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Overview

e wavelets are analysis tools mainly for

— time series analysis (focus of this tutorial)

— image analysis (will not cover)
e as a subject, wavelets are

— relatively new (1983 to present)
— synthesis of many new/old ideas

— keyword in 10, 558+ articles & books since 1989
(20004 in the last year alone)

e broadly speaking, have been two waves of wavelets

— continuous wavelet transform (1983 and on)

— discrete wavelet transform (1988 and on)



Game Plan

e introduce subject via CWT
e describe DW'T and its main ‘products’

— multiresolution analysis (additive decomposition)

— analysis of variance (‘power’ decomposition)
e describe selected uses for DW'T

— wavelet variance (related to Allan variance)

— decorrelation of fractionally differenced processes
(closely related to power law processes)

— signal extraction (denoising)



What is a Wavelet?

e wavelet is a ‘small wave’ (sinusoids are ‘big waves’)
e real-valued 1 (t) is a wavelet if

1. integral of 1 (t) is zero: />_¥(t)dt =0

2. integral of ¥2(¢) is unity: /<_*(t)dt =1
(called ‘unit energy’ property)

e wavelets so defined deserve their name because

— #2 says we have, for every small € > 0,

[ty dt <1«
for some finite T' (might be quite large!)
— length of [—T, T small compare to [—o0, 00
— #2 says ¥(t) must be nonzero somewhere
— #1 says ¥(t) balances itself above/below 0

e [ig. 1: three wavelets

e Fig. 2: examples of complex-valued wavelets



Basics of Wavelet Analysis: 1

e wavelets tell us about variations in local averages
e to quantify this description, let z(¢) be a ‘signal’

— real-valued function of ¢

— will refer to ¢ as time (but can be, e.g., depth)

e consider average value of z(t) over |a, b]:

1
b—a

/b z(u) du = «ofa, b)

e reparameterize in terms of A & ¢
1 42
ANt =alt—35,t+35) =~ [ Za(u)du

— A= b — a is called scale

—t = (a+b)/2 is center time of interval

o A() 1) is average value of z(t) over scale A at ¢



Basics of Wavelet Analysis: II

e average values of signals are of wide-spread interest

— hourly rainfall rates
— monthly mean sea surface temperatures
— yearly average temperatures over central England

— cte., ete., ete. (Rogers & Hammerstein, 1951)
e Fig. 3: fractional frequency deviates in clock 571

— can regard as averages of form [t — %, t+ %]

— t is measured in days (one measurment per day)
— plot shows A(1,t) versus integer ¢

— A(1,t) = 0 = master clock & 571 agree perfectly
— A(1,t) < 0 = clock 571 is losing time

— can easily correct if A(1,¢) constant

— quality of clock related to changes in A(1, 1)



Basics of Wavelet Analysis: III

e can quantify changes in A(1,t) via

D(1,t—1) = A(L,t)— A(L,t —1)
=3

3
t=3

t+3
= t_; x(u) du —

z(u) du,
or, equivalently,
D(1,t) = A(l,t+3)— A(l,t—1)
= /;H x(u) du — /tt_l z(u) du
e generalizing to scales other than unity yields
D\ t) = A\ t+5) — ANt —2)
= %/ttﬂ x(u) du — %/tt_A z(u) du
e D()\,t) often of more interest than A(\,t)
e can connect to Haar wavelet: write
DA t) = [ ahre(u)a(u) du
with
1\, t—A<u<t:

Oar(u) =11/A, t<u<t+ N
0, otherwise.



Basics of Wavelet Analysis: IV

e specialize to case A =1 and ¢t = 0:
-1, —1<u<QO;
biow) =11, 0<u<l;
0, otherwise.

comparison to wH(u) yields 1y o(u) = \/in(u)

e Haar wavelet mines out info on difference between
unit scale averages at t = 0 via

[ et we(u) du = wh1,0)

e to mine out info at other t’s, just shift wH(u)

—ﬁ,t—1§u<t

H, y_ H/ - H \_ ) 1 '

Yra(u) = (u—t) des Ypp(u) =y 550 t<u<t+ 1
0, otherwise

Fig. 4: top row of plots

e to mine out info about other A’s, form

1 .

u—t V2)
¢ﬁ(,x): 7%, t<u<t+\

0, otherwise.

