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Secondary use of electronic health records allows researchers the opportunity to test hypothe-

ses and gain new insights on complex disease phenotypes. Hereditary hemochromatosis is

an inherited autosomal recessive disorder that causes excessive absorption of iron. Early

diagnosis and disease management are critical, as iron accumulation in tissue leads to organ

failure and eventually death. Diagnosis of hereditary hemochromatosis requires evidence of

iron overload and a positive genetic test result. At the University of Washington there are no

standard clinical guidelines for hemochromatosis genetic testing and only 7.5% of patients

tested have a confirmed diagnosis.

We aimed to identify potential variables for additional screening criteria and inform clinical

guidelines for hemochromatosis genetic testing. We found that using established recommen-

dations for genetic testing of hemochromatosis from the American Association for the Study

of Liver Diseases (AASLD) and the European Association for Study of the Liver (EASL)

on patients screened by their physician for testing would have reduced the number of tested

patients from 873 to 345 and maintained 92% of positive diagnoses.



Logistic regression and association rule mining both confirmed that high transferrin satu-

ration is positively associated with HFE-hemochromatosis. It may not be possible to dis-

tinguish between hemochromatosis caused by HFE mutations and other genetic variants

making a wider hemochromatosis gene panel necessary to identify all cases and discover

novel variants.
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Chapter 1

INTRODUCTION

Patient electronic health records (EHR) collected through the course of normal medical visits

and treatment are a rich source of data for secondary researchers looking for non-invasive

methods of hypothesis testing (Shekelle, Morton, & Keeler, 2006). Use of EHR data has

been proposed for a wide variety of applications such as public health surveillance (Birk-

head, Klompas, & Shah, 2015), quality improvement (Chassin, Loeb, Schmaltz, & Wachter,

2010), automated medical phenotyping (Yu et al., 2015), and development of predictive mod-

els (Miotto, Li, Kidd, & Dudley, 2016).

HFE-Hereditary hemochromatosis (HFE-HH) is a common genetic disorder with an autosomal-

recessive inheritance pattern where the pathogenic variant of interest occurs in 6% of indi-

viduals with European ancestry (Hanson, Imperatore, & Burke, 2001). Despite the relatively

high prevalence of homozygous individuals in the population, there is variable penetrance of

symptoms and morbidity outcomes (Powell et al., 2006). Diagnosing HFE-HH is challeng-

ing because clinical manifestations resemble other disorders, there is a spectrum of severity,

presentation is different between genders, and definitive diagnosis requires a positive genetic

test (Alexander & Kowdley, 2009; Powell et al., 2006).

The University of Washington department of Laboratory Medicine performs hundreds of

genetic tests for HFE-Hemochromatosis each year. Less than 8% of individuals tested have

genotypes that confer diagnosis. The goal of this research was to access the feasibility of

using EHR data to develop predictive models for HFE-Hemochromatosis.
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Chapter 2

BACKGROUND

2.1 Heredity Hemochromatosis

Hemochromatosis has been the subject of medical inquiry for well over a hundred years. The

condition was formally named in 1889 to describe bronze-stained organs. It was recognized as

hereditary in 1935 with an autosomal recessive inheritance pattern in the 1970s (Pietrangelo,

2004). In 1996, the causal gene HFE (OMIM:613619), was first identified. The gene encodes

for a MC-I class cell surface protein believed to be involved in cellular iron uptake and reg-

ulation (Fleming & Ponka, 2012). Mutations in HFE account for the majority of hereditary

hemochromatosis cases, 90% of HH patients are homozygous for the C282Y mutation (Porto

et al., 2016).

Hereditary hemochromatosis (HH) is characterized by increased absorption of dietary iron.

Healthy individuals absorb 10% of the iron they consume (1-2 mg per day). Individuals with

hemochromatosis absorb up to five times more iron from their diet. Iron is necessary for

many body processes most notably, it is the central component of the heme molecule in red

blood cells. Like many integral chemical components used in the body, there are systems in

place to store excess iron for later use but there are no means to excrete excess iron. Iron is

only lost through bleeding injury and menstruation in reproductive-age women. Figure 2.1

depicts the iron cycle in the body from absorption via duodenal cells located in the intestine,

iron in the red blood cell cycle and storage of excess iron as ferritin in the liver.

Excess iron accumulates preferentially in parenchymal cells of the liver, pancreas and other

organs. When left untreated HH can lead to diabetes, heart disease, organ failure and even
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Figure 2.1: Depiction of the Iron Cycle

Reprinted from Iron overload in Human Disease.The New England Journal of Medicine,

366(4), 348–359 by Fleming and Ponka (2012).
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death. Hepcidin is an iron-regulating hormone that binds to and degrades ferroportin to in-

hibit the release of cellular iron into the bloodstream (Hollerer, Bachmann, & Muckenthaler,

2017). There are a number of genetic mutations found in several cell-surface proteins in the

liver that impact hepcidin expression and can manifest as iron overload (Figure 2.2).

2.2 Common HFE Mutations

C282Y is the most common disease causing mutation in the general population with 6% of

Caucasians having one allele (heterozygous) and 0.4% having the mutation at both alleles

(homozygous) (Merryweather-Clarke, Pointon, Shearman, & Robson, 1997). This mutation

is defined as a 845G polymorphism that results in an amino acid substitution from Cysteine

to Tyrosine at position 282 in the HFE protein. The amino acid change impacts the protein

structure rendering it unable to bind at the cell surface (where it is found in healthy individ-

uals). Instead, the HFE protein circulates intracellularly reducing its signaling capabilities

in the Hepcidin iron regulation pathway (Hollerer et al., 2017).

Population geneticists hypothesize the C282Y mutation originated in Celtic populations 5000

years ago and may confer increased fitness in heterozygotes (much like malaria resistance

for Hb S in Sickle Cell). Studies of C282Y heterozygous carriers found they are taller, have

longer life expectancies, are more athletic, and have higher rates of fertility (Balistreri et al.,

2002; Bulaj, Griffen, Jorde, Edwards, & Kushner, 1996; Cippà & Krayenbuehl, 2013). It has

been speculated that the timing of this mutation may coincide with the transition in early

human populations from a high protein and iron rich diet from hunting and gathering to an

iron-poor grain based diet as farmers. The ability to absorb more of what little iron was

available would have proven advantageous and caused the mutation to be perpetuated in

this population. Given the large number of identified mutations in iron absorption pathway

genes, it is likely there was significant selective pressure for these changes to occur.
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Figure 2.2: Types of Hereditary Hemochromatosis

Adapted from Figure 1 Pathophysiological consequences and benefits of mutations: 20 years

of research. Haematologica, 102(5), 809–817.by Hollerer et al. (2017).
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H63D is another prevalent mutation in HFE (15% of Caucasians are heterozygous). The

impact of homo- and heterozygosity of this mutation on HH is highly debated (Paul C.

