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Overview

• wavelets are analysis tools mainly for

– time series analysis (focus of this tutorial)

– image analysis (will not cover)

• as a subject, wavelets are

– relatively new (1983 to present)

– synthesis of many new/old ideas

– keyword in 10, 558+ articles & books since 1989

(2000+ in the last year alone)

• broadly speaking, have been two waves of wavelets

– continuous wavelet transform (1983 and on)

– discrete wavelet transform (1988 and on)
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Game Plan

• introduce subject via CWT

• describe DWT and its main ‘products’

– multiresolution analysis (additive decomposition)

– analysis of variance (‘power’ decomposition)

• describe selected uses for DWT

– wavelet variance (related to Allan variance)

– decorrelation of fractionally differenced processes

(closely related to power law processes)

– signal extraction (denoising)
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What is a Wavelet?

• wavelet is a ‘small wave’ (sinusoids are ‘big waves’)

• real-valued ψ(t) is a wavelet if

1. integral of ψ(t) is zero:
∫∞
−∞ ψ(t) dt = 0

2. integral of ψ2(t) is unity:
∫∞
−∞ ψ

2(t) dt = 1

(called ‘unit energy’ property)

• wavelets so defined deserve their name because

– #2 says we have, for every small ε > 0,
∫ T
−T ψ

2(t) dt < 1 − ε,

for some finite T (might be quite large!)

– length of [−T, T ] small compare to [−∞,∞]

– #2 says ψ(t) must be nonzero somewhere

– #1 says ψ(t) balances itself above/below 0

• Fig. 1: three wavelets

• Fig. 2: examples of complex-valued wavelets
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Basics of Wavelet Analysis: I

• wavelets tell us about variations in local averages

• to quantify this description, let x(t) be a ‘signal’

– real-valued function of t

– will refer to t as time (but can be, e.g., depth)

• consider average value of x(t) over [a, b]:

1

b− a
∫ b
a
x(u) du ≡ α(a, b)

• reparameterize in terms of λ & t

A(λ, t) ≡ α(t− λ
2 , t +

λ
2) =

1

λ

∫ t+λ
2

t−λ
2
x(u) du

– λ ≡ b− a is called scale

– t = (a + b)/2 is center time of interval

• A(λ, t) is average value of x(t) over scale λ at t
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Basics of Wavelet Analysis: II

• average values of signals are of wide-spread interest

– hourly rainfall rates

– monthly mean sea surface temperatures

– yearly average temperatures over central England

– etc., etc., etc. (Rogers & Hammerstein, 1951)

• Fig. 3: fractional frequency deviates in clock 571

– can regard as averages of form [t− 1
2, t +

1
2]

– t is measured in days (one measurment per day)

– plot shows A(1, t) versus integer t

– A(1, t) = 0 ⇒ master clock & 571 agree perfectly

– A(1, t) < 0 ⇒ clock 571 is losing time

– can easily correct if A(1, t) constant

– quality of clock related to changes in A(1, t)
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Basics of Wavelet Analysis: III

• can quantify changes in A(1, t) via

D(1, t− 1
2) ≡ A(1, t) − A(1, t− 1)

=
∫ t+1

2
t−1

2
x(u) du−

∫ t−1
2

t−3
2
x(u) du,

or, equivalently,

D(1, t) = A(1, t + 1
2) − A(1, t− 1

2)

=
∫ t+1

t
x(u) du−

∫ t
t−1
x(u) du

• generalizing to scales other than unity yields

D(λ, t) ≡ A(λ, t + λ
2) − A(λ, t− λ

2)

=
1

λ

∫ t+λ
t

x(u) du− 1

λ

∫ t
t−λ x(u) du

• D(λ, t) often of more interest than A(λ, t)

• can connect to Haar wavelet: write

D(λ, t) =
∫ ∞
−∞ ψ̃λ,t(u)x(u) du

with

ψ̃λ,t(u) ≡



−1/λ, t− λ ≤ u < t;
1/λ, t ≤ u < t + λ;
0, otherwise.
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Basics of Wavelet Analysis: IV

