold at one time than at another, the estimator
would show a larger price increase, even if all houses appreciated at the same rate The
different expedient of replacing log differences with percentage changes in the GRS estima-
tor runs afoul of compounding problems, 10-year growth percentages are in effect treated as
simple sums of two consecutive 5-year growth percentages

5 Using the price index itself rather than its reciprocal suggests an ARS estimator where
the mferred missing prices in the normal equation are given nonumtary weights.
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ceive of taking an estimate of the vector 8 as an ordinary regression
coefficient vector (X’X)~1X'Y, but since there are stochastic independent
variables, there is an errors in variables problem. Let us take instead an
instrumental variables estimator B = (Z'X)"'Z'Y, where Z is as defined
in the preceding section, or Eq. (1).° Under the assumptions that
plim(Z'u/n) = 0 and plim(Z'X/n) is nonsingular, this VW-ARS 8 will be a
consistent estimator of 8. That plim(Z’u/n) = 0 is a representation of the
assumption that 8 is an arithmetic, not geometric, index.

The normal equations Z'X8 = Z'Y have an interpretation analogous to
those of the GRS estimator except that the estimator is here based on
arithmetic instead of geometric averages. The ith diagonal element of Z'X
equals the sum of all prices of homes sold in period i. The ijth element, i #
Jj,» of Z'X is minus the sum of all j-period prices of houses sold both in
period i and in period j. Thus, the ith normal equation gives the index for
period 7 as the mean price of all houses that were sold in period i divided
by their mean price in the base period, where base-period prices of those
houses not actually sold in the base period are inferred from their other
prices using the estimated index. In our example, these VW-ARS normal
equations, closely analogous to the GRS equations (2) and (3), are

) + Py + Py +

Bf1=IndeX1=AP“ 1?21 Py + Ps; )

B2Pi2 + 2P + Py + Py
Py + Py + Py

BiPiy + BiPay + Py

(©)

B3! = Index, =

It follows from these normal equations that should there by any time
period i in which all houses sold in that period were also sold in period 0,
the index in that period is the same as a value-weighted arithmetic price
index: it is (dividing both numerator and denominator of (5) and (6) by
their respective number of elements in the summation) the ratio of the
average price of these houses in period i to the average price of these
houses in period 0.7

¢ There would be no effect on the estimates if the Zj, of footnote 3 were used in place of Z.

7 Note that if we next constructed the corresponding equation for the base year ¢ = 0, the
mean of prices of all houses sold in period 0 divided by the mean of their other sale prices
each deflated by the estimated index for the perniod of this other sale, then this base year
index value equals one by construction. This would not generally be true if we used median
or mode instead of mean as a measure of central tendency in the numerators and denomina-
tors of (5) and (6); this discrepancy in the base year indicates the kinds of conceptual
problems one faces if one replaces means with these other measures of central tendency to
try to derive median- or mode-based repeat sales price indexes
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The estimated index also has an interpretation in terms of the value of a
portfolio consisting of all houses. The index in period i is an estimated
value of the portfolio of all houses in time period i divided by an estimated
value of the portfolio of all houses in period 0. The denominator of the
index, the estimated value of the portfolio of all houses in period 0, is
made using the price in period 0 of all houses, or, when period 0 prices are
not observed, an inferred price using the index and the price observed
closest to period 0. The numerator of the index for period i, the estimated
value of the portfolio of all houses in period i, is made using for each
house the price observed in period i, or, failing that, a price inferred using
the index from the price observed closest after period i, or, failing that, a
price inferred using the index and the price used in the denominator. To
see that the estimator has this interpretation, it is helpful to use a transfor-
mation of the normal equations Z'X = Z'Y written® as follows. Let us
also, for illustrative purposes, suppose that there was a sixth house that
was sold only once, in period 1; we will include it in the portfolio although
it will not affect the estimated index. The VW-ARS normal Eqs. (5) and
(6) are thus rewritten in the form