Adams, 2014; Hollerer et al., 2017). When H63D is found with C282Y in an individual,

the genotype is referred to as a compound heterozygote (two non-wild type alleles) and is

considered to a genotype consistent with HH during testing.

2.3 Diagnosis

Diagnosis of HFE-HH is challenging, as clinical manifestations resemble other disorders. The

ubiquity of serum iron in biological processes means that clinical symptoms of HH are often

mosaic and can impact any of the following systems: neurological, gastrointestinal, muscu-

loskeletal, dermatological, endocrine, and cardiovascular. Known symptoms include chronic

fatigue, skin pigmentation, stiffness or pain in joints, diabetes, impotence, and liver disease

(including fibrosis, cirrhosis, and cancer). HFE-HH diagnosis is more prevalent in men and

postmenopausal women. Regular menstruation in premenopausal woman removes excess

iron, reducing the risk of iron overload, and masks increased iron absorption.

Penetrance of HFE-HH among individuals with the homozygous C282Y genotype is difficult

to determine as diagnosis requires both confirmed genetic testing and either onset of symp-

toms or blood tests indicating iron overload (P. C. Adams, 2015). Meta-analysis of 16 studies

have suggested penetrance around 14% (European Association For The Study Of The Liver,

2010). Low penetrance poses a challenge to genetic testing as the majority of people (86%)

who are homozygous for C282Y appear symptom free. Homozygous individuals can range

from symptom free to severe. This range makes it likely many mild cases are not captured.

Laboratory blood tests that reveal elevated liver enzymes, ferritin and/or transferrin sat-

uration can occur before clinical symptoms develop, making preventive treatment possible

with early detection. While blood tests for these markers are inexpensive, they suffer from

low specificity and/or low sensitivity to detect HH. Elevated ferritin most often indicates
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acute or chronic inflammation, chronic alcohol consumption, liver disease, renal failure, or

metabolic syndrome, rather than iron overload (Koperdanova & Cullis, 2015). Therefore

elevated ferritin exhibits low specificity for HH screening. Transferrin Saturation is reported

as a percentage and is calculated by taking the total serum ferritin and dividing it by the

total iron binding capacity (determined by serum levels of transferrin).

Iron uptake is only capable in the body when ferritin is bound to a transport molecule such

as transferrin. Serum ferritin reports the amount of iron circulating in blood as ferritin but

the transferrin saturation is a better measure for ferritin intended for storage in tissue or

reuse in red blood cell generation. When transferrin molecules are saturated, ferritin binds

to other molecules such as citrate with lower molecular weight. The ferritin bound to lower

molecular weight transporters have increased rate of uptake by certain cell types (Fleming &

Ponka, 2012). Most prevailing genetic testing algorithms for HH use transferrin saturation

as a key benchmark. However, transferrin saturation has low sensitivity in premenopausal

women and is prone to high variability based on time of date and fasting conditions.

Early detection of HH greatly improves clinical outcomes. Treatment for iron overload is

simple and inexpensive. Historically treatment has consisted of phlebotomy (frequency de-

pendent on level of iron overload with serum ferritin >1000 being referred for liver biopsy).

Recently, medications that act as iron chelators have also been introduced as an alternative

for individuals who do not tolerate phlebotomy well.

A recently published study found that 1 in 10 males with HH will develop severe liver disease

in their lifetime (Grosse, Gurrin, Bertalli, & Allen, 2018). Early diagnosis and treatment can

prevent irreparable organ damage. HFE-HH patients are significantly more likely to suffer

cardiac myopathy (Allen et al., 2008) and 9 times more likely to develop cirrhosis of the liver

if they consume excess alcohol (Fletcher, Dixon, Purdie, Powell, & Crawford, 2002) than in-

dividuals without this condition. Comorbidity of hemochromatosis with diabetes has shown
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to confer a 7-fold increased risk of death from diabetes (Niederau et al., 1985) and a 3-fold

increased risk in all-cause mortality for C282Y homozygotes (Ellervik, Mandrup-Poulsen,

Tybjærg-Hansen, & Nordestgaard, 2014). Diabetes is found in 8.5% of adults worldwide,

further increasing the need for early detection of HH to prevent additional mortality burden

(Mathers & Loncar, 2006).

Several studies have evaluated the need for population-based screening for hemochromatosis

(Burke et al., 1998; Motulsky & Beutler, 2000; Pardo, 2000; Sánchez et al., 2003) however

all concluded that the cost and uncertain penetrance makes population screening unfeasible.

Due to low and/or uncertain penetrance, none of the mutations in genes associated with

hemochromatosis appear on the ACMG list of medically actionable variants requiring sec-

ondary return of results. This means that if a patient undergoes genetic testing for research

purposes or another genetic condition, any findings about their HFE genotype will not be

returned to the patient. Some authors have advocated for targeted population screening for

HFE-HH such as HFE testing for all adults with type-II diabetes (Barton & Acton, 2017)

or to include addition of C282Y as medically actionable (Grosse et al., 2018). Nonetheless,

current genetic testing requires physicians to have a clinical suspicion of primary (hereditary)

iron overload and to recommend patients for confirmatory genetic testing.

2.4 HFE-Testing Algorithms

The American Association for the Study of Liver Diseases (AASLD) and the European Asso-

ciation for Study of the Liver (EASL) recommend genetic testing for HFE-HH for all patients

with abnormal organ findings (such as elevated liver enzymes) who present with transferrin

saturation greater than 45% regardless of manifestation of symptoms and for all first degree

relatives of patients diagnosed with HFE-HH (Vanclooster et al., 2015). These recommen-

dations are based on the desire to identify all cases of HFE-HH and reduce the need for

potentially more invasive tests such as liver biopsies.
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Prior to the development of genetic testing, the only way to diagnosis HH was through

symptom manifestation. The development of genetic testing algorithms highlight the desire

to take advantage of potential early detection of HH prior to irreversible organ damage

balanced with an evidence-medicine based approach to resource management. Some older

algorithms have also listed abnormal ferritin levels (> 200 ng/mL for females and >300

ng/mL for males) as criteria for testing. However recent research studies have consistently

shown abnormal ferritin to be a poor predictor of HH (O’Toole, Romeril, & Bromhead,

2017). Figure 2.3 shows two potential testing algorithms. The one on the left is a simplified

model based on the recommendations from AASLD and EASL. The diagram on the left is

the algorithm currently in use for genetic testing at the Mayo clinic. It acknowledges that

abnormal transferrin saturation requires additional follow-up but accounts for the variability

found in this blood test by requiring two fasting values that are abnormal a year apart.