• specialize to case λ = 1 and t = 0:

ψ̃1,0(u) ≡


−1, −1 ≤ u < 0;

1, 0 ≤ u < 1;

0, otherwise.

comparison to ψH(u) yields ψ̃1,0(u) =
√

2ψH(u)

• Haar wavelet mines out info on difference between

unit scale averages at t = 0 via∫ ∞
−∞ ψ

H(u)x(u) du ≡ WH(1, 0)

• to mine out info at other t’s, just shift ψH(u):

ψH
1,t(u) ≡ ψH(u−t); i.e., ψH

1,t(u) =



− 1√

2, t− 1 ≤ u < t;
1√
2, t ≤ u < t + 1;

0, otherwise

Fig. 4: top row of plots

• to mine out info about other λ’s, form

ψH
λ,t(u) ≡

1√
λ
ψH


u− t
λ


 =



− 1√

2λ
, t− λ ≤ u < t;

1√
2λ
, t ≤ u < t + λ;

0, otherwise.

Fig. 4: bottom row of plots

7



Basics of Wavelet Analysis: V

• can check that ψH
λ,t(u) is a wavelet for all λ & t

• use ψH
λ,t(u) to obtain

WH(λ, t) ≡
∫ ∞
−∞ ψ

H
λ,t(u)x(u) du ∝ D(λ, t)

left-hand side is Haar CWT

• can do the same with other wavelets:

W (λ, t) ≡
∫ ∞
−∞ ψλ,t(u)x(u) du, where ψλ,t(u) ≡

1√
λ
ψ


u− t
λ




left-hand side is CWT based on ψ(u)

• interpretation for ψfdG(u) and ψMh(u) (Fig. 1):

differences of adjacent weighted averages
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Basics of Wavelet Analysis: VI

• basic CWT result: if ψ(u) satisfies admissibility con-

dition, can recover x(t) from its CWT:

x(t) =
1

Cψ

∫ ∞
0


∫ ∞

−∞W (λ, t)
1√
λ
ψ


t− u
λ


 du


 dλ
λ2
,

where Cψ is constant depending just on ψ

• conclusion: W (λ, t) equivalent to x(t)

• can also show that
∫ ∞
−∞ x

2(t) dt =
1

Cψ

[∫ ∞
0

∫ ∞
−∞W

2(λ, t) dt
] dλ
λ2

– LHS called energy in x(t)

– RHS integrand is energy density over λ & t

• Fig. 3: Mexican hat CWT of clock 571 data
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Beyond the CWT: the DWT

• critique: have transformed signal into an image

• can often get by with subsamples of W (λ, t)

• leads to notion of discrete wavelet transform (DWT)

– can regard as dyadic ‘slices’ through CWT

– can further subsample slices at various t’s

• DWT has appeal in its own right

– most time series are sampled as discrete values

(can be tricky to implement CWT)

– can formulate as orthonormal transform

(facilitates statistical analysis)

– approximately decorrelates certain time series

(including power law processes)

– standardization to dyadic scales often adequate

– can be faster than the fast Fourier transform!

• will concentrate on DWT for remainder of tutorial
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Overview of DWT

• let X = [X0, X1, . . . , XN−1]
T be observed time series

(for convenience, assume N integer multiple of 2J0)

• let W be N ×N orthonormal DWT matrix

• W = WX is vector of DWT coefficients

• orthonormality says X = WTW, so X ⇔ W

• can partition W as follows:

W =




W1
...

WJ0

VJ0




• Wj contains Nj = N/2j wavelet coefficients

– related to changes of averages at scale τj = 2j−1

(τj is jth ‘dyadic’ scale)

– related to times spaced 2j units apart

• VJ0 contains NJ0 = N/2J0 scaling coefficients

– related to averages at scale λJ0 = 2J0

– related to times spaced 2J0 units apart

11



Example: Haar DWT

• Fig. 5: W for Haar DWT with N = 16

– first 8 rows yield W1 ∝ changes on scale 1

– next 4 rows yield W2 ∝ changes on scale 2

– next 2 rows yield W3 ∝ changes on scale 4

– next to last row yields W4 ∝ change on scale 8

– last row yields V4 ∝ average on scale 16

• Fig. 6: Haar DWT coefficients for clock 571
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DWT in Terms of Filters