@D)\t( ) \/

Fig. 4: bottom row of plots
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Basics of Wavelet Analysis: V

e can check that w/l\{t(u) is a wavelet for all A & ¢
® use zﬂAHt(u) to obtain
wHO ) = [7 e wa(u) du oc DA, 1)
left-hand side is Haar CW'T

e can do the same with other wavelets:

WA ) = /_o; Ya(u)z(u) du, where ) (u) = !

A (5)

left-hand side is CW'T based on 1 (u)

e interpretation for wfdG(u) and th(u) (Fig. 1):
differences of adjacent weighted averages



Basics of Wavelet Analysis: VI

e basic CWT result: if ¢(u) satisfies admissibility con-
dition, can recover z(t) from its CW'T:

x(t) = lew/ooo /_O; W(A,t) \/1)\¢ (t ;\ u) du %,
where Cy, is constant depending just on 9
e conclusion: W(A,t) equivalent to x(t)
e can also show that
d\

[ 2ty dt = C%w [ WA ) dt =

— LHS called energy in x(t)
— RHS integrand is energy density over A & ¢

e Fig. 3: Mexican hat CW'T of clock 571 data



Beyond the CWT: the DWT

e critique: have transformed signal into an image
e can often get by with subsamples of W (A, t)
e leads to notion of discrete wavelet transform (DWT)

— can regard as dyadic ‘slices’ through CWT

— can further subsample slices at various t’s
e DW'T has appeal in its own right
— most time series are sampled as discrete values

(can be tricky to implement CWT)

— can formulate as orthonormal transform
(facilitates statistical analysis)

— approximately decorrelates certain time series
(including power law processes)

— standardization to dyadic scales often adequate

— can be faster than the fast Fourier transform!

e will concentrate on DW'T for remainder of tutorial
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Overview of DWT

o let X = [X(, X1, ..., Xny_1]? beobserved time series
(for convenience, assume N integer multiple of 27)

e let YW be N x N orthonormal DW'T matrix

e W = WX is vector of DWT coefficients

e orthonormality says X = W/ W, s0 X & W

e can partition W as follows:
W,

W = W,

| Vi

0 J

e W, contains N; = N/2/ wavelet coefficients

— related to changes of averages at scale 7; = 2771
(7; is jth ‘dyadic’ scale)
— related to times spaced 2/ units apart

e V, contains Nj, = N/270 scaling coefficients

— related to averages at scale \j, = 27

— related to times spaced 270 units apart
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Example: Haar DWT

e Fig. 5. W for Haar DWT with N = 16

— first 8 rows yield Wy o< changes on scale 1
— next 4 rows yield Wy o< changes on scale 2
— next 2 rows yield W3 o< changes on scale 4
— next to last row yields Wy o< change on scale 8

— last row yields V4 o< average on scale 16

e Fig. 6: Haar DWT coefficients for clock 571
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DWT in Terms of Filters

o filter X, Xl, ..., Xy_1 to obtain

—1
2PW,, = z hitXi tmodn, t=0,1,...,N—1

where h;; is jth level wavelet filter
— note: circular filtering
e subsample to obtain wavelet coefficients:
Wi =2W, 55011, t=0,1,...,N; —1,

where W, is tth element of W
e [igs. 7 & 8: Haar, D(4), C(6) & LA(8) wavelet filters
e jth wavelet filter is band-pass with pass-band [Qj o 213]
e note: jth scale related to interval of frequencies
e similarly, scaling filters yield V j,
e Figs. 9 & 10: Haar, D(4), C(6) & LA(8) scaling filters

e Jyth scaling filter is low-pass with pass-band [0, 7 +1}
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Pyramid Algorithm: I

e can formulate DW'T via ‘pyramid algorithm’
— elegant iterative algorithm for computing DW'T
— implicitly defines W
— computes W = WX using O(N ) multiplications
* ‘brute force’ method uses O(N?)
« FFT algorithm uses O(N logy, N)

e algorithm makes use of two basic filters

— wavelet filter h; of unit scale h; = hy

— associated scaling filter g;
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The Wavelet Filter: 1

o let h;,l =0,...,L—1, be a real-valued filter
— L is filter width so hg £ 0 & hy_1 #0