2.5 EHR Data

The widespread adoption and expansion of EHRs have allowed patient data once contained

in individual charts to be quickly aggregated for secondary use research. For the first time

in medical history it is possible to use aggregate patient data to identify individuals or co-

horts, classify patients or conditions, and potentially predict patient outcomes (Blumenthal

& Tavenner, 2010). The benefits of using EHR data is that it is already routinely collected

as part of medical visits, it contains much of the data historically used for phenotyping, and

it is relatively accessible to researchers.

EHR data could be used to improve phenotyping of HFE-HH. Previous attempts at medical

phenotyping using EHR data have identified challenges with data extraction, missing data,

and low signal-to-noise ratio, depending on the research question (Denny, 2012; Hripcsak &

Albers, 2013; Jiang et al., 2011). Acknowledging the breadth of challenges in using EHR

data, it is necessary to adapt traditional methodologies and develop novel hybrid workflows.

Machine learning techniques have proven robust in light of missing data and more effective
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Figure 2.3: Examples of HFE-testing Algorithms

Left current HFE-testing recommendation from AASLD and EASL. Right, current HFE-

testing algorithm employed at Mayo Clinic Medical laboratories.
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at extracting signals than traditional statistical methods (Dekel & Shamir, 2008; Kotsiantis,

Zaharakis, & Pintelas, 2006; Schlimmer & Granger, 1986).

Machine learning techniques are widely used when analyzing large datasets. Much like hu-

man physicians looking for common symptoms or traits to phenotype a disease, machine

learning algorithms are capable of looking for patterns in complicated, noisy datasets. Using

a training set of data, an algorithm can learn to classify a particular state and then identify

it in a new unseen dataset. There have been numerous studies that have employed machine

learning techniques on EHR datasets to classify patients or traits associated with a wide-

variety of diseases such as diabetes (Kho et al., 2012), arrhythmia (Ritchie et al., 2013), and

bipolar disorder ((Ritchie et al., 2013; Shivade et al., 2014).

Machine learning techniques have also been utilized when looking for associations between

genotype and phenotype however these studies used genetic data in an attempt to identify

phenotypes (Kohane, 2011);(Gallego et al., 2015). To date no machine learning studies have

attempted the reverse, using machine learning and phenotype data to look for underlying

genotype.

The most relevant study in the space of EHR genetic phenotyping was conducted in 2013

through the eMERGE network, a consortium of research centers that performed microarray

genotyping assays and sequencing on large cohorts of patients with linked EHR records. The

eMERGE database includes 39,000 patients with genetic data and EHR of whom 100 were

homozygous for HFE. The study attempted to use ICD-9 codes and genotype data to deter-

mine the percentage of individuals in the database who were homozygous for HFE mutations

and had been diagnosed for HFE-HH (Gallego et al., 2015). The study found that only 20%

of patients with the homozygous HFE genotype had been diagnosed with HFE-HH, meaning

that they met the clinical criteria for testing and tested positive prior to their inclusion in

the eMERGE project.
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In addition to providing more evidence on incomplete penetrance of HFE-HH, the study also

produced a list of features associated with C282Y-homozygous individuals regardless of their

clinical diagnosis. These features, combined with previous literature describing the medical

phenotype and comorbidities of hemochromatosis, informed the data obtained and features

produced for analysis. While the study found classic hemochromatosis symptoms such as

liver disease and arthritis associated with undiagnosed C282Y homozygous individuals, the

study did not return genetic results in accordance with the ACMG recommendations for

return of results.
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Chapter 3

METHODS

3.1 Selection of Study Subjects

Initial identification of a cohort of University of Washington patients with HFE-Genetic

Testing was performed using the University of Washington Medicine LEAF tool in the IRB

approved de-identified preparatory research mode. This mode provides a de-identified aggre-

gate database of patients that is searchable by condition or test result. Using the laboratory

medicine code HEMDNA for the Hemochromatosis genetic test, the LEAF tool identified 901

potential patients with genetic test results (Fig 3.1) and additionally another approximately

6,000 patients with transferrin saturation greater than 45%.

3.2 IRB Exemption

An IRB exemption (University of Washington, Seattle,WA) was obtained for the de-identified

demographic, vital, laboratory, diagnosis and medication data on 7,766 UW medicine pa-

tients: 873 who had undergone genetic testing for hemochromatosis and 6,893 who had

laboratory testing that included total iron binding capacity (TIBC) with transferrin satura-

tion values. All patients were between the ages of 18-84. None were members of protected

classes as outlined in by IRB. Data extraction from AMALGA database was performed by

ITHS. Table 1 shows descriptive statistics for all study subjects.

3.3 Data Processing

Patient data was received from ITHS in relational matrices by data type (demographics, vital

signs, laboratory results, diagnosis codes, and medications). For each individual: height in

cm and calculated BMI (body mass index) were extracted from vitals; results for FER (Fer-
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Figure 3.1: Cohort Identification with LEAF

Screenshots of HEMDNA and Transferrin Saturation Results using ITHS LEAF tool
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Table 3.1: Descriptive Statistics of Cohorts

N HFE-HH Positive HFE-HH Negative Abnormal TIBC Normal TIBC Combined

N = 66 N = 807 N = 3010 N = 3883 N = 7766

Gender : Female 7765 42% ( 28) 40% ( 325) 47% (1494) 50% (1869) 48% (3716)

Age 7766 46 5664 44 5564 46 5967 40 56 67 43 57 67

Race : White 7766 86% ( 57) 71% ( 571) 69% (2173) 68% (2528) 69% (5329)

Black 3% ( 2) 5% ( 42) 8% ( 264) 11% ( 404) 9% ( 712)

Asian 0% ( 0) 11% ( 91) 11% ( 332) 9% ( 335) 10% ( 758)

Hispanic 0% ( 0) 1% ( 6) 1% ( 33) 1% ( 29) 1% ( 68)

Other 0% ( 0) 4% ( 30) 5% ( 150) 3% ( 120) 4% ( 300)

Unknown 11% ( 7) 8% ( 67) 7% ( 209) 8% ( 316) 8% ( 599)

Abnormal Iron 7249 68% ( 43) 67% ( 452) 97% (2824) 8% ( 299) 50% (3618)

FER max 7249 192 425 926 155 460 1077 566 1140 2241 28 65 140 59 248 1026

Abnormal TransferrinSat 7608 92% ( 56) 51% ( 331) 100% (3161) 0% ( 0) 47% (3548)