• filter X0, X1, . . . , XN−1 to obtain

2j/2W̃j,t ≡
Lj−1∑
l=0
hj,lXt−l mod N, t = 0, 1, . . . , N − 1

where hj,l is jth level wavelet filter

– note: circular filtering

• subsample to obtain wavelet coefficients:

Wj,t = 2j/2W̃j,2j(t+1)−1, t = 0, 1, . . . , Nj − 1,

where Wj,t is tth element of Wj

• Figs. 7 & 8: Haar, D(4), C(6) & LA(8) wavelet filters

• jth wavelet filter is band-pass with pass-band [ 1
2j+1 ,

1
2j ]

• note: jth scale related to interval of frequencies

• similarly, scaling filters yield VJ0

• Figs. 9 & 10: Haar, D(4), C(6) & LA(8) scaling filters

• J0th scaling filter is low-pass with pass-band [0, 1
2J0+1 ]
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Pyramid Algorithm: I

• can formulate DWT via ‘pyramid algorithm’

– elegant iterative algorithm for computing DWT

– implicitly defines W
– computes W = WX usingO(N) multiplications

∗ ‘brute force’ method uses O(N 2)

∗ FFT algorithm uses O(N log2N)

• algorithm makes use of two basic filters

– wavelet filter hl of unit scale hl ≡ h1,l

– associated scaling filter gl
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The Wavelet Filter: I

• let hl, l = 0, . . . , L− 1, be a real-valued filter

– L is filter width so h0 
= 0 & hL−1 
= 0

– L must be even

– assume hl = 0 for l < 0 & l ≥ L
• hl called a wavelet filter if it has these 3 properties

1. summation to zero:

L−1∑
l=0
hl = 0

2. unit energy:
L−1∑
l=0
h2
l = 1

3. orthogonality to even shifts:

L−1∑
l=0
hlhl+2n =

∞∑
l=−∞

hlhl+2n = 0

for all nonzero integers n

• 2 & 3 together called orthonormality property
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The Wavelet Filter: II

• transfer & squared gain functions for hl:

H(f ) ≡
L−1∑
l=0
hle

−i2πfl & H(f ) ≡ |H(f )|2

• can argue that orthonormality property equivalent to

H(f ) + H(f + 1
2) = 2 for all f

• Fig. 11: H(f ) for Daubechies wavelet filters

– L = 2 case is Haar wavelet filter

– filter cascade with averaging & differencing filters

– high-pass filter with pass-band [14,
1
2]

– can regard as half-band filter
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The Scaling Filter: I

• scaling filter: gl ≡ (−1)l+1hL−1−l

– reverse hl & flip sign of every other coefficient

– e.g.: h0 = 1√
2 & h1 = − 1√

2 ⇒ g0 = g1 = 1√
2

– gl is ‘quadrature mirror’ filter for hl

• properties of hl imply gl has these properties:

1. summation to ±√
2, so will assume

L−1∑
l=0
gl =

√
2

2. unit energy:
L−1∑
l=0
g2
l = 1

3. orthogonality to even shifts:

L−1∑
l=0
glgl+2n =

∞∑
l=−∞

glgl+2n = 0

for all nonzero integers n

4. orthogonality to wavelet filter at even shifts:

L−1∑
l=0
glhl+2n =

∞∑
l=−∞

glhl+2n = 0

for all integers n

17



The Scaling Filter: II

• transfer & squared gain functions for gl:

G(f ) ≡
L−1∑
l=0
gle

−i2πfl & G(f ) ≡ |G(f )|2

• can argue that G(f ) = H(f − 1
2)

– have G(0) = H(−1
2) = H(1

2) & G(1
2) = H(0)

– since hl is high-pass, gl must be low-pass

– low-pass filter with pass-band [0, 1
4]