. + Py + Py + 3 3| + Ps; +
G' = Index, = Fll PZA' P31 + BoPolB1 + Ps AP61 )
BiPii + BiPy + Py + Py + Psy + 5,Pg

Py + Py + Py/By + Pp + Pso/Br + BiPsi/fs
BiP1 + B1Py + Py + Py + Psy + B,Pg

6"

G5! = Index, =

Standard errors of the estimator should take account of the heteroske-
dasticity of the errors u = Y — X8, a heteroskedasticity potentially re-
lated to the rows of Z. For example, repeat sales where the interval
between sales is a long one may show a lot of error, due to drift in the
value of the individual home. An asymptotic standard error of the esti-
mate § that takes account of this is given by®

var(8 — B) = (Z’X)"'V(X'Z)™!, )

where V = 3L, Z/ii/ Z, and where i = Y — X . If, as we suppose, houses
with a longer interval between sales tend to have errors u, with a larger
squared value, then this will tend to affect var(3 — B); it may be very
different than if this heteroskedasticity were not accounted for. Standard
errors for the growth rate of prices from ¢ to ¢ + k can be inferred by a

& This interpretation uses a linear combination of the normal equations, or more simply,
the normal equations ZpX = Z,Y, where Zp 1s as defined 1n footnote 3
% White (1984, Theorem 4.26, pp 69 and 136).
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linearization, giving squared standard error equal to S../82 + Siiis+
(BB — 28144(Bi/Bi1i), Where S = var(B — B).

III. THE EQUALLY WEIGHTED ARITHMETIC REPEAT
SALES ESTIMATOR

The error terms ¥ — X 8 are likely to have variance that depends on the
price. More valuable houses have larger price movements. To obtain an
equally weighted arithmetic repeat sales estimator, we may divide each
row of the matrix X and Y by the price of the first sale corresponding to
that row, thereby converting the error term Y, — X,8 from alevels error to
a proportional error, and weighting each asset, each house, the same. An
advantage to the equally weighted index is that the estimated index may
be more efficiently estimated since the estimation procedure in effect
takes account of the greater variance in the error terms in homes that have
a higher initial price.

If we assume that the error term from the value-weighted arithmetic
repeat sales estimator is also independent of the first price, then the
probability limit of the EW-ARS estimator is the same as that of the VW-
ARS estimator. However, one may not wish to assume this. If, let us say,
more valuable houses are appreciating more slowly than the less valuable
houses, then 2 VW-ARS estimator may tend to show lower price growth
through time than the EW-ARS estimator, and for good reason.

The equally weighted repeat sales index has a portfolio interpretation
Just as does the value-weighted index. The index in period i is an esti-
mated value of a different portfolio of houses in time period i divided by
an estimated value of this portfolio in period 0. In this case, the portfolio
invests in a share in all houses such that each share is worth $1 when the
house is sold first. That the index has this form can be readily seen by
dividing all terms in the numerator and denominator of (5’) and (6') by the
first price observed for that house. Note that if prices are generally rising,
houses that were not sold until late in the sample are given less weight in
the portfolio. Note also that one would not generally have had informa-
tion in period 0 to invest in such a portfolio, since the amount to be
invested in each house not actually sold in period 0 is not observed yet; in
practice one might often approximate this portfolio by investing relatively
heavily in smaller houses.

An alternative to this EW-ARS estimator is one that makes the index
the estimated value of a portfolio of houses that had equal dollar-value
investments in each house in the base period. The normal equations for
this base period equally weighted arithmetic repeat sales price estimator
are derived by dividing, for all j, the terms corresponding to house j in the
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numerator and denominator of the normal equations (as exemplified here
by (5) and (6) or (5') and (6")) by B.P,,, where i is the date of the first sale of
this house. Unfortunately, one must generally use iterative methods to
solve the resulting normal equations which are usually nonlinear in the
parameters, and the equations do not have a simple instrumental variables
interpretation. One might also, if data are available, use a different
equally weighted estimator derived by dividing through the ith row of X
and Y by some objective measure of the size (e.g., square footage) of the
house corresponding to that row, thereby producing a physically equally
weighted arithmetic repeat sales price index, which represents the value
of a portfolio that invests in the same physical amount of each house.