TRSATD max 7608 61 86 92 30 49 81 59 77 89 13 21 29 20 40 74

Height CM Mean 7385 167 173 180 163 171 178 162 169 177 162 170 178 162 170 177

BMI mean 7279 24.7 26.7 31.1 24.1 27.1 31.9 23.1 26.4 30.8 23.4 27.0 31.7 23.3 26.8 31.3

Appt total 7765 17.5 48.5 96.5 16.0 40.0 98.5 31.0 89.0 174.0 18.0 50.0 113.0 21.0 61.0 139.0

Record Len Days 7765 678 1587 2499 404 1376 2877 475 1400 2616 612 1690 2977 521 1556 2822

ICD9 total 7765 60 155 344 62 162 399 153 421 847 70 191 454 88 255 612

Infection 7766 41% ( 27) 59% ( 478) 75% (2374) 53% (1992) 63% (4871)

Cancer 7766 48% ( 32) 44% ( 355) 65% (2042) 44% (1655) 53% (4084)

Diabetes 7766 21% ( 14) 18% ( 145) 26% ( 812) 20% ( 728) 22% (1699)

Anemia 7766 26% ( 17) 48% ( 386) 84% (2664) 66% (2469) 71% (5536)

SexOrgan Disorder 7766 36% ( 24) 32% ( 261) 36% (1153) 41% (1545) 38% (2983)

Arthritis 7766 68% ( 45) 64% ( 513) 72% (2284) 69% (2562) 70% (5404)

DegenerativeCNS 7766 6% ( 4) 11% ( 87) 15% ( 477) 15% ( 545) 14% (1113)

Mental Health Disorders 7766 64% ( 42) 56% ( 451) 60% (1902) 56% (2076) 58% (4471)

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous

variables. N is the number of non–missing values. Numbers after percents are frequencies.
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ritin), TRSATD (Transferrin Saturation) and HEMDNA (Hemochromatosis genetic testing)

from laboratory results; age, gender, race and unique de-identified patient identifier from

demographics; and date and diagnosis code from diagnoses. Repeated laboratory results

were summarized into count, minimum value, mean value, maximum value.

The number of appointments per patient was extrapolated as the number of unique dates

for which there was a diagnosis code. The record length in days was determined to be the

length of time between the first diagnosis date and the last diagnosis date for each patient.

Diagnosis codes in the dataset included both ICD-9 and ICD-10 diagnosis codes (as the data

spanned from 2009 to the present). ICD-9 and ICD-10 codes were converted from their

decimal forms to short forms using R package icd and then ICD-10 codes were backwards

crosswalked to ICD-9 codes using the R package icdcoder.

12,285 unique ICD-10 codes were present in the initial dataset and 95% were successfully

mapped to ICD-9 codes. The 587 unmapped ICD-10 codes were removed from the dataset.

Including converted ICD-10 codes, the dataset included 9,171 unique ICD-9 codes. ICD-9 E

and V codes (supplemental codes for external injury and health status) were removed from

the dataset leaving 7,027 unique ICD-9 codes.

3.4 Feature Selection

Data features were informed by previous literature based on known symptoms, positive cor-

relation, negative correlation, and risk factors. Table 3.2 shows the broad category of features

selected prior to additional analysis.Continuous variables such as age, height, BMI, appoint-

ment number and record length were assessed using descriptive statistics and then binned

to make categorical variables based on frequency (age, appointment number, record length)

or biologically relevance (Ex: BMI; Underweight, Normal, Obese, Morbidly Obese). Table

3.3 shows methodology for each continuous variable.
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Table 3.2: Features Selected from Literature Review

Variable Source Rationale Citation

Age Demographics Onset of Diagnosis Adams et al.,1997

Sex Demographics Differential Prevalence Allen et al., 2008

Race Demographics Differential Prevalence Adams et al.,2005

BMI Vital Signs Positive Correlation Hollerer et al., 2017

Height Vital Signs Positive Correlation Cippà, P. E., & Krayenbuehl, P.-A., 2013

Serum Ferritin Laboratory result Symptom of HH Fleming, R. E., & Ponka, P., 2012

Transferrin Saturation Laboratory result Symptom of HH Fleming, R. E., & Ponka, P., 2012

Arthritis ICD-9 Codes Symptom of HH Hollerer et al., 2017

Sexual Organ Disfunction ICD-9 Codes Symptom of HH Hollerer et al., 2017

Depression/ Mental Health ICD-9 Codes Symptom of HH Hollerer et al., 2017

Diabetes ICD-9 Codes Symptom of HH Hollerer et al., 2017

Cancer (Any type) ICD-9 Codes Increased Risk Hollerer et al., 2017

Infection ICD-9 Codes Increased Risk Hollerer et al., 2017

Neurodegenerative diseases ICD-9 Codes Decreased Risk Fleming, R. E., & Ponka, P., 2012

Anemia ICD-9 Codes, Laboratory Results Neg correlation Fleming, R. E., & Ponka, P., 2012

Table 3.3: Variable Transformation Methodology

Variable Original Format Chosen Format Methodology

Age Continuous Categorical 10 years per bin except the ends

BMI Continuous Categorical Underweight, Normal, Overweight, Obese

Height Continuous Categorical 3 inches per Bin

Serum Ferritin Continuous Categorical Anemic, Normal, High, Very High, Extreme

Transferrin Saturation Continuous Categorical Low, Normal, Abnormal, Extreme

Arthritis Count Binary At least 1 ICD-9 Code in binned category

Sexual Organ Disfunction Count Binary At least 1 ICD-9 Code in binned category

Depression/ Mental Health Count Binary At least 1 ICD-9 Code in binned category

Diabetes Count Binary At least 1 ICD-9 Code in binned category

Cancer (Any type) Count Binary At least 1 ICD-9 Code in binned category

Infection Count Binary At least 1 ICD-9 Code in binned category

Neurodegenerative diseases Count Binary At least 1 ICD-9 Code in binned category

Anemia Mixed Binary Mean Ferritin value less than 20ng/mL or at least 1 ICD-9
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Table 3.4: Diagnosis Variables

HFE-HH Pos vs. Neg HFE-Tested vs. Non-tested

Variable Definition ChiSq p-value ChiSq p-value

Infection ICD-9 codes 0-139.999 χ2
1 = 8.4 P=0.0041 χ2

1 = 10 P=0.002

Cancer (Any type) ICD-9 codes 140-239.999 χ2
1 = 0.5 P=0.481 χ2

1 = 26.9 P<0.0011

Diabetes ICD-9 codes 250-250.999 χ2
1 = 0.43 P=0.5111 χ2

1 = 7.73 P=0.005

Anemia ICD-9 codes 280-285.999 or Mean ferritin less than 20 ng/mL χ2
1 = 11.96 P<0.0011 χ2