– can also regard as half-band filter

• orthonormality property equivalent to

G(f )+G(f + 1
2) = 2 or H(f )+G(f ) = 2 for all f
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Pyramid Algorithm: II

• define V0 ≡ X and set j = 1

• input to jth stage of pyramid algorithm is Vj−1

– Vj−1 is full-band

– related to frequencies [0, 1
2j ] in X

• filter with half-band filters and downsample:

Wj,t ≡
L−1∑
l=0
hlVj−1,2t+1−l mod Nj−1

Vj,t ≡
L−1∑
l=0
glVj−1,2t+1−l mod Nj−1,

t = 0, . . . , Nj − 1

• place these in vectors Wj & Vj

– Wj are wavelet coefficients for scale τj = 2j−1

– Vj are scaling coefficients for scale λj = 2j

• increment j and repeat above until j = J0

• yields DWT coefficients W1, . . . ,WJ0,VJ0
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Pyramid Algorithm: III

• can formulate inverse pyramid algorithm

(recovers Vj−1 from Wj and Vj)

• algorithm implicitly defines transform matrix W
• partition W commensurate with Wj:

W =




W1

W2
...

WJ0

VJ0




parallels W =




W1

W2
...

WJ0

VJ0




• rows of Wj use jth level filter hj,l with DFT

H(2j−1f )
j−2∏
l=0
G(2lf )

(hj,l has Lj = (2j − 1)(L− 1) + 1 nonzero elements)

• Wj is Nj ×N matrix such that

Wj = WjX and WjWT
j = INj
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Two Consequences of Orthonormality

• multiresolution analysis (MRA)

X = WTW =
J0∑
j=1

WT
j Wj + VTJ0VJ0 ≡

J0∑
j=1

Dj + SJ0

– scale-based additive decomposition

– Dj’s & SJ0 called details & smooth

• analysis of variance

– consider ‘energy’ in time series:

‖X‖2 = XTX =
N−1∑
t=0
X2
t

– energy preserved in DWT coefficients:

‖W‖2 = ‖WX‖2 = XTWTWX = XTX = ‖X‖2

– since W1, . . . ,WJ0,VJ0 partitions W, have

‖W‖2 =
J0∑
j=1

‖Wj‖2 + ‖VJ0‖2,

leading to analysis of sample variance:

σ̂2 ≡ 1

N

N−1∑
t=0

(Xt −X)
2

=
1

N

J0∑
j=1

‖Wj‖2+


 1

N
‖VJ0‖2 −X2




– scale-based decomposition (cf. frequency-based)
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Variation: Maximal Overlap DWT

• can eliminate downsampling and use

W̃j,t ≡
1

2j/2

Lj−1∑
l=0
hj,lXt−l mod N, t = 0, 1, . . . , N−1

to define MODWT coefficients W̃j (& also Ṽj)

• unlike DWT, MODWT is not orthonormal

(in fact MODWT is highly redundant)

• like DWT, can do MRA & analysis of variance:

‖X‖2 =
J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2

• unlike DWT, MODWT works for all samples sizes N

(i.e., power of 2 assumption is not required)

– if N is power of 2, can compute MODWT

using O(N log2N) operations

(i.e., same as FFT algorithm)

– contrast to DWT, which uses O(N) operations

• Fig. 12: Haar MODWT coefficients for clock 571

(cf. Fig. 6 with DWT coefficients)
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Definition of Wavelet Variance

• let Xt, t = . . . ,−1, 0, 1, . . . , be a stochastic process

• run Xt through jth level wavelet filter:

Wj,t ≡
Lj−1∑
l=0
h̃j,lXt−l, t = . . . ,−1, 0, 1, . . . ,

which should be contrasted with

W̃j,t ≡
Lj−1∑
l=0
h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

• definition of time dependent wavelet variance

(also called wavelet spectrum):

ν2
X,t(τj) ≡ var {Wj,t},

assuming var {Wj,t} exists and is finite

• ν2
X,t(τj) depends on τj and t

• will consider time independent wavelet variance:

ν2
X(τj) ≡ var {Wj,t}

(can be easily adapted to time varying situation)
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Rationale for Wavelet Variance