IV. APPLICATION TO REPEAT SALES DATA FOR FOUR CITIES

The figures show estimated VW-ARS and EW-ARS estimators along
with simple GRS estimators for four cities, Atlanta, Chicago, Dallas, and
San Francisco, quarterly data 1970—1 to 1986—2 (1986—3 for San Fran-
cisco). These are the same data used by Case and Shiller (1987, 1989);
there are 8945 repeat sales pairs in Atlanta over this sample; the corre-
sponding number for Chicago was 15,530, for Dallas 6669, and for San
Francisco 8066.

Despite the fact that ARS estimators are, under assumptions noted
above, estimates of arithmetic averages, which are always greater than
the geometric averages estimated by the GRS estimator, the ARS esti-
mates are not always greater than the corresponding GRS estimates in the
sample. The value-weighted ARS estimators in this sample are often less
than the GRS estimator, and show no strong upward bias relative to the
latter. It was noted above that since the VW-ARS estimator is value-
weighted and the GRS estimator equally weighted, a slower growth rate
for the VW-ARS estimator may reflect a slower growth path for houses in
the high price range. The EW-ARS estimator is more consistently greater
than the GRS estimate than is the VW-ARS estimator in these data. At the
end of the sample, the EW-ARS estimator for Atlanta was 4.6% higher
than the GRS estimator at the end of the sample; for Chicago the corre-
sponding figure was 4.4%, for Dallas 7.3%, and for San Francisco 2.0%.

Since the VW-ARS estimator does not downweight observations corre-
sponding to very expensive houses, there is some concern that it may be
more influenced by an occasional sale of a very expensive house. This
tendency is probably a disadvantage of the VW-ARS estimator, related to
the fact that the estimator takes no account of heteroskedasticity. The
importance of this disadvantage could be reduced by obtaining a larger
sample, or by following a rule of tossing out all houses that are at the
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Fic 1. Value-weighted repeat sales price index VW-ARS (solid Iine) and geometric repeat
sales index GRS (dashed line). The VW-ARS index shown is 100/8, plotted agamst ¢, where
B. 1s the ith element of coefficient vector estimated using the VW-ARS procedure The
geometric index shown 1s 100 exp(y,) plotted against i, where v, is the ith element of coeffi-
cient vector estimated using GRS procedure. Data for Atlanta, Chicago, and Dallas are
quarterly 1970—1 to 1986—2; data for San Francisco are quarterly for 1970—1 to 1986—3

extreme high limit of the range of house values. However, even without
doing this, there is only a little suggestion in the figures presented here
that the VW-ARS estimator is noisier than the EW-ARS estimator. This
disadvantage of VW-ARS estimator does not appear to be very damaging
here; one may wish to live with it in order to have a value-weighted
estimator, which produces an index of the total value of all houses. The
value-wejghted index may be regarded as more representative of the di-
rection of housing value; the equally weighted index could possibly be
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Fic 2. Equally weighted repeat sales price index EW-ARS (solid line) and geometric repeat
sales index GRS (dashed hne). The EW-ARS index shown is 100/8, plotted against ¢, where
B, 1s the ith element of coefficient vector estimated using the EW-ARS procedure. The
geometric index shown 1s 100 exp(y,) plotted against i, where vy, 1s the ith element of coeffi-
cient vector estimated using GRS procedure. Data for Atlanta, Chicago, and Dallas are
quarterly 1970—1 to 1986—2; data for San Francisco are quarterly for 1970—1 to 1986—3

unduly influenced by the effects of transactions of very small homes,
homes that may contribute negligibly to overall housing value.