1 = 303.26 P<0.0011

Sexual Organ Disfunction Males: ICD-9 600-608.999, Females: 614-629.999 χ2
1 = 0.45 P=0.5031 χ2

1 = 13.82 P<0.0011

Arthritis ICD-9 codes 710-729.999 χ2
1 = 0.56 P=0.4531 χ2

1 = 14.93 P<0.0011

Neurodegenerative diseases ICD-9 codes 330-337.999 χ2
1 = 1.46 P=0.2281 χ2

1 = 12.23 P<0.0011

Depression/ Mental Health ICD-9 codes 295-316.999 χ2
1 = 1.49 P=0.2221 χ2

1 = 0.49 P=0.485

ICD-9 codes were coarsely binned to match features outlined in Table 2 based on ICD-

9 hierarchy. Fisher exact calculations were performed to evaluate differences between the

population of patients who tested positive and those who tested negative, as well as between

the total population tested and those with abnormal TIBC laboratory results. Table 3.4

outlines the ICD-9 codes used for each variable and the P value for the two fisher exact

calculations performed.

3.5 Logistic Regression

Logistic regression models the odds ratio of a binary outcome. It is possible to rewrite a

logistic regression equation to calculate probability of a binary outcome from 0 to 1.

1(
1 + e−(β0+βixi+βjxj+...βnxn)

)
In the above equation, a logistic regression model will fit data to produce the coefficient

betas for each variable x. The logistic regression assumes a linear combination of variables

but is estimated using maximum likelihood. Due to the small sample size, logistic regression

was performed using a penalized likelihood method designed to reduce bias in maximum

likelihood estimates (Firth, 1993; Heinze, Ploner, & Beyea, 2013). The Firth method was

developed to handle separation that can occur then the outcome of interest is a rare event.
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Historically it has been used in rare cancer datasets as well as gene variant analysis.

Additionally it allows for continuous variables.

Previous studies have attempted to predict C282Y homozygosity among individuals with

iron overload using simple logistic regression with continuous variables serum ferritin and

transferrin saturation, however the resulting model reported very wide confidence intervals.

Using the published regression, a patient with 50% transferrin saturation and 500 ng/mL

serum ferritin had a 1.3% (95% CI 1.1% to 8.8%) of being C282Y homozygous (Lim, Speech-

ley, & Adams, 2014). This study benefited from a large sample size but the equation is likely

to underestimate the probability of C282Y homozygosity in patients who are recommended

to receive TIBC testing due to abnormal liver enzymes. TIBC is not a routine laboratory

blood test and is generally only recommended in cases of suspected anemia or iron overload.

The published equation and accompanying calculator were based on population screening

which may not be clinically relevant.

Two logistic regression models were built: one to capture the probability of C282Y homozy-

gosity among those recommended for HFE-testing and the second to capture the probability

of being recommended for testing among patients who have received TIBC blood tests. The

descriptive statistics revealed significant differences between the HFE-tested population and

the TIBC-tested population as a whole (Table 3.4). The purpose of two tests would be to

identify individuals in the untested cohort who are more similar to the tested cohort and

then to determine their probability of having C282Y homozygosity.

The models were built using a combination of features including demographics, laboratory

results, vitals and diagnosis information. The model was developed iteratively using anova

to compare the fit between models. All logistic regression was conducted using the R package

logistf.
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3.6 Machine Learning

Traditional machine learning approaches operate best with large datasets. They are ro-

bust to handle missing and sparse data, but they require a lot of individuals in the sample

to perform any sort of classification. This dataset contained over 7,000 individuals with

rich data, but there was only 66 gold-standard confirmed HFE-HH cases. Ideally a classi-

fier would be built to distinguish between confirmed HFE-HH and all other patients. But

this poses a problem of unlabeled data. Of our 7,000 individuals, there is not HFE genotype

data for 6,000 of them. While there have been some methodologies developed to classify with

unknown labels, these techniques are very recent and require a significant number of samples.

Additionally, prediction or classification using machine learning algorithms require gold stan-

dard training sets and a separate unseen test set for validation. There are methods designed

to cross-validate, that rely on splitting the data such that each sample may be for both

training and validation (but not in the same set). The very small number of confirmed cases

did not allow cross-validation as it sacrifices power to detect signal for ability to evaluate.

With a sufficiently large dataset this trade-off may reduce the fit slightly but in this case it

rendered the task impossible.

3.7 Association Rule Mining

Association rule mining is a machine learning technique originally developed in 1993 to draw

inferences from supermarket transactions. Each supermarket transaction consisted of one or

more items purchased together by an individual and the methods were developed to identify

patterns of items that were frequently bought together. It is a “bottom-up” approach where

no starting insight is provided and instead frequency of items is used to guide associations

(Agrawal, Imieliński, & Swami, 1993; Ordonez, 2006).
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The apriori algorithm starts by identifying frequent items in the dataset that meet a min-

imum support standard. The minimum is generally 1% but can be as low as 0.5%. This

means that 1% support for a HFE-Case would correspond to at least six individuals sharing

a trait in a dataset of 600. Confidence is a parameter to determine the proportion of indi-

viduals meeting the criteria within a frequent set. A confidence level of 0.5 is generally used

for medical applications (Ordonez, 2006). These two parameters mean identifying variables

with a minimum of six cases and no more than an equal number of non-cases. These sets

are built for all variables and the combined iteratively one at a time. Each combination or

variables must meet the parameters until all combinations have been identified.

The apriori algorithm is exhaustive, which can be computationally expensive for large datasets,

but was not a limitation given the number of individual patients in this study. Association

rule mining on EHR data has the potential for rules to be validated by medical knowledge

(Li, Simon, Chute, & Pathak, 2013; M.Kang’ethe, Kang’ethe, & Wagacha, 2014). Valid

patterns in the data should mimic underlying biological mechanisms and elucidate which

features in combination are necessary to confer a phenotype. This is particularly crucial for

HH as there is not a clear distinct phenotype established for this condition. Association rules

were mined using the apriori function of the R package arules with minimum support=0.01

and confidence=0.5.
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Chapter 4

RESULTS

4.1 Transferrin Saturaion

Transferrin saturation was the most prominent variable associated with HFE-HH diagnosis.