• decomposes variance on scale by scale basis

• useful substitute/complement for spectrum

• useful substitute for process/sample variance

24



Variance Decomposition

• suppose Xt has power spectrum SX(f ):

∫ 1/2

−1/2
SX(f ) df = var {Xt};

i.e., decomposes var {Xt} across frequencies f

– involves uncountably infinite number of f ’s

– SX(f ) ∆f ≈ contribution to var {Xt} due to f ’s

in interval of length ∆f centered at f

• wavelet variance analog to fundamental result:

∞∑
j=1
ν2
X(τj) = var {Xt}

i.e., decomposes var {Xt} across scales τj

– recall DWT/MODWT and sample variance

– involves countably infinite number of τj’s

– ν2
X(τj) contribution to var {Xt} due to scale τj

– νX(τj) has same units as Xt (easier to interpret)
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Spectrum Substitute/Complement

• because h̃j,l ≈ bandpass over [1/2j+1, 1/2j],

ν2
X(τj) ≈ 2

∫ 1/2j

1/2j+1 SX(f ) df

• if SX(f ) ‘featureless’, info in ν2
X(τj) ⇔ info in SX(f )

• ν2
X(τj) more succinct: only 1 value per octave band

• example: SX(f ) ∝ |f |α, i.e., power law process

– can deduce α from slope of log SX(f ) vs. log f

– implies ν2
X(τj) ∝ τ−α−1

j approximately

– can deduce α from slope of log ν2
X(τj) vs. log τj

– no loss of ‘info’ using ν2
X(τj) rather than SX(f )

• with Haar wavelet, obtain pilot spectrum estimate

proposed in Blackman & Tukey (1958)
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Substitute for Variance: I

• can be difficult to estimate process variance

• ν2
X(τj) useful substitute: easy to estimate & finite

• let µ = E{Xt} be known, σ2 = var {Xt} unknown

• can estimate σ2 using

σ̃2 ≡ 1

N

N−1∑
t=0

(Xt − µ)2

• estimator above is unbiased: E{σ̃2} = σ2

• if µ is unknown, can estimate σ2 using

σ̂2 ≡ 1

N

N−1∑
t=0

(Xt −X)2

• there is some (non-pathological!) Xt such that

E{σ̂2}
σ2

< ε

for any gvien ε > 0 & N ≥ 1

• σ̂2 can badly underestimate σ2!

• example: power law process with −1 < α < 0
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Substitute for Variance: II

• Q: why is wavelet variance useful when σ2 is not?

• replaces ‘global’ variability with variability over scales

• if Xt stationary with mean µ, then

E{Wj,t} =
Lj−1∑
l=0
h̃j,lE{Xt−l} = µ

Lj−1∑
l=0
h̃j,l = 0

because
∑
l h̃j,l = 0

• E{Wj,t} known, so can get unbiased estimator of

var {Wj,t} = ν2
X(τj)

• certain nonstationary Xt have well-defined ν2
X(τj)

• example: power law processes with α ≤ −1

(example of process with stationary increments)
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Estimation of Wavelet Variance: I

• can base estimator on MODWT ofX0, X1, . . . , XN−1:

W̃j,t ≡
Lj−1∑
l=0
h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

(DWT-based estimator possible, but less efficient)

• recall that

Wj,t ≡
Lj−1∑
l=0
h̃j,lXt−l, t = 0,±1,±2, . . .

so W̃j,t = Wj,t if mod not needed: Lj − 1 ≤ t < N
• if N − Lj ≥ 0, unbiased estimator of ν2

X(τj) is

ν̂2
X(τj) ≡

1

N − Lj + 1

N−1∑
t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑
t=Lj−1

W
2
j,t,

where Mj ≡ N − Lj + 1

• can also construct biased estimator of ν2
X(τj):

ν̃2
X(τj) ≡

1

N

N−1∑
t=0
W̃ 2
j,t =

1

N

(Lj−2∑
t=0
W̃ 2
j,t +

N−1∑
t=Lj−1

W
2
j,t

)