V. INTERVAL-WEIGHTED VERSIONS OF THE ABOVE ESTIMATORS

It was documented in Case and Shiller (1987) that when homes have a
longer interval between sales, the squared error term in the GRS regres-
sion tends to be larger; we proposed a model of the error term in the GRS
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regression in which the expected square error term is given by a constant
plus a term proportional to the interval between sales. This then suggests
a generalized least-squares estimator that should be more efficient than
the ordinary least-squares estimator offered by Bailey, Muth, and
Nourse. Analogous estimators were proposed by Webb (1988) and Goetz-
man (1990b). This same model can be used here to downweight the rows
of X and Y in the GRS, the VW-ARS, and the EW-ARS that correspond to
longer intervals between sales. These interval-weighed estimators will be
referred to here as the I-GRS, IVW-ARS, and I-ARS estimators, respec-
tively.19

Before defining these, it is important first to consider the issue of multi-
ple sales of the same house; most earlier treatments of the repeat sales
estimators assumed that no single house was observed sold more than
twice.!! The crudest way to handle the multiple sales problem is to repre-
sent the data on each such house as a number of pairs of sales, applying
the above procedures and disregarding the fact that these are on the same
house. When this is done, some arbitrariness is introduced into the esti-
mator, since there is more than one way to decompose the multiple sales
into pairs of sales. For example, a house sold in periods 1, 2, and 3 could
be considered as repeat sales in 1 and 2 and 2 and 3, or as repeat sales in 1
and 2 and 1 and 3. The choice made affects the estimated coefficient
vector. It should generally affect the estimated coefficient vector, since
the assumption that regression errors are uncorrelated with each other
cannot be compatible with both decompositions. The assumption that «, is
uncorrelated with u, for all i and j is actually no longer plausible in either
decomposition, since the same price appears in two different rows of the y
vector. If multiple sales of the same house arise frequently, then a gener-
alized least-squares estimator that takes account of the correlation across
error terms should ideally be used.

As in Case and Shiller (1987), we assume that the natural log of the
price of house i at time ¢ is given by

In(P,) = constant, + C, + H, + N,. (8)

where constant, is a house-specific constant term, reflecting such things as
the size of the house, C, is a city-wide price factor, H, is a random walk
(where A H, has zero mean and variance o'%) that is uncorrelated with Cy
for all T, and N, is noise term (which has zero mean and variance o'%) and
is uncorrelated with Crand H,rfor all j and T and with N,7 unless i = j and

10 Case and Shiller (1987) referred to the I-GRS estimator as the weighted repeat sales
(WRS) estimator. The new name for the estimator 1s introduced here to distinguish it more
accurately from the others.

11 But see Palmquist (1982).
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t = T. Here, H, represents the drift in house value through time (say,
through changes in tastes or population distribution) and N,, represents
noise at the time of sale (due, say, to random arriva) of interested buyers
or to errors in judgment). Then, the error term in the GRS estimator has
variance equal to 20% + o} X (interval between sales). Case and Shiller
(1987) estimated the parameters of this model for the four cities Atlanta,
Chicago, Dallas, and San Francisco for 1970 to 1987, and the average
(over the four cities) estimate of 20-% was 0.0084 and of o was 0.0011.
This means that the standard deviation o » of the noise in price associated
with the time of sale is about 6.5% of the value of the house, and the
standard deviation oy of the quarter-to-quarter change in value of a house
is 3.3% of the value of the house. A simple arithmetic average of price
relatives (the price relative defined as the house price in the last quarter
divided by house price in the first quarter of the sample, assuming these
were observed) ought to be, assuming this model and lognormally distrib-
uted prices, at the end of a sample 66 quarters long, higher by a factor of
exp(0.504%66) than the corresponding geometric average;!? using the
above estimate of o% this suggests that the EW-ARS estimated index
should be 3.7% higher than the GRS estimated index at the end of the 66-
quarter sample; the estimated figures reported at the end of the preceding
section are on average a little higher than that. The actual discrepancies
between the EW-ARS and the GRS estimators may not follow this simple
ratio rule for various reasons; for example, price relatives may not be
lognormally distributed; actual price relatives may have ‘‘fat tails.”’