Despite clear recommendations for abnormal transferrin saturation prior to genetic testing

referral, only 715 out of 873 patients had at least one transferrin saturation laboratory finding

in the dataset. Of these 715 only 48% (345/715) had values above the established threshold.

92% of confirmed HFE-HH cases had abnormal transferrin saturation.

Descriptive statistics, logistic regression and association rule mining all confirmed that trans-

ferrin saturation is a key variable for HFE-HH prediction. If abnormal transferrin saturation

was required as secondary screening prior to genetic testing, it would have reduced the total

population tested to 345 and captured 56 out of 61 positive cases. This additional screen-

ing has a specificity of 91% but a sensitivity of 46%. It is not possible to compare this to

the current protocol as we don’t have a value for true positives in the general population.

Current positive predictive power is 7.5% but this additional screening would increase the

positive predictive power to 12.5%.

4.2 HFE-tested Cohort

HFE-HH cases and those who tested negative were similar across most features selected

for analysis. The only statistically significant differences between those who tested positive

and negative were self-reported race, transferrin saturation, infection and anemia (Table

3.4). The HFE-test cohort however was quite different from the untested cohort in nearly

all diagnosis code categories (Table 3.4) as well as self-reported race, gender, height and
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Figure 4.1: Comparisons of Total ICD-9 and Appointments by Cohort

laboratory results. The cohort of patients with abnormal TIBC results who were not HFE-

tested had significantly higher number of diagnosis codes and appointments suggesting a

higher overall disease burden (Figure 4.1).

4.3 Logistic Regression Models

Penalized logistic regression on the cohort of HFE-HH tested patients revealed abnormal

transferrin saturation was the best predictor of HFE-HH diagnosis. Anova comparison be-

tween penalized logistic regressions with a single variable, transferrin saturation, and the

linear combination of transferrin saturation and ferritin value found transferrin saturation
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alone was a better fit (p=0.04).

Applying transferrin saturation alone on our cohort of HFE-HH tested patients found a trans-

ferrin value of 50 corresponded to a probability of 5.7% of being HFE-HH positive (95% CI:

1.6-17.6%). Binning maximum transferrin saturation into a binary value of abnormal (>45%

for females, >50% for males) slightly increased the likelihood ratio and may better reflect the

reality that difference in abnormal values do not accurately reflect differences in probabilities.

While the best fit came from transferrin saturation alone, this does not provide a tool to iden-

tify new candidates for screening from the abnormal TIBC cohort and therefore additional

variables were evaluated (Table 4.1). Table 4.1 depicts all variables tested in logistic regres-

sion models and their corresponding p-values. Seven variables were (bolded) were shown to

be statistically significant with a threshold of 0.05.

The logistic regression model to predict HFE-testing status identified 7 variables: gender,

abnormal ferritin, abnormal transferrin saturation, total ICD-9 diagnoses, cancer diagnosis,

and anemia. Table 4.2 displays the coefficients for the model along with their standard

errors, confidence intervals and p-values. While Firth penalized logistic regression attempts

to eliminate separation, two variables and the intercept still exhibit separation (chisq values

approaching infinity). The logistic regression model to identify the HFE-testing cohort had

sensitivity of 70% and specificity of 60% when using a probability cut-off of 0.1 or higher.

4.4 Association Rule

Nine total rules, each with between four and six variables, were found to be associated with

HFE-HH patients among those with genetic test results (Table 4.3). The majority of vari-

ables included in the rules appeared in multiple rules and had biological rationale (Table 4.4).

Abnormal transferrin saturation (High TRSATD) appeared in 8 out of the 9 rules. The com-

bination of high transferrin saturation, male, white, and age 51-60 match the canonical HH
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Table 4.1: Logistic Regression Variables Tested using HFE-Tested Cohort

Variable ChiSq df P-value

Abnormal TransferrinSat 49.39 1 2.10E-12

Anemia 13.28 1 2.68E-04

Infection 8.69 1 3.20E-03

Diabetes 5.53 1 1.87E-02

BMI mean 5.25 1 2.19E-02

ICD9 total 4.87 1 2.73E-02

Appt total 4.72 1 2.99E-02

Height CM Mean 3.34 1 6.74E-02

Gender 2.29 1 1.30E-01

Age 1.81 1 1.79E-01

Race 6.86 5 2.31E-01

Mental Health Disorders 1.25 1 2.63E-01

Abnormal Iron 0.24 1 6.26E-01

Record Len Days 0.21 1 6.47E-01

Cancer 0.11 1 7.42E-01

Arthritis 0.02 1 8.84E-01

DegenerativeCNS 0.01 1 9.01E-01
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Table 4.2: Likelihood Penalized Logistic Regression Coefficients for Predicting HFE-Testing

Variable Coef SE(coef) Lower 0.95 Upper 0.95 Chisq p-value

(Intercept) -2.18 0.10 -2.39 -1.98 Inf 0.00E+00

MaleTRUE 0.25 0.09 0.09 0.42 8.78 3.05E-03

Abnormal IronTRUE 1.77 0.14 1.50 2.03 Inf 0.00E+00

Abnormal TransferrinSatTRUE -0.55 0.13 -0.80 -0.30 18.14 2.05E-05

ICD9 total -3.00E-04 0.00 0.00 0.00 10.30 1.33E-03

CancerTRUE -0.24 0.09 -0.42 -0.06 6.62 1.01E-02

AnemiaTRUE -1.48 0.10 -1.68 -1.29 Inf 0.00E+00

Mental Health DisordersTRUE 0.36 0.09 0.18 0.53 15.57 7.94E-05

Likelihood Ratio Test=474.1 on 7 df, p-0, n=7179

Wald test=463.4 on 7 df, p=0
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Table 4.3: Association Rules Generated from HFE-HH Tested Patients

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 support confidence lift count

High TRSATD High FER Max ICD9 25-100 Arthritis 0.01 0.5 5.29 8

High TRSATD Age 51-60 Male Record 36-60 months 0.01 0.5 5.29 7

High TRSATD Age 51-60 Male Tall STD1 0.01 0.54 5.69 7

High TRSATD Age 51-60 Race White Tall STD1 0.01 0.5 5.29 7

High TRSATD Age 51-60 Male Race White Tall STD1 0.01 0.58 6.17 7

High TRSATD High FER Max BMI<18.5 ICD9 25-100 Arthritis 0.01 0.5 5.29 8

High TRSATD High FER Max Race White ICD9 25-100 Arthritis 0.01 0.54 5.69 7

High TRSATD High FER Max Race White ICD9 25-100 BMI<18.5 Arthritis 0.01 0.54 5.69 7

Age 51-60 Race White High FER Max Appt 25-100 BMI<18.5 Arthritis 0.01 0.5 5.29 7

phenotype described in historic literature. The rule with the highest lift, a measurement to

describe the combination of support and confidence, has five variables, highlighting the need

for a combination of variables. The only variable that was a diagnosis type was arthritis,

which is a symptom of HH.