1st sum in parentheses influenced by circularity
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Estimation of Wavelet Variance: II

• biased estimator unbiased if {Xt} white noise

• biased estimator offers exact analysis of σ̂2;

unbiased estimator need not

• biased estimator can have better mean square error

(Greenhall et al., 1999; need to ‘reflect’ Xt)
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Statistical Properties of ν̂2
X(τj)

• suppose {Wj,t} Gaussian, mean 0 & spectrum Sj(f )

• suppose square integrability condition holds:

Aj ≡
∫ 1/2

−1/2
S2
j (f ) df <∞ & Sj(f ) > 0

(holds for power law processes if L large enough)

• can show ν̂2
X(τj) asymptotically normal with

mean ν2
X(τj) & large sample variance 2Aj/Mj

• can estimate Aj and use with ν̂2
X(τj)

to construct confidence interval for ν2
X(τj)

• example

– Fig. 13: clock errors Xt ≡ X(0)
t along with

differences X
(i)
t ≡ X(i−1)

t −X(i−1)
t−1 for i = 1, 2

– Fig. 14: ν̂2
X(τj) for clock errors

– Fig. 15: ν̂2
Y (τj) for Y t ∝ X(1)

t

– Haar ν̂2
Y (τj) related to Allan variance σ2

Y (2, τj):

ν2
Y (τj) = 1

2σ
2
Y (2, τj)
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Decorrelation of FD Processes

• Xt ‘fractionally differenced’ if its spectrum is

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ,

where σ2
ε > 0 and −1

2 < δ <
1
2

• note: for small f , have SX(f ) ≈ C/|f |2δ;
i.e., power law with α = −2δ

• if δ = 0, FD process is white noise

• if 0 < δ < 1
2, FD stationary with ‘long memory’

• can extend definition to δ ≥ 1
2

– nonstationary 1/f type process

– also called ARFIMA(0,δ,0) process

• Fig. 16: DWT of simulated FD process, δ = 0.4

(sample autocorrelation sequences (ACSs) on right)
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DWT as Whitening Transform

• sample ACSs suggest Wj ≈ uncorrelated

• since FD process is stationary, so are Wj

(ignoring terms influenced by circularity)

• Fig. 17: spectra for Wj, j = 1, 2, 3, 4

• Wj & Wj′, j 
= j′, approximately uncorrelated

(approximation improves as L increases)

• DWT thus acts as a whitening transform

• lots of uses for whitening property, including:

1. testing for variance changes

2. bootstrapping time series statistics

3. estimating δ for stationary/nonstationary

fractional difference processes with trend
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Estimation for FD Processes: I

• extension of work by Wornell; McCoy & Walden

• problem: estimate δ from time series Ut such that

Ut = Tt +Xt

where

– Tt ≡ ∑r
j=0 ajt

j is polynomial trend

– Xt is FD process, but can have δ ≥ 1
2

• DWT wavelet filter of width L has

embedded differencing operation of order L/2

• if L2 ≥ r + 1, reduces polynomial trend to 0

• can partition DWT coefficients as

W = Ws + Wb + Ww

where

– Ws has scaling coefficients and 0s elsewhere

– Ws has boundary-dependent wavelet coefficients

– Ww has boundary-independent wavelet coefficients
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Estimation for FD Processes: II

• since U = WTW, can write

U = WT (Ws + Wb) + WTWw ≡ T̂ + X̂

• Fig. 18: example with fractional frequency deviates

• can use values in Ww to form likelihood:

L(δ, σ2
ε ) ≡

J0∏
j=1

N ′
j∏

t=1

1(
2πσ2

j

)1/2
e
−W 2

j,t+L′j−1
/(2σ2

j )

where

σ2
j ≡

∫ 1/2

−1/2
Hj(f )

σ2
ε

|2 sin(πf )|2δ df ;

and Hj(f ) is squared gain for hj,l

• leads to maximum likelihood estimator δ̂ for δ

• works well in Monte Carlo simulations

• get δ̂ .= 0.39 ± 0.03 for fractional frequency deviates
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DWT-based Signal Extraction: I