— L must be even
—assume hy =0for il <0& 1> L

e h; called a wavelet filter if it has these 3 properties

1. summation to zero:

L1
> hy=0
1=0

2. unit energy:
L1,
Z hl - 1
1=0

3. orthogonality to even shifts:

L—-1 00
lgj() hth—Qn - Z hlhl—l—Qn =0

[=—00
for all nonzero integers n

e 2 & 3 together called orthonormality property
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The Wavelet Filter: 11

e transfer & squared gain functions for h;:
_ 1A —i27 f1 _ 2
HU) =S he ™ & H1p) = 1)

e can argue that orthonormality property equivalent to
H(f)+H(f+2)=2 forall f

e Fig. 11: H(f) for Daubechies wavelet filters

— L = 2 case is Haar wavelet filter

— filter cascade with averaging & differencing filters

11

— high-pass filter with pass-band [4, 5]

— can regard as half-band filter
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The Scaling Filter: 1

e scaling filter: ¢g; = (—1)l+1hL_1_l
— reverse h; & flip sign of every other coefficient
—egiho= k== = g0=g1=
— gy i1s ‘quadrature mirror’ filter for Ay

e properties of h; imply g; has these properties:

1. summation to £+/2, so will assume
L-1
> gi=v?2
1=0
2. unit energy:
L1,
> g =1
1=0

3. orthogonality to even shifts:

L—1 00
zzo 9i9i+2n = > GiGi+2n =0

[=—o0
for all nonzero integers n
4. orthogonality to wavelet filter at even shifts:
L—-1 00
> gihiton = X gihiyon =0
[=0 [=—00

for all integers n
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The Scaling Filter: 11

e transfer & squared gain functions for g;:
I o fl _ 2
G(N)= X e > & G(1) = GU)

e can argue that G(f) = H(f — 3)
— have G(0) = H(—y) = H(;) & G(;) = H(0)

— since h; is high-pass, g; must be low-pass
— low-pass filter with pass-band [0, 1]

— can also regard as half-band filter

e orthonormality property equivalent to

G(f)+G(f+Y =20 H(f)+G(f)=2 forall f
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Pyramid Algorithm: II

e define Vo= X and set j =1

e input to jth stage of pyramid algorithm is V;_4
— V,_; is tull-band
— related to frequencies [0, 55] in X

e filter with half-band filters and downsample:

-1
Wi = ZZ hiVi—1 26411 mod N;_,
"y

L—-1

Vie = ZZ 91Vj—121411 mod N;_1 5
-0

t=0,...,N; =1
e place these in vectors W; & V;

— W, are wavelet coefficients for scale T = 2/ -1

— V; are scaling coefficients for scale \; = 2/

e increment j and repeat above until j = Jy

o yields DWT coeflicients Wy, ..., W, V5
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Pyramid Algorithm: III

e can formulate inverse pyramid algorithm

(recovers V;_; from W; and V)
e algorithm implicitly defines transform matrix W

e partition V¥V commensurate with W :

Wi W, |
W, W,
W=\ : parallels W = :
Wi, Wy,
Vi, Vi

e rows of W; use jth level filter h;; with DF'T
: J=2
H(27f) 11 G(2'f)
=0
(hj; has L; = (22 —1)(L — 1) + 1 nonzero elements)

e VW, is N; x N matrix such that
W, = WX and WW] = Iy,

20



Two Consequences of Orthonormality

e multiresolution analysis (MRA)
T Qo o 1 T Jo
X=WW=3WW,;+V,V, =3 D;+8§
j=1 j=1

— scale-based additive decomposition
—Dj’s & 8y, called details & smooth

e analysis of variance
— consider ‘energy’ in time series:
X|P = XTX = ¥ X
— energy preserved in DW'T coefficients:
IW? = WX|* = XIWWX = XX = || X]|*
— since Wy, ..., Wy, V5, partitions W, have

o D 2 2
IWI"= X IIWSIE+ 1Vl
]:
leading to analysis of sample variance:

o 1 Qo 2 (1 2 —2)
= S IW P [V = X
Njgl H ]H + NH JOH

= LN (X - X)
ot = — —
N =

— scale-based decomposition (cf. frequency-based)
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Variation: Maximal Overlap DWT

e can eliminate downsampling and use
o Lj—1

WNEW lgo hj,lXt—lmodN7 t:O71,,N—1
to define MODWT coefficients W (& also V)

e unlike DWT, MODWT is not orthonormal
(in fact MODWT is highly redundant)

e like DWT, can do MRA & analysis of variance:
Jo _
X2 = 5 IW 7+ Vg

e unlike DW'T, MODWT'T works for all samples sizes N
(i.e., power of 2 assumption is not required)

— if N is power of 2, can compute MODW'T
using O(N log, N) operations
(i.e., same as FFT algorithm)

— contrast to DW'T, which uses O(N) operations

e Fig. 12: Haar MODWTT coefficients for clock 571
(cf. Fig. 6 with DWT coefficients)
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Definition of Wavelet Variance

olet Xy, t=...,—1,0,1,..., be a stochastic process

e run X; through jth level wavelet filter:

. Li—=1 _
Wjth Z hj,lXt—la t:...,—l,O,l,...,
=0
which should be contrasted with
_ Li=1 _

Wiir= > hjiXi—imoan, t=0,1,...,N—1

e definition of time dependent wavelet variance
(also called wavelet spectrum):

v a(7j) = var {W},
assuming var {W;,} exists and is finite
e v%,(7;) depends on 7; and ¢t
e will consider time independent wavelet variance:

V%(Tj) = var {W;;}

(can be easily adapted to time varying situation)
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Rationale for Wavelet Variance
e decomposes variance on scale by scale basis

e useful substitute/complement for spectrum

e useful substitute for process/sample variance

24



Variance Decomposition

e suppose X; has power spectrum Sy (f):

1/2

~1/2 SX(f) df = var {Xt}?

i.e., decomposes var { X;} across frequencies f

— involves uncountably infinite number of f’s

— Sx(f) Af ~ contribution to var {X;} due to f’s
in interval of length A f centered at f

e wavelet variance analog to fundamental result:
= 2
'21 vy () = var { X }
j:

i.e., decomposes var { X;} across scales 7;

— recall DWT/MODWT and sample variance
— involves countably infinite number of 7;’s
— v%(7;) contribution to var {X;} due to scale 7

— vx(7;) has same units as X; (easier to interpret)

25



Spectrum Substitute/Complement

e because hj; ~ bandpass over [1/2/1,1/27],
1/2i
)2( T] ~ 2/1/2]+1 (f) df
o if Sx(f) ‘featureless’, info in v%(7;) < infoin Sx(f)

e 1%(7;) more succinct: only 1 value per octave band

e example: Sx(f) o< |f|?, i.e., power law process

— can deduce « from slope of log Sx(f) vs. log f
— implies 1% (1) o Tj_o‘_l approximately
— can deduce « from slope of log v%(7;) vs. log 7;
— 10 loss of ‘info’ using v%(7;) rather than Sx(f)
e with Haar wavelet, obtain pilot spectrum estimate
proposed in Blackman & Tukey (1958)
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Substitute for Variance: 1

can be difficult to estimate process variance
V4 (7;) useful substitute: easy to estimate & finite
let u = E{X;} be known, o = var { X;} unknown

can estimate o2 using

estimator above is unbiased: E{5°} = o>

if 11 is unknown, can estimate o2 using

L1 Nz—:l
O- R
N =0

(X —X)?

there is some (non-pathological!) X; such that

E{5%}

< €
o

for any gvien e > 0 & N > 1

2

62 can badly underestimate !

example: power law process with —1 < a < 0
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Substitute for Variance: 11

e (): why is wavelet variance useful when o2 is not?
e replaces ‘global’ variability with variability over scales

e if X stationary with mean p, then

- Li—1 _ Li—1_
E{Wiid = X huBE{iXoap = X hjr =0

~

because ¥ hj; =0

o E{W,;} known, so can get unbiased estimator of

var {W 1} = vi (7))
e certain nonstationary X; have well-defined v%(7;)

e cxample: power law processes with o < —1
(example of process with stationary increments)
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Estimation of Wavelet Variance: 1

e can base estimator on MODWT of X, X1, ..., Xy_1:

_ Lj—1_
Wjjt = lz:() hj,lXt—l mod Ny t=0,1,...,N—1

(DWT-based estimator possible, but less efficient)

e rccall that

Li-1 _

Wj,t = Z hj,lXt—l; t = O, :l:l, :t2, RN
[=0

SO Wj’t = Wﬁ if mod not needed: L; —1 <t < N

if N — L; >0, unbiased estimator of v%(7;) is
1 N-1 __ 1 N-1
-2 _ 2 2
Uy (1i) = W: = — Wi,
X( ]) N — [j‘7 + 1 t—LZj—l 7.t M] t—LZ—l 7.t

where M; = N — L; +1
can also construct biased estimator of v%(7;):

T W)

—L;—1

. 1 L2
V)Q((Tj) = Y Wﬁt = N< t;) Wﬁt +t

Ist sum in parentheses influenced by circularity
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Estimation of Wavelet Variance: 11

e biased estimator unbiased if {X;} white noise

e biased estimator offers exact analysis of 62
unbiased estimator need not

e biased estimator can have better mean square error
(Greenhall et al., 1999; need to ‘reflect’ X;)
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Statistical Properties of 0% (7))

e suppose {W;,} Gaussian, mean 0 & spectrum 5;( f)

e suppose square integrability condition holds:

2 SR df < 0o & Si(f) >0

4; = —1/2 "7

(holds for power law processes if L large enough)

e can show 0% (7;) asymptotically normal with

mean v%(7;) & large sample variance 2A4; /M,

e can estimate A; and use with 0%(7;)
to construct confidence interval for V%(Tj)

e cxample

— Fig. 13: clock errors X; = Xt(o). along with
differences Xt(z) = Xt(l_l) — X(Z_11> fori=1,2

— Fig. 14: 0%(7;) for clock errors
— Fig. 15: 02(7;) for Y, X
— Haar 02(;) related to Allan variance 0%(2, 7;):

() = 1o40,7)
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Decorrelation of FD Processes

e X, ‘fractionally differenced’ if its spectrum is
_ o
 |2sin(7w f)]?0

Sx(f)

2
e note: for small f, have Sx(f) = C/|f|*;
i.e., power law with a = —29

where 02 > 0 and —3 < § <

e if ) =0, FD process is white noise
o if0 << %, FD stationary with ‘long memory’
e can extend definition to § > %

— nonstationary 1/ f type process
— also called ARFIMA(0,6,0) process

e Fig. 16: DWT of simulated F'D process, 0 = 0.4
(sample autocorrelation sequences (ACSs) on right)
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DWT as Whitening Transform

e sample ACSs suggest W ~ uncorrelated

e since F'D process is stationary, so are W
(ignoring terms influenced by circularity)

o ['ig. 17: spectra for W;, 7 =1,2,3,4

o W; & W, j # 7', approximately uncorrelated
(approximation improves as L increases)

e DWT thus acts as a whitening transform
e lots of uses for whitening property, including:

1. testing for variance changes
2. bootstrapping time series statistics

3. estimating 0 for stationary/nonstationary
fractional difference processes with trend
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Estimation for FD Processes: 1

extension of work by Wornell; McCoy & Walden

problem: estimate ¢ from time series U; such that
U =T+ Xy

where

- =5l a;t! is polynomial trend

— X, is FD process, but can have 6 > %

DWT wavelet filter of width L has
embedded differencing operation of order L /2

if % > r + 1, reduces polynomial trend to 0
can partition DW'T coefficients as

W =W;+W,+W,
where

— W has scaling coefficients and Os elsewhere
— W, has boundary-dependent wavelet coefficients

— W, has boundary-independent wavelet coefficients
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Estimation for FD Processes: 11

o since U = WI'W, can write
U=W (W, + W)+ W'W,=T+X

e Fig. 18: example with fractional frequency deviates

e can use values in W, to form likelihood:

Jo Vi 1 W2 /(202)
L(9, 062) = ﬁ HJ 12°¢ A
j=1i=1 (27m]2~>
where
9
2 1/2 0-6
2 — . df-
9 —1/2H‘7(f)\281n(7rf)\25 J;

and H;(f) is squared gain for h;;
e leads to maximum likelihood estimator § for &
e works well in Monte Carlo simulations

o gct & = 0.39 £ 0.03 for fractional frequency deviates
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DWT-based Signal Extraction: I

e DWT analysis of X yields W = WX
e DWT synthesis X = W!'W vyields

— multiresolution analysis (MRA)

— estimator of ‘signal’ D hidden in X:
* modify W to get W’

* use W' to form signal estimate:
D=W'"W
e key ideas behind wavelet-based signal estimation

— DWT can isolate signals in small number of W,,’s
— can ‘threshold’ or ‘shrink” W,,’s

e key ideas lead to ‘waveshrink’
(Donoho and Johnstone, 1995)
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DWT-based Signal Extraction: 1I

e thresholding schemes involve

1. computing W = WX
2. defining W as vector with nth element
W(t) _ {O, if ‘Wn’ S 5;
" some nonzero value, otherwise,
where nonzero values are yet to be defined

3. estimating D via D® = WTw®

e simplest scheme is ‘hard thresholding:’
{07 if [W,| <6;

W,, otherwise.

W) —

n

Fig. 19: solid line (‘kill /keep’ strategy)
e alterative scheme is ‘soft thresholding:’

W) = sign {W,,} (|W,,| — 0),,

where
+1, it W, > 0: :
, n ) > ()
g Wk =10, W, =0, and (o), ={0 720
-1, it W, <O0. ’ |

Fig. 19: dashed line
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DWT-based Signal Extraction: 1II

e third scheme is ‘mid thresholding:’
Wi = sign {W,,} (|W,,] - 0)

++
where
— 2(’Wn‘ o 5)—1—7 if ’Wn‘ < 25;
(IWal = 0)4+ = { W, otherwise

Fig. 19: dotted line
e (): how should ¢ be set?

e A: universal’ threshold (Donoho & Johnstone, 1995)
(lots of other answers have been proposed)

— specialize to model X = D + €,
where € 1s Gaussian white noise with variance o

— ‘universal” threshold: 017 = v/[2072log(N)]

— rationale for 5U:

2
€

x suppose D = 0 & hence W is white noise also
x as N — 00, have

P [m%X]Wn\ < 5U} — 1

so all W) = () with high probability
x will estimate correct D with high probability
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DWT-based Signal Extraction: 1V

e can estimate o2 using median absolute deviation (MAD):

median {|Wi |, (W], ..., ’W1,%—1|}
0.6745 ’

where W 4's are elements of W,

A~

O (MAD)

e Fig. 20: application to NMR series

e has potential application in dejamming GPS signals
(with roles of ‘signal” and ‘noise” swapped!)
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Web Material and Books

o Wavelet Digest

http://www.wavelet.org/

e MathSoft’s wavelet resource page

http://www.mathsoft.com/wavelets.html

e books

— R. Carmona, W.—L. Hwang & B. Torrésani (1998),
Practical Time-Frequency Analysis, Academic
Press

— 5. G. Mallat (1999), A Wavelet Tour of Signal
Processing (Second Edition), Academic Press

— R. T. Ogden (1997), Essential Wavelets for Sta-
tistical Applications and Data Analysis, Birkhauser

— D. B. Percival & A. T. Walden (2000), Wawvelet
Methods for Time Series Analysis, Cambridge
University Press (will appear in July/August)
http://www.staff.washington.edu/dbp/wmtsa.html

— B. Vidakovic (1999), Statistical Modeling by Wavelets,
John Wiley & Sons.
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Software

e Matlab

— WAVELAB (free):

http://www-stat.stanford.edu/ "wavelab
— WAVEBOX (commercial):
http://www.toolsmiths.com/
e Mathcad Wavelets Extension Pack (commercial):

http://www.mathsoft.com/mathcad/ebooks/wavelets.asp

e S-Plus software

— WAVETHRESH (free):

http://1lib.stat.cmu.edu/S/wavethresh

— S+WAVELETS (commercial):

http://www.mathsoft.com/splsprod/wavelets.html
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