Applying the nine association rules on a subset of untested patients who had 10% or greater

probability of being tested yielded 179 individuals including two who met the criteria for

all nine rules. 42 cases out of 66 total also had 10% or greater probability of being tested

using the logistic regression model and the nine association rules captures 21 of them (50%).

This corresponds roughly to 50% specificity and 80% sensitivity using a hybrid approach to

identify HFE-cases.
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Table 4.4: Prevalence and Rationale for Association Rule Variables

Variable # Rules Variable Type Biological Rationale

High TRSATD 8 Laboratory Result Iron Overload

High FER Max 5 Laboratory Result Iron Overload

Arthritis 5 Diagnosis HH Symptom

Age 51-60 5 Demographic Typical Age of Onset

Race White 5 Demographic Increased Prevalence

ICD9 25-100 4 Morbidity Level

Male 3 Demographic Increased Prevalence

Tall STD1 3 Vital Positive Correlation

Underweight BMI<18.5 3 Vital

Record 36-60 months 1 Record Type

Appt 25-100 1 Morbidity Level
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Chapter 5

DISCUSSION

The challenges of identifying HH through medical phenotyping have been previously re-

ported. The lack of available datasets that include both rich medical phenotype data such

as electronic health records and gold standard genetic test results have compounded this

issue. While hereditary hemochromatosis is one of the most common genetic conditions, its

mosaic phenotype and unclear penetrance makes it difficult to identify. Phenotypically there

was not significant variation between those who tested positive for HFE-HH and those who

did not in our dataset. The entire cohort of tested individuals had similar number of ap-

pointments, ICD-9 codes and diagnoses. The HFE-positive subset was generally more likely

to be white, had more individuals with abnormal transferrin level and were taller on average.

5.1 Transferrin Saturation

Unfortunately only abnormal transferrin level is easily viable for additional screening crite-

ria. While previous studies and our findings clearly support that C282Y is predominantly

found in Caucasians, self-reported race in the EHR may not reflect underlying ancestry.

Self-reported race has been identified as a particularly error-prone data element in EHR,

as it is not always self-reported but is instead assigned. As we move forward into the era

of precision medicine and whole genome sequencing, it may be possible to use population

genetics and principal component analysis to inform the race listed in the EHR at which

point it would be worthy to note that European ancestry greatly increases the likelihood of

C282Y homozygosity.
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While abnormal transferrin saturation was observed in the majority of HFE-HH cases, five

patients did not have abnormal transferrin saturation (and five did not have TIBC labora-

tory results in the dataset). It is unclear whether any of these cases had previous laboratory

results outside the UWMC system or other explanations. It is also possible that the transfer-

rin saturation was lower due to any number of external factors (such as injury with bleeding,

accumulation of iron in tissue and therefore reduced iron levels in serum, or reduced dietary

iron).

5.2 Testing and Clinical Decision Support

In evidence-based medicine it always challenging to draw the line for sensitivity and speci-

ficity but as long as the screening criteria does not overrule clinical judgement and there is

a process for allowing exception the University of Washington would benefit from adopting

high transferrin saturation as a metric for genetic testing. This would reduce the number of

tests and increase sensitivity. Adoption of this type of screening criteria is in line with what

other major research universities with specialty clinics such as Mayo have instituted.

Additionally, recommended testing guidelines appear to apply to a large number of untested

individuals in the UWMC system. TIBC tests are generally only given in cases of abnormal

liver enzymes or iron-related symptoms. So unless these cases exclusively fall into patients

with confirmed hepatitis infection or alcohol-related liver disease, it is likely that a fair

number of patients in this untested cohort would benefit from genetic testing. The logistic

regression model to fit the probability of testing could be used as an automated first pass to

identify patients who look more like the tested cohort. From this narrowed list, the associ-

ation rules can further identify promising candidates for chart review. 179 individuals were

identified in this study, including four who met eight or nine of the rules. Genetic testing

in this identified cohort could provide validation on whether having additional measures to

identify HFE-HH patients is beneficial.
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The same association rules could be used to inform a decision support system. If abnormal

TIBC results come up, then it could check for ICD-10 codes related to positive hepatitis

diagnosis, alcohol-related liver disease and other secondary iron overload. If patients have

abnormal TIBC, no clear secondary iron overload, and meet one or more of the association

rules, then it might be worth letting physicians know to consider HFE-HH testing.

The data also supports the findings of previous literature that ferritin levels are less indica-

tive of HFE-HH than transferrin saturation and additionally that HFE-HH cases do not have

hyper-ferritin levels (greater than 5,000 ng/mL). Laboratory results in this range are more

likely due to acute infection than gradual iron-accumulation (Sackett, Cunderlik, Sahni,

Killeen, & Olson, 2016). These kind of findings could be used to inform clinical decision

support systems or laboratory medicine quality assurance measures.

5.3 Non-HFE Hemochromatosis

While this genetic test is considered the gold standard for HFE-HH, it is difficult to rule out

HH all together as there are other variants in known iron absorption pathways that lead to

the same phenotypic condition but with different molecular causes. Interestingly the tested

population included a substantial portion of individuals who self-identified as Asian (91 in-

dividuals). A recent large scale study of iron overload found high levels of iron overload in

Asian populations despite having a C282Y prevalence of 3.9 in 10 million (compared to 6-10

per 1,000 in Caucasians) (Paul C. Adams et al., 2005).

A recent unpublished study found 80% of Asians with iron overload had a nonsynonymous

mutation in a different iron absorption gene that is potentially causal (Zhang, W., Lv, T.,

Xu, A., You, H., Jia, J., Ou, X., & Huang, J., 2017). While HFE-HH is the most common

type, there are four other genes in iron absorption pathways with variants known to cause
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iron overload (Lok et al., 2009). It is possible that many of the individuals in the dataset

who tested negative for C282Y mutations HFE-HH in fact have other variants responsible

and because multiple genes can impact the same pathway it would be phenotypically im-

possible to distinguish between them making true positive and negatives difficult to evaluate.

UWMC’s HEMDNA test is part of a panel of three genes that are sequenced together.