If we assume that multiple repeat sales are grouped together in our
listing of repeat sales and arranged as consecutive pairs of repeat sales (so
that there is no overlap in intervals between sales for a given house; a
house sold in periods 1, 2, and 3 is considered as a repeat sale in periods 1
and 2 and a repeat sale in periods 2 and 3), then the covariance between
consecutive repeat sales of the same house is —o'%. The variance matrix
Q) of the n-element vector of error terms is then block diagonal, with
blocks corresponding to individual houses; each block is tridiagonal.
Hence, since the size of the blocks is likely to be very small relative to the
dimension of €, Q is easily inverted. We can then use a generalized least-
squares estimate of y, called I-GRS, 7 = (Z'Q~1Z)~1Z'Q~1y. [This estima-
tor collapses to the WRS estimator of Case and Shiller (1987) if no house
is sold more than twice.]??

12 Goetzman (1990) has, as noted above, proposed correcting the GRS estimator by multi-
plying by such a factor

13 Clapp and Giaccotto (1990) and Goetzman (1990b) find that 1n their applications the
differences between this estimator and the GRS estimator (Z'Z)~'Z'y were small, and so the
simpler GRS procedure (or, by extension, the simple VW-ARS or EW-ARS estimators) may
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The estimators IVW-ARS and I-ARS are defined analogously. Using
the same block-diagonal tridiagonal ), these estimators are 8 =
(Z’Q7'X)"'Z2’Q7' Y. Under general assumptions these GLS-like instru-
mental variables estimators are asymptotically efficient in the sense de-
fined by White (1984, Theorem 4.57). In practice, there are two unknown
elements of the matrix ) that must be estimated: the dependence of the
diagonal elements on the interval between sales, and the value of the oft-
diagonal element.

VI. COMBINING REPEAT SALES WITH HEDONIC ESTIMATORS

Methods of combining repeat sales estimators with hedonic estimators
have been proposed by Case and Quigley (1989), Case et al. (1990), and
Clapp and Giaccotto (1990). Some of these methods entailed using infor-
mation about changed characteristics to improve the efficiency of repeat
sales estimators. We may follow such methods in combination with arith-
metic repeat sales estimators.

It is useful first to note that the GRS estimator can be derived as a sort
of special case of a hedonic estimator where hedonic variables consist
only of house dummy variables, one for each house; the ith element of the
Jjth dummy variable is 1 if the ith observation is on the jth house, and is
zero otherwise.!* With the hedonic regression, all houses may be in-
cluded, even those sold only once, although if there are house dummies in
the regression those houses sold only once will have no effect on the
estimated price index. The ith element of the dependent variable vector is
the log price of the ith house sale; the matrix of independent variables
consists of period dummy variables, one for each period in the sample,
and the house dummy variables. There is, however, multicollinearity
among the columns of this matrix of independent variables, so one must
drop one column of the matrix of independent variables; let us drop the
time dummy corresponding to the Oth time period. It might not be advis-
able to estimate the coefficient vector by ordinary least squares, since the
error terms for any one house are likely to be correlated; the GRS proce-
dure will turn out to be the same as a generalized least-squares estimate of
this hedonic regression that takes account of this correlation. If we trans-
form the vector of observations on the dependent variable and the matrix
of observations on the independent variables by premultiplying both by a

suffice. If one takes this simpler route, there 1s no reason to give any special treatment to
multiple sales of the same house, so long as sales pairs are chosen so that mtervals between
sales 1n the pairs for a given house do not overlap 1n time.