• DWT analysis of X yields W = WX

• DWT synthesis X = WTW yields

– multiresolution analysis (MRA)

– estimator of ‘signal’ D hidden in X:

∗ modify W to get W′

∗ use W′ to form signal estimate:

D̂ ≡ WTW′

• key ideas behind wavelet-based signal estimation

– DWT can isolate signals in small number ofWn’s

– can ‘threshold’ or ‘shrink’ Wn’s

• key ideas lead to ‘waveshrink’

(Donoho and Johnstone, 1995)
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DWT-based Signal Extraction: II

• thresholding schemes involve

1. computing W ≡ WX

2. defining W(t) as vector with nth element

W (t)
n =


 0, if |Wn| ≤ δ;

some nonzero value, otherwise,

where nonzero values are yet to be defined

3. estimating D via D̂(t) ≡ WTW(t)

• simplest scheme is ‘hard thresholding:’

W (ht)
n =


 0, if |Wn| ≤ δ;
Wn, otherwise.

Fig. 19: solid line (‘kill/keep’ strategy)

• alterative scheme is ‘soft thresholding:’

W (st)
n = sign {Wn} (|Wn| − δ)+ ,

where

sign {Wn} ≡




+1, if Wn > 0;

0, if Wn = 0;

−1, if Wn < 0.

and (x)+ ≡


x, if x ≥ 0;

0, if x < 0.

Fig. 19: dashed line
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DWT-based Signal Extraction: III

• third scheme is ‘mid thresholding:’

W (mt)
n = sign {Wn} (|Wn| − δ)++ ,

where

(|Wn| − δ)++ ≡



2(|Wn| − δ)+, if |Wn| < 2δ;

|Wn|, otherwise

Fig. 19: dotted line

• Q: how should δ be set?

• A: universal’ threshold (Donoho & Johnstone, 1995)

(lots of other answers have been proposed)

– specialize to model X = D + ε,

where ε is Gaussian white noise with variance σ2
ε

– ‘universal’ threshold: δU ≡ √
[2σ2

ε log(N)]

– rationale for δU:

∗ suppose D = 0 & hence W is white noise also

∗ as N → ∞, have

P
[
max
n

|Wn| ≤ δU
]
→ 1

so all W(ht) = 0 with high probability

∗ will estimate correct D with high probability
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DWT-based Signal Extraction: IV

• can estimate σ2
ε using median absolute deviation (MAD):

σ̂(mad) ≡
median {|W1,0|, |W1,1|, . . . , |W1,N2 −1|}

0.6745
,

where W1,t’s are elements of W1

• Fig. 20: application to NMR series

• has potential application in dejamming GPS signals

(with roles of ‘signal’ and ‘noise’ swapped!)
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Web Material and Books

• Wavelet Digest

http://www.wavelet.org/

• MathSoft’s wavelet resource page

http://www.mathsoft.com/wavelets.html

• books

– R. Carmona, W.–L. Hwang & B. Torrésani (1998),

Practical Time-Frequency Analysis, Academic

Press

– S. G. Mallat (1999), A Wavelet Tour of Signal

Processing (Second Edition), Academic Press

– R. T. Ogden (1997), Essential Wavelets for Sta-

tistical Applications and Data Analysis, Birkhäuser

– D. B. Percival & A. T. Walden (2000), Wavelet

Methods for Time Series Analysis, Cambridge

University Press (will appear in July/August)

http://www.staff.washington.edu/dbp/wmtsa.html

– B. Vidakovic (1999), Statistical Modeling by Wavelets,

John Wiley & Sons.
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Software

• Matlab

– Wavelab (free):

http://www-stat.stanford.edu/~wavelab

– WaveBox (commercial):

http://www.toolsmiths.com/

• Mathcad Wavelets Extension Pack (commercial):

http://www.mathsoft.com/mathcad/ebooks/wavelets.asp

• S-Plus software

– WaveThresh (free):

http://lib.stat.cmu.edu/S/wavethresh

– S+Wavelets (commercial):

http://www.mathsoft.com/splsprod/wavelets.html
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