They use custom targeted capture probes to sequence only the areas of the gene around the

known clinical variant (UWMC Laboratory Medicine Internal Protocol, 2016). The labo-

ratory results extracted from the EHR contain interpretation on the raw data but not all

the findings. It is not possible to identify new potentially pathogenic variants in HFE or in

other iron pathway genes from this type of sequencing. With advances in next-generation

sequencing technology it could be possible to create custom panels that include HFE, HJV,

HAMP, TFR2 and SLC40A1 to identify known pathogenic variants as well as look for novel

disease-causing mutations.

5.4 Logistic Regression

Logistic regression was chosen for modeling because the outcome was binary. Logistic regres-

sion models are more difficult to interpret than linear models and do not provide insight that

can be easily translated to clinical support systems or guidelines. While logistic regression

using abnormal transferrin saturation was the best fit for identifying HFE-cases among those

tested, it had lower sensitivity and specificity than applying a clear threshold. However, us-

ing logistic regression to identify patients who are similar to the testing cohort could prove

to be a valuable automated way to screen more potential cases. Early detection is key to

improving outcomes and because HFE-HH increases the risk of morbidity when coupled with

diabetes or alcoholism, wider-detection mechanisms are crucial even as population screening

is not recommended.
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5.5 Association Rule Mining

Association rule mining provided additional interpretability to features and allowed for soft

validation against medical knowledge. Association rules have the advantage of combining a

collection of terms that are not necessarily linear but instead collectively correlated. While

individual variables that make up the rules have been previously reported characteristics of

HFE-HH patients, their combination is the canonical HFE-HH phenotype established before

genetic testing. The association rule mining from a proof of concept standpoint has unequiv-

ocally shown that this technique can be applied to EHR data to retrieve medically relevant

sets. Without further validation and analysis it is unclear if the features not listed in previ-

ous literation (such as number of ICD-9 codes) and features counter to existing knowledge

(such as low BMI), represent novel insights or viable patient subsets, or if they merely fit

this specific dataset.

A hybrid approach using logistic regression and association rules can provide insight when

there is an issue of unlabeled positives in a retrospective study. It allows for the untested

cohort to be subsetted and applies the association rules to only those individuals who look

the most like the tested cohort (where the association rules were mined). Validation of this

approach in a wider dataset may help provide better clinical guidelines than the overly broad

abnormal TIBC laboratory results while increasing the rate of early detection.

5.6 Sensitivity and Specificity

Sensitivity and specificity for HFE-HH screening with serum ferritin and transferrin satu-

ration have not been published in previous studies likely due to the difficulty in confirming

HH phenotype in C282Y homozygotes. The sensitivity and specificities listed in this paper

assume that clinicians have successfully screened for HH phenotype and are confirming the

genetic component. This means it is not possible to easily compare the values found in this
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study to previous literature. The best comparison is between the previous positive predictive

value (PPV) of clinician genetic testing recommendation alone (7.5%) to the proposed com-

bination of clinician screening + transferrin saturation (12.5%). The goal of this research

was not to establish these values but future research may want to re-evaluate this question

in terms of diagnostic screening for HFE-HH as most papers refer to a study conducted in

1984 prior to HFE-genotype testing (Borwein, Ghent, & Valberg, 1984)

5.7 Limitations

Sample size was the primary limitation of this study. The ratio of cases to “controls” made

it infeasible to use traditional machine learning methods that can handle missing and noisy

data more appropriately. It also prevented direct validation of findings from this research

by subsetting the data into training and test portions. It is unclear whether the models

developed through this study are valid in other datasets or generalizable across systems but

this is certainly an area for future work.
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Chapter 6

FUTURE WORK

The results of this study require validation. This could be achieved by seeking additional

electronic health record data for HFE-HH confirmed cases from other medical systems to use

as a test set. Within the UW medical system, it may be prudent to work with physicians

in the department of Laboratory Medicine to review charts of the 179 patients identified

as candidates for testing to further analyze whether they are good candidates and perform

HFE-HH testing on those that look promising.

The confirmation of previous literature guidelines for genetic testing of this condition could

lead to additional quality assurance work in the UWMC laboratory medicine department in

terms of analyzing the referring physician and identifying physicians who may be referring

patients with low likelihood of hemochromatosis. The results of this research coupled with

genetic testing algorithms in place at other institutions could be used to develop internal

guidelines for HFE-HH testing or clinical decision support systems. It may be feasible to

pilot test an alert system that would remind physicians that high transferrin saturation is

key to having a diagnosis of HFE-HH.

The eMERGE project has one of the largest collections of exome data coupled with elec-

tronic health record. While their past examination only found 20% of C282Y homozygous

individuals had an ICD-9 diagnosis of HFE-HH, 33.5% shared the comorbidity of arthritis

which is known to be associated with hereditary hemochromatosis. Out of their 98 C282Y

homozygous patients, only 18 had transferrin saturation testing. Status as C282Y homozy-

gous is not currently reported back to physicians nor patients in the eMERGE project but it
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is arguable that many of these patients would benefit from transferrin saturation screening

and follow-up. This could be an excellent validation opportunity to look at the hybrid lo-

gistic regression and association rules to identify other potential candidates in their system

and because they have the genotypes already it may be enough to tip the scale on return of

results for this variant.

This study strictly used structured EHR data. Concurrent work with UWMC Genetic

Medicine Clinic highlighted the breadth of patient information contained in pdfs and supple-

mental information not easily extracted from the EHR without prior knowledge and natural

language processing. There is still a lot more data available in the EHR as a whole and

natural language processing could extract pertinent information from physician notes and

family histories. This could be particularly valuable when considering European ancestry as

a viable screening criteria for HFE-HH.

The similarity between HFE-tested individuals has highlighted the need for an evaluation of

wider sequencing panels that includes all iron transport genes with tools for interpretation

and novel mutation discovery. Particularly for the cohort of 91 Asian patients with iron

overload, recent literature suggests that there could be a missense mutation responsible and

this would be an excellent cohort to use to validate that finding.
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Chapter 7

CONCLUSION

Electronic health record data is notoriously difficult to work with and requires substantial

medical knowledge, patience and expertise to curate a viable dataset. Viable signals and

key features for even difficult and mosaic conditions such as HFE-HH can be extracted from

the data. Predictive modeling of common genetic conditions using EHR data is feasible

provided there is well documented phenotype information and a validated confirmation set.

It is difficult to distinguish HFE-HH from other genetic causes of hemochromatosis but as

whole genome sequencing increases in prevalence and techniques for using EHR data improve,

it may be possible to expand the definitions of hereditary hemochromatosis and develop

a comprehensive clinical gene panel that includes all relevant variants. In the meantime,

developing clinical testing guidelines that fit our current genetic testing system would reduce

unnecessary testing among referrals and improve identification of candidates for treatment

from individuals with abnormal TIBC values.
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