14 See also Palmquist (1982).
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nonsingular matrix .S that replaces all but one of the rows for each house
by consecutive differences of rows, and leaving one of the level observa-
tions for each house, then the ordinary least-squares estimate (which may
be regarded as a generalized least-squares estimate of the model that
takes into account the correlations structure of the errors) of the coeffi-
cient vector returns for us a coefficient vector consisting of the GRS
estimator and the coefficients of the house dummies. Whenever there is a
dummy variable in a regression which is zero except for one element, then
the effect of including that dummy in the regression is the same, in terms
of the coefficients other than the coefficient of that dummy, as dropping
the corresponding observation from the regression. The transformed ma-
trix of independent variables includes dummy variables that eliminate the
effect on estimated coefficients of all the single-sale and level observa-
tions.

Consideration of this hedonic regression suggests the possibility of us-
ing changed characteristics in a repeat sales regressions, as suggested
earlier in Palmquist (1982), Case and Quigley (1989), and Case et al.,
(1990). Suppose that we augmented the set of regressors for the original
hedonic regression discussed above by some other hedonic variables,
e.g., log number of rooms in the house. Individual houses must show
some change in these hedonic variables between sales; otherwise the
hedonic variables will show strict multicollinearity with the house dummy
variables. Then, premultiplying the vector of independent variables and
matrix of independent variables by the same matrix § would leave us with
the GRS regression estimator augmented by some additional independent
variables, the ith observation of each such additional independent vari-
able being the change between the corresponding pair of repeat sales of
the additional hedonic variable. Thus, for example, if one additional he-
donic variable, the log number of rooms, were added to the original he-
donic regression, then this would amount to adding to the GRS regression
an additional regressor which is zero for repeat sales for which rooms did
not change between sales, and equals the change in the log number of new
rooms for repeat sales for which number of rooms did change.

One might then consider adding as additional regressors (and as addi-
tional instruments) to any of the estimators considered in this paper addi-
tional variables representing such changes in hedonic variables between
repeat sales. This might be a useful alternative to dropping from the
sample all repeat sales for which there is evidence of change in the house
between sales. When there is a good deal of evidence about housing
characteristics, we might find that most houses change between sales. We
might not want to drop all such repeat sales observations. Including all
repeat sales along with the additional regressors carrying information
about the changes retains the desirable characteristic of repeat sales esti-
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mators that there is no effect of the estimator of changes through time in
the representation of individual houses, and at the same time takes ac-
count of some observed changes in houses.

It is worth noting, finally, that the above suggests another idea for
ordinary hedonic regressions, without the house dummies that would
convert them into repeat sales estimators. To obtain a value-weighted
arithmetic hedonic regression estimator, we first form X and Y matrices
with one observation per house. The vector Y of dependent variables has
all of its observations equal to 1.00. The jth of the first T + 1 columns of
the X matrix has ith element equal to zero unless the house corresponding
to observation i was sold in period j — 1, in which case the element is the
price of that house. Hedonic regressors can be appended as additional
columns of the X matrix. The estimator is then (Z'X)~!Z'Y, where the
matrix Z of instruments is the X matrix where each price in the first T + 1
columns is replaced with the number 1. The first 7 + 1 elements of the
vector of estimated coefficients are the reciprocal price index estimates. If
there are no hedonic regressors, this estimator returns as a price index for
each period just the average price of a house in that period, just as if one
had simply regressed house price on period dummies. When hedonic
regressors are added, however, the estimators change from the usual
hedonic regression estimators. For example, if there is a single hedonic
regressor equal to the number of square feet in the house, then an ordi-
nary hedonic regression setup where the dependent variable is the price
(not log price) in effect presumes that the number of square feet has the
same linear effect on price in time periods when housing prices are low as
in time periods when housing prices are high; the arithmetic hedonic price
estimator proposed here would not. As above, we can also form an
equally weighted hedonic regression estimator by dividing each row of X
and Y by the price of the house corresponding to that row.
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